O

proceedings

Fair Center Clustering in Sliding Windows

Matteo Ceccarello
matteo.ceccarello@unipd.it
University of Padova, Italy

Geppino Pucci
geppino.pucci@unipd.it
University of Padova, Italy

Abstract

The k-center problem requires the selection of k points (centers)
from a given metric pointset W so to minimize the maximum
distance of any point of W from the closest center. This paper fo-
cuses on a fair variant of the problem, known as fair center, where
each input point belongs to some category and each category
may contribute a limited number of points to the center set. We
present the first space-efficient streaming algorithm for fair cen-
ter in general metrics, under the sliding window model. At any
time ¢, the algorithm is able to provide a solution for the current
window whose quality is almost as good as the one guaranteed
by the best, polynomial-time sequential algorithms run on the
entire window, and exhibits space and time requirements inde-
pendent of the window size. Our theoretical results are backed
by an extensive set of experiments on both real-world and syn-
thetic datasets, which provide evidence of the significantly better
performance/quality tradeoffs attained by our algorithm with
respect to the those achievable by running the state-of-the-art
sequential baselines on the entire window.

Keywords

Clustering, k-center, Algorithmic Fairness, Streaming, Doubling
dimensions, Matroid constraints

1 Introduction

Clustering is a fundamental primitive for machine learning and
data mining, with applications in many domains [19]. One popu-
lar variant is k-center clustering, which has also been intensely
studied in the realm of facility location [31]. Given a set of points
W from a metric space and an integer k < |W|, the k-center prob-
lem requires to select k points (dubbed centers) from W, which
minimize the maximum distance of any point of W from its clos-
est center. The centers induce immediately a partition of W into
k clusters, one per center, where each point is assigned to the clus-
ter associated to its closest center. When the distance between
points models (dis)similarity, each center can then be regarded as
a suitable representative for all the points in the corresponding
cluster. Indeed, efficient clustering approaches have been tradi-
tionally used for two main purposes, one being the partitioning
of the dataset into groups of similar data points for unsupervised
classification, the other being the selection of a small number of
representative points (the centers of the clusters) that are good
descriptors of the entire dataset. In particular, k-center has been
often employed as a summarization primitive to extract succinct
coresets from large datasets, where computationally expensive
analyses can then be performed (e.g., see [4, 6] and references
therein).

EDBT °26, Tampere (Finland)

© 2025 Copyright held by the owner/author(s). Published on OpenProceedings.org
under ISBN 978-3-98318-103-2, series ISSN 2367-2005. Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.

196

Andrea Pietracaprina
andrea.pietracaprina@unipd.it
University of Padova, Italy

Francesco Visona
francesco.visona.3@studenti.unipd.it
University of Padova, Italy

Applying mainstream clustering algorithms to process data
associated to user communities may often generate biased results,
potentially causing discriminatory effects which reinforce social
inequalities in target applications [9, 13]. In data summarization,
unfairness may come in the form of a selection of representatives
that do not reflect the demographics of the entire population. Kay
etal. [23] found that Google Images queries for professions return
a selection of images that often do not reflect the actual gender
balance of the professions. For instance the actual percentage
of women among bartenders (~ 60%), technical writers (~ 55%),
computer programmers (~ 22%) and bus drivers (= 45%) is very
different from the percentage of women in the corresponding
image results (respectively ~ 23%, ~ 35%, ~ 16%, and ~ 18%).

In order not to discriminate some groups of individuals with
respect to some specific, sensible attribute (e.g., ethnicity, gender,
or political views), when clustering is used for summarization
purposes, it is of utmost importance that the centers provide a
fair representation of the population with respect to this attribute.
To this end, in fair center clustering, we label each point with a
color, representing the attribute value for the group which the
corresponding individual belongs to, and we impose an upper
limit on the number of returned centers from each color, so that
no color, hence no group, is over-represented in the output. We
remark that blindly ignoring sensible attributes does not imply
a fair solution [13]: in fact, group membership information can
leak from other features of the points, or the features themselves
might be discriminative towards some group.

Scalable versions of this fair k-center variant have recently
been studied in distributed and insertion-only streaming settings
[6]. In this work, we devise and experiment with the first efficient
streaming algorithm for fair center clustering under the more
challenging, heavily studied sliding-windows model [12], where
the sought solution at any time must refer only to a fixed-size
window W of the most recent data, disregarding older elements
of the stream. This model is applied in scenarios where the recent
data is more relevant than historical data, either because current
trends are of interest or because regulations like the General Data
Protection Regulation (GDPR) require to retain user information
only for a limited amount of time [14, Recital (31) and Article

5.1(e)].

1.1 Related work

The k-center problem, being a fundamental primitive in many
data analysis workflows, has been studied extensively in the past
decades. For brevity, in this section we give an account of those
results that relate most closely to our work.

In the sliding window model, [11, 28] provide approximation
algorithms for the unrestricted k-center problem without fairness
constraints. The variant of k-center with outliers in the sliding
window model has been studied in [29]. A relevant generalization
of the k-center problem is the matroid center problem, where the

10.48786/edbt.2026.17

https://OpenProceedings.org/
https://orcid.org/0000-0003-2783-0218
https://orcid.org/0000-0002-9189-9618
https://orcid.org/0000-0001-9189-6938
https://orcid.org/
OpenProceedings.org
https://dx.doi.org/10.48786/edbt.2026.17

EDBT 26, 24-27 March 2026, Tampere (Finland)

centers of the clustering are required to be an independent set
of a given matroid. The seminal work of [8] provided the first
3-approximation sequential algorithm for this problem, albeit
featuring a high computational complexity. The matroid center
problem has also been studied in [6, 22, 30] in the insertion-only
streaming and in the fully-dynamic settings yielding in all cases
a (3 + ¢) approximation and also allowing for the presence of
outliers.

The fair center problem studied in this paper can be seen
as a specialization of the matroid center problem for the so-
called partition matroid, built on points belonging to different
categories and whose independent sets are those containing no
more than a fixed upper limit of points per category. In [24]
the authors provide a sequential (3 - 2/~! — 1)-approximation
algorithm for fair center (where ¢ is the number of categories),
with a runtime linear both in k and in the number of points. Later,
[20] improved the approximation factor to 3 while retaining the
same time complexity. [2] studies the fair clustering problem
in the presence of outliers, providing a sequential, randomized
bicriteria approximation algorithm. A further specialization of
the problem, where each center is required to represent at least a
given fraction of the input points, in addition to respecting the
fairness constraints, has been studied by [3]. In the insertion-only
streaming setting, the fair center problem has been considered
in [10, 15, 26]. These papers all yield 3 approximations for the
problem, with improvements in the working space requirements
over the general matroid center algorithms discussed before. To
the best of our knowledge, ours is the first work to address the fair
center problem in the more challenging sliding window setting.

We wish to stress that, although widely studied, the notion
of fairness in center selection adopted in this paper is not the
only possible one. For instance, [21, 27] consider individually
fair clustering, where each point is required to have at least one
center among its n/k nearest neighbors. [18] also considers this
problem in the presence of outliers. Also, observe that all the
approaches discussed so far refer to enforcing fairness conditions
on the centers, and are thus tightly associated to the notion of
clustering as a summarization primitive. There is a very prolific
line of research which regards fairness as a set of balancing
constraints on the elements of the clusters rather than on their
centers (see [1, 5] and references therein). For a comprehensive
survey on different formulations of fair clustering and on their
downstream applications, we refer the interested reader to [9].

Finally, it is worth mentioning that the same notion of fairness
studied in this paper has been intensely investigated in the realm
of diversity maximization [4, 25, 32-35], a problem which can be
envisioned as the dual counterpart of clustering.

1.2 Owur contribution

We present the first sliding window algorithm for fair center
clustering in general metric spaces, which, at any time t, is able to
provide an accurate solution for the current window, and requires
space and time independent of the window size. More specifically,
let S denote a potentially infinite stream of points from a metric
space, and let n > 0 be the target window size. Each point of
S is associated with one of ¢ colors and fairness is modeled by
requiring that any feasible solution to the problem contains at
most k; points of color i, for every 1 <i < £. Let e € (0,1) be a
fixed accuracy parameter, and let A be the aspect ratio of S (i.e.,
the ratio between maximum and minimum pairwise distance).
Also, define k = 3./_, k; and let & denote the best approximation

197

Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Francesco Visona

ratio guaranteed by a polynomial-time sequential algorithm for
fair center (currently o = 3 [20]). Our main contributions are the
following (detailed statements are found in Section 3).

e An algorithm that at any time ¢ returns an (a + ¢)-
approximate solution to fair center for the current window
W,, requiring working space m = O (k?log A(c/e)Pwe),
for a fixed constant ¢, where Dyy, is the doubling dimen-
sion of W; (formally defined in Section 2), which gener-
alizes the notion of Euclidean dimensionality to general
metrics. The algorithm’s update (resp., query) time to han-
dle a new arrival (resp., to compute a solution) is O (m)
(resp., O (km)), thus both independent of the window size
|W;| (for low-dimensional streams).

o A modification of the above algorithm that at any time ¢

is able to return a O (1)-approximate solution to fair cen-

ter for W,, requiring working space m = O (k?log A/e),

update time O (m) and query time O (km). Thus, in this

algorithm the exponential dependency on the doubling di-

mension Dyy, has been removed, at the expense of a weaker,

but still constant, approximation ratio.

Extensive experimental evidence on real datasets that the

above algorithms indeed provide solutions of quality com-

parable to the best sequential algorithms run on the entire
window, using only a fraction of the space and being orders
of magnitude faster.

To the best of our knowledge, ours are the first accurate, space
and time efficient sliding window algorithms for fair center clus-
tering. Our algorithms build upon the coreset-based strategy used
in [11, 28] for the unconstrained k-center problem, but introduce
non trivial, crucial modifications in the coreset construction to
ensure that accurate fair solutions can be extracted from the
coreset.

We remark that although the performance of our most accurate
algorithm is expressed in terms of the doubling dimension Dyy,,
the algorithm does not require the knowledge of this parameter
to run, which is very desirable in practice, since the doubling
dimension is hard to estimate. Similarly, the aspect ratio A of
the current window need not be provided as an explicit input
to our algorithms, but it can be inferred by maintaining good
estimates of the minimum and maximum pairwise distances of
the points in W; (hence, of A) without worsening its theoretical
and practical performance.

At the very end of Section 3, after our new algorithm and
its analysis have been presented in full, we provide a detailed
account of the main differences of our approach with respect to
previous work.

Organization of the paper. The rest of the paper is structured as
follows. Section 2 defines the problem, the computational model
and a number of basic notions. Section 3 presents the algorithm
(Subsection 3.1) and its analysis (Subsection 3.2). Section 4 re-
ports on the experimental results. Section 5 closes the paper with
some concluding remarks. For ease of reading, Table 1 provides
a comprehensive list of all the notations used in the paper.

2 Preliminaries

Problem definition. Consider a metric space X equipped with
a distance function d(-,-). Forx € X and W C X, letd(x, W) =
min{d(x,w) : w € W} denote the minimum distance of x from
a point in W. For a given W C X and a natural k, the classic k-
center clustering problem [16] requires to find a subset C € W of
size at most k minimizing the radius rc (W) = max,ew d(p, C).

Fair Center Clustering in Sliding Windows

Table 1: Notations used in this paper

(X, d(--)) metric space

M=(X,I) matroid on X

ScX stream

W; window, at time ¢, of the last n points of S

Dy, doubling dimension of W;

re(W) radius of C w.r.t. window W

t number of colors

ki max num of points of color i in an independent
set

t(p) arrival time of point p

TTL(p) Time-To-Live of point p

dmin, dmax min/max distance between points of S

A aspect ratio dmax /dmin

r set of guesses on the optimal radius

AV, Ay sets of v-/c-attractors for guess y at time ¢
RVy .+, Ry sets of v-/c-representatives for guess y at time ¢
Uy (p) v-attractor for point p for guess y

&y (p) c-attractor for point p for guess y

repVy.:(a) v-representative of v-attractor a € AV,
repsC,:(a) c-representatives of c-attractor a € A, ;

Observe that any set of centers C defines a natural partition of
the points of W into clusters, by assigning each point of W to its
closest center in C (with ties broken arbitrarily).

In this paper, we study the following variant of the k-center
problem, dubbed fair center. Assume that each point in X is
associated with one of a finite set of ¢ categories (dubbed colors
in the following). For a given W C X and positive integers
ki, ka2, ..., ke, a solution to the fair center problemisaset C C W
of centers minimizing rc (W), under the additional constraint that
C contains at most k; centers of the i-th color, for 1 <i < f. We
denote with OPTyy the radius of an optimal fair center solution
for W.

The above fairness constraint can be envisaged as a special
case of the more general class of matroid constraints, that have
been studied in the context of clustering starting from [8]. Given
a ground set X, recall that a matroid M on X is a pair M =
(X, 1), where I C 2% is a family of independent sets featuring
the following two properties: (a) downward closure (if P € I and
P’ C Pthen P’ € I); and (b) augmentation property (if P, Q € I and
|[P| > |Q] then 3x € P\ Q such that QU {x} € I). An independent
setis maximal if it is not a proper subset of any other independent
set. Observe that as a consequence of the augmentation property,
every maximal independent set in a matroid M has the same
cardinality, which is denoted with rank (M). Furthermore, any
subset W C X induces a (sub)matroid (W,I’), withI’ = {YNW :
Y € I}. We say that a subset Y C W is a maximal independent set
w.rt. W,if Y € I’ is a maximal independent set of this submatroid.

Given a matroid M = (X,I) and a set W C X, the matroid
center problem seeks an independent set C € I minimizing rc(W).
For fixed kq, ks, ..., k, and W C X, the constraint to be imposed
on the solution of fair center can be seen as a matroid constraint
with respect to the so-called partition matroid of rank k = Y°_, k;,
where the family of independent sets contains all subsets of
X with at most k; points of each color i, for 1 < i < ¢. This
implies that any algorithm for the matroid center problem can
be immediately specialized to solve the fair center problem.

198

EDBT 26, 24-27 March 2026, Tampere (Finland)

Doubling metric spaces. Given W C X, a point x € W and
a real value r > 0, the ball of radius r centered in x, denoted
by B(x,r) C W, is the set {p € W : d(x,p) < r}. The doubling
dimension of W is the minimum value D such that, for all x € W,
B(x,r) is contained in the union of at most 2P balls of radius
r/2. The concept of doubling dimension generalizes the notion of
dimensionality of Euclidean spaces and has been used in a wide
variety of applications (see [17, 28] and references therein).

Sliding windows model. A stream S is a potentially infinite or-
dered sequence of points from some (metric) space X. At each
(discrete) time step t = 1,2,..., a new point p arrives, and we
denote with ¢(p) its arrival time. Given an integer n and a time
t, the window W; C X at time ¢ of size n is the (multi-)set of the
last n points of the stream S. Solving a problem on the sliding
windows model entails maintaining data structures that can be
queried at any time ¢ > 0 to return the solution of the problem
for the instance W;. In the sliding window model, the key per-
formance metrics are (a) the amount of space used to store the
data structures; (b) the update time required to handle the arrival
of a point p at time ¢; and (c) the query time, that is the time to
extract the solution for window W; from the data structures.

3 Fair-center for sliding windows

Consider a stream S of colored points from a metric space X with
distance function d(-, -), and let n > 0 be the target window size.
We let M = (X, I) be a partition matroid defined on X, whose
independent sets are subsets containing at most < k; points of
each color i, for all 1 < i < ¢, and whose rank is k = Zle k;. In
this section, we present our algorithm that, at any time ¢ > 0, is
able to return an accurate solution to fair center for the current
window W, of size n. The algorithm is described in Subsection 3.1
and its accuracy, as well as its time and space requirements, are
analyzed in Subsection 3.2.

3.1 Algorithm

The algorithm builds upon the one presented in [28] for the
unconstrained k-center problem in sliding windows, but it intro-
duces crucial modifications which allow to handle the fairness
constraint. Also, a significant simplification of the employed data
structures affords more elegant and intuitive correctness and
performance analyses with respect to all previous approaches
for unconstrained k-center [11, 28, 29].

At any time step ¢, for a point p € S with #(p) < ¢, its Time-
To-Live (TTL), denoted as TTL(p), is the number of remaining
steps > t, in which p will be part of the current window, namely
TTL(p) = max{0, n—(t—t(p))}, where n is the size of the window.
We say that p is active at any time when TTL(p) > 0. TTL(p)
decreases at every time step, and we say that p expires at the time
when TTL(p) becomes 0 (i.e., at time ¢(p) + n). Let dpmin and dpay
be, respectively, the minimum and maximum pairwise distance
between points of S, and define A = dax/dmin, Which we refer
to as the aspect ratio of S. For a fixed parameter f > 0, we define
the following set of guesses for the optimal radius (which, being
a distance between two points, clearly falls in [dmin, dmax]):

r= {(1 +B) - Llog,, p duin) < i < [log,, 5 dmax]} 1

For ease of presentation, we assume that dpin and dmax are known to the algorithm.
However, we remark that the same techniques introduced in [28] can be employed
to provide estimates of these quantities and to make I" adaptive to the aspect ratio
of the current window, rather than of the entire stream.

EDBT 26, 24-27 March 2026, Tampere (Finland)

In broad terms, the algorithm maintains, for each guess y € T,
suitable sets of active points whose overall size is independent of
n. At any time t, from these points it will be possible to identify
a guess providing a tight lower bound on the optimal radius, and,
based on this guess, to extract a small coreset which embodies
a provably good approximate solution to fair center for W;. A
query will then compute such a solution by running the best
sequential algorithm available for fair center on the coreset.

More specifically, for each y € T, the algorithm maintains
two families of active points: validation points and coreset points
In turn, each of these two families consists of two (not nec-
essarily disjoint) sets: namely, AV, (v-attractors), and RV, (v-
representatives), for validation points; and A, (c-attractors), and
Ry, (c-representatives), for coreset points. Intuitively, attractors are
used by the update algorithm to ensure that all the points of the
window are well covered, i.e., each of them has a sufficiently close
attractor, while representatives include the most recent, relevant
points for each attractor. The reason for distinguishing between
validation and coreset points, for each radius guess y, is that the
former are employed to establish whether y is a good approxima-
tion to the optimal radius for unconstrained k-center (which, in
turns, is a lower bound to the optimal radius for the fair variant),
while the latter provide a set of candidate centers from which a
solution to fair k-center clustering can be constructed. Because of
these different roles, colors will be relevant only for the selection
of the coreset points.

These sets are updated after the arrival of each new point of
the stream. Set AV, contains at most k + 1 points at pairwise
distance > 2y. Each v-attractor v € AV, is paired with a single
ov-representative denoted as repV, (v), which is a recent point of
the stream at distance at most 2y from v, and it is included in
RV,. We remark that there may be v-representatives that are not
paired with any v-attractor. Indeed, when a v-attractor v € AV,
expires, its v-representative repV, (v) is not further updated, but
it remains in RV, until it expires or it is expunged by a suitable
clean-up procedure.

A key difference with the algorithm in [28] is in the choice
of coreset points, which must now be empowered to account
for the fairness constraint. Let § € (0,4] be a fixed, user-defined
precision parameter that is closely related to the resulting ap-
proximation quality of the algorithm (see Theorem 3). The set
A, contains points at pairwise distance > dy/2, where the lower
bound is factor §/4 less than the least distance 2y between -
attractors in AV,. (Observe that only values § < 4 make sense.)
There is no fixed upper bound on its size, which, however, will
be conveniently bounded by the analysis. Upon arrival, a new
point p is either attracted by a conveniently chosen point in A, at
distance < §y/2, if any, or is added to A, (and attracts itself). For
each a € A, the algorithm maintains a set of c-representatives
repsCy(a), which is a maximal independent set of active points
attracted by a with the longest remaining lifespan, and is included
inRy.Forie€ [1,£], we let repsC}’;(U) C repsCy(v) denote the (at
most k;) points of repsCy (v) of color i. After a c-attractor a € A,
expires, its set of c-representatives repsC, (a) is not further up-
dated, but each of its elements remains in R, until it expires or it
is expunged by the aforementioned clean-up procedure.

Clearly, all of the above sets of validation and coreset points
evolve with time and, whenever we need to refer to one such set
at a specific time ¢, we will add t as a second subscript.

Recall that k = 3./, k;. We say that a guess y € T is valid at
time ¢, if [AV};| < k. It is easy to see that if y € T is not valid,

199

Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Francesco Visona

(ie., |AV, ;| = k + 1), then y is a lower bound to the optimal
radius for unconstrained k-center on W;, hence to the optimal
radius for fair center on W;, which can only be as large. The
main purpose of validation points is to keep track of current
valid guesses, which, as explained above, may be identified by
referring to the unconstrained version of k-center, and thus are
handled by the algorithm irrespective of their color. Instead,
coreset points provide, for each valid guess, a reasonably sized
subset of the window points, so that any other window point is
“well represented” by a nearby coreset point of the same color,
which ensures that an accurate fair solution on the coreset points
is also an accurate solution for the entire window. Thus, running
a sequential algorithm solely on the coreset points of a valid guess
will yield a close approximation of the solution obtainable by
running the algorithm on the entire window, while significantly
reducing time and memory usage. For each guess, the number
of coreset points will depend on k, on the precision parameter
§, and, most importantly, on the doubling dimension Dy, of the
current window. However, we remark that while k and § are
parameters that must be given in input, the algorithm does not
require the knowledge of the doubling dimension Dy,, which
will be used only in the analysis.

In what follows, we describe in more details the operations
performed at time step ¢ to handle the arrival of a new point
p and, if required, to compute a solution to fair center for the
current window W;.

3.1.1 Update procedure. The arrival of a new point p is handled
by procedure UpDATE(p) (Algorithm 1). For every guess y € T,
the data structures are updated as follows. If p is at distance
greater than 2y from any other v-attractor, then p is added to
AV,, and to RV, as representative of itself, otherwise it becomes
the new representative of some (arbitrary) v-attractor v with
d(v, p) < 2y, whose previous representative is discarded. In the
former case, a procedure CLEANUP(p, y) (Algorithm 2) is invoked
to reduce the size of the various sets as follows. If [AV} | = k + 2
the v-attractor with minimum TTL is removed from AV;. After
this, if [AV,| = k + 1 all c-attractors, v-representatives, and c-
representatives with TTL less than the minimum TTL t,,;, of a
v-attractor are removed from A,. These removals are justified
by the fact that if |AV,| = k + 1, then AV, acts as a certificate
that y is not a valid guess until time t + t,;,, hence, for that
guess, there is no need to keep points that expire earlier than
that. For every point p, we denote with 1, (p) the v-attractor v
such that p = repV, (v) after the execution of UpDATE(p). We
remark that ¢, (p) is fixed once and forall when p arrives. In
fact, , (p) is not explicitly stored in the data structures, but is
solely needed for the analysis. Coreset points are updated as
follows. If p is at distance greater than dy/2 from any other c-
attractor, then p is added to A,. Otherwise, suppose that p is of
color i. Then p is attracted by a and added to the set repsCy (a),
where a is chosen as the c-attractor at distance at most §y/2
from p with minimum |repsC;(a)|. In case |repsC}i,(a)| > k; (ie.,
|repsC;(a)| = k; + 1), the representative in IrepsC)i,(a)| with
minimum TTL is removed from the set. Observe that, unlike AV,
the size of A) can grow larger than k + 2. The maximum size of
these sets, however, will be conveniently upper bounded by the
analysis. For every point p, we denote with ¢, (p) the c-attractor
such that p € repsCy (¢y(p)), after the execution of UPDATE(p).
Again, ¢, (p) is fixed once and forall when p arrives, and it is not
explicitly stored in the data structures, since it is solely needed
for the analysis.

Fair Center Clustering in Sliding Windows

Algorithm 1: UpDATE(p)

8 « user-defined precision parameter in (0, 4]
i < color of p

x « point expired when p arrives

foreach y € T do

Remove x from any set AVy, Ay, RV, Ry containing it;
/% Identify which attractors p can be a
representative for */
1 EV « {v € AV, : d(p,v) < 2y};
2 E—{veA :d(pv) <dy/2};
/* Assign p to a v-attractor ¥, (p) */
3 if EV = () then
4 AV, « AV, U {p};
5 Yy (p) = ps
6 repVy(lpy(P)) —p;
7 RVy « RV, U {repVy (y (p))};
8 CLEANUP(p, y);
9 else
10 Yy (p) < arbitrary element of EV;
11 | repV, (Y (p)) < p
/* Assign p to a c-attractor ¢,(p) */
12 if E = () then
13 Ay — A, U {ph
14 ¢y (p) — p; repsCy (¢ (p)) — {p};
15 | Ry < Ry UrepsCy($,(p));
16 else
17 ¢y (p) < argmin |repsC;(a)|;
/% Update repsC, (¢, (p)) */
18 repsCy($y(p)) « repsCy (4, (p)) U {p};
19 if [repsCy (¢y(p))| > ki then
20 Orem < argminoerepsci((ﬁy(p)) TTL(0);
21 Remove 0em, from repsCy (¢, (p)) in Ry;

Algorithm 2: CLEANUP(p, y)

if |AVy| = k + 2 then > remove the oldest v-attractor
Vold < arg minveAVy TTL(v);
| AVy — AVy \ {vo1a}s

if |AV,| = k + 1 then » remove unnneeded points

tmin € minﬂEAVy TTL(U),

Remove all ¢ with TTL(q) < tpn from Ay, RV}, and
R

y s

In what follows, we give two examples which illustrate how
the validation and coreset points are maintained by the update
procedure upon the arrival of stream points.

Example 1. The following example considers the setting with
k = 3 and a window of size w = 6 points, focusing on the
validation sets AV, and RV,, for some guess y. The next figure
reports all the points that will be used throughout the example,
with the subscript denoting the time instant ¢ at which they arrive
in the stream. In this example we ignore the color of each point,
as this information is not used to construct the validation sets.

200

EDBT 26, 24-27 March 2026, Tampere (Finland)

.Ps .pz
P

Consider the situation depicted in the following figure at the end
of time t = 6, where the points py, ps, .. ., ps have been relabeled
as v-attractors (ay) or v-representatives (r,) depending on the role
assigned to them by the algorithm.

e
[]

2y

a4

At time t = 7 point p; enters the window, while point a; ex-
pires and is removed from the attractor set AV,. However, a;’s v-
representative r; is not removed from the set of v-representatives
RV,. As for the newly inserted p;, it can be assigned as v-
representative to either a4 or as. Suppose that it is assigned to a4
as its v-representative, replacing r in this role (thus, we rename
it 7). Thus, after the update at time ¢t = 7 the situation is the
following:

r2

Now, at time t = 8 point ps enters the window and r, expires.
Since pg is not within the ball of radius 2y around any v-attractor,
then it becomes a v-attractor itself (hence, we relabel it as as),
and it becomes its own representative as well:

newly inserted point p;

newly inserted point ps

Example 2. We now give an example for the update of the
sets of coreset points, Ayand Ry, using a stream of eight points
(different from the one of the previous example) featuring two
colors, i =1and i=2. We impose fairness constraints k; = 1
and k; = 2, hence k = 3, and window length w = 6. The points
used in the example, together with their colors, are shown in the
following figure, where the subscript denotes the time at which
the point enters the stream.

EDBT 26, 24-27 March 2026, Tampere (Finland)

Ps
Ps p2 P71 P3

Ps
pa’

The situation at the end of time ¢ = 6 is depicted in the fol-
lowing figure, with the c-attractor set A, = {ay, az, as}. Namely,
c-attractor a; is the representative of itself, of color i =1, while
a; has two c-representatives, including itself, of color i = 2 and
one of color i = 1. Finally, c-attractor as has one c-representative
(itself) of color i =1 and one c-representative of color i = 2.

amEl
e
\ X*S}//Zﬁ\ /

oy
Time t = 7 sees the expiration of point a; and the insertion of
point p7 of color i =2, which is within distance dy/2 from both
a; and as. Since a, already has k; = 2 c-representatives of color
i = 2, then p; is assigned as a c-representative for c-attractor as,
dy/

giving the following situation:
AN
\CE&
newly inserted point p;

At time t = 8, point pg of color i =1 enters the window and
point a; expires. Since pg is at distance at most 8y/2 from aj it
should be assigned as one of as’s c-representatives. However,
at this point a3 would have 2 > k; c-representatives of color
i = 1. Therefore a3, the oldest among the c-representatives of a3
of color i =1, is removed from set R,. Note, however, that being
also a c-attractor that is yet to expire, a3 is not removed from A,.
Being no longer part of the c-representatives, as is pictured in
gray in the following picture, since its color is now immaterial
to the algorithm:

/ \ newly inserted point pg
\‘Zg y

In the above examples, for simplicity we have depicted a sce-
nario where the cleanup procedure (which amounts to a simple
purge of the oldest attractors and representatives in the data
structures when y is an invalid guess) does not perform any
action.

3.1.2 Query procedure. At any time t, to obtain a solution to
the fair center problem for W;, procedure QUERY() is invoked
(Algorithm 3). First, a valid guess y is identified such that a k-
center clustering of radius < 2y for the points in RV, is found,
and for any smaller guess y’ € T with y’ < y, there are k + 1
points in either AV,» or RV}, with pairwise distance > 2y’. As it
will be shown in the analysis, this ensures that the coreset points
in Ry contain a good solution to fair center for W;, which is then
computed by invoking the best sequential fair center algorithm
A.

201

Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Francesco Visona

Algorithm 3: QUERY()

for increasing values of y € T such that |AV,| < k do
C 0
foreach g € RV, do

if C=0Vvd(qC)>2ythen C—CU{q};

if |C| > k then Break and move to the next guess
if |C| < k then

return A(Ry) ; /* A = sequential fair
L center algorithm */

3.2 Analysis

The following lemma shows that at any time ¢, the points RV,
(resp., Ry) are within distance 4y (resp., §y) from all points of the
entire W;, when y is valid, or of a suitable suffix of W}, otherwise.
(The lemma is similar to [28, Lemma 1] but the proof given below
is completely new and applies to the simpler version of the update
procedure devised in this paper.)

LEMMA 1. Foreveryy € T andt > 0, the following properties
hold after the execution of the UPDATE procedure for the point
arrived at time t:

(1) If |AV, ;| < k, thenVq € W; we have:
(a) d(q,RVy,r) < 4y;
(b) d(q.Ry:) < 6y;
(2) If |AVyt| > k, then¥q € W; s.t. t(q) 2 mingeay,, t(v) we
have:
(a) d(q.RVy,) <4y
(b) d(q.Ry:) < dy;

Proor. For every y € I and ¢ > 0, we say that a point g € W;
is relevant for y and t if |AV, ;| < k or |AV,;| > k and t(q) >
mingeay,, t(v). Clearly, the proof concerns only relevant points.
Also, recall that for every point p of the stream, in UpDATE(p)
we set ,(p) (resp., ¢, (p)) to its assigned v-attractor (resp., c-
attractor). Clearly, d(p, ¥, (p)) < 2y, and d(p, ¢, (p)) < dy/2. (In
fact, the values ¥, (p) and ¢, (p) are not explicitly stored in the
data structures, as they are just needed for the analysis.)

Let us focus on an arbitrary guess y. We will argue that, at any
time ¢ > 0, for every point g which is relevant for y and ¢, there
exists a point x € RV},; and a point y € R,; such that ¢, (x) =
Uy (q) and ¢, (y) = ¢,(q). The lemma will follow immediately
since ¥y (x) = ¥y (q) implies d(q,x) < 4y, and ¢,(y) = ¢,(q)
implies d(q,y) < dy.

Let us first concentrate on validation points. If q is the point
arrived at time ¢ (i.e., t(q) = t) then it is immediate to see from the
pseudocode that q enters RV, ;, hence, it suffices to choose x = gq.
Otherwise, it is immediate to argue that since q is relevant at
time t, it has also been relevant at all times ¢, with t(q) < t’ <1,
which implies that g has never been removed from RV}, ;- during
some invocation of CLEANUP, which only removes non-relevant
points. Consequently, since g entered RV, ;(4), either g is still in
RV, (and we set x = q), or ¢ was eliminated from RV, due to
the arrival of some point x; at time #(x;) > ¢(q). Observe that x;
is also relevant. If x; € RV, ;, we set x = x, otherwise, we apply
the same reasoning to x;. Iterating the argument, we determine
a sequence of relevant points x1, Xz, . . ., X, with t(q) < t(x1) <

. < t(x,) and ¥(q) = ¢¥(x1) = ... = ¢(x,), with x, € RV};, and
we set x = x,.

Fair Center Clustering in Sliding Windows

The argument to show that there exists y € Ry, such that
¢y(y) = $,(q) is virtually identical, and is just sketched for
completeness. As argued above, since q is relevant for y and ¢, it
was never eliminated during some invocation of CLEANUP. Thus,
since g € Ry (q), either g € Ry, (and we set y = q) or we can
identify a sequence of relevant points y1, ya, . . ., y, of the same

color as g, with t(q) < t(y;) < ... < t(ys) and ¢(q) = ¢(y1) =
... = ¢(ys), with ys € Ry ;, and we set y = y;.]

The next lemma (proof omitted) is a straightforward adap-
tation of [6, Lemma 3], and provides an important technical
tool, which will be needed to show that the coreset extracted in
QUERY() contains a good solution to fair center for the current
window.

LEMMA 2. Let W; be the window of points at time step t, and
let Iy, be the family of independent sets of the partition matroid
defined on W; (i.e., the feasible solutions to fair center for W;). Let
Q C W, ba a coreset that satisfies the following conditions:

(€1 d(p.Q) <y, VpeW,

(C2) For each independent set X € Iy, there exists an injective
mapping x : X — Q such that:
- {nx(x) : x € X} C Q is an independent set w.r.t. Q
- foreachx € X, d(x, mx(x)) < 8y

Then:

(P1) There exists a solution S C Q to fair center for W; of
radius < OPTyy, + 28y

(P2) Every solution to fair center for Q of radius r is also a
solution of cost at most r + 8y for W;.

We are now ready to present the main novel ingredient of
the analysis of our algorithm. Recall that for any point p of the
stream and every guess y, UPDATE(p) assigns p to a c-attractor
¢y, (p) € Ay, adding p to repsCy: (¢, (p)). Note that ¢, (p) = p if
p was added to A,. Also, for any point a which at time ¢(a) was
added to Ay, and for any t > t(a), we define

Wy,t(a) ={xew, : ¢y(x) =a}.

Observe that from time ¢(a) until the time when a is expunged
from Ay, W, ;(a) grows with the arrival of each new point c-
attracted by a. After a leaves Ay, W, ;(a) progressively looses
points as they expire. Also, for t > t(a), the set repsCy;(a) is
updated at each arrival of a new point attracted by a, until a is
expunged from A,. After that happens, the set repsC, ;(a) is not
further updated with new points, while its elements will then be
gradually expunged from R, as they expire. We have:

LEMMA 3. For any time t and valid guess y € T, the follow-
ing holds. Let a € S be a point which arrived at t(a) < t and,
upon arrival, was added to Ay. Then W,,;(a) N Ry, is a maximal
independent set w.r.t. W, ;(a).

Proor. It is immediate to see that at each time t > t(a) for
which a € A, ;, the set repsCy;(a) = W, ;(a) N Ry, is always a
maximal independent set w.r.t. W,;(a), since a point x € W, ;(a)
is always inserted into repsCy, ;(x) (@), and may cause the expunc-
tion from the set of a single point of the same color iy (the oldest
such point), only when there are already k;, points of color iy
present in repsCy ;(x)-1(a). Let t > t(a) be the time when a is
expunged from A ;. As already observed, for every ¢ > £, Wyt (a)
does not acquire new points and shrinks due to the natural expira-
tion of the points c-attracted by a. If points in Ry ; were removed
only on their expiration, then the maximality of W, ;(a) N Ry
w.r.t. W,,;(a) would immediately follow by the fact that, as long

202

EDBT 26, 24-27 March 2026, Tampere (Finland)

as a is in Ay ;, for each color i, repsC, ; (a) maintains the most re-
cently arrived points of that color. However, whenever y becomes
an invalid guess, extra points from R,,; may be expunged (Line 2
of procedure CLEANUP). However, these expunged points, being
older than the oldest point in AV, ;, will all have expired by the
time step t’ > t (if any) when |AV}, /| drops below k + 1, and thus
y becomes again a valid guess, so their premature elimination
will not affect the maximality of W, N Ry, ;. O

The following theorem establishes the quality of the solution
returned by Procedure QUERY.

THEOREM 3. Let a be the approximation ratio featured by the
sequential fair center algorithm A used in Procedure QUERY(). For
fixed ¢ € (0,1) and f > 0, by setting

£
0= (1+p)(1+ 2a)

we have that if Procedure QUERY is run at time t, then the returned
solution is an (a + €)-approximate solution to fair center for the
current window W;.

PROOF. Let j be the guess such that the solution returned by
QUERY is computed by running A on the coreset Q = R,. We
first show that conditions (C1) and (C2) of Lemma 2 hold for Q.
First observe that by construction y is chosen so that |AV} ;| <
k, therefore condition (C1) holds by virtue of Property 1.(b) of
Lemma 1. To show that (C2) also holds, consider any independent
set X w.r.t. W;. We construct the required injective mapping
mx : X — Q incrementally, one point at a time. Let X = {x; :
1 < j < |X|}. Suppose that we have fixed the mapping for the
first h > 0 elements of X, and assume, inductively, that

Y(h) = {nx(x;) : 1<j<h}U{x; : h<j<I|X[}

is an independent set w.r.t. W; of size |X|, and such that, for
1< j < h nx(xj) € Qand d(xj, mx(x;)) < §y. We now show
how to extend the mapping to index h+1. We distinguish between
two cases. If x;4; € Q, then we simply set 7x (Xp4+1) = Xp41. Since
Y(h+ 1) = Y(h) and d(xp41, 7x (xp+1)) = 0 < Sy, the mapping is
correctly extended to index h+ 1. Conversely, if x;.1 € Q, observe
that xp,1 € Wy (a), where a = ¢(xp41). Since § is a valid guess,
by Lemma 3 it follows that Z = W} ;(a) N Q is a maximal inde-
pendent set w.r.t. W ;(a). Then, it will always be possible to set
7x (Xp+1) = Yn+1, where ypyq is a point of Z of the same color as
Xp+1,and such that yp; # 7x(x;), for 1 < j < h, or otherwise the
number of points in X N W} ;(a) of the same color as xp+; would
have to be larger than those in Z, contradicting the maximality of
the latter subset w.r.t. W} ;(a). By the properties of the partition
matroid, it follows that Y (h+1) is still an independent set w.r.t. W;.
Also, since both xp41 and mx (x44+1) = yp4+1 belong to Wj ;(a), we
have that d(xp+1, 7x (xp+1)) < d(xp11,a) + d(a, 7x (xpe1) < Oy.
Therefore, given that, by construction, 7x (xp+1) € Q, the map-
ping is correctly extended to index h + 1. By iterating the ar-
gument up to index |X|, we have that Y(|X|) € Q, and we
conclude that condition (C2) holds for Q C W,. Therefore, by
Lemma 2, since (C1) and (C2) hold for Q, Properties (P1) and
(P2) also hold. Property (P1) implies that the optimal solution
to fair center for Q has radius < OPTyy, + 26y. Therefore, when
invoked on Q, algorithm A will return a solution of radius
< a(OPTy, + 28y) for Q, which, by Property (P2), is also a solu-
tion of radius < @OPTy, + (1 + 2a)8y for W;. Now, let r} be the
radius of the optimal solution to unconstrained k-center for W;. It
is easy to see that J < (1+ f)r;. Indeed, the inequality is trivial if
¥ = dmin, while, otherwise, it follows from the fact that Procedure

EDBT 26, 24-27 March 2026, Tampere (Finland)

QUERY discarded guess y = /(1 +) because k + 1 points of
W, at pairwise distance 2y exist and, clearly, two of these points
must be closest to the same center of the optimal solution of
unconstrained k-center for W; of radius rZ. Since rz < OPTy,,
we have that y < (1 + f)OPTy,. The above discussion and the
choice of § immediately imply that QUERY will return a solution
whose radius, with respect to the entire window W;, is at most

aOPTw, + (1 +2a)8y <

< aOPTy, + (1 + 2a) (1+ B)OPTyy,

£
1+p1+2a)
=(a+¢)OPTy,. O

By using the algorithm of [20] as algorithm A in QUERY, we
obtain:

COROLLARY 1. For fixed ¢ € (0,1), at any timet > 0, procedure
QUERY can be used to compute a (3 + €)-approximate solution to
fair center for window W;.

The following theorem bounds the size of the working memory
required by our algorithm.

THEOREM 4. Under the same parameter configuration of The-
orem 3, at any time t during the processing of stream S, the sets
stored in in the working memory contain

o[log A (E)DW’
log(1+p) \e
points overall, where ¢ = 32(1 +)(1 + 2a), Dy, is the doubling
dimension of the current window W; and A is the aspect ratio of S.

Proor. Consider a time ¢ and a guess y € I'. The following
facts can be proved through the same arguments used in the
proof of [28, Theorem 2] for the case of unconstrained k-center
on a window of doubling dimension Dyy,.

Fact 1. Ateachtimet, |AV, | <k +1andRV, <2(k+1).
FacT 2. Ay contains at most k" = 2(k + 1)(32/8)PW: points.

It remains to upper bound the size of R,. Clearly, by Fact 2,
there can be altogether at most k -k’ points in R, contained in the
representative sets repsC, of points currently in A,. We are then
left to bound the number of points contained in representative
sets of points not in A, at the current time. Call O, the union of
such sets. Let a;, with i = 1, 2,... be an enumeration of all points
that upon arrival have been added to A,. For every i > 1 it must
hold that a; has expired or has been expunged from A, by the time
@ik 41 enters Ay, or otherwise A, would have size greater than k’
at time #(a;44 +1), which would contradict Fact 2. Consequently,
any point x added to repsC, (a;) must have arrived while a; was
still in A, hence before a; 4741, thus TTL(x) < TTL(a;44/41) at
any time when they are both active. Now, consider the current
time, and let a; be the point which was most recently removed
from A,. By the above property, any point x that belonged to
repsCy(ar), with £ < j — (k' + 1), arrived prior to a;, hence
cannot be in memory at time ¢. Hence, O, can only comprise
points that belonged to repsCy (a;), with j — (k' +1) < £ < j,
which immediately implies that |O, | < k-k’. The theorem follows
by considering that in Theorem 3 we fixed § = ¢/((1+) (1+2a)),
and that the number of guesses [I'| = O (log A/log(1+ f)). O

For what concerns running time, it can be easily argued
that Procedure UPDATE requires time linear in the aggregate

203

Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Francesco Visona

size of the stored sets, while the Procedure QUERY first exe-
cutes O (log A/log(1 + f)) attempts at discovering suitable un-
constrained k-clusterings on sets of O(k) points, each requiring
O(k?) time, and then invokes the sequential fair center algorithm
A on Ry, for some guess y € I'. The above discussion immediately
implies the following theorem.

THEOREM 5. Under the same parameter configuration of Theo-
rem 4, Procedure UPDATE runs in time
, logA (c)Dwt
log(1+ p) \e

while procedure QUERY runs in time

log A c\Pw,

2 2

———— +Tq (k|-

(log(1 + f) "((2))

where Tz (m) is the running time of sequential algorithm A on an
instance of size m.

It is important to remark that for windows of constant dou-
bling dimension, both space and time requirements of our algo-
rithm are independent of the window size n.

The space and time requirements of our algorithm can be made
independent of the dimensionality of the stream, at the expense
of a worsening in the approximation guarantee. We have:

COROLLARY 2. Procedures UpPDATE, CLEANUP and QUERY can be
modified so to yield, at any time t, a (31 + O(¢))-approximate solu-
tion, storing O (k? log A/¢) points in the working memory, and re-
quiring O (k* log A/¢) update and O (k?log A/e + T (k?)) query
time.

PRrROOF. We recast our algorithm by eliminating the two sets
of coreset points and all operations related to their maintenance.
Also, rather than a simple point, we make sure to maintain in
repV, (v) the most recent maximal independent set of points
attracted by v. Procedures UPDATE and CLEANUP are modified
accordingly. Finally, QUERY computes the final clustering by se-
lecting the right guess y as before and then applying algorithm A
to RV, rather than Ry. The bounds on time and space are immedi-
ately obtained by noticing that the size of the set RV, is no more
than a factor k larger than its size in the original algorithm. The
bound on approximation can be obtained by setting f = ¢ and
by a straightforward adaptation of the analysis of the original
algorithm for the case § = 4, a value for which the set of v-points
on which A is invoked coincides with the old set R,. o

Main differences with previous work. The algorithms presented
above, together with their analysis, introduce the following nov-
elties with respect to the work in [11, 28]:

o The involved data structures (maintaining validation and
coreset points) have been simplified through the removal
of the orphan point category, [11, 28], which has been
absorbed within the sets of representatives.

Our new approach maintains, as c-representatives for each
c-attractor a, the most recent maximal independent set
of all window points attracted by a, rather than a single
representative. This is instrumental to guarantee that, for
a suitable guess y, the set of c-representatives contains a
good solution to the constrained problem on the current
window.

The proof of Lemma 1 has been entirely restructured over
the respective one in [11, 28], featuring a novel, shorter
and more intuitive argument.

Fair Center Clustering in Sliding Windows

- JONESETAL CHENETAL OURS —¢ OURSOBLIVIOUS

dataset = PHONES

dataset = UBER dataset = BEERS

ratio

dataset = PHONES dataset = UBER dataset = BEERS

30000
fa
2 20000
£
= poone *\”‘*—x~a—*—x—x
: . : . ; ;
2 4 2 4 2 4
J B 3

Figure 1: Approximation ratio (top) and memory (bottom,
in number of points) for varying , with k = 30.

o With the exception of the technical Lemma 2, the remain-
der of the analysis is completely novel.

4 Experiments

We evaluate experimentally our coreset-based algorithm against
state of the art baselines, aiming at answering the following
questions:

o How does the coreset size impact the performance? (§ 4.1)
e How do algorithms behave on different window lengths?

(§4.2)
e What is the influence of the data dimensionality? (§ 4.3)

Below, we provide details of the experimental setup, namely,
a description of the datasets, the implemented algorithms and
baselines, and the performance metrics used in our comparisons.

Datasets. We consider three real-world datasets.

e PHONES? is a dataset of sensor data from smartphones:
each of the 13062475 points represents the position of
a phone in three dimensions, and is labeled with one of
¢ =7 categories corresponding to user actions: stand, sit,
walk, bike, stairs up, stairs down, null. The aspect ratio of
the entire dataset is ~ 6.4 - 10°;

o BEERS® collects reviews for 1586 615 beers. We use the
review timestamp to dictate the streaming order. Each
data point features 6 dimensions, and is associated with
one out of £ = 27 beer styles* that we use as categories.
The aspect ratio is ~ 17.88;

o UBER® contains over 4.5 million Uber pickups in New York
City from April to September 2014. Each data point has
2 dimensions (pickup location), and is associated to one
out of £ = 8 TLC base companies. The aspect ratio is
~ 1.67 - 10*.

Besides these real-world datasets, some experiments are run
on suitably crafted synthetic data, which will be specified later.

2UCI repository: https://doi.org/10.24432/C5689X
3https://www.kaggle.com/datasets/thedevastator/1-5-million-beer-reviews-
from-beer-advocate

“We conflate similar beer styles, see the data preprocessing code for details.
Shttps://github.com/fivethirtyeight/uber-tlc-foil-response

204

EDBT 26, 24-27 March 2026, Tampere (Finland)

Algorithms. As baseline algorithms we consider the matroid
center algorithm by [8] (CHENETAL), and the fair center algo-
rithm by [20] JoNESETAL). Note that both are sequential algo-
rithms for the problem. In the sliding window setting, upon a
query, we run the baseline algorithms on all points of the current
window. Thus, in principle, these provide the most accurate solu-
tions, at the expense of high space/time complexity. Algorithm
OuRrs is the implementation of our algorithm with knowledge of
the minimum and maximum pairwise distances, dpin and dp,y, be-
tween points of the stream, and invokes baseline A = JoNESETAL
in QUERY only on the points of the selected coreset. Since the
aspect ratio of a stream is often unknown, we also implemented
OursOBLIVIOUS, where running estimates of dyin and dmax for the
current window are obtained by means of the techniques of [28],
based on a sliding-window diameter-estimation algorithm. In
OursOBLIVIOUS, the update and query procedures consider only
the guesses that are within the current [dpin, dmax] interval. For
both Ours and OURsOBLIVIOUS, the progression of the guess val-
ues is defined fixing = 2. In fact, a set of experiments (omitted
for brevity) have shown that varying this parameter has no signif-
icant impact on the results. The precision parameter § varies in
the set § € {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}, with the understanding that
lower values result in finer-grained (i.e. larger) coresets, while
§ =4 is equivalent to using a coreset comparable in size to the
validation set (i.e., the one yielding the result of Corollary 2). This
set of values for § indeed allows spanning a very wide range of
coreset sizes. For the window size, we consider values between
10000 and 500 000 points. The cardinality constraints on the ¢
colors are set so that, for every i, k; is set to be proportional to
the number of points of color i in the entire dataset. Most of the
experiments have been run with k = Zle k; = 30, so that, for
any of the used datasets, if the proportionality of the colors is bal-
anced, there is at least one center per color. Also, we performed
experiments with a larger number of clusters k = 100. We set a
timeout of 24 hours on each execution.

The algorithms are implemented using Java 1.8, with the code
publicly available®. The experiments have been carried out on
a machine with 500Gb of RAM, equipped with a 32-core AMD
EPYC 7282 processor.

Performance metrics. We consider four performance indicators:
(1) the number of points maintained in memory by the algorithms;
(2) the running time of procedure UPDATE; (3) the running time of
procedure QUERY; (4) the approximation ratio, namely the ratio
between the obtained radius and the best radius ever found by
CHENETAL or JoNESETAL when run on all points of the window.

All the metrics are computed as averages over 200 consecutive
sliding windows of the stream.

4.1 Dependency on the coreset size

A first set of experiments focuses on the influence of the coreset
size on the performance of our algorithms. We fix the window
size to 30 000 points, and obtain varying coreset sizes by varying
§ between 0.5 and 4. The top graphs of Figure 1 show, for all
datasets and all algorithms, how the solution quality, assessed
through the approximation ratio defined above, changes with
§. We observe that Ours and OursOBLIvIOUSs find solutions of
comparable quality, as do CHENETAL and JoNESETAL (observe
that the performance of these two latter algorithms is clearly
independent of &, since they are always executed on the entire

®https://github.com/aidaLabDEI/streaming-fair- center-clustering

https://doi.org/10.24432/C5689X
https://www.kaggle.com/datasets/thedevastator/1-5-million-beer-reviews-from-beer-advocate
https://www.kaggle.com/datasets/thedevastator/1-5-million-beer-reviews-from-beer-advocate
https://github.com/fivethirtyeight/uber-tlc-foil-response
https://github.com/aidaLabDEI/streaming-fair-center-clustering

EDBT 26, 24-27 March 2026, Tampere (Finland)

- JONESETAL CHENETAL OURS —¢ OURSOBLIVIOUS

dataset = PHONES dataset = UBER dataset = BEERS

0.6
Q
© 04
el
o
S 02 X
OO T T T T T T
2 4 2 4 2 4
I & I
dataset = PHONES dataset = UBER dataset = BEERS
10°
P - T el S
g 10°
>
o
a M B e e x)\S’\"‘X—*—)‘—K
2 4 2 4 2 4
)) 5

Figure 2: Running time in milliseconds of update (top) and
query (bottom, logarithmic scale) for varying §, with k = 30.

window). When the coreset is smallest (i.e., § = 4), clearly our
algorithms find worse solutions, but always within a factor 2 from
those returned by the baselines; as the coreset gets larger (i.e.,
for smaller &), then the solutions become of quality comparable
(and, surprisingly, sometimes better) to the one computed by the
sequential baselines.

The bottom graphs of Figure 1 compare the memory usage of
the algorithms. As expected, for all values of §, our algorithm
uses less memory than the baselines, which maintain the entire
window in memory, with gains becoming substantially more
marked as § grows. This behavior provides experimental evi-
dence of the interesting memory-accuracy tradeoff featured by
our algorithms, and is in accordance with the theoretical analysis.
We also note that OURsOBLIVIOUS and OURs require comparable
memory and running time. Therefore, we may conclude that
being oblivious to the aspect ratio of the window (and thus re-
quiring to keep updated estimates of dpyin and dpmax) does not
have a significant impact on the performance or on the quality
of the returned clustering.

The top and bottom graphs of Figure 2 report the runtime per-
formance, in milliseconds, for the update and query procedures,
respectively. Clearly, the sequential baselines feature next-to-
zero update time, simply because they store the entire window,
thus, at each time step, there is nothing to do other than adding
one point and removing one to maintain the current window.
Nevertheless, both Ours and OursOBLIVIOUS feature reasonable
update times, not exceeding 0.15 milliseconds, which is just a tiny
fraction of the cost of a query. It is interesting to observe that
despite the overhead incurred by OurRsOBLIVIOUS to estimate
dmin and dmax for the current window, the advantage of having
fewer guesses makes it always faster than Ours. In both cases,
using larger values of § (i.e., smaller coresets) leads to faster up-
date times, as expected. However, it is on query times where
the difference with the baselines is most striking: by confining
the execution of the expensive baselines only to a small coreset
of window points, Ours and OURSOBLIVIOUS are able to find a
solution for every window up to two orders of magnitude faster
than JoNESETAL, which is in turn two orders of magnitude faster
than CHENETAL. Even with the smallest values of 8, which afford

205

Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Francesco Visona

- JONESETAL CHENETAL OURS —¢ OURSOBLIVIOUS

dataset = PHONES

dataset = UBER dataset = BEERS

dataset = PHONES dataset = UBER dataset = BEERS

ratio

Figure 3: Running time of query in milliseconds (top, log
scale) and approximation ratio (bottom) for different val-
ues of § with k = 100.

comparable accuracy to the sequential baselines, the gains are
between one and two orders of magnitude!

Figure 3 (top) reports the query running time for k = 100 for
different values of § and a window size of 30 000 points. We ob-
serve that our algorithm is consistently faster than the baselines
even at these larger values of k. For § = 0.5 (i.e. fine grained core-
sets) the performance of our algorithm on BEERS matches that of
the JoNESETAL baseline, due to the high number of categories in
this dataset: using a coarser coreset at § = 3.5 allows to gain over
an order of magnitude in performance, with a loss of less than 2%
in terms of radius as shown in Figure 3 (bottom). Furthermore,
note that on UBER our algorithm attains up to two orders of mag-
nitude gains with respect to the JoNESETAL baseline, by virtue of
the low dimensionality of the dataset that our algorithm is able
to exploit.

4.2 Dependency on the window size

The next set of experiments analyzes the behavior of the algo-
rithms for varying window sizes. For Ours and OurRsOBLIVIOUS,
we consider the most accurate and slowest setting in the bench-
mark, thus fixing § = 0.5. (For the sake of conciseness, we omit
plots for the update time and the approximation ratio, which are
consistent with the findings of the previous section). Figure 4
(top) reports on the memory usage. Clearly, the memory used by
the sequential baselines increases linearly with the window size.
In contrast, the memory used by both versions of our algorithm,
after an initial increase, stabilizes to a value independent of the
window size. This difference is reflected in the query time perfor-
mance (Figure 4, bottom). As observed in the previous section,
the time gain when employing coresets compared to the use of
the sequential baselines on the entire window is already of or-
ders of magnitude for relatively small windows, and, as shown
by the plots in the figure, it keeps increasing very steeply with
the window size. In fact, for windows larger than 30 000 points,
the execution of the experiments relative to CHENETAL timed
out, requiring about 400 seconds per window. Similarly, those
relative to JONESETAL timed out for windows larger than 200 000
points.

Fair Center Clustering in Sliding Windows EDBT °26, 24-27 March 2026, Tampere (Finland)

CHENETAL —>¢ JONESETAL OURS 0.5 —&— OURSOBLIVIOUS 0.5
dataset = PHONES dataset = UBER dataset = BEERS
200000 200000 200000
g
g 100000 100000 100000
E A
S _
| . - . ' : 0 $. . > . . ; ; ;
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
window size window size window size
dataset = PHONES dataset = UBER dataset = BEERS
104
>
g) o
3
Tt " —a Lttt —
— -

0 100000 200000 300000 400000 500000 (4] 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
window size window size window size

Figure 4: Memory (top, in number of points) and running time of query (bottom, in milliseconds) at varying window sizes.
The scale of query time is logarithmic.

ma= JONESETAL —¥= GURSOBLIVIOUS 05 —+— GURSOBLIVIOUS 2.0 assess how the memory and query times of our algorithm are
== OURS0.5 -~ OURS2.0 influenced by the dimensionality; and rotated, used to verify
that these costs are related to the actual dimensionality of the

leg dataset = blobs . dataset = blobs , dataset, rather then the number of coordinates of each point. The
- i, /v/'/ 30000 , Ll blobs datasets have 1000 000 points: each dataset is a mixture
—_ o \A‘A_‘ 25000 e of 21 multivariate d-dimensional Gaussians, for 2 < d < 10. The
=13 p. 2 20000 1 /,/ covariance matrix is ¥ = I;0? with ¢ = 2, and each point is
$ ol /' é 15000 /" assigned a random color out of 7, ensuring an even distribution.
y 10000 4 I/' . We set k; = 3,for 1 < i < 7, and the window size to 10 000.
031 v/ e w000 P The rotated datasets are derived from PHONES (which has 3
00 18—g—g—g—a— ¥ i dimensions) by adding zero-filled dimensions to the original
2 a 6 8 10 2 4 6 8 10 data, followed by a rigid random rotation of the entire extended
dimensions dimensions dataset. With this procedure we generate datasets with up to 15
nonzero coordinates, but by construction, all data still lie on a

Figure 5: Query time (left, in milliseconds) and memory 3-dimensional subspace.
(right, in number of points) with respect to the dimension- In these experiments, we use only JONESETAL as baseline and,
ality, on the blobs datasets. for our algorithm, we consider only two settings: § = 0.5, which

yields larger coresets but higher accuracy; and § = 2, which
yields smaller coresets and lower accuracy (that is still compa-
rable, however, to the one attained by the sequential baseline).
For conciseness, we omit the plots of the update time and the

mAw= JONESETAL ~ =V= OURSOBLIVIOUS 0.5 -4~ OURSOBLIVIOUS 2.0
+ OURS 0.5 —*— OURS 2.0

dataset = rotated dataset = rotated approximation ratio, which are coherent with previous findings.
ool 10000 Figure 5 reports the query time (left) and memory (right) on
2000 | the blobs datasets. As expected, the performance of sequential
- baseline JoNESETAL is insensitive to the dimensionality, while
§ 1074 g 6000 1 both query time and memory usage of our algorithm grow with
A T v £ 2000 | the dimensionality, the growth being much steeper in the larger
coreset setting (6 = 0.5), as suggested by the theoretical bounds.
10 o 2000 '. —s—s—% We remalﬁk that our algorithm uses less memory than the sequen-
T o = T o s tial baseline for § = 2, even for higher dimensions.
dimensions dimensions Figure 6 reports results on the rotated datasets. Note that in
this case, where the data lies in a 3-dimensional subspace, the
Figure 6: Query time and memory (resp. left and right) with query time and memory for our algorithm are independent of
respect to the dimensionality on the rotated datasets. The the number of dimensions of the dataset. This confirms that our
scale of query time is logarithmic. algorithm’s performance depends on the actual dimensionality

of the dataset, rather than on the sheer number of coordinates of
the vectors associated to the points.
4.3 Dependency on the dimensionality

This latter set of experiments studies the influence of the data 5 Conclusions

dimensionality on the performance of our algorithm. To this end This paper presents the first sliding-window algorithm to enforce
we generated two families of synthetic datasets: blobs, used to fairness in center selection, under the k-center objective. The

206

EDBT 26, 24-27 March 2026, Tampere (Finland)

algorithm works for general metrics, stores a number of points
independent of the size of the window, and provides approxi-
mation guarantees comparable to those of the best sequential
algorithm applied to all the points of the window. Its space and
time requirements are analyzed in terms of the dimensionality
and of the aspect ratio of the input stream, although these values,
which are difficult to estimate from the data, do not have to be
known to the algorithm. A variant of the algorithm affording a
dimensionality-independent analysis, while still achieving O (1)
approximation, is also provided. Among the many avenues for
future work, we wish to mention the extension of our algorithms
to the robust variant of fair center, tolerating a fixed number of
outliers, possibly fairly chosen among the most distant points
w.r.t. a given solution. We believe that good approximations for
robust fair center in sliding windows may be attained by building
on previous work for robust unconstrained k-center, matroid and
fair center in the literature [2, 6, 7, 29].

Acknowledgments

This work was supported, in part, by MUR of Italy, under
Projects PRIN 2022TS4Y3N (EXPAND: scalable algorithms for
EXPloratory Analyses of heterogeneous and dynamic Networked
Data), and PNRR CN00000013 (National Centre for HPC, Big Data
and Quantum Computing).

Artifacts

The code implementing the algorithms evaluated in this paper
is available at a public Github repository (https://github.com/
aidaLabDEI/streaming-fair-center-clustering), together with de-
tailed instructions on how to run the code and obtain the datasets
used in the experimental evaluation.

References

[1] S.S. Abraham, D. Padmanabhan, and S.S. Sundaram. 2020. Fairness in Cluster-
ing with Multiple Sensitive Attributes. In EDBT. 287-298.

D. Amagata. 2024. Fair k-center Clustering with Outliers. In AISTATS (PMLR,
Vol. 238). 10-18.

H. Angelidakis, A. Kurpisz, L. Sering, and R. Zenklusen. 2022. Fair and Fast
k-Center Clustering for Data Summarization. In ICML (PMLR, Vol. 162). 669~
702.

M. Ceccarello, A. Pietracaprina, and G. Pucci. 2020. A General Coreset-Based
Approach to Diversity Maximization under Matroid Constraints. ACM-TKDD
5, 14 (2020), 60:1-60:27.

M. Ceccarello, A. Pietracaprina, and G. Pucci. 2024. Fast and Accurate Fair
k-Center Clustering in Doubling Metrics. In Web Conference. ACM, United
States, 756—-767.

M. Ceccarello, A. Pietracaprina, G. Pucci, and F. Solda. 2023. Scalable and
space-efficient Robust Matroid Center algorithms. . Big Data 10, 1 (2023), 49.
D. Chakrabarty and M. Negahbani. 2019. Generalized Center Problems with
Outliers. ACM Trans. on Algorithms 15, 3 (2019), 41:1-41:14.

D.Z. Chen, J. Li, H. Liang, and H. Wang. 2016. Matroid and Knapsack Center
Problems. Algorithmica 75, 1 (2016), 27-52.

A. Chhabra, K. Masalkovaite, and P. Mohapatra. 2021. An Overview of Fairness
in Clustering. IEEE Access 9 (2021), 130698-130720.

A. Chiplunkar, S. Kale, and S.N. Ramamoorthy. 2020. How to Solve Fair
k-Center in Massive Data Models. In ICML (PMLR, Vol. 119). 1877-1886.

V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler. 2016. Diameter and
k-Center in Sliding Windows. In ICALP (LIPIcs, Vol. 55). 19:1-19:12.

M. Datar and R. Motwani. 2016. The Sliding-Window Computation Model and
Results. In Data Stream Management - Processing High-Speed Data Streams.
149-165.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R.S. Zemel. 2012. Fairness
through awareness. In ITCS. ACM, New York, NY, USA, 214-226.

European Parliament. [n.d.]. Regulation 2016/679. https:
//web.archive.org/web/20250729120038/https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN

[15] J. Gan, M. J. Golin, Z. Yang, and Y. Zhang. 2023. Fair k-Center: a Coreset
Approach in Low Dimensions. CoRR abs/2302.09911 (2023).

TF. Gonzalez. 1985. Clustering to Minimize the Maximum Intercluster Dis-
tance. Theoretical Computer Science 38 (1985), 293-306.

L-A. Gottlieb, A. Kontorovich, and R. Krauthgamer. 2014. Efficient Classifica-
tion for Metric Data. IEEE Trans. Information Theory 60, 9 (2014), 5750-5759.

(2]
(3]

[11]
[12]

[13]

[14]

[16]

[17]

207

Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Francesco Visona

[18] L.Han, D. Xu, Y. Xu, and P. Yang. 2023. Approximation algorithms for the

individually fair k-center with outliers. J. Glob. Optim. 87, 2 (2023), 603-618.

C. Hennig, M. Meila, F. Murtagh, and R. Rocci. 2015. Handbook of cluster

analysis. CRC Press, United States.

M. Jones, H.L. Nguyen, and T.D. Nguyen. 2020. Fair k-Centers via Maximum

Matching. In ICML (PMLR, Vol. 119). 4940-4949.

C.Jung, S. Kannan, and N. Lutz. 2019. A Center in Your Neighborhood: Fairness

in Facility Location. CoRR abs/1908.09041 (2019).

S. Kale. 2019. Small Space Stream Summary for Matroid Center. In APPROX-

RANDOM (LIPlcs, Vol. 145). 20:1-20:22.

M. Kay, C. Matuszek, and S.A. Munson. 2015. Unequal Representation and

Gender Stereotypes in Image Search Results for Occupations. In CHL ACM,

3819-3828.

M. Kleindessner, P. Awasthi, and J. Morgenstern. 2019. Fair k-Center Clustering

for Data Summarization. In ICML (PMLR, Vol. 97). 3448-3457.

Y. Kurkure, M. Shamo, J. Wiseman, S. Galhotra, and S. Sintos. 2024. Faster

Algorithms for Fair Max-Min Diversification in R?. Proc. ACM Manag. Data

2,3 (2024), 137.

Z. Lin, L. Guo, and C. Jia. 2024. Streaming Fair k-Center Clustering over

Massive Dataset with Performance Guarantee. In PAKDD (3) (LNCS, Vol. 14647).

Springer, Singapore, 105-117.

S. Mahabadi and A. Vakilian. 2020. Individual Fairness for k-Clustering. In

ICML (PMLR, Vol. 119). 6586-6596.

P. Pellizzoni, A. Pietracaprina, and G. Pucci. 2022. Adaptive k-center and

diameter estimation in sliding windows. Int. J. Data Sci. Anal. 14, 2 (2022),

155-173.

P. Pellizzoni, A. Pietracaprina, and G. Pucci. 2022. k-Center Clustering with

Outliers in Sliding Windows. Algorithms 15, 2 (2022), 52.

P. Pellizzoni, A. Pietracaprina, and G. Pucci. 2025. Fully Dynamic Clustering

and Diversity Maximization in Doubling Metrics. ACM Trans. Knowl. Discov.

Data 19, 4 (2025), 1-45.

[31] LV. Snyder. 2011. Introduction to facility location. In Wiley Enciclopedia of
Operations Research and Management Science. Wiley, United States.

[32] J. Stoyanovich, K. Yang, and HV. Jagadish. 2018. Online Set Selection with

Fairness and Diversity Constraints. In EDBT. 241-252.

Y. Wang, F. Fabbri, and M. Mathioudakis. 2022. Streaming Algorithms for

Diversity Maximization with Fairness Constraints. In ICDE. IEEE, 41-53.

Y. Wang, F. Fabbri, M. Mathioudakis, and J. Li. 2023. Fair Max-Min Diversity

Maximization in Streaming and Sliding-Window Models. Entropy 25, 7 (2023).

doi:10.3390/e25071066

Y. Wang, M. Mathioudakis, J. Li, and F. Fabbri. 2023. Max-Min Diversification

with Fairness Constraints: Exact and Approximation Algorithms. In SDM.

SIAM, 91-99.

[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[33]

[34]

[35]

https://github.com/aidaLabDEI/streaming-fair-center-clustering
https://github.com/aidaLabDEI/streaming-fair-center-clustering
https://web.archive.org/web/20250729120038/https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://web.archive.org/web/20250729120038/https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://web.archive.org/web/20250729120038/https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://doi.org/10.3390/e25071066

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 Preliminaries
	3 Fair-center for sliding windows
	3.1 Algorithm
	3.2 Analysis

	4 Experiments
	4.1 Dependency on the coreset size
	4.2 Dependency on the window size
	4.3 Dependency on the dimensionality

	5 Conclusions
	Acknowledgments
	References

