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Abstract
The 𝑘-center problem requires the selection of 𝑘 points (centers)

from a given metric pointset 𝑊 so to minimize the maximum

distance of any point of𝑊 from the closest center. This paper fo-

cuses on a fair variant of the problem, known as fair center, where

each input point belongs to some category and each category

may contribute a limited number of points to the center set. We

present the first space-efficient streaming algorithm for fair cen-

ter in general metrics, under the sliding window model. At any

time 𝑡 , the algorithm is able to provide a solution for the current

window whose quality is almost as good as the one guaranteed

by the best, polynomial-time sequential algorithms run on the

entire window, and exhibits space and time requirements inde-

pendent of the window size. Our theoretical results are backed

by an extensive set of experiments on both real-world and syn-

thetic datasets, which provide evidence of the significantly better

performance/quality tradeoffs attained by our algorithm with

respect to the those achievable by running the state-of-the-art

sequential baselines on the entire window.

Keywords
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1 Introduction
Clustering is a fundamental primitive for machine learning and

data mining, with applications in many domains [19]. One popu-

lar variant is 𝑘-center clustering, which has also been intensely

studied in the realm of facility location [31]. Given a set of points

𝑊 from a metric space and an integer 𝑘 ≤ |𝑊 |, the 𝑘-center prob-

lem requires to select 𝑘 points (dubbed centers) from𝑊 , which

minimize the maximum distance of any point of𝑊 from its clos-

est center. The centers induce immediately a partition of𝑊 into

𝑘 clusters, one per center, where each point is assigned to the clus-

ter associated to its closest center. When the distance between

points models (dis)similarity, each center can then be regarded as

a suitable representative for all the points in the corresponding

cluster. Indeed, efficient clustering approaches have been tradi-

tionally used for two main purposes, one being the partitioning

of the dataset into groups of similar data points for unsupervised

classification, the other being the selection of a small number of

representative points (the centers of the clusters) that are good

descriptors of the entire dataset. In particular, 𝑘-center has been

often employed as a summarization primitive to extract succinct

coresets from large datasets, where computationally expensive

analyses can then be performed (e.g., see [4, 6] and references

therein).
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Applying mainstream clustering algorithms to process data

associated to user communities may often generate biased results,

potentially causing discriminatory effects which reinforce social

inequalities in target applications [9, 13]. In data summarization,

unfairness may come in the form of a selection of representatives

that do not reflect the demographics of the entire population. Kay

et al. [23] found that Google Images queries for professions return

a selection of images that often do not reflect the actual gender

balance of the professions. For instance the actual percentage

of women among bartenders (≈ 60%), technical writers (≈ 55%),

computer programmers (≈ 22%) and bus drivers (≈ 45%) is very

different from the percentage of women in the corresponding

image results (respectively ≈ 23%, ≈ 35%, ≈ 16%, and ≈ 18%).

In order not to discriminate some groups of individuals with

respect to some specific, sensible attribute (e.g., ethnicity, gender,

or political views), when clustering is used for summarization

purposes, it is of utmost importance that the centers provide a

fair representation of the population with respect to this attribute.

To this end, in fair center clustering, we label each point with a

color, representing the attribute value for the group which the

corresponding individual belongs to, and we impose an upper

limit on the number of returned centers from each color, so that

no color, hence no group, is over-represented in the output. We

remark that blindly ignoring sensible attributes does not imply

a fair solution [13]: in fact, group membership information can

leak from other features of the points, or the features themselves

might be discriminative towards some group.

Scalable versions of this fair 𝑘-center variant have recently

been studied in distributed and insertion-only streaming settings

[6]. In this work, we devise and experiment with the first efficient

streaming algorithm for fair center clustering under the more

challenging, heavily studied sliding-windows model [12], where

the sought solution at any time must refer only to a fixed-size

window𝑊 of the most recent data, disregarding older elements

of the stream. This model is applied in scenarios where the recent

data is more relevant than historical data, either because current

trends are of interest or because regulations like the General Data

Protection Regulation (GDPR) require to retain user information

only for a limited amount of time [14, Recital (31) and Article

5.1(e)].

1.1 Related work
The 𝑘-center problem, being a fundamental primitive in many

data analysis workflows, has been studied extensively in the past

decades. For brevity, in this section we give an account of those

results that relate most closely to our work.

In the sliding window model, [11, 28] provide approximation

algorithms for the unrestricted 𝑘-center problem without fairness

constraints. The variant of 𝑘-center with outliers in the sliding

window model has been studied in [29]. A relevant generalization

of the 𝑘-center problem is the matroid center problem, where the
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centers of the clustering are required to be an independent set

of a given matroid. The seminal work of [8] provided the first

3-approximation sequential algorithm for this problem, albeit

featuring a high computational complexity. The matroid center

problem has also been studied in [6, 22, 30] in the insertion-only

streaming and in the fully-dynamic settings yielding in all cases

a (3 + 𝜀) approximation and also allowing for the presence of

outliers.

The fair center problem studied in this paper can be seen

as a specialization of the matroid center problem for the so-

called partition matroid, built on points belonging to different

categories and whose independent sets are those containing no

more than a fixed upper limit of points per category. In [24]

the authors provide a sequential (3 · 2ℓ−1 − 1)-approximation

algorithm for fair center (where ℓ is the number of categories),

with a runtime linear both in 𝑘 and in the number of points. Later,

[20] improved the approximation factor to 3 while retaining the

same time complexity. [2] studies the fair clustering problem

in the presence of outliers, providing a sequential, randomized

bicriteria approximation algorithm. A further specialization of

the problem, where each center is required to represent at least a

given fraction of the input points, in addition to respecting the

fairness constraints, has been studied by [3]. In the insertion-only

streaming setting, the fair center problem has been considered

in [10, 15, 26]. These papers all yield 3 approximations for the

problem, with improvements in the working space requirements

over the general matroid center algorithms discussed before. To

the best of our knowledge, ours is the first work to address the fair

center problem in the more challenging sliding window setting.

We wish to stress that, although widely studied, the notion

of fairness in center selection adopted in this paper is not the

only possible one. For instance, [21, 27] consider individually

fair clustering, where each point is required to have at least one

center among its 𝑛/𝑘 nearest neighbors. [18] also considers this

problem in the presence of outliers. Also, observe that all the

approaches discussed so far refer to enforcing fairness conditions

on the centers, and are thus tightly associated to the notion of

clustering as a summarization primitive. There is a very prolific

line of research which regards fairness as a set of balancing

constraints on the elements of the clusters rather than on their

centers (see [1, 5] and references therein). For a comprehensive

survey on different formulations of fair clustering and on their

downstream applications, we refer the interested reader to [9].

Finally, it is worth mentioning that the same notion of fairness

studied in this paper has been intensely investigated in the realm

of diversity maximization [4, 25, 32–35], a problem which can be

envisioned as the dual counterpart of clustering.

1.2 Our contribution
We present the first sliding window algorithm for fair center

clustering in general metric spaces, which, at any time 𝑡 , is able to

provide an accurate solution for the current window, and requires

space and time independent of the window size. More specifically,

let 𝑆 denote a potentially infinite stream of points from a metric

space, and let 𝑛 > 0 be the target window size. Each point of

𝑆 is associated with one of ℓ colors and fairness is modeled by

requiring that any feasible solution to the problem contains at

most 𝑘𝑖 points of color 𝑖 , for every 1 ≤ 𝑖 ≤ ℓ . Let 𝜀 ∈ (0, 1) be a

fixed accuracy parameter, and let Δ be the aspect ratio of 𝑆 (i.e.,

the ratio between maximum and minimum pairwise distance).

Also, define 𝑘 =
∑ℓ

𝑖=1 𝑘𝑖 and let 𝛼 denote the best approximation

ratio guaranteed by a polynomial-time sequential algorithm for

fair center (currently 𝛼 = 3 [20]). Our main contributions are the

following (detailed statements are found in Section 3).

• An algorithm that at any time 𝑡 returns an (𝛼 + 𝜀)-
approximate solution to fair center for the current window

𝑊𝑡 , requiring working space 𝑚 = 𝑂
(
𝑘2 logΔ(𝑐/𝜀)𝐷𝑊𝑡

)
,

for a fixed constant 𝑐 , where 𝐷𝑊𝑡 is the doubling dimen-

sion of 𝑊𝑡 (formally defined in Section 2), which gener-

alizes the notion of Euclidean dimensionality to general

metrics. The algorithm’s update (resp., query) time to han-

dle a new arrival (resp., to compute a solution) is 𝑂 (𝑚)
(resp., 𝑂 (𝑘𝑚)), thus both independent of the window size

|𝑊𝑡 | (for low-dimensional streams).

• A modification of the above algorithm that at any time 𝑡

is able to return a 𝑂 (1)-approximate solution to fair cen-

ter for 𝑊𝑡 , requiring working space 𝑚 = 𝑂
(
𝑘2 logΔ/𝜀

)
,

update time 𝑂 (𝑚) and query time 𝑂 (𝑘𝑚). Thus, in this

algorithm the exponential dependency on the doubling di-

mension 𝐷𝑊𝑡 has been removed, at the expense of a weaker,

but still constant, approximation ratio.

• Extensive experimental evidence on real datasets that the

above algorithms indeed provide solutions of quality com-

parable to the best sequential algorithms run on the entire

window, using only a fraction of the space and being orders

of magnitude faster.

To the best of our knowledge, ours are the first accurate, space

and time efficient sliding window algorithms for fair center clus-

tering. Our algorithms build upon the coreset-based strategy used

in [11, 28] for the unconstrained 𝑘-center problem, but introduce

non trivial, crucial modifications in the coreset construction to

ensure that accurate fair solutions can be extracted from the

coreset.

We remark that although the performance of our most accurate

algorithm is expressed in terms of the doubling dimension 𝐷𝑊𝑡 ,

the algorithm does not require the knowledge of this parameter

to run, which is very desirable in practice, since the doubling

dimension is hard to estimate. Similarly, the aspect ratio Δ of

the current window need not be provided as an explicit input

to our algorithms, but it can be inferred by maintaining good

estimates of the minimum and maximum pairwise distances of

the points in𝑊𝑡 (hence, of Δ) without worsening its theoretical

and practical performance.

At the very end of Section 3, after our new algorithm and

its analysis have been presented in full, we provide a detailed

account of the main differences of our approach with respect to

previous work.

Organization of the paper. The rest of the paper is structured as

follows. Section 2 defines the problem, the computational model

and a number of basic notions. Section 3 presents the algorithm

(Subsection 3.1) and its analysis (Subsection 3.2). Section 4 re-

ports on the experimental results. Section 5 closes the paper with

some concluding remarks. For ease of reading, Table 1 provides

a comprehensive list of all the notations used in the paper.

2 Preliminaries
Problem definition. Consider a metric space X equipped with

a distance function 𝑑 (·, ·). For 𝑥 ∈ X and𝑊 ⊆ X, let 𝑑 (𝑥,𝑊 ) =
min{𝑑 (𝑥,𝑤) : 𝑤 ∈𝑊 } denote the minimum distance of 𝑥 from

a point in𝑊 . For a given𝑊 ⊆ X and a natural 𝑘 , the classic 𝑘-

center clustering problem [16] requires to find a subset𝐶 ⊆𝑊 of

size at most 𝑘 minimizing the radius 𝑟𝐶 (𝑊 ) =max𝑝∈𝑊 𝑑 (𝑝,𝐶).
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Table 1: Notations used in this paper

(X, 𝑑 (·, ·)) metric space

M = (X, 𝐼 ) matroid on X
𝑆 ⊆ X stream

𝑊𝑡 window, at time 𝑡 , of the last 𝑛 points of 𝑆

𝐷𝑊𝑡 doubling dimension of𝑊𝑡

𝑟𝐶 (𝑊 ) radius of 𝐶 w.r.t. window𝑊

ℓ number of colors

𝑘𝑖 max num of points of color 𝑖 in an independent

set

𝑡 (𝑝) arrival time of point 𝑝

𝑇𝑇𝐿(𝑝) Time-To-Live of point 𝑝

𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 min/max distance between points of 𝑆

Δ aspect ratio 𝑑𝑚𝑎𝑥/𝑑𝑚𝑖𝑛

Γ set of guesses on the optimal radius

𝐴𝑉𝛾,𝑡 , 𝐴𝛾,𝑡 sets of 𝑣-/𝑐-attractors for guess 𝛾 at time 𝑡

𝑅𝑉𝛾,𝑡 , 𝑅𝛾,𝑡 sets of 𝑣-/𝑐-representatives for guess 𝛾 at time 𝑡

𝜓𝛾 (𝑝) 𝑣-attractor for point 𝑝 for guess 𝛾

𝜙𝛾 (𝑝) 𝑐-attractor for point 𝑝 for guess 𝛾

𝑟𝑒𝑝𝑉𝛾,𝑡 (𝑎) 𝑣-representative of 𝑣-attractor 𝑎 ∈ 𝐴𝑉𝛾,𝑡
𝑟𝑒𝑝𝑠𝐶𝛾,𝑡 (𝑎) 𝑐-representatives of 𝑐-attractor 𝑎 ∈ 𝐴𝛾,𝑡

Observe that any set of centers 𝐶 defines a natural partition of

the points of𝑊 into clusters, by assigning each point of𝑊 to its

closest center in 𝐶 (with ties broken arbitrarily).

In this paper, we study the following variant of the 𝑘-center

problem, dubbed fair center. Assume that each point in X is

associated with one of a finite set of ℓ categories (dubbed colors

in the following). For a given 𝑊 ⊆ X and positive integers

𝑘1, 𝑘2, . . . , 𝑘ℓ , a solution to the fair center problem is a set𝐶 ⊆𝑊
of centers minimizing 𝑟𝐶 (𝑊 ), under the additional constraint that

𝐶 contains at most 𝑘𝑖 centers of the 𝑖-th color, for 1 ≤ 𝑖 ≤ ℓ . We

denote with OPT𝑊 the radius of an optimal fair center solution

for𝑊 .

The above fairness constraint can be envisaged as a special

case of the more general class of matroid constraints, that have

been studied in the context of clustering starting from [8]. Given

a ground set X, recall that a matroid M on X is a pair M =

(X, 𝐼 ), where 𝐼 ⊆ 2
X

is a family of independent sets featuring

the following two properties: (a) downward closure (if 𝑃 ∈ 𝐼 and

𝑃 ′ ⊆ 𝑃 then 𝑃 ′ ∈ 𝐼 ); and (b) augmentation property (if 𝑃,𝑄 ∈ 𝐼 and

|𝑃 | > |𝑄 | then ∃𝑥 ∈ 𝑃 \𝑄 such that𝑄∪{𝑥} ∈ 𝐼 ). An independent

set ismaximal if it is not a proper subset of any other independent

set. Observe that as a consequence of the augmentation property,

every maximal independent set in a matroidM has the same

cardinality, which is denoted with rank (𝑀). Furthermore, any

subset𝑊 ⊆ X induces a (sub)matroid (𝑊, 𝐼 ′), with 𝐼 ′ = {𝑌 ∩𝑊 :

𝑌 ∈ 𝐼 }. We say that a subset 𝑌 ⊆𝑊 is a maximal independent set

w.r.t.𝑊 , if𝑌 ∈ 𝐼 ′ is a maximal independent set of this submatroid.

Given a matroidM = (X, 𝐼 ) and a set 𝑊 ⊆ X, the matroid

center problem seeks an independent set 𝐶 ∈ 𝐼 minimizing 𝑟𝐶 (𝑊 ).
For fixed 𝑘1, 𝑘2, . . . , 𝑘ℓ and𝑊 ⊆ X, the constraint to be imposed

on the solution of fair center can be seen as a matroid constraint

with respect to the so-called partition matroid of rank 𝑘 =
∑ℓ

𝑖=1 𝑘𝑖 ,

where the family of independent sets contains all subsets of

X with at most 𝑘𝑖 points of each color 𝑖 , for 1 ≤ 𝑖 ≤ ℓ . This

implies that any algorithm for the matroid center problem can

be immediately specialized to solve the fair center problem.

Doubling metric spaces. Given 𝑊 ⊆ X, a point 𝑥 ∈ 𝑊 and

a real value 𝑟 > 0, the ball of radius 𝑟 centered in 𝑥 , denoted

by 𝐵(𝑥, 𝑟 ) ⊆ 𝑊 , is the set {𝑝 ∈ 𝑊 : 𝑑 (𝑥, 𝑝) ≤ 𝑟 }. The doubling

dimension of𝑊 is the minimum value 𝐷 such that, for all 𝑥 ∈𝑊 ,

𝐵(𝑥, 𝑟 ) is contained in the union of at most 2
𝐷

balls of radius

𝑟/2. The concept of doubling dimension generalizes the notion of

dimensionality of Euclidean spaces and has been used in a wide

variety of applications (see [17, 28] and references therein).

Sliding windows model. A stream 𝑆 is a potentially infinite or-

dered sequence of points from some (metric) space X. At each

(discrete) time step 𝑡 = 1, 2, . . ., a new point 𝑝 arrives, and we

denote with 𝑡 (𝑝) its arrival time. Given an integer 𝑛 and a time

𝑡 , the window𝑊𝑡 ⊆ X at time 𝑡 of size 𝑛 is the (multi-)set of the

last 𝑛 points of the stream 𝑆 . Solving a problem on the sliding

windows model entails maintaining data structures that can be

queried at any time 𝑡 > 0 to return the solution of the problem

for the instance𝑊𝑡 . In the sliding window model, the key per-

formance metrics are (a) the amount of space used to store the

data structures; (b) the update time required to handle the arrival

of a point 𝑝 at time 𝑡 ; and (c) the query time, that is the time to

extract the solution for window𝑊𝑡 from the data structures.

3 Fair-center for sliding windows
Consider a stream 𝑆 of colored points from a metric spaceX with

distance function 𝑑 (·, ·), and let 𝑛 > 0 be the target window size.

We letM = (X, 𝐼 ) be a partition matroid defined on X, whose

independent sets are subsets containing at most ≤ 𝑘𝑖 points of

each color 𝑖 , for all 1 ≤ 𝑖 ≤ ℓ , and whose rank is 𝑘 =
∑ℓ

𝑖=1 𝑘𝑖 . In

this section, we present our algorithm that, at any time 𝑡 > 0, is

able to return an accurate solution to fair center for the current

window𝑊𝑡 of size 𝑛. The algorithm is described in Subsection 3.1

and its accuracy, as well as its time and space requirements, are

analyzed in Subsection 3.2.

3.1 Algorithm
The algorithm builds upon the one presented in [28] for the

unconstrained 𝑘-center problem in sliding windows, but it intro-

duces crucial modifications which allow to handle the fairness

constraint. Also, a significant simplification of the employed data

structures affords more elegant and intuitive correctness and

performance analyses with respect to all previous approaches

for unconstrained 𝑘-center [11, 28, 29].

At any time step 𝑡 , for a point 𝑝 ∈ 𝑆 with 𝑡 (𝑝) ≤ 𝑡 , its Time-

To-Live (TTL), denoted as TTL(𝑝), is the number of remaining

steps ≥ 𝑡 , in which 𝑝 will be part of the current window, namely

TTL(𝑝) =max{0, 𝑛−(𝑡−𝑡 (𝑝))}, where𝑛 is the size of the window.

We say that 𝑝 is active at any time when TTL(𝑝) > 0. TTL(𝑝)
decreases at every time step, and we say that 𝑝 expires at the time

when TTL(𝑝) becomes 0 (i.e., at time 𝑡 (𝑝) +𝑛). Let 𝑑min and 𝑑max

be, respectively, the minimum and maximum pairwise distance

between points of 𝑆 , and define Δ = 𝑑max/𝑑min, which we refer

to as the aspect ratio of 𝑆 . For a fixed parameter 𝛽 > 0, we define

the following set of guesses for the optimal radius (which, being

a distance between two points, clearly falls in [𝑑min, 𝑑max]):

Γ =

{
(1 + 𝛽)𝑖 : ⌊log

1+𝛽 𝑑min⌋ ≤ 𝑖 ≤ ⌈log1+𝛽 𝑑max⌉
}

1 .

1
For ease of presentation, we assume that𝑑min and𝑑max are known to the algorithm.

However, we remark that the same techniques introduced in [28] can be employed

to provide estimates of these quantities and to make Γ adaptive to the aspect ratio

of the current window, rather than of the entire stream.
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In broad terms, the algorithm maintains, for each guess 𝛾 ∈ Γ,

suitable sets of active points whose overall size is independent of

𝑛. At any time 𝑡 , from these points it will be possible to identify

a guess providing a tight lower bound on the optimal radius, and,

based on this guess, to extract a small coreset which embodies

a provably good approximate solution to fair center for 𝑊𝑡 . A

query will then compute such a solution by running the best

sequential algorithm available for fair center on the coreset.

More specifically, for each 𝛾 ∈ Γ, the algorithm maintains

two families of active points: validation points and coreset points

In turn, each of these two families consists of two (not nec-

essarily disjoint) sets: namely, 𝐴𝑉𝛾 (𝑣-attractors), and 𝑅𝑉𝛾 (𝑣-

representatives), for validation points; and 𝐴𝛾 (𝑐-attractors), and

𝑅𝛾 (𝑐-representatives), for coreset points. Intuitively, attractors are

used by the update algorithm to ensure that all the points of the

window are well covered, i.e., each of them has a sufficiently close

attractor, while representatives include the most recent, relevant

points for each attractor. The reason for distinguishing between

validation and coreset points, for each radius guess 𝛾 , is that the

former are employed to establish whether 𝛾 is a good approxima-

tion to the optimal radius for unconstrained 𝑘-center (which, in

turns, is a lower bound to the optimal radius for the fair variant),

while the latter provide a set of candidate centers from which a

solution to fair 𝑘-center clustering can be constructed. Because of

these different roles, colors will be relevant only for the selection

of the coreset points.

These sets are updated after the arrival of each new point of

the stream. Set 𝐴𝑉𝛾 contains at most 𝑘 + 1 points at pairwise

distance ≥ 2𝛾 . Each 𝑣-attractor 𝑣 ∈ 𝐴𝑉𝛾 is paired with a single

𝑣-representative denoted as 𝑟𝑒𝑝𝑉𝛾 (𝑣), which is a recent point of

the stream at distance at most 2𝛾 from 𝑣 , and it is included in

𝑅𝑉𝛾 . We remark that there may be 𝑣-representatives that are not

paired with any 𝑣-attractor. Indeed, when a 𝑣-attractor 𝑣 ∈ 𝐴𝑉𝛾
expires, its 𝑣-representative 𝑟𝑒𝑝𝑉𝛾 (𝑣) is not further updated, but

it remains in 𝑅𝑉𝛾 until it expires or it is expunged by a suitable

clean-up procedure.

A key difference with the algorithm in [28] is in the choice

of coreset points, which must now be empowered to account

for the fairness constraint. Let 𝛿 ∈ (0, 4] be a fixed, user-defined

precision parameter that is closely related to the resulting ap-

proximation quality of the algorithm (see Theorem 3). The set

𝐴𝛾 contains points at pairwise distance ≥ 𝛿𝛾/2, where the lower

bound is factor 𝛿/4 less than the least distance 2𝛾 between 𝑣-

attractors in 𝐴𝑉𝛾 . (Observe that only values 𝛿 ≤ 4 make sense.)

There is no fixed upper bound on its size, which, however, will

be conveniently bounded by the analysis. Upon arrival, a new

point 𝑝 is either attracted by a conveniently chosen point in𝐴𝛾 at

distance ≤ 𝛿𝛾/2, if any, or is added to 𝐴𝛾 (and attracts itself). For

each 𝑎 ∈ 𝐴𝛾 , the algorithm maintains a set of 𝑐-representatives

𝑟𝑒𝑝𝑠𝐶𝛾 (𝑎), which is a maximal independent set of active points

attracted by 𝑎 with the longest remaining lifespan, and is included

in 𝑅𝛾 . For 𝑖 ∈ [1, ℓ], we let 𝑟𝑒𝑝𝑠𝐶𝑖
𝛾 (𝑣) ⊆ 𝑟𝑒𝑝𝑠𝐶𝛾 (𝑣) denote the (at

most 𝑘𝑖 ) points of 𝑟𝑒𝑝𝑠𝐶𝛾 (𝑣) of color 𝑖 . After a 𝑐-attractor 𝑎 ∈ 𝐴𝛾

expires, its set of 𝑐-representatives 𝑟𝑒𝑝𝑠𝐶𝛾 (𝑎) is not further up-

dated, but each of its elements remains in 𝑅𝛾 until it expires or it

is expunged by the aforementioned clean-up procedure.

Clearly, all of the above sets of validation and coreset points

evolve with time and, whenever we need to refer to one such set

at a specific time 𝑡 , we will add 𝑡 as a second subscript.

Recall that 𝑘 =
∑ℓ

𝑖=1 𝑘𝑖 . We say that a guess 𝛾 ∈ Γ is valid at

time 𝑡 , if |𝐴𝑉𝛾,𝑡 | ≤ 𝑘 . It is easy to see that if 𝛾 ∈ Γ is not valid,

(i.e., |𝐴𝑉𝛾,𝑡 | ≥ 𝑘 + 1), then 𝛾 is a lower bound to the optimal

radius for unconstrained 𝑘-center on𝑊𝑡 , hence to the optimal

radius for fair center on 𝑊𝑡 , which can only be as large. The

main purpose of validation points is to keep track of current

valid guesses, which, as explained above, may be identified by

referring to the unconstrained version of 𝑘-center, and thus are

handled by the algorithm irrespective of their color. Instead,

coreset points provide, for each valid guess, a reasonably sized

subset of the window points, so that any other window point is

“well represented” by a nearby coreset point of the same color,

which ensures that an accurate fair solution on the coreset points

is also an accurate solution for the entire window. Thus, running

a sequential algorithm solely on the coreset points of a valid guess

will yield a close approximation of the solution obtainable by

running the algorithm on the entire window, while significantly

reducing time and memory usage. For each guess, the number

of coreset points will depend on 𝑘 , on the precision parameter

𝛿 , and, most importantly, on the doubling dimension 𝐷𝑊𝑡 of the

current window. However, we remark that while 𝑘 and 𝛿 are

parameters that must be given in input, the algorithm does not

require the knowledge of the doubling dimension 𝐷𝑊𝑡 , which

will be used only in the analysis.

In what follows, we describe in more details the operations

performed at time step 𝑡 to handle the arrival of a new point

𝑝 and, if required, to compute a solution to fair center for the

current window𝑊𝑡 .

3.1.1 Update procedure. The arrival of a new point 𝑝 is handled

by procedure Update(𝑝) (Algorithm 1). For every guess 𝛾 ∈ Γ,

the data structures are updated as follows. If 𝑝 is at distance

greater than 2𝛾 from any other 𝑣-attractor, then 𝑝 is added to

𝐴𝑉𝛾 , and to 𝑅𝑉𝛾 as representative of itself, otherwise it becomes

the new representative of some (arbitrary) 𝑣-attractor 𝑣 with

𝑑 (𝑣, 𝑝) ≤ 2𝛾 , whose previous representative is discarded. In the

former case, a procedure Cleanup(𝑝,𝛾 ) (Algorithm 2) is invoked

to reduce the size of the various sets as follows. If |𝐴𝑉𝛾 | = 𝑘 + 2
the 𝑣-attractor with minimum TTL is removed from 𝐴𝑉𝛾 . After

this, if |𝐴𝑉𝛾 | = 𝑘 + 1 all 𝑐-attractors, 𝑣-representatives, and 𝑐-

representatives with TTL less than the minimum TTL 𝑡𝑚𝑖𝑛 of a

𝑣-attractor are removed from 𝐴𝛾 . These removals are justified

by the fact that if |𝐴𝑉𝛾 | = 𝑘 + 1, then 𝐴𝑉𝛾 acts as a certificate

that 𝛾 is not a valid guess until time 𝑡 + 𝑡𝑚𝑖𝑛 , hence, for that

guess, there is no need to keep points that expire earlier than

that. For every point 𝑝 , we denote with 𝜓𝛾 (𝑝) the 𝑣-attractor 𝑣

such that 𝑝 = 𝑟𝑒𝑝𝑉𝛾 (𝑣) after the execution of Update(𝑝). We

remark that 𝜓𝛾 (𝑝) is fixed once and forall when 𝑝 arrives. In

fact, 𝜓𝛾 (𝑝) is not explicitly stored in the data structures, but is

solely needed for the analysis. Coreset points are updated as

follows. If 𝑝 is at distance greater than 𝛿𝛾/2 from any other 𝑐-

attractor, then 𝑝 is added to 𝐴𝛾 . Otherwise, suppose that 𝑝 is of

color 𝑖 . Then 𝑝 is attracted by 𝑎 and added to the set 𝑟𝑒𝑝𝑠𝐶𝛾 (𝑎),
where 𝑎 is chosen as the 𝑐-attractor at distance at most 𝛿𝛾/2
from 𝑝 with minimum |𝑟𝑒𝑝𝑠𝐶𝑖

𝛾 (𝑎) |. In case |𝑟𝑒𝑝𝑠𝐶𝑖
𝛾 (𝑎) | > 𝑘𝑖 (i.e.,

|𝑟𝑒𝑝𝑠𝐶𝑖
𝛾 (𝑎) | = 𝑘𝑖 + 1), the representative in |𝑟𝑒𝑝𝑠𝐶𝑖

𝛾 (𝑎) | with

minimum TTL is removed from the set. Observe that, unlike 𝐴𝑉𝛾 ,

the size of 𝐴𝛾 can grow larger than 𝑘 + 2. The maximum size of

these sets, however, will be conveniently upper bounded by the

analysis. For every point 𝑝 , we denote with 𝜙𝛾 (𝑝) the 𝑐-attractor

such that 𝑝 ∈ 𝑟𝑒𝑝𝑠𝐶𝛾 (𝜙𝛾 (𝑝)), after the execution of Update(𝑝).
Again, 𝜙𝛾 (𝑝) is fixed once and forall when 𝑝 arrives, and it is not

explicitly stored in the data structures, since it is solely needed

for the analysis.
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Algorithm 1: Update(𝑝)

𝛿 ← user-defined precision parameter in (0, 4]
𝑖 ← color of 𝑝

𝑥 ← point expired when 𝑝 arrives

foreach 𝛾 ∈ Γ do
Remove 𝑥 from any set 𝐴𝑉𝛾 , 𝐴𝛾 , 𝑅𝑉𝛾 , 𝑅𝛾 containing it;

/* Identify which attractors 𝑝 can be a

representative for */

1 𝐸𝑉 ← {𝑣 ∈ 𝐴𝑉𝛾 : 𝑑 (𝑝, 𝑣) ≤ 2𝛾};
2 𝐸← {𝑣 ∈ 𝐴𝛾 : 𝑑 (𝑝, 𝑣) ≤ 𝛿𝛾/2};

/* Assign 𝑝 to a 𝑣-attractor 𝜓𝛾 (𝑝) */

3 if 𝐸𝑉 = ∅ then
4 𝐴𝑉𝛾 ← 𝐴𝑉𝛾 ∪ {𝑝} ;

5 𝜓𝛾 (𝑝) ← 𝑝;

6 𝑟𝑒𝑝𝑉𝛾 (𝜓𝛾 (𝑝)) ← 𝑝 ;

7 𝑅𝑉𝛾 ← 𝑅𝑉𝛾 ∪ {𝑟𝑒𝑝𝑉𝛾 (𝜓𝛾 (𝑝))};
8 Cleanup(𝑝,𝛾 );

9 else
10 𝜓𝛾 (𝑝) ← arbitrary element of 𝐸𝑉 ;

11 𝑟𝑒𝑝𝑉𝛾 (𝜓𝛾 (𝑝)) ← 𝑝

/* Assign 𝑝 to a 𝑐-attractor 𝜙𝛾 (𝑝) */

12 if 𝐸 = ∅ then
13 𝐴𝛾 ← 𝐴𝛾 ∪ {𝑝};
14 𝜙𝛾 (𝑝) ← 𝑝; 𝑟𝑒𝑝𝑠𝐶𝛾 (𝜙𝛾 (𝑝)) ← {𝑝};
15 𝑅𝛾 ← 𝑅𝛾 ∪ 𝑟𝑒𝑝𝑠𝐶𝛾 (𝜙𝛾 (𝑝));
16 else
17 𝜙𝛾 (𝑝) ← argmin𝑎∈𝐸 |𝑟𝑒𝑝𝑠𝐶𝑖

𝛾 (𝑎) |;
/* Update 𝑟𝑒𝑝𝑠𝐶𝑖

𝛾 (𝜙𝛾 (𝑝)) */

18 𝑟𝑒𝑝𝑠𝐶𝑖
𝛾 (𝜙𝛾 (𝑝)) ← 𝑟𝑒𝑝𝑠𝐶𝑖

𝛾 (𝜙𝛾 (𝑝)) ∪ {𝑝};
19 if |𝑟𝑒𝑝𝑠𝐶𝑖

𝛾 (𝜙𝛾 (𝑝)) | > 𝑘𝑖 then
20 𝑜𝑟𝑒𝑚 ← argmin𝑜∈𝑟𝑒𝑝𝑠𝐶𝑖

𝛾 (𝜙𝛾 (𝑝 ) ) 𝑇𝑇𝐿(𝑜);
21 Remove 𝑜𝑟𝑒𝑚 from 𝑟𝑒𝑝𝑠𝐶𝛾 (𝜙𝛾 (𝑝)) in 𝑅𝛾 ;

Algorithm 2: Cleanup(𝑝,𝛾 )

if |𝐴𝑉𝛾 | = 𝑘 + 2 then ⊲ remove the oldest 𝑣-attractor

𝑣𝑜𝑙𝑑 ← argmin𝑣∈𝐴𝑉𝛾 𝑇𝑇𝐿(𝑣);
𝐴𝑉𝛾 ← 𝐴𝑉𝛾 \ {𝑣𝑜𝑙𝑑 };

if |𝐴𝑉𝛾 | = 𝑘 + 1 then ⊲ remove unnneeded points

𝑡𝑚𝑖𝑛 ← min𝑣∈𝐴𝑉𝛾 𝑇𝑇𝐿(𝑣);
Remove all 𝑞 with 𝑇𝑇𝐿(𝑞) < 𝑡𝑚𝑖𝑛 from 𝐴𝛾 , 𝑅𝑉𝛾 , and

𝑅𝛾 ;

In what follows, we give two examples which illustrate how

the validation and coreset points are maintained by the update

procedure upon the arrival of stream points.

Example 1. The following example considers the setting with

𝑘 = 3 and a window of size 𝑤 = 6 points, focusing on the

validation sets 𝐴𝑉𝛾 and 𝑅𝑉𝛾 , for some guess 𝛾 . The next figure

reports all the points that will be used throughout the example,

with the subscript denoting the time instant 𝑡 at which they arrive

in the stream. In this example we ignore the color of each point,

as this information is not used to construct the validation sets.

𝑝3

𝑝4 𝑝1

𝑝2

𝑝5

𝑝6

𝑝7

𝑝8

Consider the situation depicted in the following figure at the end

of time 𝑡 = 6, where the points 𝑝1, 𝑝2, . . . , 𝑝6 have been relabeled

as 𝑣-attractors (𝑎ℓ ) or 𝑣-representatives (𝑟ℓ ) depending on the role

assigned to them by the algorithm.

𝑎3★

2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾

𝑎4★

2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾

𝑎1★

2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾
𝑟2

𝑟5

𝑟6

At time 𝑡 = 7 point 𝑝7 enters the window, while point 𝑎1 ex-

pires and is removed from the attractor set 𝐴𝑉𝛾 . However, 𝑎1’s 𝑣-

representative 𝑟2 is not removed from the set of 𝑣-representatives

𝑅𝑉𝛾 . As for the newly inserted 𝑝7, it can be assigned as 𝑣-

representative to either 𝑎4 or 𝑎3. Suppose that it is assigned to 𝑎4
as its 𝑣-representative, replacing 𝑟6 in this role (thus, we rename

it 𝑟7). Thus, after the update at time 𝑡 = 7 the situation is the

following:

𝑎3★

2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾

𝑎4★

2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾

𝑟7

𝑟2

𝑟5
newly inserted point 𝑝7

Now, at time 𝑡 = 8 point 𝑝8 enters the window and 𝑟2 expires.

Since 𝑝8 is not within the ball of radius 2𝛾 around any 𝑣-attractor,

then it becomes a 𝑣-attractor itself (hence, we relabel it as 𝑎8),

and it becomes its own representative as well:

𝑎3★

2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾

𝑎4★

2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾 𝑎8★

2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾2𝛾

𝑟7

𝑟5

newly inserted point 𝑝8

Example 2. We now give an example for the update of the

sets of coreset points, 𝐴𝛾and 𝑅𝛾 , using a stream of eight points

(different from the one of the previous example) featuring two

colors, 𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1 and 𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2. We impose fairness constraints 𝑘1 = 1

and 𝑘2 = 2, hence 𝑘 = 3, and window length 𝑤 = 6. The points

used in the example, together with their colors, are shown in the

following figure, where the subscript denotes the time at which

the point enters the stream.
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𝑝1

𝑝2 𝑝3

𝑝5

𝑝6

𝑝4

𝑝7
𝑝8

The situation at the end of time 𝑡 = 6 is depicted in the fol-

lowing figure, with the 𝑐-attractor set 𝐴𝛾 = {𝑎1, 𝑎2, 𝑎3}. Namely,

𝑐-attractor 𝑎1 is the representative of itself, of color 𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1, while

𝑎2 has two 𝑐-representatives, including itself, of color 𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2 and

one of color 𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1. Finally, 𝑐-attractor 𝑎3 has one 𝑐-representative

(itself) of color 𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1 and one 𝑐-representative of color 𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2.

𝑎1
★ 𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2

𝑎2
★

𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2

𝑎3
★ 𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2

𝑟5

𝑟4

𝑟6

Time 𝑡 = 7 sees the expiration of point 𝑎1 and the insertion of

point 𝑝7 of color 𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2, which is within distance 𝛿𝛾/2 from both

𝑎2 and 𝑎3. Since 𝑎2 already has 𝑘2 = 2 𝑐-representatives of color

𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2𝑖 = 2, then 𝑝7 is assigned as a 𝑐-representative for 𝑐-attractor 𝑎3,

giving the following situation:

𝑎2
★

𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2

𝑎3
★ 𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝑟6

𝑟4

𝑟7

𝑟5

newly inserted point 𝑝7

At time 𝑡 = 8, point 𝑝8 of color 𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1 enters the window and

point 𝑎2 expires. Since 𝑝8 is at distance at most 𝛿𝛾/2 from 𝑎3 it

should be assigned as one of 𝑎3’s 𝑐-representatives. However,

at this point 𝑎3 would have 2 > 𝑘1 𝑐-representatives of color

𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1. Therefore 𝑎3, the oldest among the 𝑐-representatives of 𝑎3
of color 𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1𝑖 = 1, is removed from set 𝑅𝛾 . Note, however, that being

also a 𝑐-attractor that is yet to expire, 𝑎3 is not removed from 𝐴𝛾 .

Being no longer part of the 𝑐-representatives, 𝑎3 is pictured in

gray in the following picture, since its color is now immaterial

to the algorithm:

𝑎3
★

𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2𝛿𝛾/2

𝑟5

𝑟6

𝑟4

𝑟7
𝑟8

newly inserted point 𝑝8

In the above examples, for simplicity we have depicted a sce-

nario where the cleanup procedure (which amounts to a simple

purge of the oldest attractors and representatives in the data

structures when 𝛾 is an invalid guess) does not perform any

action.

3.1.2 Query procedure. At any time 𝑡 , to obtain a solution to

the fair center problem for 𝑊𝑡 , procedure Query() is invoked

(Algorithm 3). First, a valid guess 𝛾 is identified such that a 𝑘-

center clustering of radius ≤ 2𝛾 for the points in 𝑅𝑉𝛾 is found,

and for any smaller guess 𝛾 ′ ∈ Γ with 𝛾 ′ < 𝛾 , there are 𝑘 + 1

points in either 𝐴𝑉𝛾 ′ or 𝑅𝑉𝛾 ′ with pairwise distance > 2𝛾 ′. As it

will be shown in the analysis, this ensures that the coreset points

in 𝑅𝛾 contain a good solution to fair center for𝑊𝑡 , which is then

computed by invoking the best sequential fair center algorithm

A.

Algorithm 3:Query()

for increasing values of 𝛾 ∈ Γ such that |𝐴𝑉𝛾 | ≤ 𝑘 do
𝐶 ← ∅;
foreach 𝑞 ∈ 𝑅𝑉𝛾 do

if 𝐶 = ∅ ∨ 𝑑 (𝑞,𝐶) > 2𝛾 then 𝐶 ← 𝐶 ∪ {𝑞} ;

if |𝐶 | > 𝑘 then Break and move to the next guess

;

if |𝐶 | ≤ 𝑘 then
return A(𝑅𝛾 ) ; /* A = sequential fair

center algorithm */

3.2 Analysis
The following lemma shows that at any time 𝑡 , the points 𝑅𝑉𝛾
(resp., 𝑅𝛾 ) are within distance 4𝛾 (resp., 𝛿𝛾 ) from all points of the

entire𝑊𝑡 , when 𝛾 is valid, or of a suitable suffix of𝑊𝑡 , otherwise.

(The lemma is similar to [28, Lemma 1] but the proof given below

is completely new and applies to the simpler version of the update

procedure devised in this paper.)

Lemma 1. For every 𝛾 ∈ Γ and 𝑡 > 0, the following properties

hold after the execution of the Update procedure for the point

arrived at time 𝑡 :

(1) If |𝐴𝑉𝛾,𝑡 | ≤ 𝑘 , then ∀𝑞 ∈𝑊𝑡 we have:

(a) 𝑑 (𝑞, 𝑅𝑉𝛾,𝑡 ) ≤ 4𝛾 ;

(b) 𝑑 (𝑞, 𝑅𝛾,𝑡 ) ≤ 𝛿𝛾 ;
(2) If |𝐴𝑉𝛾,𝑡 | > 𝑘 , then ∀𝑞 ∈𝑊𝑡 s.t. 𝑡 (𝑞) ≥ min𝑣∈𝐴𝑉𝛾,𝑡 𝑡 (𝑣) we

have:

(a) 𝑑 (𝑞, 𝑅𝑉𝛾,𝑡 ) ≤ 4𝛾

(b) 𝑑 (𝑞, 𝑅𝛾,𝑡 ) ≤ 𝛿𝛾 ;

Proof. For every 𝛾 ∈ Γ and 𝑡 > 0, we say that a point 𝑞 ∈𝑊𝑡

is relevant for 𝛾 and 𝑡 if |𝐴𝑉𝛾,𝑡 | ≤ 𝑘 or |𝐴𝑉𝛾,𝑡 | > 𝑘 and 𝑡 (𝑞) ≥
min𝑣∈𝐴𝑉𝛾,𝑡 𝑡 (𝑣). Clearly, the proof concerns only relevant points.

Also, recall that for every point 𝑝 of the stream, in Update(𝑝)
we set 𝜓𝛾 (𝑝) (resp., 𝜙𝛾 (𝑝)) to its assigned 𝑣-attractor (resp., 𝑐-

attractor). Clearly, 𝑑 (𝑝,𝜓𝛾 (𝑝)) ≤ 2𝛾 , and 𝑑 (𝑝, 𝜙𝛾 (𝑝)) ≤ 𝛿𝛾/2. (In

fact, the values𝜓𝛾 (𝑝) and 𝜙𝛾 (𝑝) are not explicitly stored in the

data structures, as they are just needed for the analysis.)

Let us focus on an arbitrary guess 𝛾 . We will argue that, at any

time 𝑡 > 0, for every point 𝑞 which is relevant for 𝛾 and 𝑡 , there

exists a point 𝑥 ∈ 𝑅𝑉𝛾,𝑡 and a point 𝑦 ∈ 𝑅𝛾,𝑡 such that 𝜓𝛾 (𝑥) =
𝜓𝛾 (𝑞) and 𝜙𝛾 (𝑦) = 𝜙𝛾 (𝑞). The lemma will follow immediately

since 𝜓𝛾 (𝑥) = 𝜓𝛾 (𝑞) implies 𝑑 (𝑞, 𝑥) ≤ 4𝛾 , and 𝜙𝛾 (𝑦) = 𝜙𝛾 (𝑞)
implies 𝑑 (𝑞,𝑦) ≤ 𝛿𝛾 .

Let us first concentrate on validation points. If 𝑞 is the point

arrived at time 𝑡 (i.e., 𝑡 (𝑞) = 𝑡 ) then it is immediate to see from the

pseudocode that 𝑞 enters 𝑅𝑉𝛾,𝑡 , hence, it suffices to choose 𝑥 = 𝑞.

Otherwise, it is immediate to argue that since 𝑞 is relevant at

time 𝑡 , it has also been relevant at all times 𝑡 ′, with 𝑡 (𝑞) ≤ 𝑡 ′ < 𝑡 ,

which implies that 𝑞 has never been removed from 𝑅𝑉𝛾,𝑡 ′ during

some invocation of Cleanup, which only removes non-relevant

points. Consequently, since 𝑞 entered 𝑅𝑉𝛾,𝑡 (𝑞) , either 𝑞 is still in

𝑅𝑉𝛾,𝑡 (and we set 𝑥 = 𝑞), or 𝑞 was eliminated from 𝑅𝑉𝛾, due to

the arrival of some point 𝑥1 at time 𝑡 (𝑥1) > 𝑡 (𝑞). Observe that 𝑥1
is also relevant. If 𝑥1 ∈ 𝑅𝑉𝛾,𝑡 , we set 𝑥 = 𝑥1, otherwise, we apply

the same reasoning to 𝑥1. Iterating the argument, we determine

a sequence of relevant points 𝑥1, 𝑥2, . . . , 𝑥𝑟 , with 𝑡 (𝑞) < 𝑡 (𝑥1) <
. . . < 𝑡 (𝑥𝑟 ) and𝜓 (𝑞) =𝜓 (𝑥1) = . . . =𝜓 (𝑥𝑟 ), with 𝑥𝑟 ∈ 𝑅𝑉𝛾,𝑡 , and

we set 𝑥 = 𝑥𝑟 .
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The argument to show that there exists 𝑦 ∈ 𝑅𝛾,𝑡 such that

𝜙𝛾 (𝑦) = 𝜙𝛾 (𝑞) is virtually identical, and is just sketched for

completeness. As argued above, since 𝑞 is relevant for 𝛾 and 𝑡 , it

was never eliminated during some invocation of Cleanup. Thus,

since 𝑞 ∈ 𝑅𝛾,𝑡 (𝑞) , either 𝑞 ∈ 𝑅𝛾,𝑡 (and we set 𝑦 = 𝑞) or we can

identify a sequence of relevant points 𝑦1, 𝑦2, . . . , 𝑦𝑟 of the same

color as 𝑞, with 𝑡 (𝑞) < 𝑡 (𝑦1) < . . . < 𝑡 (𝑦𝑠 ) and 𝜙 (𝑞) = 𝜙 (𝑦1) =
. . . = 𝜙 (𝑦𝑠 ), with 𝑦𝑠 ∈ 𝑅𝛾,𝑡 , and we set 𝑦 = 𝑦𝑠 . □

The next lemma (proof omitted) is a straightforward adap-

tation of [6, Lemma 3], and provides an important technical

tool, which will be needed to show that the coreset extracted in

Query() contains a good solution to fair center for the current

window.

Lemma 2. Let𝑊𝑡 be the window of points at time step 𝑡 , and

let 𝐼𝑊𝑡 be the family of independent sets of the partition matroid

defined on𝑊𝑡 (i.e., the feasible solutions to fair center for𝑊𝑡 ). Let

𝑄 ⊆𝑊𝑡 ba a coreset that satisfies the following conditions:

(C1) 𝑑 (𝑝,𝑄) ≤ 𝛿𝛾, ∀𝑝 ∈𝑊𝑡

(C2) For each independent set 𝑋 ∈ 𝐼𝑊𝑡 there exists an injective

mapping 𝜋𝑋 : 𝑋 → 𝑄 such that:

– {𝜋𝑋 (𝑥) : 𝑥 ∈ 𝑋 } ⊆ 𝑄 is an independent set w.r.t. 𝑄

– for each 𝑥 ∈ 𝑋 , 𝑑 (𝑥, 𝜋𝑋 (𝑥)) ≤ 𝛿𝛾
Then:

(P1) There exists a solution 𝑆 ⊆ 𝑄 to fair center for𝑊𝑡 of

radius ≤ OPT𝑊𝑡 + 2𝛿𝛾
(P2) Every solution to fair center for 𝑄 of radius 𝑟 is also a

solution of cost at most 𝑟 + 𝛿𝛾 for𝑊𝑡 .

We are now ready to present the main novel ingredient of

the analysis of our algorithm. Recall that for any point 𝑝 of the

stream and every guess 𝛾 , Update(𝑝) assigns 𝑝 to a 𝑐-attractor

𝜙𝛾 (𝑝) ∈ 𝐴𝛾 , adding 𝑝 to 𝑟𝑒𝑝𝑠𝐶𝛾,𝑡 (𝜙𝛾 (𝑝)). Note that 𝜙𝛾 (𝑝) = 𝑝 if

𝑝 was added to 𝐴𝛾 . Also, for any point 𝑎 which at time 𝑡 (𝑎) was

added to 𝐴𝛾 , and for any 𝑡 ≥ 𝑡 (𝑎), we define

𝑊𝛾,𝑡 (𝑎) = {𝑥 ∈𝑊𝑡 : 𝜙𝛾 (𝑥) = 𝑎}.
Observe that from time 𝑡 (𝑎) until the time when 𝑎 is expunged

from 𝐴𝛾 , 𝑊𝛾,𝑡 (𝑎) grows with the arrival of each new point 𝑐-

attracted by 𝑎. After 𝑎 leaves 𝐴𝛾 , 𝑊𝛾,𝑡 (𝑎) progressively looses

points as they expire. Also, for 𝑡 ≥ 𝑡 (𝑎), the set 𝑟𝑒𝑝𝑠𝐶𝛾,𝑡 (𝑎) is

updated at each arrival of a new point attracted by 𝑎, until 𝑎 is

expunged from 𝐴𝛾 . After that happens, the set 𝑟𝑒𝑝𝑠𝐶𝛾,𝑡 (𝑎) is not

further updated with new points, while its elements will then be

gradually expunged from 𝑅𝛾 as they expire. We have:

Lemma 3. For any time 𝑡 and valid guess 𝛾 ∈ Γ, the follow-
ing holds. Let 𝑎 ∈ 𝑆 be a point which arrived at 𝑡 (𝑎) ≤ 𝑡 and,

upon arrival, was added to 𝐴𝛾 . Then𝑊𝛾,𝑡 (𝑎) ∩ 𝑅𝛾,𝑡 is a maximal

independent set w.r.t.𝑊𝛾,𝑡 (𝑎).

Proof. It is immediate to see that at each time 𝑡 ≥ 𝑡 (𝑎) for

which 𝑎 ∈ 𝐴𝛾,𝑡 , the set 𝑟𝑒𝑝𝑠𝐶𝛾,𝑡 (𝑎) =𝑊𝛾,𝑡 (𝑎) ∩ 𝑅𝛾,𝑡 is always a

maximal independent set w.r.t.𝑊𝛾,𝑡 (𝑎), since a point 𝑥 ∈𝑊𝛾,𝑡 (𝑎)
is always inserted into 𝑟𝑒𝑝𝑠𝐶𝛾,𝑡 (𝑥 ) (𝑎), and may cause the expunc-

tion from the set of a single point of the same color 𝑖𝑥 (the oldest

such point), only when there are already 𝑘𝑖𝑥 points of color 𝑖𝑥
present in 𝑟𝑒𝑝𝑠𝐶𝛾,𝑡 (𝑥 )−1 (𝑎). Let 𝑡 > 𝑡 (𝑎) be the time when 𝑎 is

expunged from𝐴𝛾,𝑡 . As already observed, for every 𝑡 ≥ 𝑡 ,𝑊𝛾,𝑡 (𝑎)
does not acquire new points and shrinks due to the natural expira-

tion of the points 𝑐-attracted by 𝑎. If points in 𝑅𝛾,𝑡 were removed

only on their expiration, then the maximality of𝑊𝛾,𝑡 (𝑎) ∩ 𝑅𝛾,𝑡
w.r.t.𝑊𝛾,𝑡 (𝑎) would immediately follow by the fact that, as long

as 𝑎 is in 𝐴𝛾,𝑡 , for each color 𝑖 , 𝑟𝑒𝑝𝑠𝐶𝛾,𝑡 (𝑎) maintains the most re-

cently arrived points of that color. However, whenever𝛾 becomes

an invalid guess, extra points from 𝑅𝛾,𝑡 may be expunged (Line 2

of procedure Cleanup). However, these expunged points, being

older than the oldest point in 𝐴𝑉𝛾,𝑡 , will all have expired by the

time step 𝑡 ′ > 𝑡 (if any) when |𝐴𝑉𝛾,𝑡 ′ | drops below 𝑘 + 1, and thus

𝛾 becomes again a valid guess, so their premature elimination

will not affect the maximality of𝑊𝛾,𝑡 ′ ∩ 𝑅𝛾,𝑡 ′ . □

The following theorem establishes the quality of the solution

returned by Procedure Query.

Theorem 3. Let 𝛼 be the approximation ratio featured by the

sequential fair center algorithm A used in Procedure Query(). For

fixed 𝜀 ∈ (0, 1) and 𝛽 > 0, by setting

𝛿 =
𝜀

(1 + 𝛽) (1 + 2𝛼)
we have that if ProcedureQuery is run at time 𝑡 , then the returned

solution is an (𝛼 + 𝜀)-approximate solution to fair center for the

current window𝑊𝑡 .

Proof. Let 𝛾 be the guess such that the solution returned by

Query is computed by running A on the coreset 𝑄 = 𝑅𝛾 . We

first show that conditions (C1) and (C2) of Lemma 2 hold for 𝑄 .

First observe that by construction 𝛾 is chosen so that |𝐴𝑉𝛾,𝑡 | ≤
𝑘 , therefore condition (C1) holds by virtue of Property 1.(b) of

Lemma 1. To show that (C2) also holds, consider any independent

set 𝑋 w.r.t. 𝑊𝑡 . We construct the required injective mapping

𝜋𝑋 : 𝑋 → 𝑄 incrementally, one point at a time. Let 𝑋 = {𝑥 𝑗 :

1 ≤ 𝑗 ≤ |𝑋 |}. Suppose that we have fixed the mapping for the

first ℎ ≥ 0 elements of 𝑋 , and assume, inductively, that

𝑌 (ℎ) = {𝜋𝑋 (𝑥 𝑗 ) : 1 ≤ 𝑗 ≤ ℎ} ∪ {𝑥 𝑗 : ℎ < 𝑗 ≤ |𝑋 |}
is an independent set w.r.t. 𝑊𝑡 of size |𝑋 |, and such that, for

1 ≤ 𝑗 ≤ ℎ, 𝜋𝑋 (𝑥 𝑗 ) ∈ 𝑄 and 𝑑 (𝑥 𝑗 , 𝜋𝑋 (𝑥 𝑗 )) ≤ 𝛿𝛾 . We now show

how to extend the mapping to indexℎ+1. We distinguish between

two cases. If 𝑥ℎ+1 ∈ 𝑄 , then we simply set 𝜋𝑋 (𝑥ℎ+1) = 𝑥ℎ+1. Since

𝑌 (ℎ + 1) = 𝑌 (ℎ) and 𝑑 (𝑥ℎ+1, 𝜋𝑋 (𝑥ℎ+1)) = 0 ≤ 𝛿𝛾 , the mapping is

correctly extended to indexℎ+1. Conversely, if 𝑥ℎ+1 ∉ 𝑄 , observe

that 𝑥ℎ+1 ∈𝑊𝛾,𝑡 (𝑎), where 𝑎 = 𝜙 (𝑥ℎ+1). Since 𝛾 is a valid guess,

by Lemma 3 it follows that 𝑍 =𝑊𝛾,𝑡 (𝑎) ∩𝑄 is a maximal inde-

pendent set w.r.t.𝑊𝛾,𝑡 (𝑎). Then, it will always be possible to set

𝜋𝑋 (𝑥ℎ+1) = 𝑦ℎ+1, where 𝑦ℎ+1 is a point of 𝑍 of the same color as

𝑥ℎ+1, and such that𝑦ℎ+1 ≠ 𝜋𝑋 (𝑥 𝑗 ), for 1 ≤ 𝑗 ≤ ℎ, or otherwise the

number of points in 𝑋 ∩𝑊𝛾,𝑡 (𝑎) of the same color as 𝑥ℎ+1 would

have to be larger than those in 𝑍 , contradicting the maximality of

the latter subset w.r.t.𝑊𝛾,𝑡 (𝑎). By the properties of the partition

matroid, it follows that𝑌 (ℎ+1) is still an independent set w.r.t.𝑊𝑡 .

Also, since both 𝑥ℎ+1 and 𝜋𝑋 (𝑥ℎ+1) = 𝑦ℎ+1 belong to𝑊𝛾,𝑡 (𝑎), we

have that 𝑑 (𝑥ℎ+1, 𝜋𝑋 (𝑥ℎ+1)) ≤ 𝑑 (𝑥ℎ+1, 𝑎) + 𝑑 (𝑎, 𝜋𝑋 (𝑥ℎ+1) ≤ 𝛿𝛾 .

Therefore, given that, by construction, 𝜋𝑋 (𝑥ℎ+1) ∈ 𝑄 , the map-

ping is correctly extended to index ℎ + 1. By iterating the ar-

gument up to index |𝑋 |, we have that 𝑌 ( |𝑋 |) ⊆ 𝑄 , and we

conclude that condition (C2) holds for 𝑄 ⊆ 𝑊𝑡 . Therefore, by

Lemma 2, since (C1) and (C2) hold for 𝑄 , Properties (P1) and

(P2) also hold. Property (P1) implies that the optimal solution

to fair center for 𝑄 has radius ≤ OPT𝑊𝑡 + 2𝛿𝛾 . Therefore, when

invoked on 𝑄 , algorithm A will return a solution of radius

≤ 𝛼 (OPT𝑊𝑡 + 2𝛿𝛾) for 𝑄 , which, by Property (P2), is also a solu-

tion of radius ≤ 𝛼OPT𝑊𝑡 + (1 + 2𝛼)𝛿𝛾 for𝑊𝑡 . Now, let 𝑟 ∗
𝑘

be the

radius of the optimal solution to unconstrained 𝑘-center for𝑊𝑡 . It

is easy to see that 𝛾 ≤ (1+ 𝛽)𝑟 ∗
𝑘

. Indeed, the inequality is trivial if

𝛾 = 𝑑min, while, otherwise, it follows from the fact that Procedure
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Query discarded guess 𝛾 = 𝛾/(1 + 𝛽) because 𝑘 + 1 points of

𝑊𝑡 at pairwise distance 2𝛾 exist and, clearly, two of these points

must be closest to the same center of the optimal solution of

unconstrained 𝑘-center for 𝑊𝑡 of radius 𝑟 ∗
𝑘
. Since 𝑟 ∗

𝑘
≤ OPT𝑊𝑡 ,

we have that 𝛾 ≤ (1 + 𝛽)OPT𝑊𝑡 . The above discussion and the

choice of 𝛿 immediately imply that Query will return a solution

whose radius, with respect to the entire window𝑊𝑡 , is at most

𝛼OPT𝑊𝑡 + (1 + 2𝛼)𝛿𝛾 ≤

≤ 𝛼OPT𝑊𝑡 + (1 + 2𝛼)
𝜀

(1 + 𝛽) (1 + 2𝛼) (1 + 𝛽)OPT𝑊𝑡

= (𝛼 + 𝜀)OPT𝑊𝑡 . □

By using the algorithm of [20] as algorithm A in Query, we

obtain:

Corollary 1. For fixed 𝜀 ∈ (0, 1), at any time 𝑡 > 0, procedure

Query can be used to compute a (3 + 𝜀)-approximate solution to

fair center for window𝑊𝑡 .

The following theorem bounds the size of the working memory

required by our algorithm.

Theorem 4. Under the same parameter configuration of The-

orem 3, at any time 𝑡 during the processing of stream 𝑆 , the sets

stored in in the working memory contain

𝑂

(
𝑘2

logΔ

log(1 + 𝛽)

(𝑐
𝜀

)𝐷𝑊𝑡

)
points overall, where 𝑐 = 32(1 + 𝛽) (1 + 2𝛼), 𝐷𝑊𝑡 is the doubling

dimension of the current window𝑊𝑡 and Δ is the aspect ratio of 𝑆 .

Proof. Consider a time 𝑡 and a guess 𝛾 ∈ Γ. The following

facts can be proved through the same arguments used in the

proof of [28, Theorem 2] for the case of unconstrained 𝑘-center

on a window of doubling dimension 𝐷𝑊𝑡 .

Fact 1. At each time 𝑡 , |𝐴𝑉𝛾, | ≤ 𝑘 + 1 and 𝑅𝑉𝛾, ≤ 2(𝑘 + 1).

Fact 2. 𝐴𝛾 contains at most 𝑘 ′ = 2(𝑘 + 1) (32/𝛿)𝐷𝑊𝑡 points.

It remains to upper bound the size of 𝑅𝛾 . Clearly, by Fact 2,

there can be altogether at most 𝑘 ·𝑘 ′ points in 𝑅𝛾 contained in the

representative sets 𝑟𝑒𝑝𝑠𝐶𝛾 of points currently in 𝐴𝛾 . We are then

left to bound the number of points contained in representative

sets of points not in 𝐴𝛾 at the current time. Call 𝑂𝛾 the union of

such sets. Let 𝑎𝑖 , with 𝑖 = 1, 2, . . . be an enumeration of all points

that upon arrival have been added to 𝐴𝛾 . For every 𝑖 ≥ 1 it must

hold that𝑎𝑖 has expired or has been expunged from𝐴𝛾 by the time

𝑎𝑖+𝑘′+1 enters𝐴𝛾 , or otherwise𝐴𝛾 would have size greater than𝑘 ′

at time 𝑡 (𝑎𝑖+𝑘′+1), which would contradict Fact 2. Consequently,

any point 𝑥 added to 𝑟𝑒𝑝𝑠𝐶𝛾 (𝑎𝑖 ) must have arrived while 𝑎𝑖 was

still in 𝐴𝛾 , hence before 𝑎𝑖+𝑘′+1, thus TTL(𝑥) < TTL(𝑎𝑖+𝑘′+1) at

any time when they are both active. Now, consider the current

time, and let 𝑎 𝑗 be the point which was most recently removed

from 𝐴𝛾 . By the above property, any point 𝑥 that belonged to

𝑟𝑒𝑝𝑠𝐶𝛾 (𝑎ℓ ), with ℓ ≤ 𝑗 − (𝑘 ′ + 1), arrived prior to 𝑎 𝑗 , hence

cannot be in memory at time 𝑡 . Hence, 𝑂𝛾 can only comprise

points that belonged to 𝑟𝑒𝑝𝑠𝐶𝛾 (𝑎ℓ ), with 𝑗 − (𝑘 ′ + 1) < ℓ ≤ 𝑗 ,

which immediately implies that |𝑂𝛾 | ≤ 𝑘 ·𝑘 ′. The theorem follows

by considering that in Theorem 3 we fixed 𝛿 = 𝜀/((1+𝛽) (1+2𝛼)),
and that the number of guesses |Γ | =𝑂 (logΔ/log(1 + 𝛽)). □

For what concerns running time, it can be easily argued

that Procedure Update requires time linear in the aggregate

size of the stored sets, while the Procedure Query first exe-

cutes 𝑂 (logΔ/log(1 + 𝛽)) attempts at discovering suitable un-

constrained 𝑘-clusterings on sets of 𝑂 (𝑘) points, each requiring

𝑂 (𝑘2) time, and then invokes the sequential fair center algorithm

A on𝑅𝛾 , for some guess𝛾 ∈ Γ. The above discussion immediately

implies the following theorem.

Theorem 5. Under the same parameter configuration of Theo-

rem 4, Procedure Update runs in time

𝑂

(
𝑘2

logΔ

log(1 + 𝛽)

(𝑐
𝜀

)𝐷𝑊𝑡

)
while procedure Query runs in time

𝑂

(
𝑘2

logΔ

log(1 + 𝛽) +𝑇A
(
𝑘2

(𝑐
𝜀

)𝐷𝑊𝑡

))
where 𝑇A (𝑚) is the running time of sequential algorithmA on an

instance of size𝑚.

It is important to remark that for windows of constant dou-

bling dimension, both space and time requirements of our algo-

rithm are independent of the window size 𝑛.

The space and time requirements of our algorithm can be made

independent of the dimensionality of the stream, at the expense

of a worsening in the approximation guarantee. We have:

Corollary 2. Procedures Update, Cleanup andQuery can be

modified so to yield, at any time 𝑡 , a (31+𝑂 (𝜀))-approximate solu-

tion, storing 𝑂
(
𝑘2 logΔ/𝜀

)
points in the working memory, and re-

quiring 𝑂
(
𝑘2 logΔ/𝜀

)
update and𝑂

(
𝑘2 logΔ/𝜀 +𝑇A (𝑘2)

)
query

time.

Proof. We recast our algorithm by eliminating the two sets

of coreset points and all operations related to their maintenance.

Also, rather than a simple point, we make sure to maintain in

𝑟𝑒𝑝𝑉𝛾 (𝑣) the most recent maximal independent set of points

attracted by 𝑣 . Procedures Update and Cleanup are modified

accordingly. Finally, Query computes the final clustering by se-

lecting the right guess𝛾 as before and then applying algorithmA
to 𝑅𝑉𝛾 rather than 𝑅𝛾 . The bounds on time and space are immedi-

ately obtained by noticing that the size of the set 𝑅𝑉𝛾 is no more

than a factor 𝑘 larger than its size in the original algorithm. The

bound on approximation can be obtained by setting 𝛽 = 𝜀 and

by a straightforward adaptation of the analysis of the original

algorithm for the case 𝛿 = 4, a value for which the set of 𝑣-points

on which A is invoked coincides with the old set 𝑅𝛾 . □

Main differences with previous work. The algorithms presented

above, together with their analysis, introduce the following nov-

elties with respect to the work in [11, 28]:

• The involved data structures (maintaining validation and

coreset points) have been simplified through the removal

of the orphan point category, [11, 28], which has been

absorbed within the sets of representatives.

• Our new approach maintains, as 𝑐-representatives for each

𝑐-attractor 𝑎, the most recent maximal independent set

of all window points attracted by 𝑎, rather than a single

representative. This is instrumental to guarantee that, for

a suitable guess 𝛾 , the set of 𝑐-representatives contains a

good solution to the constrained problem on the current

window.

• The proof of Lemma 1 has been entirely restructured over

the respective one in [11, 28], featuring a novel, shorter

and more intuitive argument.
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Figure 1: Approximation ratio (top) and memory (bottom,
in number of points) for varying 𝛿 , with 𝑘 = 30.

• With the exception of the technical Lemma 2, the remain-

der of the analysis is completely novel.

4 Experiments
We evaluate experimentally our coreset-based algorithm against

state of the art baselines, aiming at answering the following

questions:

• How does the coreset size impact the performance? (§ 4.1)

• How do algorithms behave on different window lengths?

(§ 4.2)

• What is the influence of the data dimensionality? (§ 4.3)

Below, we provide details of the experimental setup, namely,

a description of the datasets, the implemented algorithms and

baselines, and the performance metrics used in our comparisons.

Datasets. We consider three real-world datasets.

• PHONES2
is a dataset of sensor data from smartphones:

each of the 13 062 475 points represents the position of

a phone in three dimensions, and is labeled with one of

ℓ = 7 categories corresponding to user actions: stand, sit,

walk, bike, stairs up, stairs down, null. The aspect ratio of

the entire dataset is ≈ 6.4 · 105;
• BEERS3

collects reviews for 1 586 615 beers. We use the

review timestamp to dictate the streaming order. Each

data point features 6 dimensions, and is associated with

one out of ℓ = 27 beer styles
4

that we use as categories.

The aspect ratio is ≈ 17.88;

• UBER5
contains over 4.5 million Uber pickups in New York

City from April to September 2014. Each data point has

2 dimensions (pickup location), and is associated to one

out of ℓ = 8 TLC base companies. The aspect ratio is

≈ 1.67 · 104.
Besides these real-world datasets, some experiments are run

on suitably crafted synthetic data, which will be specified later.

2
UCI repository: https://doi.org/10.24432/C5689X

3
https://www.kaggle.com/datasets/thedevastator/1-5-million-beer-reviews-

from-beer-advocate

4
We conflate similar beer styles, see the data preprocessing code for details.

5
https://github.com/fivethirtyeight/uber-tlc-foil-response

Algorithms. As baseline algorithms we consider the matroid

center algorithm by [8] (ChenEtAl), and the fair center algo-

rithm by [20] (JonesEtAl). Note that both are sequential algo-

rithms for the problem. In the sliding window setting, upon a

query, we run the baseline algorithms on all points of the current

window. Thus, in principle, these provide the most accurate solu-

tions, at the expense of high space/time complexity. Algorithm

Ours is the implementation of our algorithm with knowledge of

the minimum and maximum pairwise distances,𝑑min and𝑑max, be-

tween points of the stream, and invokes baselineA = JonesEtAl

in Query only on the points of the selected coreset. Since the

aspect ratio of a stream is often unknown, we also implemented

OursOblivious, where running estimates of𝑑min and𝑑max for the

current window are obtained by means of the techniques of [28],

based on a sliding-window diameter-estimation algorithm. In

OursOblivious, the update and query procedures consider only

the guesses that are within the current [𝑑min, 𝑑max] interval. For

both Ours and OursOblivious, the progression of the guess val-

ues is defined fixing 𝛽 = 2. In fact, a set of experiments (omitted

for brevity) have shown that varying this parameter has no signif-

icant impact on the results. The precision parameter 𝛿 varies in

the set 𝛿 ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}, with the understanding that

lower values result in finer-grained (i.e. larger) coresets, while

𝛿 = 4 is equivalent to using a coreset comparable in size to the

validation set (i.e., the one yielding the result of Corollary 2). This

set of values for 𝛿 indeed allows spanning a very wide range of

coreset sizes. For the window size, we consider values between

10 000 and 500 000 points. The cardinality constraints on the ℓ

colors are set so that, for every 𝑖 , 𝑘𝑖 is set to be proportional to

the number of points of color 𝑖 in the entire dataset. Most of the

experiments have been run with 𝑘 =
∑ℓ

𝑖=1 𝑘𝑖 = 30, so that, for

any of the used datasets, if the proportionality of the colors is bal-

anced, there is at least one center per color. Also, we performed

experiments with a larger number of clusters 𝑘 = 100. We set a

timeout of 24 hours on each execution.

The algorithms are implemented using Java 1.8, with the code

publicly available
6
. The experiments have been carried out on

a machine with 500Gb of RAM, equipped with a 32-core AMD

EPYC 7282 processor.

Performance metrics. We consider four performance indicators:

(1) the number of points maintained in memory by the algorithms;

(2) the running time of procedure Update; (3) the running time of

procedure Query; (4) the approximation ratio, namely the ratio

between the obtained radius and the best radius ever found by

ChenEtAl or JonesEtAl when run on all points of the window.

All the metrics are computed as averages over 200 consecutive

sliding windows of the stream.

4.1 Dependency on the coreset size
A first set of experiments focuses on the influence of the coreset

size on the performance of our algorithms. We fix the window

size to 30 000 points, and obtain varying coreset sizes by varying

𝛿 between 0.5 and 4. The top graphs of Figure 1 show, for all

datasets and all algorithms, how the solution quality, assessed

through the approximation ratio defined above, changes with

𝛿 . We observe that Ours and OursOblivious find solutions of

comparable quality, as do ChenEtAl and JonesEtAl (observe

that the performance of these two latter algorithms is clearly

independent of 𝛿 , since they are always executed on the entire

6
https://github.com/aidaLabDEI/streaming-fair-center-clustering
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Figure 2: Running time in milliseconds of update (top) and
query (bottom, logarithmic scale) for varying 𝛿 , with𝑘 = 30.

window). When the coreset is smallest (i.e., 𝛿 = 4), clearly our

algorithms find worse solutions, but always within a factor 2 from

those returned by the baselines; as the coreset gets larger (i.e.,

for smaller 𝛿), then the solutions become of quality comparable

(and, surprisingly, sometimes better) to the one computed by the

sequential baselines.

The bottom graphs of Figure 1 compare the memory usage of

the algorithms. As expected, for all values of 𝛿 , our algorithm

uses less memory than the baselines, which maintain the entire

window in memory, with gains becoming substantially more

marked as 𝛿 grows. This behavior provides experimental evi-

dence of the interesting memory-accuracy tradeoff featured by

our algorithms, and is in accordance with the theoretical analysis.

We also note that OursOblivious and Ours require comparable

memory and running time. Therefore, we may conclude that

being oblivious to the aspect ratio of the window (and thus re-

quiring to keep updated estimates of 𝑑min and 𝑑max) does not

have a significant impact on the performance or on the quality

of the returned clustering.

The top and bottom graphs of Figure 2 report the runtime per-

formance, in milliseconds, for the update and query procedures,

respectively. Clearly, the sequential baselines feature next-to-

zero update time, simply because they store the entire window,

thus, at each time step, there is nothing to do other than adding

one point and removing one to maintain the current window.

Nevertheless, both Ours and OursOblivious feature reasonable

update times, not exceeding 0.15 milliseconds, which is just a tiny

fraction of the cost of a query. It is interesting to observe that

despite the overhead incurred by OursOblivious to estimate

𝑑min and 𝑑max for the current window, the advantage of having

fewer guesses makes it always faster than Ours. In both cases,

using larger values of 𝛿 (i.e., smaller coresets) leads to faster up-

date times, as expected. However, it is on query times where

the difference with the baselines is most striking: by confining

the execution of the expensive baselines only to a small coreset

of window points, Ours and OursOblivious are able to find a

solution for every window up to two orders of magnitude faster

than JonesEtAl, which is in turn two orders of magnitude faster

than ChenEtAl. Even with the smallest values of 𝛿 , which afford

Figure 3: Running time of query in milliseconds (top, log
scale) and approximation ratio (bottom) for different val-
ues of 𝛿 with 𝑘 = 100.

comparable accuracy to the sequential baselines, the gains are

between one and two orders of magnitude!

Figure 3 (top) reports the query running time for 𝑘 = 100 for

different values of 𝛿 and a window size of 30 000 points. We ob-

serve that our algorithm is consistently faster than the baselines

even at these larger values of 𝑘 . For 𝛿 = 0.5 (i.e. fine grained core-

sets) the performance of our algorithm on BEERS matches that of

the JonesEtAl baseline, due to the high number of categories in

this dataset: using a coarser coreset at 𝛿 = 3.5 allows to gain over

an order of magnitude in performance, with a loss of less than 2%

in terms of radius as shown in Figure 3 (bottom). Furthermore,

note that on UBER our algorithm attains up to two orders of mag-

nitude gains with respect to the JonesEtAl baseline, by virtue of

the low dimensionality of the dataset that our algorithm is able

to exploit.

4.2 Dependency on the window size
The next set of experiments analyzes the behavior of the algo-

rithms for varying window sizes. For Ours and OursOblivious,

we consider the most accurate and slowest setting in the bench-

mark, thus fixing 𝛿 = 0.5. (For the sake of conciseness, we omit

plots for the update time and the approximation ratio, which are

consistent with the findings of the previous section). Figure 4

(top) reports on the memory usage. Clearly, the memory used by

the sequential baselines increases linearly with the window size.

In contrast, the memory used by both versions of our algorithm,

after an initial increase, stabilizes to a value independent of the

window size. This difference is reflected in the query time perfor-

mance (Figure 4, bottom). As observed in the previous section,

the time gain when employing coresets compared to the use of

the sequential baselines on the entire window is already of or-

ders of magnitude for relatively small windows, and, as shown

by the plots in the figure, it keeps increasing very steeply with

the window size. In fact, for windows larger than 30 000 points,

the execution of the experiments relative to ChenEtAl timed

out, requiring about 400 seconds per window. Similarly, those

relative to JonesEtAl timed out for windows larger than 200 000

points.
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Figure 4: Memory (top, in number of points) and running time of query (bottom, in milliseconds) at varying window sizes.
The scale of query time is logarithmic.

Figure 5: Query time (left, in milliseconds) and memory
(right, in number of points) with respect to the dimension-
ality, on the blobs datasets.

Figure 6: Query time andmemory (resp. left and right) with
respect to the dimensionality on the rotated datasets. The
scale of query time is logarithmic.

4.3 Dependency on the dimensionality
This latter set of experiments studies the influence of the data

dimensionality on the performance of our algorithm. To this end

we generated two families of synthetic datasets: blobs, used to

assess how the memory and query times of our algorithm are

influenced by the dimensionality; and rotated, used to verify

that these costs are related to the actual dimensionality of the

dataset, rather then the number of coordinates of each point. The

blobs datasets have 1 000 000 points: each dataset is a mixture

of 21 multivariate 𝑑-dimensional Gaussians, for 2 ≤ 𝑑 ≤ 10. The

covariance matrix is Σ = 𝐼𝑑𝜎
2

with 𝜎 = 2, and each point is

assigned a random color out of 7, ensuring an even distribution.

We set 𝑘𝑖 = 3, for 1 ≤ 𝑖 ≤ 7, and the window size to 10 000.

The rotated datasets are derived from PHONES (which has 3

dimensions) by adding zero-filled dimensions to the original

data, followed by a rigid random rotation of the entire extended

dataset. With this procedure we generate datasets with up to 15

nonzero coordinates, but by construction, all data still lie on a

3-dimensional subspace.

In these experiments, we use only JonesEtAl as baseline and,

for our algorithm, we consider only two settings: 𝛿 = 0.5, which

yields larger coresets but higher accuracy; and 𝛿 = 2, which

yields smaller coresets and lower accuracy (that is still compa-

rable, however, to the one attained by the sequential baseline).

For conciseness, we omit the plots of the update time and the

approximation ratio, which are coherent with previous findings.

Figure 5 reports the query time (left) and memory (right) on

the blobs datasets. As expected, the performance of sequential

baseline JonesEtAl is insensitive to the dimensionality, while

both query time and memory usage of our algorithm grow with

the dimensionality, the growth being much steeper in the larger

coreset setting (𝛿 = 0.5), as suggested by the theoretical bounds.

We remark that our algorithm uses less memory than the sequen-

tial baseline for 𝛿 = 2, even for higher dimensions.

Figure 6 reports results on the rotated datasets. Note that in

this case, where the data lies in a 3-dimensional subspace, the

query time and memory for our algorithm are independent of

the number of dimensions of the dataset. This confirms that our

algorithm’s performance depends on the actual dimensionality

of the dataset, rather than on the sheer number of coordinates of

the vectors associated to the points.

5 Conclusions
This paper presents the first sliding-window algorithm to enforce

fairness in center selection, under the 𝑘-center objective. The
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algorithm works for general metrics, stores a number of points

independent of the size of the window, and provides approxi-

mation guarantees comparable to those of the best sequential

algorithm applied to all the points of the window. Its space and

time requirements are analyzed in terms of the dimensionality

and of the aspect ratio of the input stream, although these values,

which are difficult to estimate from the data, do not have to be

known to the algorithm. A variant of the algorithm affording a

dimensionality-independent analysis, while still achieving 𝑂 (1)
approximation, is also provided. Among the many avenues for

future work, we wish to mention the extension of our algorithms

to the robust variant of fair center, tolerating a fixed number of

outliers, possibly fairly chosen among the most distant points

w.r.t. a given solution. We believe that good approximations for

robust fair center in sliding windows may be attained by building

on previous work for robust unconstrained 𝑘-center, matroid and

fair center in the literature [2, 6, 7, 29].
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