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Abstract While fence pointers can substantially improve lookup perfor-

LSM-tree-based data stores are widely adopted for their high
performance, but efficient querying becomes increasingly chal-
lenging as data scales. Recent efforts to integrate learned indexes
into LSM-trees have shown promise in improving lookup per-
formance. However, only a narrow range of index types has
been explored, and their relative strengths and limitations re-
main unclear, hindering practical adoption. To address this, we
present a comprehensive benchmark for systematically evalu-
ating learned indexes in LSM-tree systems. We summarize the
workflows and theoretical costs of eight learned indexes, identify
key factors affecting their performance, and introduce a novel
configuration space covering index types, boundary positions,
and granularity. We implement and evaluate these designs on
a unified platform across diverse configurations. Our findings
reveal surprising insights, such as limited lookup gains from
large memory budgets and low retraining overhead. Finally, we
provide practical guidelines to help developers effectively select
and tune learned indexes for real-world use.
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1 Introduction

Log-structured Merge Trees (LSM-trees), have already been widely
used as the fundamental storage structure underpinning many

key-value stores like Google Spanner [7], Apache Cassandra [29],
and MongoDB WiredTiger [6]. These key-value stores play piv-
otal roles in various applications in social media, streaming pro-
cessing, and file systems.

Index in LSM-tree stores. As illustrated in Figure 1(A), a typical

LSM-tree consists of both memory and disk components. The

memory components include a write buffer, bloom filters, and

fence pointers, while the disk components are sorted key-value

arrays organized across multiple levels. To prevent the need for

sequential scanning of these arrays on disk, the fence pointers in

memory help quickly locate the specific data block where the

target key is stored. This allows only the relevant data block to be

read, thereby significantly reducing the number of I/Os required.
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mance, their memory usage grows linearly with the data volume.
For example, indexing 10TiB of data with 128B keys can consume
up to 320GiB of memory. Although disk space is typically abun-
dant, memory remains a constrained resource—particularly in
cloud-native, multi-tenant environments [44]. Excessive memory
consumption by fence pointers may limit the space available for
other critical in-memory components, such as Bloom filters, write
buffers, and block caches, ultimately degrading overall system
performance.

To address this issue, replacing fence pointers with learned
indexes offer a promising solution due to their strong query
performance and superior memory efficiency. For example, the
PGM index has been shown to grow in space complexity at only
O(loglog N) [36], in contrast to the linear growth of fence point-
ers, highlighting their potential to further enhance LSM-tree
systems. Building on this insight, several studies [8, 38] have
explored integrating learned indexes into LSM-tree architectures
to improve both query latency and memory utilization. Although
numerous evaluations [42, 56] have demonstrated the perfor-
mance of learned indexes in both in-memory and on-disk envi-
ronments, their effectiveness within LSM-tree systems remains
largely unexplored. This gap arises from the unique hierarchical
data structure of LSM-trees, compaction strategies, and the in-
terplay among various in-memory components, which together
influence overall performance in complex ways. To better un-
derstand the potential of learned indexes in this context, we
identify two key questions that are critical for evaluating their
effectiveness in LSM-tree systems:

Are all learned indexes suitable for LSM-tree systems?
Recent studies have explored integrating learned indexes into
LSM-tree systems. For example, Dai et al. [8] applied a PLR
model to LevelDB, while Lu et al. [38] incorporated RMI, both
showing improvements over traditional fence pointers. However,
these efforts raise a critical question: are all modern learned in-
dexes inherently compatible with LSM-tree architectures? Many
learned indexes are designed for specific goals—such as sup-
porting variable-length strings [59], improving updatability [13],
or refining segmentation algorithms [16]—but their impact on
key LSM-tree challenges like memory efficiency, compaction-
induced rebuilding costs, and various types of query performance
remains underexplored. Moreover, range queries in LSM-trees
require locating the first key not greater than the range’s start
key and merging sorted results across levels. Many learned in-
dexes [34, 57, 59] are not specifically designed for such range
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semantics, making their performance in LSM-tree settings even
less predictable.

How can we integrate and tune learned indexes in LSM-tree
systems? Since most learned indexes are designed for in-memory
settings, integrating them efficiently into LSM-trees is non-trivial.
Tuning is even more challenging due to the interplay of multi-
ple LSM components—such as Bloom filters, caches, and write
buffers—that compete for limited memory and jointly impact
both update and lookup performance. How to allocate memory
effectively between learned indexes and these system compo-
nents remains an open question. In addition, the configuration
space of learned indexes is highly diverse, with different models
requiring distinct parameters and optimization strategies. Devel-
oping a universal tuning guideline would therefore be valuable,
yet difficult, given the heterogeneity of index designs and their
complex interactions with system-level trade-offs.

Motivated by these questions, in this paper, we conduct a
comprehensive study on applying learned indexes in LSM-tree
systems. Our contributions are concluded as the following:

We revisit several prevalent learned indexes and identify
the key factors affecting their compatibility with LSM-
trees. We begin by summarizing the structures and underlying
algorithms of existing learned indexes, then classify them based
on data layout to assess their suitability for LSM-tree architec-
tures. For example, representative indexes such as ALEX [13] and
LIPP [57] are primarily designed for in-memory lookups and rely
heavily on pointer chasing, making their layouts less compatible
with the contiguous, sorted structure of LSM-tree levels. In con-
trast, RMI [28] and PGM [16] align more naturally with sorted
runs, as they store data in contiguous segments. Based on these
characteristics, we categorize learned indexes into data-clustered
and data-unclustered groups, and subsequently provide a detailed
compatibility analysis for each.

We identify three unified key parameters that affect perfor-
mance for learned indexes and propose a comprehensive
configuration space for LSM-trees. Our theoretical analysis
reveals three core tuning parameters that significantly influence
the performance of learned indexes in LSM-tree systems: index
type, position boundary, and index granularity. Index type refers
to the specific learned index model employed, each characterized
by unique segment partitioning strategies and inner index struc-
tures, leading to different memory-performance tradeoffs and
rebuilding cost. Position boundary denotes the final search range
that the LSM-tree retrieves from disk. This parameter directly af-
fects I/O cost and is a crucial tuning knob for many learned index
designs. Index granularity determines the number of entries over
which a learned index is constructed, influencing both lookup
accuracy and index overhead. These three parameters define a
unified and inclusive configuration space that enables systematic
experimentation and performance evaluation. This framework
provides a solid foundation for understanding and optimizing
the integration of learned indexes in LSM-tree systems.

We develop a unified testbed LSM-tree system with alearned-
index-compatible interface that enables seamless integra-
tion and fair comparison of ten representative indexes. In
Section 4, we detail the implementation of a universal interface
that allows diverse learned indexes to be easily integrated into
LevelDB. We also illustrate how the three key parameters—index
type, position boundary, and index granularity—affect LSM-tree
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performance. Using this platform, we conduct a comprehen-
sive evaluation of six representative learned indexes compatible
with LSM-trees, testing them under various configurations and
datasets to assess their impact on core system operations such as
point lookups, range lookups, and compaction. Our findings pro-
vide several key insights. First, data-clustered indexes generally
offer a better memory—performance trade-off for lookups and
more intuitive range lookup semantics than data-unclustered in-
dexes across diverse datasets and key sizes. Second, while model
learning and writing during compaction are modest relative to
key-value I/O for large entries, learning time becomes significant
with smaller entries, particularly for data-unclustered indexes.
Finally, although increasing index granularity has little effect
on performance, it can reduce memory consumption for data-
clustered indexes. Beyond point queries, we further evaluate the
effects of learned indexes on range lookups and mixed workloads
involving both reads and updates. Based on these experiments,
we identify several tuning principles for integrating learned in-
dexes into LSM-trees:

e Data-clustered indexes generally have better memory effi-
ciency than data-unclustered indexes.

o A smaller position boundary improves the performance of
data-clustered indexes.

Larger SSTables enhance lookup performance by lowering
index memory overhead and allowing smaller position bound-
aries within the same memory budget.

Memory allocation shows diminishing returns: once segment
size falls below the I/O block size, additional memory provides
little improvement.

2 Background

This section discusses the background knowledge about the LSM-
tree systems and the indexing schemes over it.

2.1 Log-Structured Merge Trees

An LSM-tree efficiently manages data across multiple disk com-
ponents, organizing data into sorted arrays at different levels. It
also maintains an in-memory component, where recent updates
are stored in a write buffer. To enhance lookup performance, each
sorted array is associated with Bloom filters and indexes. The
capacity of each level increases exponentially by a size ratio of
T, meaning the total number of levels required to store N entries
is approximately L = [log %], where F is the size of the write
buffer, and e is the size of individual entries. Each level consists of
key-value pairs stored in a sorted array, referred to as a sorted run
in some works. LSM-trees primarily support three operations:

Updates. Updates in an LSM-tree are initially written to the
in-memory write buffer. Once the buffer is full, the key-value
entries are flushed to disk and merged into the sorted array at
level-1, as shown in Figure 1 (A). If a level exceeds its capacity,
a compaction operation is triggered, merging entries into the
next level to maintain efficient storage and query performance.
Alternatively, to mitigate resource consumption spikes, some
databases [15, 19] perform partial compactions by merging only
a subset of entries into the next level, rather than compacting
the entire level at once. In these systems, a sorted run is divided
into sorted files, known as SSTables, and only a subset of these
SSTables is selected for merging during each compaction.

Point Lookups. A point lookup searches for the value of a
specific key by checking levels sequentially until the key is found.
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Figure 1: (A) presents the general structure of an LSM-tree; (B) presents the structure of fence pointer and (C) shows an

example of how learned index replaces fence pointers

To expedite this process, Bloom filters and indexes are employed.
When a Bloom filter indicates a potential match, the LSM-tree
locates the approximate range within that level and performs a
binary search to verify the key’s presence.

Range Lookups. Range lookups collect entries from each LSM-
tree level and use a sort-merge process to remove duplicates,
returning only the most recent values.

2.2 Indexes in LSM-tree

Traditional index structures in LSM-trees often rely on fence
pointers, as shown in Figure 1(B). These pointers store the smallest
(or largest) key of a fixed range of key-value pairs, allowing the
LSM-tree to quickly narrow down the search to a small data range
when locating a specific key. During compaction, the smallest
or largest key of each newly created data range is stored in
memory. By querying these index structures, the LSM-tree can
skip unnecessary searches through large amounts of data on
disk, significantly reducing I/O operations and improving lookup
efficiency.

Learned Indexes in LSM-tree. Although fence pointers are
widely used in most LSM-tree systems [15, 19, 29], there remains
an opportunity to improve memory efficiency by replacing them
with more advanced learned index structures. This potential
arises for two key reasons: (1) The sorted arrays on disk are
immutable, meaning they are only created and deleted during
compactions, making them well-suited for even non-updatable
learned indexes, and (2) since the entries are already stored in a
naturally sorted order on disk, learned indexes can efficiently map
the data, potentially reducing the overhead of sorting. As shown
in Figure 1 (C), by training the learned model during compactions,
we can easily replace the fence pointers with learned indexes.

Abu-Libdeh et al. [1] were the first to evaluate the feasibility
of using a linear regression model in LSM-tree systems, find-
ing a positive impact when replacing traditional fence pointers
with learned index structures. However, their study did not sys-
tematically explore the performance variations across different
types of learned indexes or how various configurations might
affect results. Building on this idea, Dai et alintegrated learned in-
dexes into a key-value separated LSM-tree system, Wisckey [39],
developing Bourbon [8], an LSM-tree system equipped with a
piecewise linear learned index. While Bourbon demonstrated
notable performance improvements, it still did not thoroughly
investigate all possible design choices for learned indexes, such
as experimenting with different index types.
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3 Learned Indexes Revisited

We revisit eight learned indexes in detail and assess their compat-
ibility with LSM-tree systems. Broadly, we classify these indexes
into two categories based on their data layout: data-clustered
indexes, such as PLEX, PGM, and RMI, and data-unclustered
indexes, including LIPP and ALEX. As illustrated in Figure 2,
data-clustered indexes store key-value pairs in physically con-
tinuous blocks, whereas, as shown in Figure 3, data-unclustered
indexes do not. Instead, data-unclustered indexes require addi-
tional steps, such as traversing via pointers, to retrieve contin-
uous key-value pairs. In the following sections, we first review
the structures of the most representative data-clustered and data-
unclustered indexes. We then analyze the compatibility of these
indexes with LSM-tree regarding the memory efficiency and sev-
eral fundamental operations such as point lookup, range lookup
and compaction.

3.1 Data Clustered Indexes

In this subsection, we review six well-known data-clustered
learned indexes and their respective lookup procedures.

Piece-wise Linear Regression (PLR) [8], shown in Figure 2
(A), uses a greedy algorithm to divide a sorted array into seg-
ments based on a specified error bound, which represents the
maximum allowable difference between the estimated and actual
key positions. For each segment, PLR builds a linear model to pre-
dict the approximate position of a key. During a lookup, PLR first
locates the segment containing the key by performing a binary
search over the segments. It then uses the corresponding linear
model to estimate the key’s position, denoted as appx_pos. Since
the linear model ensures that the true key position lies within
a range of [appx_pos - error, appx_pos + error]-where the error
reflects the prediction tolerance—a binary search is performed
within this range to find the exact key location.

FITing-Tree [17], shown in Figure 2 (B), uses a greedy algo-
rithm to divide a sorted array into segments similarly based on a
specified error bound. A linear model is built for each segment to
predict the position of keys. To efficiently search through these
segments, FITing-Tree uses a B+-tree to index the segments.
When looking up a key, FITING-tree first traverses the B+-tree
to locate the segment containing the key. It then uses the corre-
sponding linear model to predict the approximate position. Since
the linear model ensures that the true key lies within the range
[appx_pos - error, appx_pos + error], a binary search is performed
within this range to find the exact key location.
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(A)ALEX (B) LIPP ment containing the key, then applies the corresponding linear
model to predict the approximate position. A binary search is
Figure 3: (A) and (B) present the structure of ALEX and LIPP. then performed within [appx_pos - error, appx_pos + error] to
The data (key-value pairs) are not stored continuously to find the exact key. With its hierarchical structure and self-tuning,
accommodate incoming new entries. PLEX efficiently adapts to large datasets and varying workloads,
offering better scalability than RadixSpline.
Piecewise Geometric Model index (PGM) [16], shown in Recursive Model Index (RMI) [28], shown in Figure 2 (F), is a
Figure 2 (C), takes a different approach by using a streaming learned index that recursively applies machine learning models
algorithm, rather than a greedy one, to divide the array into to approximate the position of keys in a sorted array. It organizes
segments and build linear models with a given error bound. PGM models in a hierarchical structure, where upper-level models pre-
further applies this streaming algorithm recursively to construct dict the position of keys for the next layer, progressively refining
parent nodes and build linear models for these higher-level nodes. the prediction until the lowest layer estimates the key’s position.
To look up a key, PGM predicts an approximate position appx_pos RMI is built in a top-down manner, where the top-level model is
using its model, then recursively performs a binary search within trained first to give a coarse estimate of key positions. Based on
[appx_pos - error, appx_pos + error] until the exact key is found this, the dataset is divided, and lower-level models are trained
in the leaf node. on smaller subsets, improving accuracy as you move down the
RadixSpline (RS) [27], shown in Figure 2 (D), selects a subset hierarchy. This approach allows RMI to tailor the complexity of
of keys from the sorted array as spline pojnts and uses linear each model to the pOI‘tiOIl of the data it handles, optimizing both
interpolation models to estimate the positions of keys between performance and memory usage. During lookup, RMI first uses
any two spline points. RadixSpline ensures the accuracy of its the top-level model to make a rough prediction, then refines this
spline layer by imp()sing error bounds on the approximations. If through subsequent layers. The final model predicts the approx-
the error exceeds a predefined threshold, additional spline points imate key position, followed by a binary search within a small
are added to improve the approximation. To index these spline range to find the exact key. RMI's error is not predefined by the
points, RadixSpline constructs a radix table. When looking up a user but rather recorded during the training process, adapting to
key, RadixSpline first uses the radix table to locate the correct the data’s characteristics.
spline segment, then applies the linear interpolation model to
predict the key’s approximate position. A binary search is then 3.2 Data Unclustered Indexes
performed within the range [appx_pos - error, appx_pos + error] ALEX [13], shown in Figure 3(A), uses inner and data nodes,
to locate the exact key. each combining arrays with linear models to predict key po-
Practical Learned Index (PLEX) [53], shown in Figure 2 (E), is sitions. Inner nodes hold pointers to children; data nodes use
an improved version of RadixSpline that employs a hierarchical gapped arrays for efficient insertions. Lookups traverse inner
Hist Tree (or Radix Tree) to index spline points and reduce search nodes via model predictions, then use exponential search within
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data nodes. ALEX adapts to data changes by dynamically split-
ting or merging nodes, maintaining efficient performance under
dynamic workloads.

LIPP [57], shown in Figure 3(B), uses a linear model in each node
to predict key positions. Each node contains a data array and a
bitmap indicating three slot types: DATA, NULL, and NODE. The
FMCD algorithm is used to minimize key conflicts. Insertion into
a NULL slot converts it to DATA and stores the key-value pair. If
the slot is already DATA, it becomes a NODE pointing to a new
child node, built recursively with the conflicting keys. During
lookup, the root’s linear model predicts the slot. If it’s a NODE,
the search follows the pointer to the child; if it’s DATA, the key
is checked and returned if matched.

DILI [34] uses a two-phase approach to build the index: a bottom-
up tree-building process using linear regression models based on
global and local key distributions, followed by a top-down refine-
ment where the fanout of internal nodes is customized according
to local key distributions. This design strikes a balance between
the number of leaf nodes and the tree height, both crucial factors
in minimizing key search time. Additionally, DILI includes flexi-
ble algorithms for efficient key insertion and deletion, allowing
the index to dynamically adjust its structure when necessary.

NFL [58] introduces a new approach to addressing the challenges
of learned indexes by transforming complex key distributions
before constructing the index. NFL uses a two-stage framework:
first, it applies Numerical Normalizing Flow (Numerical NF) to
transform the key distribution into a near-uniform one. Then, it
builds a learned index using a specialized After-Flow Learned
Index (AFLI), optimized for the normalized data.

LITS [59] is a learned index optimized for string keys. It com-
bines a trie-based structure with linear models to efficiently pre-
dict key positions. LITS partitions the key space using a compact
trie, where each leaf node stores a linear model trained on the
suffixes of keys within that partition. During a lookup, LITS tra-
verses the trie using the key prefix to locate the corresponding
model, which then predicts the approximate position of the full
key in a sorted array. This hybrid design allows LITS to han-
dle variable-length string keys efficiently while maintaining low
memory overhead. It also supports dynamic updates by retraining
local models when prediction errors exceed a threshold.
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3.3 Compatibility Analysis

While both data-clustered and data-unclustered indexes offer
strong read performance and memory efficiency in in-memory
settings, their behavior differs significantly in LSM-tree systems.
Below, we compare them across four key dimensions:

Memory Efficiency. Data-unclustered indexes allocate empty
slots during construction to support future inserts, whereas data-
clustered indexes segment existing sorted arrays and build models
directly on them. In LSM-trees, where on-disk data is immutable
(SSTables), the updatable structure of data-unclustered indexes
introduces unnecessary memory overhead, reducing memory
efficiency.

As illustrated in Figures 3 and 5, data-unclustered indexes
typically store mapped integer keys in both internal and leaf
nodes, while data-clustered indexes store them continuously in
leaf nodes only. This design allows data-clustered indexes to
omit storing data segments, since SSTables already preserve the
key-value order. In contrast, data-unclustered indexes must main-
tain all mapped keys in memory: if only data block offsets were
stored, lookups would require numerous random I/Os, resulting
in worse performance than a simple binary search on the data
blocks. In our experiments, we further analyze this trade-off by
comparing memory usage when storing all keys versus omitting
leaf segments for both clustered and unclustered indexes.

Point Lookup. Like fence pointers, data-clustered indexes pre-
dict akey’s position and retrieve a small range from disk, followed
by a binary search. In contrast, data-unclustered indexes often
avoid reading unnecessary data by directly predicting a precise
location in the structure, optimizing the “last-mile” search.

Range Lookup. LSM-trees perform range queries in two steps:
a seeking phase (locating the start key in each level) and a scan-
ning phase (retrieving and merging entries across levels). Data-
clustered indexes naturally support the seeking phase by pre-
dicting the start key’s position within a bounded error. Most
data-unclustered indexes, however, do not support seeking ef-
ficiently—especially when the start key is absent—except for
ALEX. Additionally, since their leaf nodes are typically unlinked,
traversal may require scanning large portions of the structure.

Compaction and Index Rebuild. During compaction, LSM-
trees merge levels and rebuild indexes for the new SSTable. Both
index types we revisit support bulk loading. However, some data-
unclustered indexes—like LIPP—require additional preprocessing
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(e.g., FMCD optimization) before data insertion, which can in-
crease rebuild time.

4 Implementation and Configuration

In this section, we are going to introduce how to integrate the
before-mentioned indexes to a unified LSM-tree testbed—LevelDB,
a well-known LSM-tree key-value store. Based on the implemen-
tation, we then identify three important configuration that could
significantly affect the query performance, memory efficiency,
and compaction cost.

4.1 Implementation

To systematically evaluate the effectiveness of the three afore-
mentioned configurations, we build a benchmark system based
on LevelDB. The overview of our system is presented in Figure 4.
To integrate learned indexes without disrupting the system’s core
functionality, we implement a new class, LearnedIndexTable,
which inherits from and replaces the original Table class. We
override three key functions: InternalGet (Get), NewIterator
(Newlter), and TableBuilder (BuildTable). Below, we describe
each implementation in detail and explain how these functions
interact with the rest of the system.

Get. The InternalGet function handles point lookups by locat-
ing a specific key in a data file.As shown in Figure 4, an SSTable
consists of data blocks and index blocks: the data blocks store the
original key-value pairs, while the index blocks store either fence
pointers or learned indexes. For fence pointers, the smallest key
of each data block is recorded in ascending order. For learned
indexes, the key space is normalized into an integer domain, and
models are trained on this transformed set.

Because data-clustered and data-unclustered indexes differ in
design, we implement them slightly differently (Figure 5). For
data-clustered indexes, the model predicts a position guaranteed
within a bounded error. Thus, it suffices to retrieve entries in the
range [pos—err, pos+err | and check for the target key. Since keys
are stored contiguously, mapped key segments can be omitted.
By contrast, data-unclustered indexes typically consist of inner
nodes and leaf data nodes. At a leaf, the trained model predicts
the target’s position directly, which contains both the mapped
key and its location in the corresponding data block.

Newlter. The iterator interface is essential in LSM-tree sys-
tems, supporting both range queries and compaction. For data-
clustered indexes, we follow a process similar to InternalGet:
the trained model predicts the position of the first key not larger
than the sought key during the seeking phase. Even if the key it-
self is absent, the correct starting key is guaranteed to fall within
the error bound. In contrast, data-unclustered indexes do not
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Table 1: Testing Dataset

Dataset Size Entry Number Key Size Value Size
Uniform 100GiB 104,857,600 24B 1000B
Zipfian (0 = 0.9) 100GiB 104,857,600 24B 1000B
Zipfian (0 = 0.99) 100GiB 104,857,600 24B 1000B
Facebook ID 2.98GiB 200,000,000 8B 8B

OSM Cell ID 11.9GiB 800,000,000 8B 8B
Wikipedia Timestamp | 2.98GiB 200,000,000 8B 8B

store mapped keys in strictly ascending order within leaf nodes.
As a result, finding the first key not larger than the sought key
may, in the worst case, require traversing the entire tree.

BuildTable. The TableBuilder interface is responsible for con-
structing learned-index-based tables. During flushes or com-
pactions, the builder receives sorted key-value pairs and con-
structs a learned index over them, which is similar to how tradi-
tional fence pointers are built in baseline LevelDB. Additionally,
the original on-disk SSTable format is replaced by the LearnedIn-
dexTable format, in which the inner index and data segments
are serialized separately, with their offsets recorded in the file
header.

4.2 Learned Index Configuration

From our implementation, we identify three key factors that influ-
ence the query performance, memory efficiency, and compaction
cost of learned indexes:

Index Type. Data-clustered and data-unclustered indexes behave
quite differently for point and range lookups, leading to varying
query performance depending on the choice. Even within each
category, different index designs can yield distinct trade-offs in
memory efficiency and prediction cost (i.e., index lookup time).

Position Boundary. For data-clustered indexes, lookup and it-
eration performance depend heavily on the prediction model’s
accuracy. Larger errors increase I/O overhead and degrade query
performance. Prior work [42] also shows that higher accuracy
generally requires more memory. Whether such additional mem-
ory investment is worthwhile in LSM-tree systems remains an
open question.

Index Granularity. Modern LSM-tree implementations (e.g.,
LevelDB, RocksDB, PebblesDB [15, 19, 48]) often apply partial
compaction strategies, where sorted runs are divided into multi-
ple files (SSTables), and only some are compacted into the next
level. In such cases, learned indexes are typically built at the
SSTable level. Dai et al. [8] suggest that coarser-grained index-
ing—such as level-grained models like LevelModel—can yield
performance improvements of around 10% under read-heavy
workloads. To examine this claim, we evaluate the performance
of learned indexes built at varying SSTable sizes, as well as those
constructed across entire levels instead of individual files.

5 Evaluation

Running Environment. We conduct our experiments on a
machine running Ubuntu 22.04, equipped with an Intel Core i9-
13900K CPU (36 MB L3 cache), 128 GB of memory, and a 2 TB
NVMe SSD. All learned indexes are integrated into Level DB, with
the LSM-tree configured to use a leveling compaction policy, a
size ratio of 10, and a 10-bit-per-key Bloom filter. Following the
practical tuning guide [46], we limit OS page buffer usage to 70%
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Figure 6: The key distribution of 6 different datasets. We
display the skewness parameter « = 1/(1-0) to replace the
original parameter in YCSB-Gen project.

of total memory (75 GB) using cgroup and employ the default 8
MB LevelDB cache as a faster in-memory cache.

Datasets and Workload Setup We evaluate all 10 indexes on
YCSB-Generated datasets [2, 3] with 24 B keys and 1000 B values,
following prior LSM system studies [10, 35, 43]. The synthetic
datasets include three key distributions: Uniform and two Zip-
fian distributions with skewness parameters 6 = 0.9 and 6 = 0.99.
While the classical Zipf distribution is parameterized by a, YCSB-
Gen instead uses & = 1/(1 - 0) to control skewness. Each dataset
contains over 100 million entries, totaling 100 GiB, with integer
keys and values zero-padded to the target size. To further evalu-
ate real-world effectiveness, we also test on three open-source
datasets [42]: the Facebook ID dataset (FB, 200 million keys), the
OSM Cell ID dataset (OSM, 800 million keys), and the Wikipedia
Timestamp dataset (WIKI, 200 million keys). The CDFs of all
tested datasets are shown in Figure 6.

Settings of Learned Indexes. We integrate the following base-
lines into our system. The implementations of PGM', RadixS-
pline?, PLEX®, ALEX®, LIPP®, DILI®, LITS’, and PLR® [8] are
based on versions released by the respective authors. For RMI
and FITing-Tree, as no suitable C++ versions are available, we
used the RMI implementation from a benchmark paper’ [41]
and the FITing-Tree'® implementation from the SOSD bench-
mark [42]. To evaluate the performance of fence pointers under
different position boundaries, we adjust the data block size in
LevelDB to generate varying numbers of fence pointers (abbr.
FP). For PLR, FITing-Tree (abbr. FT), and PLEX, we directly vary
the error bounds to control the position boundaries. For RMI, we
follow the guidelines in [41] and use their RMILabs implementa-
tion, as recommended in the paper. This setup uses a two-level
model tree. To vary the position boundary, we adjust the size of
the second level, which in turn affects the position boundary. For
both RadixSpline (abbr. RS) and PGM, the error bounds can be
adjusted to control the position boundaries. However, since both
have additional parameters that affect their internal structure,
these must also be fine-tuned for optimal performance. In PGM,

! https://github.com/gvinciguerra/PGM-index

thtps:// github.com/learnedsystems/RadixSpline
*https://github.com/stoianmihail/PLEX
4https://github,com/microsoft/ALEX
Shttps://github.com/Jiacheng-WU/lipp
®https://github.com/pfl-cs/DILI
7https://githuhcom/schencoding/lits

8We contacted the author to obtain the code

ghttps:/ /github.com/BigDataAnalyticsGroup/analysis-rmi
https://github.com/RKolla99/FI Ting-Tree
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the EpsilonRecursive parameter defines the error bound for inter-
nal nodes. We test various values, and find that EpsilonRecursive
has little impact on PGM’s performance in LSM-tree systems.
Therefore, we retain the default setting of EpsilonRecursive = 4.
For RS, the RadixBits parameter controls the size of its radix table.
After varying this value, we determine that RadixBits = 1 offers
the best tradeoff in LSM-tree systems, reducing memory usage
while maintaining satisfactory performance.

5.1 Pareto Analysis

Observation 1: Data-clustered indexes generally consume less
memory than fence pointers on the three YCSB datasets, but in
the real-world datasets, only PGM, RMJ, RS, and PLEX achieve
consistently better memory efficiency than fence pointers.

In Figure 7(A)—(I), we compare 10 learned indexes with fence
pointers across three datasets of varying skewness using one
million point lookups.

Overall, data-clustered indexes achieve better memory effi-
ciency than fence pointers and consume less memory than data-
unclustered indexes, while maintaining comparable query perfor-
mance when the position boundary is small on the YCSB datasets.
This advantage arises because fence pointers must store the start-
ing key of each segment (at least 24 B per key), and the number of
segments grows linearly with the dataset size. Learned indexes,
by contrast, map the key space to an integer domain and store
only lightweight model parameters (e.g., two 8 B integers per
linear model). Moreover, in indexes such as PGM, RMI, RS, and
PLEX, the number of segments can grow sublinearly with data
size, further reducing memory consumption.

When the key size shrinks to 8 B in the real-world datasets,
however, PLR and FITing-Tree consume more memory than fence
pointers. Fence pointers’ memory cost decreases linearly with
key size, while PLR and FITing-Tree still require same number
of integers per model, offsetting their efficiency.

Finally, key distribution strongly affects memory efficiency.
Although both the Facebook and Wikipedia Timestamp datasets
contain 200 million keys, learned indexes on Facebook consume
more memory. This is because Facebook keys are uniformly dis-
tributed, whereas Wikipedia keys are skewed, allowing learned
indexes to exploit the skew for better compression and lower
memory usage.

Observation 2: Allocating more memory to reduce the po-
sition boundary improves the performance of data-clustered
indexes, but the benefit becomes marginal once the boundary
drops below 16.

In Figure 7, we observe that increasing the memory budget to
lower the position boundary significantly improves query perfor-
mance, since I/O time is the dominant source of latency (Figure 8).
However, once the boundary reaches 16, further gains become
marginal: retrieving 16 entries takes only about 2us longer than
retrieving a single entry, while memory consumption grows
disproportionately. For example, retaining all mapped keys in
memory consuming hundreds of megabytes improves perfor-
mance by just 2us, whereas reducing the position boundary from
128 to 16 yields nearly 10us improvement at the cost of only tens
of megabytes.
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Figure 8: The table (left) reports index performance on three real datasets with the position boundary fixed at 16, while the
figure (right) shows the breakdown of a point lookup. LIPP and DILI fail on OSM due to excessive memory requirements

(LIPP) and unsupported key distribution (DILI).

Observation 3: Data-clustered indexes typically achieve
higher memory efficiency than the data-unclustered indexes.

Data-unclustered indexes require at least 2 GiB of memory to
store mapped keys, whereas data-clustered learned indexes use
only a few megabytes with a position boundary of 8. This dif-
ference arises because data-unclustered indexes must explicitly
store all mapped keys in their structures, as keys are scattered
across a tree (Figure 5), while data-clustered indexes can omit
mapped integer keys since they follow the sorted order in data
blocks. Instead, clustered indexes retrieve entries within the error
bound and perform a binary search to locate the target. With a
small position boundary (e.g., 8), their latency is 1-2us slower
than data-unclustered indexes while saving gigabytes of memory.

We also evaluate data-clustered indexes that retain mapped
key segments in memory, allowing them to perform I/O as ef-
ficiently as data-unclustered indexes. As shown in Figure 7(C),
(F), and (I), these achieve nearly identical performance to un-
clustered indexes while still using less memory. A key reason is
that unclustered indexes like ALEX, LIPP, and DILI are designed
for updatable settings, employing mechanisms such as gapped
arrays to support future inserts. In immutable SSTables, however,
such designs reduce memory efficiency. Similarly, LITS relies on
Tries to store full key strings, which further increases memory
usage.

5.2 Impact on Range Lookup

Observation 4: The position boundary remains critical for
the seeking phase in range lookups with data-clustered in-
dexes, but its impact diminishes as the retrieved range length
increases.

Range lookups in LSM-trees involve two steps: a seeking phase
to locate the starting key in each sorted run, and a scanning
phase to retrieve key-value pairs sequentially. We evaluate this
by performing one million consecutive range lookups of varying
lengths on the Uniform dataset.

As shown in Figure 9(A), the cost of seeking grows with the
position boundary, similar to point lookups, since it involves
locating the first key not smaller than the start key. In contrast,
when the scan length is short, larger position boundaries can
slightly reduce latency. This occurs because larger boundaries
correspond to longer segments, increasing the likelihood that
consecutive range lookups fall within the same segment, thereby
benefiting from cache hits and reducing model-access overhead.
However, this effect diminishes as the scan length increases,
since retrieving many segments from disk lowers the cache hit
rate. As illustrated in Figure 9(B)—(E), the scanning phase time
is generally proportional to the scan length, with the position
boundary influencing performance only when the scan length is
small.
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the line presents the time used for training the models.

Additionally, most data-unclustered indexes, except ALEX, As shown in Figure 10(C), query latency remains nearly identi-
lack a suitable interface for locating the first key not smaller cal to the fixed-key case. LITS, despite being tailored for variable-
than the start key during the seeking phase, requiring extra mod- length strings, does not significantly outperform other unclus-
ifications to adapt them for LSM-trees. Because their keys are tered indexes, since in memory index access dominates, while in
not stored contiguously, finding the first key may sometimes LSM-trees disk I/O—even for a single entry—accounts for nearly
require traversing the entire tree, especially when the start key half of query time (Figure 8). Learned indexes with mapped keys
is absent. Nevertheless, Figure 10(A) and (B) show that seeking retained can directly locate entries, avoiding read amplification.

performance remains comparable to data-clustered indexes, de-
spite the slower tree traversal. This is because the dominant cost
of seeking lies in accessing keys across all levels of the LSM-tree,
while in-memory traversal is relatively inexpensive. Similarly,
the scanning phase of range lookups scales proportionally with Observation 5: Unexpectedly, the learning overhead is mod-
the query range length. est in long-entry datasets, contributing less than 5% of total
compaction time. However, when entry sizes are small, the
overhead grows significantly, up to 20% for data-clustered
indexes and as high as 80% for data-unclustered indexes.

5.4 Compaction Overhead

5.3 Variable-Length Dataset

Figure 11 shows compaction and learning time on the YCSB-

Beyond fixed-size strings used in graph and relational databases, Gen dataset (Uniform), while Figure 10(D) presents results on
we also evaluate learned indexes with variable-length keys. Using the Facebook dataset. In both cases, we continuously insert 50
YCSB-Gen with a Uniform distribution, we generate keys from 8 million new keys, triggering compactions that merge 50 million
B to 24 B, fix the position boundary at 8, and execute one million existing keys, corresponding to 50GiB and 5GiB respectively.

point lookups. During training, keys are padded to the maximum Unexpectedly, the learning overhead for both data-clustered
length and mapped to integers, except LITS, which uses a Trie to and data-unclustered indexes is modest compared to the cost of
index variable-length keys. Since entry sizes vary, data-clustered reading and writing keys to disk. This is because large entry sizes
indexes cannot directly fetch ranges like before. Instead, we retain dominate disk I/O time, whereas learning time scales only with
all the mapped keys and position like in Figure 7(C). the number of entries. Consequently, when entry size decreases
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Figure 13: Average operation time of indexes under six YCSB workloads. Data-clustered indexes use position boundary 16.

from 1024B to 16B, I/O time is greatly reduced (Figure 10(D)),
while learning time remains nearly unchanged.

In detail, data-clustered indexes generally require less time
to build models, while data-unclustered indexes, such as DILI,
take longer. This is because they insert keys individually into
tree structures, which incur additional costs from splitting and
balancing operations.

5.5 Index Granularity

Observation 6: Data-clustered indexes consume less memory
as the granularity grows while it does not significantly affect
the query performance.

To study index granularity, we vary SSTable size from 8 MB
to 128 MB and also test the level-granularity model of Dai et
al. [8]. Using one million point lookups, we measure latency and
memory usage (Figure 12, rightmost). Lookup latency changes
little, varying only a few microseconds across configurations.
Memory, however, is strongly affected: coarser granularity yields
substantial savings, with over 10x reduction when moving from
8 MB SSTables to the level model.

For data-unclustered indexes, ALEX, LIPP, and DILI sustain
stable lookup performance with only modest increases in memory
usage as SSTable size grows. In contrast, LITS maintains a trie
structure in memory, causing its memory consumption to grow
more rapidly with the size of the indexed data.

5.6 Impact on Mixed Workload

To assess performance under more realistic conditions, we evalu-
ate the learned indexes using six YCSB workloads: A (read-write
balanced), B (point lookup-heavy), C (point lookup-only), D
(recent point lookups), E (range lookup-heavy with ranges un-
der 100), and F (read-modify-write, with 50% lookups and 50%
updates). These workloads are conducted sequentially. Results
are shown in Figure 13 with position boundary fixed to 16.

Overall, index performance closely mirrors that of the basic
point and range lookup experiments, suggesting that learned
indexes adapt well to mixed read-write scenarios without signifi-
cant performance degradation.
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6 Discussion

In this section, we summarize the key insights from our evalu-
ation and address the two central questions posed in Section 1:
(1) Are all learned indexes suitable for LSM-tree systems? and (2)
How can they be efficiently tuned within LSM-tree systems?

6.1 Compatibility

Are all learned indexes suitable for LSM-tree systems? We
examine this question through four key aspects required for
integration into LSM-trees: memory efficiency, key lookup, re-
building during compaction, and seeking the first key not smaller
than the range-start key. These factors are summarized in Table 2
and discussed below.

Memory efficiency. Observation 1 shows that not all learned
indexes save memory compared to fence pointers under
all conditions. This largely depends on how each model repre-
sents data segments and stores parameters. Among the evaluated
methods, PGM, RMI, RadixSpline, and PLEX consistently provide
the best memory efficiency, whereas the performance of others
varies with key size and distribution. In general, data-clustered
indexes are more memory-efficient than data-unclustered ones.
Data-unclustered indexes, requiring maintaining mapped keys
and empty slots for future updates, consume too much memory
than data-clustered indexes. Furthermore, when the key distribu-
tion is skew, the learned indexes can usually save more memory
than uniform ones.

Key lookup. Prior work on learned indexes has focused on min-
imizing lookup time within the index itself, as this dominates in-
memory query costs. In LSM-trees, however, disk I/O becomes a
critical factor. When the position boundary is large, I/O overhead
dominates total query latency, diminishing the relative benefits
of faster index lookups.

Rebuilding cost. Observation 5 reveals that rebuilding learned
indexes accounts for only about 5% of compaction time on datasets
with long entries, but becomes significant when entries are small.
This occurs because I/O time decreases with smaller entries, while
learning time scales with the number of entries. Data-clustered
indexes generally maintain acceptable rebuild times even with
16 B entries. By contrast, data-unclustered indexes designed for
updatability, incur high rebuild costs due to expensive insertion,
splitting, and balancing operations. Although they are efficient
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Table 2: Four key factors influencing the suitability of
learned indexes in LSM-tree systems. v/ indicates efficiency,

highlights potential issues, and X denotes severe limita-
tions.

Memor Ke; Index Ke
Methods Eﬂiciencyy Look};p Rebuilding Seek?ng

PLR [8] v v v

FITing-Tree [17] v v v

Data ) pom g[m] v v v

-clustered ) ;

Indexes RadixSpline [27] v v v

PLEX [53] v v v

RMI [28] v v v

ALEX [13] X v X v
-uncl?jstsered DILI [34] X / X

Indexes LIPP [57] X 4

LITS [59] X v X

for heavy update workloads in memory, they incur high costs in
compaction-heavy scenarios within LSM-tree systems.

Seeking keys. As noted in Section 4, most data-unclustered in-
dexes lack native support for seeking the first key not smaller
than a given key, requiring code modifications to traverse the
tree. In contrast, data-clustered indexes naturally support this
operation since keys are stored contiguously in segments, en-
abling straightforward traversal even when the target key is
absent. Performance-wise, the gap is small: although unclustered
indexes require extra in-memory traversal, the dominant cost of
seeking still comes from disk access across levels, making their
seeking time comparable to clustered indexes.

6.2 Tuning Guide

Select the right index types. Both performance and memory
efficiency depend heavily on the choice of index. In general, data-
clustered indexes consume less memory than data-unclustered
ones while achieving comparable lookup performance and natu-
rally supporting seeking operations. Thus, data-clustered indexes
are generally better suited for LSM-tree systems. Among them,
PGM, RadixSpline, RMI, and PLEX consistently use less memory,
even on datasets with very small entries.

Position boundary enhances both point and range lookups.
For point lookups, the position boundary determines how many
bytes must be retrieved from disk, and for data-clustered indexes,
seeking a key also requires scanning within this range. Conse-
quently, reducing the position boundary is the most direct way
to improve lookup performance.

Avoid over-allocating memory to the position boundary.
According to Observation 2, reducing the position boundary by
allocating more memory can improve lookup performance by
lowering disk I/0. However, the benefit becomes marginal once
the boundary falls below 16, as I/O time is already minimal. In
such cases, it is more effective to allocate memory to other in-
memory components—such as Bloom filters, write buffers, or
caches—to enhance overall system performance.

Increase index granularity. While index granularity (i.e., SSTable
size) has less impact on performance than the position boundary,
increasing granularity can still improve the memory-performance
trade-off by up to 10%. Larger SSTables reduce the memory re-
quired for index structures, allowing more memory to be devoted
to lowering the position boundary. However, adopting a level-
granularity model requires caution, as it is only feasible when
performing full merges (i.e., merging an entire level into the
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next). Although full merges do not increase overall write amplifi-
cation [12], they may cause short-term spikes in resource usage
and temporarily degrade foreground performance.

6.3 Takeaways

In summary, we provide the following guidelines for integrating
learned indexes into LSM-tree systems:

(@ Use learned indexes when entry sizes are large or key distri-
butions are skewed.

(@ Prefer data-clustered indexes such as PGM, RadixSpline, RMI,
and PLEX for their superior memory efficiency and balanced
performance.

® Reduce the position boundary to improve query performance,
but only when it is larger than 16, as further reductions yield
marginal gains.

@ Increase index granularity (e.g., larger SSTables) to reduce
memory consumption and improve the memory-performance
trade-off.

7 Related Work

LSM-tree Stores. Extensive research has focused on optimizing
LSM-tree stores through comprehensive theoretical analysis and
parameter tuning, such as size ratio, compaction policies, and
Bloom filters [9-12, 22, 23, 35, 40, 43]. These studies have signifi-
cantly improved the performance of LSM-tree systems. Addition-
ally, works like Dostoevsky [10], Wacky [11], and Moose [35]
define distinctive LSM-tree structures and derive optimal config-
urations by theoretically modeling the cost of various LSM-tree
operations. Integrating learned indexes into these designs could
offer valuable insights. Furthermore, self-tuning systems such
as Cosine [4], Data Calculator [25], Design Continuums [24],
and Limousine [5] model the costs of different index structures,
including learned indexes and LSM-tree indexes, to calculate the
optimal storage structure within a given budget. While these
works provide broad insights into storage design, they lack fine-
grained guidelines specifically tailored for LSM-tree storage and
learned indexes, with some focusing primarily on cloud stor-
age [4, 5]. Our study aims to complement this research by of-
fering more targeted design insights for LSM-tree systems and
learned indexes.

Learned Indexes. Our study lies in the improvement of learned
indexes techniques. In addition to the learned indexes discussed
earlier, we review other notable approaches. MADEX [21] re-
designs B+-tree nodes, incorporating CDF and correction models
to enhance point lookups. RUSLI [21] modifies RadixSpline [27]
to support updates, while FINEdex [32] introduces a buffer, build-
ing on XIndex [54], to handle updates more efficiently. LSI [26]
is the first to model unsorted data. Some learned indexes, such as
AULID [31], are specifically designed for disk-based systems. Ad-
ditionally, recent studies have applied learned indexing to string,
spatial, and multi-dimensional queries [14, 20, 33, 45, 47, 52, 55,
58]. Several evaluations [30, 56] and surveys [18, 37] provide
valuable insights into tuning issues and the evolving landscape
of learned indexes. Integrating a wider variety of learned indexes
into LSM-trees in the future could provide us with more valuable
insights.

Learned Indexes in LSM-tree Systems. Due to the compati-
bility between learned indexes and LSM-tree systems, and the
promising memory-latency tradeoff they offer, several recent
studies [1, 8, 38, 49-51] explore integrating learned indexes into
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LSM-trees to improve lookup performance. Abu-Libdeh et al. [1]
are the first to evaluate the feasibility of learned indexes in LSM-
tree systems, though their study does not fully cover different
configuration options or index types. Dai et al. [8] integrate piece-
wise linear regression models into their LSM-tree system [39] and
propose Bourbon, achieving significant lookup improvements.
Lu et al. [38] propose TridentKV, which integrates RMI [28] as
the learned index and claims better performance than Bourbon
in read-heavy workloads. Ramadhan et al. [49] further improve
Bourbon by replacing binary search with exponential search,
yielding moderate performance gains. However, these works
do not fully explore the entire configuration space that affects
learned index performance in LSM-trees, nor do they thoroughly
investigate the memory-latency tradeoff. Our work aims to bridge
this gap, providing additional insights and extending these foun-
dational studies.

8 Conclusion

In this study, we have conducted a comprehensive theoretical
and practical evaluation of integrating learned indexes into LSM-
tree systems. We begin by revisiting existing learned indexes and
analyzing their expected costs to identify key factors that influ-
ence LSM-tree performance. Through rigorous evaluations under
various conditions, we have derived several design guidelines
tailored to LSM-tree systems and provide practical insights for
optimizing their performance.

9 Artifacts

To facilitate reproducibility and further exploration, we provide
the full implementation, including source code, workload gen-
erators, and experiment scripts, in our public GitHub reposi-
tory: https://github.com/buchuitoudegou/LearnedIndexInLSM.
The repository includes detailed instructions on how to configure,
build, and run the experiments described in this paper. Please re-
fer to the README . md file in the repository for setup instructions,
system requirements, and usage examples.
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