
Taste: Towards Practical Deep Learning-based Approaches for
Semantic Type Detection in the Cloud

Tao Li∗†
Database Group

State Cloud, China Telecom
Shenzhen, China

lit51@chinatelecom.cn

Feng Liang∗‡
AI Research Institute

Shenzhen MSU-BIT University
Shenzhen, China

fliang@smbu.edu.cn

Jinqi Quan
Database Group

State Cloud, China Telecom
Shenzhen, China

quanjq1@chinatelecom.cn

Chuang Huang
Database Group

State Cloud, China Telecom
Shenzhen, China

huangc41@chinatelecom.cn

Teng Wang
Database Group

State Cloud, China Telecom
Guangzhou, China

wangt_5@chinatelecom.cn

Runhuai Huang
Intelligent Edge Department
State Cloud, China Telecom

Guangzhou, China
huangrh@chinatelecom.cn

Jie Wu
Cloud Computing Research Institute

China Telecom
Beijing, China

wujie@chinatelecom.cn

Xiping Hu†‡
AI Research Institute

Shenzhen MSU-BIT University
Shenzhen, China

huxp@smbu.edu.cn

ABSTRACT
In recent years, we have witnessed more and more data manage-
ment, preparation, and wrangling services appearing in the cloud.
Semantic type detection is important for these services that rely
on semantic types to interpret data and provide useful functions
accordingly. Meanwhile, deep learning (DL) has been introduced
for semantic type detection and transforming the field. However,
existing DL-based approaches, albeit successfully achieving high
F1 scores, are not practical in the real cloud environment because
they suffer from issues like low efficiency and high intrusiveness
to user data sources.

To address these issues, we present Taste, a novel semantic
type detection framework with two phases, each associated with
a DL-driven detection task. The intuition behind this framework
is that metadata (e.g., column name, statistics) contain rich tech-
nical and business information, which can be leveraged to detect
semantic types effectively while only incurring lightweight im-
pact on user data sources. Thus, we design the detection task
in the first phase purely using native metadata from user data
sources as input. In contrast, the second phase is optional and
only activated when there is a high uncertainty with the first
task’s result. It then needs to retrieve both metadata and column
content to derive semantic types more reliably. Furthermore, we
adopt multi-task learning and develop a novel DL model, called
Asymmetric Double-Tower Detection (ADTD), to support the two
tasks simultaneously. This design enables caching and reuse of
the latent representations from the first task to reduce inference
time. In the implementation, we further introduce a pipelined ex-
ecution mechanism to boost performance for massive user table
∗These authors contributed equally to this work, ordered alphabetically by surname.
†Corresponding authors.
‡Also affiliated with Guangdong-Hong Kong-Macao Joint Laboratory for Emotional
Intelligence and Pervasive Computing, Shenzhen MSU-BIT University, China

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

processing. Evaluation results show that Taste achieves state-of-
the-art performance in execution time and F1 score, and is more
robust under different data privacy settings, demonstrating its
potential for real application in cloud environment. 1

1 INTRODUCTION
The importance of semantic type detection has been well recog-
nized in the domain of data management [5, 18], data prepara-
tion [3, 19], data wrangling [23] andweb table understanding [12].
Semantic types uncover the semantic meaning of data and usu-
ally map to real-world concepts or entities. Thus, they can help
human understand data, and more importantly, can be utilized
by data management and preparation systems to provide proper
functions (like searching, transformation, and cleaning) or auto-
mate certain tasks. For example, data with semantic type “credit
card number” can be automatically identified as sensitive by
data protection systems, which further can provide data masking
functions.

Relying on human efforts to detect semantic types is obviously
impractical in the big data era. Instead, we resort to various
algorithms, from simple regular expressions to complex machine
learning models, to achieve automatic semantic type detection. In
recent years, many deep learning-based (DL-based) approaches
have been proposed to detect semantic types, such as [14, 17,
19, 30]. They have shown great potential and established new
state-of-the-art performance (in terms of F1 score). For example,
Sherlock [19] extracts 1, 588 features from column content as the
input for a deep neural network. It achieves an F1 score of 0.89
and outperforms a wide range of traditional methods, including
dictionary lookup, regular expression matching and decision tree.
Subsequent work, such as TURL [17] and Doduo [30], have raised
an F1 score to another level by further incorporating pre-trained
language models.

Meanwhile, as the cloud computing paradigm has become ma-
ture, traditional on-premise data management and preparation
1The source code is available at https://github.com/ncols-bytes/taste.git

Series ISSN: 2367-2005 324 10.48786/edbt.2025.26

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.26

Table Data

Database native metadata

Full/Sampled
content

User data sources (e.g., OLTP systems)

id ··· email

1 ··· a@d.com
2 ··· b@d.com

3 ··· c@d.com

Metadata

 ● Column name
 ● Column comments
 ● Data type
 ● Histogram
 ● ···

Metadata of
table t

...

Semantic type domain set

 Type 2

 Type 1

Column c

Content of table t

 Type s
P1 output matrix

Uncertain
columns

pc,s
...

Column c

Type s

Final output

Phase 1 (P1) Phase 2 (P2)

Data preparation

DL model
based on metadata

(Inference)

Data preparation

DL model
based on full data

(Inference)
(α<pc,s<β)

 Admitted typesColumn

 Admitted typesColumn

...

Resolved columns (with admitted types)

...

Figure 1: Overview of the Taste framework.

systems have been migrating to the cloud. Major cloud service
providers are also providing similar services, such as Microsoft
Purview [5], AWS Glue Data Catalog [2], Google Looker Stu-
dio [3], and Alibaba Cloud Data Security Center [1]. Unfortu-
nately, existing DL-based approaches like [14, 17, 19, 30], when
applied in the cloud context, can suffer from two major draw-
backs. First, they are intrusive to user data sources and thus may
not be acceptable to users. These DL models rely on features
extracted from column content, and thus they must scan user
data sources to retrieve data. For example, the model in [30]
needs to get all column content and concatenate them as model
input. On one hand, scanning column content causes increased
I/O and connections on user data sources (e.g., OLTP systems),
which can potentially disrupt their business. On the other hand,
users with strong concerns about data leakage, auditing, and
compliance tend to disallow cloud services to access and examine
their column content [9]. Second, the existing approaches are not
execution efficient. Column scanning operations are costly and
abundant column features can increase the complexity of the DL
model. Moreover, these approaches generally run in sequential
execution mode, which processes batches of tables one by one
without utilizing cross-batch concurrency. Considering the large
number (as high as billions) of tables and columns from diverse
tenants to deal with and the high detection frequency in the
cloud, efficiency is a primary concern to cloud service providers.
Even small savings in time for one column can collectively bring
significant benefits. In this study, we try to explore an efficient
DL-based semantic type detection solution that can be practically
employed in cloud services, especially for relational data (tables)
which are major enterprise data forms in the cloud.

To circumvent the above drawbacks, we develop a two-phase
semantic type detection framework, called Taste. The execution
flow of the Taste framework is depicted in Fig. 1. We divide the
traditional one-shot prediction into two phases, each of which
runs a separate DL-based detection task. The first phase (i.e., P1),
purely leverages native metadata from the data sources to predict
semantic types, whereas the second phase (i.e., P2) utilizes full
table information, including both metadata and column content.
This design is motivated by the observation that metadata com-
monly contains rich information in the technical level (e.g., data
types), business level (e.g., comments and names), and content
level (e.g., histogram), which can be exploited to infer correct
semantic types. For example, cloud tenants tend to use mean-
ingful table/column names and comments, and it is common

for enterprises to enforce various standards for defining table
schema. Meanwhile, retrieving metadata is a much less costly
and intrusive operation compared to data scan. Therefore, we
can quickly get a preliminary understanding about the columns
through a metadata-based model in P1. Based on the output of
P1, we are able to assess the relevance between each semantic
type and each column. P2 is on-demand, and only activated if we
need to involve more data to verify uncertain semantic types. For
example, for a column with the name “num” without additional
comments, P1 is uncertain that it belongs to type “phone number”
or “credit card number”. It is necessary to launch P2 to check the
column content to verify. Through the combination of P1 and P2,
Taste can not only run efficiently and mitigate the negative im-
pact on user data sources, but also achieve robust semantic type
detection when metadata quality is not satisfactory. Furthermore,
the Taste framework is flexible in the sense that cloud tenants
concerned about data exposure to cloud service providers can
choose to disable P2 completely.

To fit Taste’s two-phase execution framework, we further de-
sign a novel Asymmetric Double-Tower Detection (ADTD) model
by incorporating multi-task learning for the two phases. This
asymmetric Transformer-based architecture has been widely
adopted in modern large language models (LLMs) including GPT-
3 and its variants and competitors [11, 15, 28], and we adapt it
to facilitate the execution of the two-phase framework. ADTD
consists of two towers of multiple layers of Transformer blocks,
named metadata tower and content tower, respectively. These
two towers can be considered as two expert submodels that are
responsible for encoding latent representations of metadata and
column content, respectively. The final prediction of ADTD is
based on the combination of the two towers, using the automatic
weighted loss for multi-task learning as the objective. During
inference, the metadata tower is extracted from the ADTD model
and serves as the model for P1, while the whole ADTD model
with both towers is used to serve P2. In this way, the ADTD
model is trained once but applied for different tasks in P1 and
P2. The asymmetry of ADTD’s structure lies in that the content
tower relies on the metadata tower, but not vice versa. The input
of every layer of content tower requires not only content latent
representations, but also metadata latent representations from
the metadata tower. Exploiting this asymmetric dependency, we
build latent caches in the metadata tower to store metadata latent
representations, which can be reused by P2. This thus avoids
duplicate computation of these values and improves inference

325

efficiency. For capturing textual and tabular context in the Trans-
former blocks of the two towers, they share the same parameters
and are pre-trained on a table corpus before they are later trained
for the semantic type detection task.

Moreover, we develop an efficient implementation of the Taste
framework by using pipelining. We divide each phase of Taste
into two stages: data preparation (S1) and semantic type inference
(S2). These stages of different phases can be parallelized because
they primarily require different types of resources: S1 uses I/O
and CPU, and S2 uses GPU. Therefore, when one detection job
enters the S2 stage, another can be activated to enter the S1 stage,
creating an execution pipeline that can process multiple jobs at
the same time. By fully utilizing all types of resources, pipelin-
ing significantly enhances the overall execution efficiency, and
enables the processing of a large number of tables and columns
in the cloud.

Finally, we evaluate Taste on two popular datasets for seman-
tic type detection, WikiTable [10] and GitTables [20], and com-
pare its performance with existing approaches, i.e., TURL [17]
and Doduo [30]. Evaluation results show that Taste achieves
better F1 scores of 0.9340 and 0.9909 on WikiTable and GitTables,
respectively. Most importantly, Taste can reduce execution time
and the ratio of scanned columns by up to 85.0% and 99.1%, respec-
tively. The performance gains become even more pronounced
when the ratio of columns without any semantic type grows,
which is pervasive in the real cloud environment. Moreover,
compared to existing approaches, Taste is more robust under
different data privacy settings, and thus more practical in real
cloud environments.

Our key contributions are summarized as follows.
• We propose Taste, a high-performance and flexible se-
mantic type detection solution that is suitable for cloud
services that need to address scalability and user accep-
tance issues.
• We devise a novel ADTD model based on multi-task learn-
ing with latent cache and a pipelined execution algorithm
to improve the performance of the Taste framework.
• Evaluation results based on open datasets have shown that
Taste establishes state-of-the-art performance in terms of
the execution time and F1 score while causing significantly
lower intrusion into user data sources.

The rest of the paper is organized as follows. Section 2 provides
some preliminaries about applications and techniques of semantic
type detection, as well as the end-to-end semantic type detection
problem in the cloud. Section 3 describes the overview and the
two-phase design of the Taste framework. Details of the ADTD
model are introduced in Section 4 and an efficient implementation
of Taste is presented in Section 5. Evaluation results are shown
and discussed in Section 6, which is followed by a summary of
related work in Section 7. Section 8 concludes this paper and
discusses some promising directions for future work.

2 PRELIMINARIES
2.1 Applications of Semantic Types
Different from raw data types, such as integer, float, and string,
semantic types are inferred knowledge that can characterize
the high-level and domain-specific notions of data. Actually, the
usefulness of semantic types has been well acknowledged by
academia and industry. So far, they have found applications in a
wide range of scenarios, such as table understanding, data cata-
loging and search [16, 26], data quality validation [29, 34], data

transformation, data wrangling [23], etc. Commercial products
with semantic type detection capabilities include Alteryx Tri-
facta [8], Microsoft PowerBI [4], and Tableau [7]. For example,
Alteryx Trifacta can recognize 10 complex data types, e.g., social
security number and phone number, based on regular expression,
and accordingly provide data validation and transformation func-
tions. Recently, we have witnessed major cloud service providers
incorporating automatic semantic type detection into their ser-
vices, such as Microsoft Purview [5], AWS Glue Data Catalog [2],
Google Looker Studio [3], and Alibaba Cloud Data Security Cen-
ter [1]. For example, Microsoft Purview provides a data mapping
feature that can automatically discover and assign unique logical
tags or classes to the data assets, such as the passport number,
driver’s license number, or credit card number. Those tags then
can help users understand the potential risks, protect sensitive
data, and search assets efficiently.

2.2 End-to-end Semantic Type Detection For
Relational Data In the Cloud

The importance of semantic types havemotivated cloud providers
to continuously improve the semantic type detection capabilities
in their products. Meanwhile, relational data (i.e., tables) are of
their primary focus due to the pervasiveness in the cloud and
high value to users. Commonly, relational data exist in user’s
databases, such as OLTP systems (e.g., MySQL, PostgreSQL) and
data warehouse/OLAP systems (e.g., AWS Redshift, Snowflake,
SparkSQL). However, when cloud providers (like us) adopt DL-
based approaches to detecting semantic types in the cloud con-
text, they face new challenges, such as efficiency, scalability, data
exposure, etc. To this end, we introduce the semantic type de-
tection task from cloud service providers’ perspective, which we
call end-to-end semantic type detection: Given the domain set of
semantic types 𝑆 and a table 𝑡 with metadata and column content
stored in remote user databases, the goal of end-to-end semantic
type detection is to predict a set of semantic types from 𝑆 for
each column 𝑐 of table 𝑡 in an efficient and user-friendly manner.
The predicted results can be empty or contain multiple types,
forming a multi-label classification problem.

Note that the end-to-end semantic type detection task has
multiple objectives. Apart from predicting semantic types accu-
rately, we are also concerned with some practical issues, such as
efficiency and user satisfaction, which have not been sufficiently
addressed in the existing work, such as [14, 17, 19, 30]. First, we
will consider runtime efficiency when designing the semantic
type detection mechanisms. Specifically, we propose an end-to-
end execution time metric, which involves both data retrieval
time from remote data sources and prediction time, thus more
realistic. Second, we will endeavor to minimize the impact on
user data sources by reducing the number of columns to scan.
This enables the solution to meet service-level objectives (SLOs),
especially for users who are concerned about I/O isolation, data
leakage, and auditing.

2.3 Transformer-based Models for Textual
Representation

The Transformer [31] has become the state-of-the-art DL model
for learning tasks with sequential data, such as natural language
processing (NLP). As illustrated in Fig. 2, the Transformer in-
troduces a multi-head self-attention mechanism, which enables
sequential data to attend to important parts within the context.

326

Tr
an

sf
or

m
er

 E
nc

od
er

 L
ay

er
 ×

 L

Self
Attention

Self
Attention

Self
Attention

...Emb1 EmbW

Hidden Size (H)

...

M
ul

ti
H

ea
d

×
A

...

Input Sequence

...

...

Token1

...

Embedding

Attended
Embedding

Encoded
Representation

Sequence Length (W)

Emb2

Token2 TokenW

...

Nonlinear Projection

Linear Projection Intermediate Size (I)

Figure 2: An illustration of Transformer encoder for tex-
tual representation

This mechanism is computationally efficient as its heaviest com-
putation is matrix multiplication, which can be parallelized on
GPU. Language models, such as BERT [24] and TinyBERT [22],
can stack multiple layers of bidirectional Transformer encoders
for extracting textual representations. Generally, a BERT-based
model can be characterized by five parameters, namely the num-
ber of layers (𝐿), the number of self-attention heads (𝐴), the
maximum input sequence length (𝑊𝑚𝑎𝑥), the intermediate size
(𝐼) and the hidden size (𝐻). Given the input sequence length𝑊
(𝑊 ≤ 𝑊𝑚𝑎𝑥), the model’s computational complexity is domi-
nated by O(𝐿𝑊 2𝐻 + 𝐿𝑊 𝐼𝐻). In practice, language models are
usually pre-trained on large corpora with tailored language tasks,
such as Masked Language Modeling, and later fine-tuned for
various downstream tasks. In fact, our method also adopts this
pre-training and fine-tuning paradigm.

3 THE TASTE FRAMEWORK
We propose Taste, a two-phase framework for practical end-
to-end semantic type detection in the cloud. This section first
describes an overview of the Taste framework, and then intro-
duces the constituent two phases in sequence. Table 1 summarizes
common notations used throughout this paper.

3.1 Overview
Taste is a table-wise two-phase processing framework, as shown
in Fig. 1. For a table with multiple columns as the input to Taste,
let 𝐶 denote the set of columns; Taste can output multiple se-
mantic types in 𝑆 for each column 𝑐 ∈ 𝐶 . In this sense, Taste is
multi-input and multi-output. The benefit is that table-level meta-
data can be shared among different columns, and correlations
among columns can be captured and utilized for more accurate
semantic type detection.

Definition 3.1 (Admitted Type). If the Taste framework de-
termines that a column 𝑐 ∈ 𝐶 belongs to a semantic type 𝑠 ∈ 𝑆 ,
then we say 𝑠 is an admitted type to column 𝑐 .

We can denote the final output of admitted types for column
𝑐 by 𝐴𝑐 . The primary goal of Taste is to find all admitted types

Table 1: Notations in the paper.

Notation Description
𝑆 semantic type domain set
𝐶 column set {𝑐}
𝑐 a column in 𝐶 denoted by (M𝑐 ,D𝑐)
M𝑐 metadata pertaining to column 𝑐 , (M𝑐

𝑡 ,M𝑐
𝑛)

M𝑐
𝑡 textual metadata pertaining to column 𝑐

M𝑐
𝑛 non-textual metadata pertaining to column 𝑐
D𝑐 column content for column 𝑐
𝑝𝑐,𝑠 output probability of matching column 𝑐 to type 𝑠

by a DL model
𝐶𝑢 the set of uncertain columns after P1
𝐴𝑐1 the set of admitted types for column 𝑐 after P1
𝐴𝑐2 the set of admitted types for column 𝑐 after P2
𝐴𝑐 the final output of admitted types for column 𝑐

for all columns in a time-efficient manner with user-acceptable
impact.

From Fig. 1, we can see Taste consists of two phases, Phase 1
and Phase 2, or P1 and P2 in short, each of which is associatedwith
a semantic type detection task. P1 task is purely metadata-driven
and mandatory, whereas P2 task relies on full data, including
metadata and column content, and is enabled only when we lack
confidence on the detection results of P1.

Each phase further comprises two sequential stages: data
preparation and inference. The data preparation stage is responsi-
ble for connecting to user databases, collecting and preprocessing
metadata or column content. The inference stage uses DL models
to predict semantic types based on the input metadata or column
content. We distinguish these two stages with the purpose of
increasing parallelism during execution, because these stages
have different resource requirements. Specifically, the data prepa-
ration stage mainly consumes CPU and I/O resources, while the
inference stage is GPU intensive. This yields opportunities for
orchestrating them in pipelines, thus improving execution effi-
ciency for multiple tables. We will detail the implementation of
the pipelined execution of Taste in Section 5.

3.2 Phase 1
Recognizing the rich information embedded in metadata, in P1
we merely leverage metadata for semantic type detection. This
is inspired by the observation that semantic types are closely re-
lated to metadata in practice. A trivial scenario is that a semantic
type is alphabetically similar to the column name. In fact, users
tend to use meaningful names or comments when defining ta-
bles/columns, just like we define descriptive names for variables
and write comments during coding. In the data preparation stage,
various metadata can be fetched readily through API or SQL pro-
vided by databases. For example, the information_schema data-
base, which contains a variety of schema information, is part of
SQL-92 standard. For databases complying with SQL-92 standard,
we can run SQL query SELECT * FROM information_schema.
columns to get column metadata. Also note that the available
metadata vary from database to database, and from instance
to instance. Some metadata are mandatory, such as table and
column names, whereas some are optional, such as table and
column comments and histograms. The histogram is a special
type of metadata that reflects the characteristics of data distri-
bution. Nevertheless, all these metadata are converted to feature
representations, and then fed into our DL model of P1.

327

In the inference stage, P1 launches a multi-label prediction
task using the metadata tower submodel of ADTD. The output
is a probability matrix, where each element 𝑝𝑐,𝑠 represents the
probability that semantic type 𝑠 is related to a column 𝑐 . Based
on these probability values, we then can classify the semantic
types for each column. Specifically, we introduce two probability
thresholds, 𝛼 and 𝛽 , to measure the certainty about the relevance
between 𝑠 and 𝑐 , where 0 ≤ 𝛼 ≤ 𝛽 ≤ 1. If 𝑝𝑐,𝑠 ≥ 𝛽 , we are
confident that semantic type 𝑠 is related to column 𝑐 , and can
be accepted as an admitted type to 𝑐 directly. Let 𝐴𝑐1 denotes the
set of admitted semantic types for column 𝑐 in P1, then we have:
𝐴𝑐1 = {𝑠 ∈ 𝑆 |𝑝𝑐,𝑠 ≥ 𝛽}.

On the contrary, if 𝑝𝑐,𝑠 ≤ 𝛼 , semantic type 𝑠 is considered to
be irrelevant to column 𝑐 . Both cases imply that the metadata
contains sufficient information to derive the detection results.
In the case when 𝑝𝑐,𝑠 falls into the range (𝛼, 𝛽), P1 is uncertain
about the detection result. We define the notion of uncertain
column as follows.

Definition 3.2 (Uncertain Column). A column 𝑐 ∈ 𝐶 is called
an uncertain column if there exists a semantic type 𝑠 ∈ 𝑆 such
that 𝛼 < 𝑝𝑐,𝑠 < 𝛽 .

Meanwhile, if a semantic type 𝑠 satisfying 𝛼 < 𝑝𝑐,𝑠 < 𝛽 ,
it is called an uncertain type for column 𝑐 . Let 𝐶𝑢 denote the
set of uncertain columns. If 𝐶𝑢 is not empty, P2 is required to
further detect semantic types for these uncertain columns based
on metadata and column content. Otherwise, P2 can be skipped,
and the admitted types inferred by P1 become the final results.
Note that one-phase DL models based merely on metadata are a
special case of Taste. When 𝛼 is identical to 𝛽 , there is no chance
that uncertain types can happen, and thus P2 is always skipped. It
becomes an ideal option for users who prefer to disallow content
examination from cloud services. About the settings of 𝛼 and 𝛽 ,
they can be application-dependent, and cloud users can customize
these settings. Our evaluation results in Section 6.7 indicate that
by tuning 𝛼 and 𝛽 , we can balance the performance, runtime cost,
as well as data exposure.

3.3 Phase 2
In contrast to P1, the data preparation stage of P2 additionally
fetches the content of all the columns in 𝐶𝑢 . Depending on the
volume of the column content, either a full scan or sampling of the
table can be adopted. For columns in𝐶 \𝐶𝑢 , we do not fetch their
content to save cost and reduce execution time. However, their
corresponding metadata are not discarded; instead, the complete
information of column-level and table-level metadata are used in
order to preserve the cross-column and column-to-table attention
in the DL model for P2.

Based on this model, the inference stage will output a set of
admitted semantic types, denoted by 𝐴𝑐2, for each column 𝑐 in
𝐶𝑢 . By combining the results of P1 and P2, the final output of the
entire framework is:

𝐴𝑐 =

{
𝐴𝑐1 if 𝑐 ∈ 𝐶 \𝐶𝑢 ,
𝐴𝑐2 if 𝑐 ∈ 𝐶𝑢 .

Overall, through this two-phase approach, we not only can achieve
efficient and low-impact semantic type detection by taking full
advantage of metadata, but also guarantee the reliability of the
detection results by inspecting data content whenever necessary.
In the next section, we will introduce how to build a multi-task
learning model to power the Taste framework.

Bidirectional
Transformer

Latent
Cache

Textual Metadata Full/Sampled Column
Content

Bidirectional
Transformer

Concat Bidirectional
Transformer

Bidirectional
Transformer

Concat

Bidirectional
Transformer

Embedding Concat Embedding

Column Content Representation

Classifier
Output Layer

Classifier
Output Layer

Concat

BCE Loss 1

Predicted Label
(for P1)

BCE Loss 2

Automatic Weighted Loss

Latent
Cache

Bidirectional
Transformer

Latent
Cache

Metadata Tower

Asymmetric Double-Tower Detection Model

Non-textual Metadata

Predicted Label
(for P2)

Asymmetric
Dependency

Content Tower

Latent
Cache

Multi-Task Learning

Textual Metadata Representation

Concat

Q,K,V

Q,K,V

Q,K,V

Q,K,V

Q

Q

Q

Q

K,V

K,V

K,V

K,V

P1 Inference P2 Inference

Layer 1

Layer 2

Layer L

...

Figure 3: The structure of the Asymmetric Double-Tower
Detection (ADTD)model, comprisingmetadata and content
towers with an automatic weighted loss.

4 ASYMMETRIC DOUBLE-TOWER
DETECTION MODEL

The Asymmetric Double-Tower Detection (ADTD) model is a
multi-task learning network optimized for the two-phase frame-
work. We leverage multi-task learning because the two detection
tasks in P1 and P2 are highly related and share metadata as the
common input. Basically, the ADTD model is characterized by
the following features. First, the model logically consists of two
towers with multiple layers of Transformers: metadata tower
and content tower, for encoding latent representations of meta-
data and column content, respectively. Second, the content tower
asymmetrically relies on the intermediate results of the metadata
tower to address the attention of metadata and content. Third,
these two towers use common Transformer blocks with shared
parameters. Fig. 3 illustrates the structure of the ADTD model,
where the gray dashed rectangle frames represent the metadata
and content towers, respectively, and the blue dashed trapezoid
frame denotes the asymmetric dependency.

These two towers can be regarded as two expert submodels
for detecting semantic types based on metadata only and based
on full table information, respectively. Combining their results
has the potential to improve the prediction performance while
not undermining the execution efficiency. When ADTD is well

328

trained, P1 utilizes the metadata tower as the model to infer se-
mantic types based on metadata input. In contrast, P2 utilizes the
whole model of ADTD, including both metadata tower and con-
tent tower, for inference. The remaining of this section introduces
the details about each component of the ADTD model.

4.1 Embedding Layer
The embedding layers of the metadata and content towers use tex-
tual metadata and column content as the input, respectively. The
embedding layers output fixed-size embeddings as input to the en-
coder network in the corresponding tower. Given column-related
metadataM𝑐 , it can be further divided into textual metadata
M𝑐

𝑡 and non-textual metadata M𝑐
𝑛 . Specifically, M𝑐

𝑡 includes
table name/comments, column name/comments, etc., whileM𝑐

𝑛
is typically categorical or numerical, such as column data type,
histogram type (equal-height/equal-width), number of distinct
values, etc. The column content, denoted by D𝑐 , is the textual
form of sampled or entire cell values concatenated together with
a separator, i.e., [CLS]. The embedding output for textual meta-
data in the metadata tower can be represented by 𝐸𝑚𝑏𝑒𝑑M𝑐

𝑡 ,
and the one for column content in the content tower can be
represented by 𝐸𝑚𝑏𝑒𝑑D𝑐 , respectively. The output dimension of
the embedding layer for each token is 312, matching the input
dimension of the encoders.

4.2 Encoder Network
4.2.1 Pre-training. Rather than training the encoder network

from scratch, we use a pre-trained language model and later
fine-tune it for our task. This is currently the best practice for
DL-based tasks related to natural language processing (NLP). The
encoder network is pre-trained on an unlabeled Wikipedia table
corpus [10] with Masked Language Model and Masked Entity
Recovery objectives sequentially to capture syntax, semantic,
and language and table contextual information [17]. It consists
of multi-layer pre-trained bidirectional Transformer blocks, or
Transformer blocks in short, with a structure similar to the Tiny-
BERT [22] encoder. The two towers use shared parameters for
each layer of Transformers. Besides, the configurations for the
five parameters in our model (defined in Section 2.3) are 𝐿 = 4,
𝐴 = 12, 𝑇𝑚𝑎𝑥 = 512, 𝐼 = 1200 and 𝐻 = 312. With regard to the
encoder’s input, the sequence contains 150 tokens for table-level
metadata, 10 tokens for each column’s metadata, and 10 tokens
for each cell value.

4.2.2 Encoding in the Metadata Tower. Let 𝑇𝑖 (𝑄,𝐾,𝑉) denote
the Transformer block of the 𝑖-th layer, where𝑄 ,𝐾 , and𝑉 are the
inherent input arguments of query, key, and value, and 𝐸𝑛𝑐𝑜𝑑𝑒M

𝑐
𝑡

𝑖
denote the metadata latent representation output by the 𝑖-th
Transformer, we have:

𝐸𝑛𝑐𝑜𝑑𝑒
M𝑐

𝑡
0 = 𝐸𝑚𝑏𝑒𝑑M

𝑐
𝑡

𝑄𝑚𝑖 = 𝐾𝑚𝑖 = 𝑉𝑚𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒
M𝑐

𝑡
𝑖−1

𝐸𝑛𝑐𝑜𝑑𝑒
M𝑐

𝑡
𝑖 = 𝑇𝑖 (𝑄𝑚𝑖 , 𝐾𝑚𝑖 ,𝑉𝑚𝑖)

Let𝐸𝑛𝑐𝑜𝑑𝑒𝑚𝑒𝑡𝑎 (·) denote the encoder network of themetadata
model, the output of encoding the embedding of the metadata of
column 𝑐 can be represented as:

𝐸𝑛𝑐𝑜𝑑𝑒𝑚𝑒𝑡𝑎 (𝐸𝑚𝑏𝑒𝑑M
𝑐
𝑡) = 𝐸𝑛𝑐𝑜𝑑𝑒M

𝑐
𝑡

4 .

Furthermore, thanks to multi-task learning which allows shar-
ing of subnetwork structure, the output of the Transformer blocks

in P1’s model can be reused by P2’s model. To this end, we in-
troduce a cache, called latent cache, in the metadata tower which
stores the metadata latent representations of each Transformer
block, i.e., 𝐸𝑛𝑐𝑜𝑑𝑒M

𝑐
𝑡

𝑖 .

4.2.3 Encoding in the Content Tower. The encoding in the
content tower relies asymmetrically on metadata and column
content. Transformer blocks in the content tower share the same
parameters as those in the metadata tower. For the Transformer
block𝑇𝑖 , we denote the output latent representations of metadata
and content by 𝐸𝑛𝑐𝑜𝑑𝑒M

𝑐
𝑡

𝑖 and 𝐸𝑛𝑐𝑜𝑑𝑒D𝑐

𝑖 , respectively. During
inference, the value of each 𝐸𝑛𝑐𝑜𝑑𝑒M

𝑐
𝑡

𝑖 can be derived directly
from the latent cache, eliminating redundant computation. Re-
garding the input of 𝑇𝑖 in the content tower, both arguments of
key 𝐾𝑐𝑖 and value 𝑉𝑐𝑖 are the concatenation of the metadata and
content latent representations of the previous Transformer layer,
and the argument of query 𝑄𝑐𝑖 is the content latent representa-
tion only. Therefore, we have:

𝐸𝑛𝑐𝑜𝑑𝑒D
𝑐

0 = 𝐸𝑚𝑏𝑒𝑑D𝑐

𝑄𝑐𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒
D𝑐

𝑖−1
𝐾𝑐𝑖 = 𝑉𝑐𝑖 = 𝐸𝑛𝑐𝑜𝑑𝑒

M𝑐
𝑡

𝑖−1 ⊕ 𝐸𝑛𝑐𝑜𝑑𝑒D
𝑐

𝑖−1
𝐸𝑛𝑐𝑜𝑑𝑒D

𝑐

𝑖 = 𝑇𝑖 (𝑄𝑐𝑖 , 𝐾𝑐𝑖 ,𝑉𝑐𝑖)
Let 𝐸𝑛𝑐𝑜𝑑𝑒𝑐𝑜𝑛𝑡 (·) denote the encoder network of the content

tower, the output of encoding the content of column 𝑐 can be
represented as:

𝐸𝑛𝑐𝑜𝑑𝑒𝑐𝑜𝑛𝑡 (𝐸𝑚𝑏𝑒𝑑M
𝑐
𝑡 , 𝐸𝑚𝑏𝑒𝑑D𝑐) = 𝐸𝑛𝑐𝑜𝑑𝑒D𝑐

4 .

4.3 Single Task Objective
The final latent representations output by both towers are con-
catenated with other non-textual metadata features as inputs to
the corresponding classifier networks, respectively. For simplicity,
we name these two classifier networks as the metadata classifier
and content classifier, respectively, though the content classifier
does not purely depend on column content. Each classifier net-
work is a fully connected feed-forward neural network with a
hidden layer activated by ReLU and the output layer activated
by sigmoid functions to estimate the probabilities of multiple
semantic types. The number of neurons in the hidden layer is 500
and 1000 for the metadata tower and the content tower, respec-
tively. As an example of non-textual metadata, column statistical
histogram describes the distribution of the column cell values
in different buckets. We can characterize histogram by several
features, such as histogram type, number of buckets, and bucket
values, etc.

The content classifier also has an asymmetric dependency.
Each classifier corresponds to a semantic type detection task
with different inputs. Let 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦𝑚𝑒𝑡𝑎 (·) and 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦𝑐𝑜𝑛𝑡 (·)
represent the metadata and content classifiers, respectively, the
former classifier relies on metadata latent representations only,
whereas the latter relies on latent representations of both meta-
data and column content. Predicting semantic types of column 𝑐
with the metadata classifier can be represented as:

𝑓1 (𝑐) = 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦𝑚𝑒𝑡𝑎 (𝐸𝑛𝑐𝑜𝑑𝑒M
𝑐
𝑡

4 ⊕M𝑐
𝑛),

where ⊕ is the vector concatenation operator. In contrast, pre-
dicting semantic types of the column 𝑐 with the content classifier
can be represented as:

𝑓2 (𝑐) = 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦𝑐𝑜𝑛𝑡 (𝐸𝑛𝑐𝑜𝑑𝑒D
𝑐

4 ⊕ 𝐸𝑛𝑐𝑜𝑑𝑒M
𝑐
𝑡

4 ⊕M𝑐
𝑛) .

329

Each task uses the multi-label binary cross-entropy (BCE) loss
as its objective function. For a semantic type 𝑠 ∈ 𝑆 and a column
𝑐 ∈ 𝐶 , the ground truth is denoted by 𝑦𝑐,𝑠 ∈ {0, 1} and the output
estimated probability is denoted by 𝑝𝑐,𝑠 ∈ [0, 1]. Suppose the
mini-batch size is 𝑏, the multi-label BCE loss is defined as:

L𝐵𝐶𝐸 (𝑝,𝑦) = −
1
𝑏

∑︁
𝑐∈𝐶

∑︁
𝑠∈𝑆

𝑦𝑐,𝑠𝑙𝑜𝑔(𝑝𝑐,𝑠) + (1 − 𝑦𝑐,𝑠)𝑙𝑜𝑔(1 − 𝑝𝑐,𝑠)

4.4 Multi-Task Learning Objective
The final prediction of ADTD uses the automatic weighted loss
as the objective function, based on the multi-task learning of
the two towers. Given the losses of the metadata and content
towers, denoted byL𝐵𝐶𝐸𝑖 , 𝑖 ∈ {1, 2}, respectively, the final loss is
their weighted sum. Instead of statically assigning values to the
weights of these losses, we use learnable parameters as weights to
automatically tune the optimal balance between the losses, akin
to the method used in [25]. Therefore, the automatic weighted
loss is:

L𝐴𝐷𝑇𝐷 (L𝐵𝐶𝐸) =
2∑︁

𝑖=1

1
2𝑤2

𝑖

L𝐵𝐶𝐸𝑖 + 𝑙𝑛(1 +𝑤2
𝑖),

where𝑤 ∈ R2×1 is a vector of learnable parameters. The𝑤2 part
enforces positive weights for combining the losses of multiple
tasks, and the 𝑙𝑛(·) part enforces positive regularization values.

5 IMPLEMENTATION
This section describes an efficient implementation of the Taste
framework for processing a large number of user tables in the real
cloud environment where inter-table parallelism become crucial.
Recall that there are two stages for each phase of Taste: data
preparation (S1) and inference (S2). Overall, there are four stages
for processing a table in the Taste framework. Our implementa-
tion is motivated by the observation that different stages have
different resource requirements, i.e., the data preparation stage
primarily consumes I/O and CPU resources, while the inference
stage consumes GPU resources. This is an ideal scenario to lever-
age pipelining to improve runtime efficiency. In the pipelined
mode, the processing of different stages for different tables can be
interleaved. For example, when one table enters inference stage,
the preparation stage of another table can be activated instantly.
In contrast, most of the existing work, e.g., [17, 30], adopts a se-
quential mode to process tables. Apparently, pipelined execution
results in higher resource utilization and shorter execution time
compared to sequential execution.

In real-world scenarios where modern CPU and GPU are pow-
erful to process multiple tasks simultaneously and there are a
number of tables as input, we propose a scheduling algorithm
(see Algorithm 1) to orchestrate the stages from different tables
by obeying the pipelining logic. The input to the algorithm is a
batch of tables to process. Generally, we recommend these tables
come from a common database. Then, it can enable us to reuse
the database connection, whose creation is generally costly. From
line 1-2, we construct two thread pools, 𝑇𝑃1 and 𝑇𝑃2, to process
data preparation and inference stages, respectively. The sizes of
the pools are hardware-dependent. In line 3, we construct a queue
𝑄 to hold the stages to process and initialize it to ∅. From line
4-6, the stages are generated and added into𝑄 . Note that for each
table the stages are generated in order, i.e., P1-data preparation,
P1-inference, P2-data preparation, and P2-inference. Then, the
queue of stages is scheduled to run on the thread pools whenever
there are free threads in the pools (lines 7-23). If 𝑇𝑃1 has an

Algorithm 1: Scheduling algorithm for pipelined execu-
tion of the Taste framework
Input: A batch of tables 𝑇 to process

1 construct thread pool 𝑇𝑃1 for data preparation stages;
2 construct thread pool 𝑇𝑃2 for inference stages;
3 initialize the stage queue 𝑄 ← ∅;
4 foreach table 𝑡 ∈ 𝑇 do
5 generate four stages in order for 𝑡 and add to 𝑄 ;
6 end
7 while true do
8 if 𝑇𝑃1 is not full then
9 𝑔←poll the first eligible S1 stage from 𝑄 ;

10 if 𝑔 ≠ 𝑛𝑢𝑙𝑙 then
11 dispatch 𝑔 to 𝑇𝑃1;
12 end
13 end
14 if 𝑇𝑃2 is not full then
15 𝑔←poll the first eligible S2 stage from 𝑄 ;
16 if 𝑔 ≠ 𝑛𝑢𝑙𝑙 then
17 dispatch 𝑔 to 𝑇𝑃2;
18 end
19 end
20 if 𝑄 is empty then
21 break;
22 end
23 end

empty slot, we find the first eligible data preparation stage in the
queue, denoted as 𝑔, and dispatch it to 𝑇𝑃1 for execution.

Definition 5.1 (Eligible Stage). A stage is called eligible if its
previous stages for the same table have already finished.

Essentially, an eligible stage means the stage is safe to be
chosen for execution. Similarly, if𝑇𝑃2 is not full, we find the first
eligible inference stage in the queue and dispatch it to 𝑇𝑃2 for
execution.

From a single table’s point of view, the order of executing
its four stages is guaranteed to be correct, because only eligible
stages can be dispatched for execution. From concurrency’s point
of view, multiple tables can be processed in different stages at
the same time.

To implement the pipelined version of the Taste framework,
we use the Python language, which allows us to easily glue the
stage scheduling algorithm and the model inference in a single
project. The thread pools in Algorithm 1 are constructed by
using concurrent.futures module in Python. The inference
of the ADTD model is based on PyTorch library (version 1.7.1)
with CUDA support. For the Transformers, there are widely-
acknowledged implemetations, and in our model we have reused
the code from Hugging Face.2

6 EVALUATION
This section conducts comparative studies on the Taste frame-
work and previous state-of-the-art approaches: TURL [17] and
Doduo [30]. First, we introduce datasets and experimental set-
tings. Then, we define three key performance metrics that can
reflect whether a semantic type detection algorithm is suitable for

2https://github.com/huggingface/transformers

330

the cloud environment. Finally, comparison details with respect
to these metrics are described one by one.

6.1 Datasets and Settings
6.1.1 Datasets. The datasets we used are WikiTable [17] and

GitTables [20], which are well recognized in the field of tabular
data understanding, since they encompass rich semantic types
from diverse domains. Detailed descriptions of the datasets as
well as their key properties are summarized in Table 2.

WikiTable is a corpus of relational tables extracted from
Wikipedia, which contains a total of 406,706 tables and 255 se-
mantic types. Each column in the WikiTable is annotated by at
least one semantic type. Tomake the comparison fair, we used the
same training/validation/testing splits as TURL (publicly avail-
able at [17]).

GitTables is a large-scale corpus of relational tables extracted
from CSV files in GitHub, which contains more than 10M tables
and nearly 2,000 semantic types covering diverse real-life sce-
narios. Considering the large data volume in GitTables, which
cannot be accommodated by most hardware, we randomly select
100K tables from it (with random seed 0). The selected tables
compose a dataset named GitTables-100K, and we split it into
training/validation/testing sets with a ratio of 80/10/10. In fact,
our experiments are conducted on GitTables-100K, but for brevity,
we refer it as GitTables in the rest of the paper. Different from
WikiTable, GitTables contains columns without any semantic
type. For example, 32.13% of columns in the GitTables-100K test-
ing set do not have any semantic types. In this case, we assign a
background type (type: null) to these columns.

6.1.2 Method of reading table data. During model training
and prediction, our method of reading table content is that we
only retrieve𝑚 rows from each table, and for each column we
find the first 𝑛 non-empty cell values as model input, where
𝑛 ≤ 𝑚. We avoid using empty data, as they contribute nothing
to semantic type inference. Another pre-processing step is that
the input to the DL models that exeeds the sequence length
limit should be truncated. Furthermore, we consider two types of
table scanning methods: first𝑚 rows and random sampling of𝑚
rows. The former is the default configuration for the subsequent
experiments, while the latter is used to mitigate the potential
impact of uneven data distribution. Besides, the default settings
of𝑚 and 𝑛 are 50 and 10, respectively. Later in Section 6.8, we
will vary the value of 𝑛 to study how the input data size affects
Taste’s performance.

In addition, considering the operation of computing inter-
column attention is GPU memory intensive, we will split the
tables with large column size into smaller ones during training
and prediction, so that the Transformer-based models can be
supported by GPU devices of different capacities. Specifically,
we introduce a column splitting threshold (i.e., 𝑙), whose default
value is 20 (to fit our GPU device). In other words, wide tables in
the datasets will be split into smaller ones with no more than 𝑙
columns. In Section 6.8, we will evaluate the effect of varying 𝑙
on the performance.

6.1.3 Training and prediction. The training of Taste’s DL
models is conducted on premise, i.e., on a Linux server with Intel
13th Gen i7-13700K CPU, NVIDIA GeForce RTX 4080 GPU and
64 GB RAM. During the training phase, we first initialize the
network weights of their embedding layer and encoder using the
same pre-trained checkpoint as TURL [17], which is pre-trained

Table 2: Summary of the open datasets

Dataset # tables # cols # types % col w/o
types

WikiTable 406,706 654,670 255 0%
- training 397,098 628,254 255 0%
- validation 4,764 13,025 248 0%
- testing 4,844 13,391 248 0%

GitTables-100K 100,000 1,212,987 1,953 31.56%
- training 80,000 966,107 1,884 31.43%
- validation 10,000 122,331 1,239 31.98%
- testing 10,000 124,549 1,289 32.13%

on an unlabeled Wikipedia table corpus [10]. And then for each
dataset, we fine-tune all the network weights across the entire
model using the corresponding training set for 20 epochs. Under
the default settings of 𝑛 and 𝑙 , the training time on WikiTable
and GitTables is 97 and 66 mins, respectively, and the peak GPU
memory usage is 6,954 and 11,136 MB, respectively.

However, the prediction process is conducted on real cloud
infrastructure in the State Cloud [6]. Specifically, the Taste mod-
els are deployed on an ECS (pi7.8xlarge.4 type with 32 vCPU,
128 GB RAM and 2 NVIDIA A10 GPUs), and the test data are
stored in an RDS for MySQL (version 8.0 of general-purpose fam-
ily with 8 vCPU, 16 GB RAM and 500 GB SSD). Both the ECS
and RDS instances reside in one VPC (Virtual Private Cloud), and
the average network delay between them is 5 ms. The reason for
choosing MySQL is that it is the most popular database type in
our cloud as well as in China cloud market. The separation of
semantic type detection service and user databases can mimic
the real production environment, and also enables us to evaluate
the end-to-end execution time of semantic type detection algo-
rithms in a holistic manner. When constructing table schemas
in MySQL, we convert the table contextual information in the
datasets, such as page titles and section titles in WikiTable, into
table comments. Similarly, the information is also used by TURL
to aid semantic type detection.

6.2 Baselines and Metrics
We consider the following baselines for performance comparison.
• TURL [17]: It utilizes pre-trained multi-layer Transform-
ers of the same size as Taste (𝐿 = 4, 𝐴 = 12,𝑊𝑚𝑎𝑥 = 512,
𝐼 = 1200,𝐻 = 312, parameter size 14.5M) to encode textual
input. The pre-trained encoder captures not only the lexi-
cal, semantic, contextual information of words, but also
the association between table content and metadata.
• Doduo [30]: It jointly considers column type detection
and inter-column relation detection, and leverages multi-
task learning to train its model. Doduo adopts a larger pre-
trained language model, i.e., BERT base (𝐿 = 12, 𝐴 = 12,
𝑊𝑚𝑎𝑥 = 512, 𝐼 = 3072, 𝐻 = 768, parameter size 108M).

Despite of using pre-training and fine-tuning paradigm, the
baseline approaches and Taste differ in embedding size, model
structure and complexity, which will lead to different perfor-
mance behavior in semantic type detection tasks. To thoroughly
evaluate our approach, we produce six variants of Taste as fol-
lows. This allows us to do an ablation study and evaluate the
utility of different components in the Taste framework.
• Taste: The default setting of Taste where latent caching
and pipelining execution are enabled during inference,

331

table scanning is based on first𝑚 rows and column his-
tograms metadata are not used.
• Taste with histogram: Default Taste but with column
histograms being part of metadata features. Column his-
tograms may be missing in reality and are only available
when users explicitly tell databases to generate such in-
formation by running ANALYZE TABLE SQL statements.
This variant mimics the case when histograms are readily
available.
• Tastewithout pipelining: Default Taste butwith pipelin-
ing execution disabled. As a result, it degenerates to the
sequential mode in which tables and stages are processed
one by one without overlapping.
• Taste without caching: Default Taste but with the la-
tent cache in the metadata tower of ADTD disabled. Then,
the twomodels for P1 and P2 become independent. In some
sense, it is equivalent to disabling multi-task learning in
our approach. In this way, we can examine the benefit of
employing multi-task learning.
• Taste with sampling: Default Taste but with the table
scanning method replaced by random sampling of𝑚 rows
(seed assigned to 0 in MySQL RAND function).
• Tastewithout P2: The second phase in Taste is disabled
by setting 𝛼 = 𝛽 = 0.5; this mode can be applied in strict
data privacy settings where users only allow cloud services
to access metadata.

From a cloud provider’s perspective, we use metrics of the
F1 score to evaluate the prediction performance, the execution
time to evaluate the efficiency, and the ratio of scanned columns
to evaluate the intrusiveness to user databases. This is different
from most existing work that mainly focuses on the F1 score.
Details of these metrics are explained as follows.
• Execution time: It is the overall time cost that a semantic
type detection approach pays to finish processing all the
columns in the test dataset. We consider the end-to-end
time which involves the time for creating/closing data-
base connections, fetching metadata and content from
databases, and the prediction time.
• Ratio of scanned columns: It is defined as the total num-
ber of columns whose contents have been retrieved by the
semantic type detection approaches divided by the total
number of columns in the test dataset. This metric not only
measures every approach’s intrusiveness to user databases
but also reflects the effectiveness of our metadata-based
DL model in finding correct semantic types.

Note that 𝛼 and 𝛽 are two important parameters in Taste
framework. In the following experiments, we empirically set
𝛼 = 0.1 and 𝛽 = 0.9 for all the above variants except Taste
without P2. Detailed analysis of 𝛼 and 𝛽 settings will be discussed
in Section 6.7.

6.3 Execution Time
First, we evaluate the end-to-end execution time for different DL-
based semantic type detection approaches on the open datasets.
Fig. 4 depicts the average execution times and their standard
deviations over ten runs. Since the total number of columns in
GitTables dataset is much larger than WikiTable, unsurprisingly
the execution times on GitTables are longer.

Compared to TURL and Doduo, Taste reduces the execution
time by 40.5% and 52.9%, respectively, on WikiTable, and by
75.4% and 85.0%, respectively, on GitTables. The main reason

WikiTable GitTables
Datasets

0

100

200

300

400

500

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

65.92

295.52

83.32

485.84

39.2
72.82

41.8

91.26

49.03
74.35

49.81

85.77

39.41
73.41

TURL
DODUO
TASTE
TASTE w/ histogram
TASTE w/o caching
TASTE w/o pipelining
TASTE w/ sampling

Figure 4: End-to-end execution time of different DL-based
semantic type detection approaches.

for the improvement is that semantic types of a large portion
of columns can be determined during the first phase of Taste,
which is a much less costly process than TURL and Doduo which
rely on column content for prediction. Besides, the performance
improvement is much higher on GitTables because we observe
a higher relevance of the metadata to semantic types on this
dataset. As we can see later in Fig. 5, only 45.0% of columns must
be scanned in the second phase on the WikiTable dataset, and
this number is as low as to 1.7% on GitTables. These results prove
not only the efficiency of the metadata-based DL models over the
content-based counterparts, but also its effectiveness in saving
the costly content retrievial operations.

Fig. 4 also shows that the execution times for Taste with
histogram are 6.6% and 25.3% higher than vanilla Taste on Wik-
iTable and GitTables, respectively. Though including histograms
in Taste slightly increases the execution time, it still significantly
outperforms the TURL and Doduo baselines. Considering his-
tograms are beneficial to improving the F1 score (see Table 3), we
suggest that histograms, if available in user data sources, should
be used as input for semantic type detection in practice.

In addition, we have found that latent caching can improve
the execution efficiency of Taste. Compared to Taste without
caching, Taste can reduce the execution time by 20.0% on Wik-
iTable and 2.0% on GitTables. Recall that multi-task learning
and parameter sharing between the two towers enables Taste
to avoid duplicate computation of the metadata tower. During
inference, a higher probability of entering P2 brings a higher
benefit from the latent caching mechanism. As in the case of
WikiTable, when many uncertain columns need to go through
P2, the latent caching mechanism can yield significant execution
time reduction.

By comparing Taste and Taste without pipelining, we fur-
ther demonstrate that pipelining is another effective mechanism
to reduce execution time. In the experiment, we set the size of
the thread pools (𝑇𝑃1 and 𝑇𝑃2 in Algorithm 1) to 2. Enabling
pipelining brings a reduction of execution time by 21.3% on Wik-
iTable and 15.1% on GitTables. We claim that with more powerful
hardware and a larger thread pool, we can further expand such
performance gain. However, replacing the first𝑚 rows scanning
method by random sampling only incurs lightweight impact
on the execution time, e.g, increase from 39.20s to 39.41s on
WikiTable dataset. Such increase is expected because random
sampling runs more slowly than sequential scan of the first𝑚
rows in MySQL.

332

Table 3: F1 scores of different DL-based semantic type de-
tection approaches on WikiTable and GitTables datasets
(𝑛 = 10 and 𝑙 = 20). For Taste and its variants, 𝛼 = 0.1 and
𝛽 = 0.9.

Model Precision Recall F1
WikiTable dataset

TURL 0.9275 0.9263 0.9269
Doduo 0.9325 0.9234 0.9279
Taste 0.9344 0.9267 0.9306
Taste w/ histogram 0.9414 0.9267 0.9340
Taste w/ sampling 0.9342 0.9271 0.9306

GitTables dataset
TURL 0.9852 0.9767 0.9809
Doduo 0.9923 0.9873 0.9898
Taste 0.9947 0.9842 0.9894
Taste w/ histogram 0.9957 0.9862 0.9909
Taste w/ sampling 0.9945 0.9841 0.9893

6.4 F1 Score
Though execution time and intrusiveness are the primary concern
of this work, prediction accuracy is also essential. Table 3 shows
F1 scores of various approaches on the datasets. Note that entity-
linking information in WikiTable is not used in our experiment
for fair comparison. Also, as suggested by Doduo’s authors [30],
metadata have been incorporated into column values to fit the
Doduo framework in our experiments. Note that pipelining and
latent caching only affect Taste’s runtime efficiency, and thus
Taste without pipelining and Taste without caching are not
discussed in the context of F1 score comparison.

Although the baselines have achieved very high F1 scores on
both datasets, Taste and its variants can still outperform them
and achieve state-of-the-art performance. From Table 3, under
the setting of 𝛼 = 0.1 and 𝛽 = 0.9, Taste achieves F1 scores
of 0.9306 and 0.9894 on WikiTable and GitTables, respectively.
Furthermore, we observe that column histograms can positively
influence the inference quality of our model. When histograms
are included in the model training and prediction, Taste with
histogram increases the F1 score to 0.9340 and 0.9909, respec-
tively, which are slightly higher than those of TURL and Doduo.
However, sampling method almost causes no change to F1 score,
indicating our approach’s robustness to column content varia-
tion.

The reasons for Taste’s superior performance in F1 score are
mainly two-fold. First, we use more adundant metadata than
TURL and Doduo. Apart from textual metadata like table name
or comment, we also leverage other database native metadata,
such as data type, nullability, various statistics (e.g, max, min,
ndv, and histogram), etc. Second, the way of computing attention
in Taste is different from that in TURL and Doduo. Specifically,
for each cell value, we compute its cross-attention with all col-
umn/table metadata (e.g., column/table name) and the cell values
in the same column. In contrast, TURL computes the correspond-
ing cross-attention by only considering the current column’s
metadata. Doduo actually mixes column metadata with column
content together as model input, and thus cannot effectively ex-
tract the relations between metadata and column content as we
do. In short, when computing attention, Taste can better utilize
metadata, which is beneficial to the prediction task.

In addition, we have studied the impact of missing column
content in the strict data privacy settings. To create this scenario,

Table 4: F1 scores of Taste and the baseline approaches
on WikiTable and GitTables datasets when only metadata
are used as input (𝑙 = 20).

Model Precision Recall F1
WikiTable dataset

TURL w/o content 0.6787 0.5627 0.6153
Doduo w/o content 0.5266 0.6534 0.5832
Taste w/o P2 0.9037 0.9057 0.9047

GitTables dataset
TURL w/o content 0.9855 0.9753 0.9804
Doduo w/o content 0.9893 0.9832 0.9862
Taste w/o P2 0.9941 0.9843 0.9892

we replace the column content input with an empty string dur-
ing the inference for TURL and Doduo, while disabling P2 by
setting 𝛼 = 𝛽 = 0.5 for our approach. Evaluation results are
summarized in Table 4. Unfortunately, F1 scores of TURL and
Doduo on the WikiTable dataset dropped drastically to 0.6153
and 0.5832, respectively, compared with the previous results in
Table 3. However, our approach retains a high F1 score, with only
a slight decrease from 0.9306 to 0.9047. The main reason for this
is that the multi-task learning and asymmetric network structure
of ADTD allow us to train the DL model used in P1 purely based
on metadata. So removing P2 in the Taste framework does not
significantly affect the inference quality of P1. This demonstrates
the robustness of Taste under different data privacy settings in
the cloud.

6.5 Ratio of Scanned Columns
To study the intrusiveness of semantic type detection approaches
on user databases, we collect the ratio of columns that each
approach needs to scan for column content. Fig. 5 summarizes the
results for different approaches. Obviously, this metric is 100% for
TURL and Doduo regardless of the dataset, because both of them
rely on column content to function. On theWikiTable dataset, we
can see from Fig. 5 that the ratio of scanned columns is 45.0% and
43.6% for Taste and Taste with histogram, respectively. On the
GitTables dataset, the metric becomes 1.7% and 0.9% for Taste
and Taste with histogram, respectively. Since pipelining, latent
caching and sampling do not affect the number of columns to
scan, the corresponding variants are not shown in the figure.
In other words, they have the same ratio of scanned columns
as Taste. Additionally, same as our approach, both TURL and
Doduo also need to fetch metadata from user databases. If we
quantify the overall impact on user databases by how much
metadata or column content needs to be scanned, we believe that
our approach can significantly mitigate such impact, and thus is
more acceptable to cloud users.

6.6 Columns Without Any Types
So far, all the experiments on WikiTable have been conducted
with all columns associated with semantic type labels. However,
in reality, such situation rarely happens. Instead, the majority of
columns are not related to any semantic types, and users are only
concerned about a small set of semantic types, such as Personally
Identifiable Information (PII) for privacy protection. To this end,
we mimic the real-world scenario by removing a certain number
of semantic type labels from the WikiTable dataset.

333

WikiTable GitTables
Datasets

0%

25%

50%

75%

100%

R
at

io
 o

f s
ca

nn
ed

 c
ol

um
ns 100% 100%100% 100%

45.0%

1.7%

43.6%

0.9%

TURL DODUO TASTE TASTE w/ histogram

Figure 5: Ratio of scanned columns by different DL-based
semantic type detection approaches.

0.0% 9.8% 19.8% 34.6% 47.0% 60.0% 74.7%
Ratio of columns without any types (testing set)

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f s
ca

nn
ed

 c
ol

um
ns

 o
r F

1
sc

or
e

Execution time Ratio of scanned columns F1 score

Figure 6: Performance of Taste when the ratio of columns
without any types changes (WikiTable).

First, we randomly select 𝑘 semantic types (with random seed
0) from the semantic type domain set (𝑆) of WikiTable, which
consists of 255 types. These 𝑘 types compose a new semantic
type domain set (𝑆𝑘), called retained type set. We apply the same
split method to obtain training/validation/testing sets from the
original WikiTable dataset. But for each column in these sets, we
only retain the annotated types that exist in 𝑆𝑘 ; other types are
removed. If a column has no types remaining after the process,
we assign it with a background type (type: null). As a result, we
can obtain a tuned dataset, named WikiTable-𝑆𝑘 . By adjusting
the value of 𝑘 from 50 to 240, we generate a sequence of new
datasets, each of which has a different ratio of columns without
any types, denoted as 𝜂.

Then, we fine-tune our DL models on the tuned datasets and
evaluate their performance. Experimental results are depicted in
Fig. 6. As we can see from the figure, both execution time and
the ratio of scanned columns will drop when 𝜂 increases. At the
same time, the F1 score maintains stably. This trend is reasonable,
because columns without any semantic types can be recognized
by the DL model in P1, and there is no need to fetch their content
in P2. It reflects Taste’s applicability in the real world when only
a small portion of columns should be annotated with semantic
types.

6.7 Settings of 𝛼 and 𝛽
Now we conduct sensitivity analysis on 𝛼 and 𝛽 in the Taste
framework. Fig. 7 shows how the performance metrics (i.e., the
F1 score, and ratio of columns that are not scanned) change when

0.0 0.1 0.2 0.3 0.4 0.5

0.920

0.924

0.928

0.932

F1
 sc

or
e

F1 score (=0.8)
F1 score (=0.9)

Not scanned ratio (=0.8)
Not scanned ratio (=0.9)

0%

20%

40%

60%

80%

N
ot

 sc
an

ne
d

ra
tio

(a) Varying 𝛼 with fixed 𝛽

1.0 0.9 0.8 0.7 0.6 0.5

0.921

0.924

0.927

0.930

0.933

F1
 sc

or
e

F1 score (=0.2)
F1 score (=0.1)

Not scanned ratio (=0.2)
Not scanned ratio (=0.1)

0%

20%

40%

60%

80%

N
ot

 sc
an

ne
d

ra
tio

(b) Varying 𝛽 with fixed 𝛼

Figure 7: Effects of varying 𝛼 and 𝛽 (WikiTable).

the values of 𝛼 and 𝛽 vary on the WikiTable dataset. Generally
speaking, as 𝛼 gets smaller and 𝛽 gets larger, the F1 score in-
creases and the ratio of columns not scanned decreases. The
main reason is that a wider (𝛼, 𝛽) interval causes more columns
in P1 to become uncertain and thus requires an additional P2
phase to verify them. Although involving P2 improves the F1
score, the cost is that the execution time and ratio of scanned
columns will increase too. Note that the execution time positively
correlates to the scanned ratio, according to Fig. 6. Therefore, we
omit to discuss the impact of 𝛼 and 𝛽 on the execution time for
brevity.

To conclude, though the settings of 𝛼 and 𝛽 are application-
dependent, we list some rules of thumb as follows. In order to
achieve a high F1 score, users need to set small 𝛼 and large 𝛽 .
If users are sensitive to data exposure, they should shrink the
interval of (𝛼, 𝛽), or in the extreme case, set 𝛼 = 𝛽 to disable
scanning column content. To well balance the F1 score and ex-
ecution time/data source intrusiveness, reasonable 𝛼 and 𝛽 can
be chosen near the cross points of the F1 score curve and the
ratio of columns not scanned curve in Fig. 7. In fact, this also
reveals another advantage of Taste, namely, flexible to different
application scenarios.

6.8 Settings of 𝑙 and 𝑛
As mentioned in Section 6.1, we split big tables with more than 𝑙
columns into smaller ones, and read only 𝑛 non-empty cell values
to meet the model’s input sequence length constraint. So far, we
have fixed 𝑙 and 𝑛 to 20 and 10, respectively, in the previous
experiments. In the following, we will investigate how changing
these two parameters affects Taste’s performance. Fig. 8(a) shows
the evaluation results when we fix 𝑛 = 10 but vary 𝑙 from 4 to 20.
We can observe an opposite trend for execution time and F1 score,
as 𝑙 becomes larger. Specifically, the execution time continuously
drops. This is because smaller 𝑙 results in more table splitting. The
increased table number causes the prediction time to increase,
and consequently raises the overall execution time. However, the
F1 score will increase, since more columns in tables enable us to
utilize more metadata to compute attention, and then improve
prediction accuracy. In addition, we have studied how Taste’s
performance reacts to the change of 𝑛. As shown in Fig. 8(b),
both execution time and F1 score increase, as 𝑛 gets larger (fix 𝑙
to 20). It implies that the number of input cell values has positive
impact on the prediction quality. However, the cost is that the
framework needs to process more input data, which slows the
prediction process. To choose a reasonable 𝑛, we should strike a
balance between F1 score and execution time. In our production
system, 𝑛 is set to 10.

334

4 8 12 16 20
Column splitting threshold

36

38

40

42

44

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) Execution time F1 score

0.920

0.924

0.928

0.932

0.936

F1
 sc

or
e

(a) Varying 𝑙 with 𝑛 = 10

4 6 8 10 12
Non-empty cell count

35

36

37

38

39

40

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
) Execution time F1 score

0.920

0.924

0.928

0.932

0.936

F1
 sc

or
e

(b) Varying 𝑛 with 𝑙 = 20

Figure 8: The impact of 𝑙 and𝑛 onperformance (WikiTable).

7 RELATEDWORK
Semantic type detection techniques, which aim to automatically
discover semantic types from data, are crucial to modern data
management and preparation systems. Over the past decades,
there have been a lot of endeavors from industry and academia
to solve semantic type detection problems through various algo-
rithms.

One category of prior work focuses on regular expression
methods. The search for optimal regular expressions matching
data of a semantic type is an NP-hard problem. [18, 27] work on ef-
ficient methods to construct/learn regular expressions to discover
patterns in a table column. XSYSTEM [21] applies the divide-and-
conquer principle to improve efficiency, which divides table con-
tent separated by known delimiters into structured tokens and
extracts patterns from these tokens in parallel. Besides finding
the patterns from divided tokens, Auto-validate [29] prunes a
fraction of data to tolerate non-conforming values to increase
the prediction recall performance. However, regular-expression-
based approaches typically require reading and examining table
content, leading to a high computation cost and impact on user
databases. Moreover, these approaches intrinsically rely on al-
phabet statistics of table content and fail to leverage rich tabular
context, limiting their prediction performance on semantic types.

Another category of work tries to relate table columns to se-
mantic types via value-overlapping approaches [16, 32, 33] or
synthesis approaches [34]. The former approaches select seman-
tic types for a target table column based on how its content
overlaps with other columns in a knowledge base. Similar to
regular-expression-based approaches, they typically requires a
full scan of the table column to improve accuracy. Relying on
identical matching, they also fail to consider contextual and se-
mantics information of text content. The latter approaches search
for or synthesize validation functions to verify if a table column
is matched to any semantic types. These synthesized functions
usually incorporate domain knowledge and are only applicable
to specific semantic types whose content obeys certain protocols
or standards, e.g., ISBN and credit card numbers. On the contrary,
the Taste framework endeavors to develop generic approaches
to support a wide range of semantic types.

In recent years, deep learning approaches for table column
type detection have become a promising trend. Sherlock [19]
trains a deep neural network with abundant features, including
global and character-level statistical features, word embeddings,
and paragraph embeddings. Sato [35] includes table context and
relationships among neighboring columns in the deep learning
model. Some studies [36, 37] use pre-trained language models to
leverage the contextual semantics learned from large corpora to

significantly improve the prediction performance with less train-
ing effort. TURL [17] fine-tunes a pre-trained Transformer-based
network and learns column semantic types from table contextual
information. Doduo [30] extends the work by adopting multi-
task learning into the model to share the knowledge learned from
column semantic types and relation tasks. Taste also leverages
the pre-trained language model and multi-task learning but with
different objectives. These techniques fit into a two-phase frame-
work in order to solve practical issues like runtime efficiency and
user acceptance.

Lastly, there are also some hybrid deep learning models that
incorporate domain knowledge. Chen et al. [14] propose a hy-
brid structure with an attentive BiRNN for word embedding, a
look-up model for knowledge-based properties extraction, and
a convolutional network for feature learning and classification.
ColNet [13] ensembles the results from a convolutional neural
network and a knowledge-based look-up model to determine the
final column semantic types. Our approach is orthogonal to this
category of work because we focus on optimizing DL-based ap-
proaches for cloud context, and the models in Taste framework
are open to integrating the domain knowledge.

8 CONCLUSION AND FUTURE WORK
In this paper, we propose a practical DL-based semantic type de-
tection framework, Taste, for cloud service providers, who raise
critical concerns about runtime efficiency and impact on user
data sources. Taste consists of a mandatory metadata-driven
detection phase and an optional full data-driven detection phase.
Taste is efficient and only produces a lightweight impact on user
databases for two reasons. First, it leverages various metadata to
determine semantic types and avoid costly table scan operations
whenever possible. Second, we utilize latent caching to avoid
duplicate model computations and pipelining to maximize paral-
lelism among different tables. We develop a novel Asymmetric
Double-Tower Detection model based on multi-task learning for
the detection in both phases. Taste outperforms prior state-of-
the-art approaches in various aspects, including the execution
time, F1 score, and intrusion into user data sources. Taste is
robust under different data privacy settings and has the potential
for cloud-scale deployment.

In the future, we plan to work in the following promising
directions. First, we will explore efficient methods to extend the
solution to accommodate new semantic types when there are
regular updates to the domain set. Second, we plan to make the
model adaptable to user feedback about detection results. Third,
we will explore seamlessly integrating domain-specific and user-
defined semantic types into our framework.

REFERENCES
[1] 2024. Alibaba Cloud Data Security Center. https://www.alibabacloud.com/

product/sddp/
[2] 2024. AWS Glue. https://aws.amazon.com/glue/
[3] 2024. Google Looker Studio. https://developers.google.com/looker-studio/

connector/semantics/
[4] 2024. Microsoft Power BI. https://www.microsoft.com/en-us/power-platform/

products/power-bi/
[5] 2024. Microsoft Purview. https://azure.microsoft.com/products/purview/
[6] 2024. State Cloud, China Telecom. https://www.ctyun.cn/
[7] 2024. Tableau. https://www.tableau.com/en-gb/
[8] 2024. Trifacta Type System. https://help.alteryx.com/AAC/en/trifacta-classic/

concepts/feature-overviews/overview-of-the-type-system.html/
[9] Panagiotis Antonopoulos et al. 2020. Azure SQL Database Always Encrypted.

In Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data. Portland, OR, USA, 1511–1525.

[10] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015.
TabEL: Entity linking in web tables. In International Semantic Web Conference.

335

Springer, 425–441.
[11] Tom B. Brown et al. 2020. Language Models are Few-Shot Learners. CoRR

abs/2005.14165 (2020). arXiv:2005.14165
[12] Michael Cafarella, Alon Halevy, Hongrae Lee, Daisy Zhe Wang, and Eugene

Wu. 2018. Ten Years of WebTables. In Proceedings of the VLDB Endowment,
Vol. 11. 2140–2149.

[13] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. 2019.
Colnet: Embedding the semantics of web tables for column type prediction.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 29–36.

[14] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. 2019.
Learning semantic annotations for tabular data. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence. 2088–2094.

[15] Aakanksha Chowdhery et al. 2023. PaLM: Scaling Language Modeling with
Pathways. Journal of Machine Learning Research 24, 240 (2023), 1–113.

[16] Eli Cortez, Philip A Bernstein, Yeye He, and Lev Novik. 2015. Annotating data-
base schemas to help enterprise search. Proceedings of the VLDB Endowment
8, 12 (2015), 1936–1939.

[17] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: table
understanding through representation learning. In Proceedings of the VLDB
Endowment, Vol. 14. VLDB Endowment, 307–319.

[18] Yeye He, Jie Song, Yue Wang, Surajit Chaudhuri, Vishal Anil, Blake Las-
siter, Yaron Goland, and Gaurav Malhotra. 2021. Auto-Tag: Tagging-Data-By-
Example in Data Lakes. arXiv:cs.DB/2112.06049

[19] Madelon Hulsebos et al. 2019. Sherlock: A deep learning approach to semantic
data type detection. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1500–1508.

[20] Madelon Hulsebos, Çaǧatay Demiralp, and Paul Groth. 2023. GitTables: A
Large-Scale Corpus of Relational Tables. In Proceedings of the ACM on Man-
agement of Data, Vol. 1. 1–17.

[21] Andrew Ilyas, Joana MF da Trindade, Raul Castro Fernandez, and Samuel
Madden. 2018. Extracting syntactical patterns from databases. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE, 41–52.

[22] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang
Wang, and Qun Liu. 2020. TinyBERT: Distilling BERT for Natural Language
Understanding. In Findings of the Association for Computational Linguistics:
EMNLP 2020. 4163–4174.

[23] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011.
Wrangler: Interactive Visual Specification of Data Transformation Scripts. In
Proceedings of the sigchi conference on human factors in computing systems
(CHI). ACM, 3363–3372.

[24] JacobDevlinMing-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of NAACL-HLT. 4171–4186.

[25] Lukas Liebel and Marco Körner. 2018. Auxiliary Tasks in Multi-task Learning.
CoRR abs/1805.06334 (2018). arXiv:1805.06334 http://arxiv.org/abs/1805.06334

[26] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating
and searching web tables using entities, types and relationships. In Proceedings
of the VLDB Endowment, Vol. 3. VLDB Endowment, 1338–1347.

[27] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gul-
wani, and Todd Millstein. 2018. FlashProfile: a framework for synthesizing
data profiles. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1–28.

[28] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[29] Jie Song and Yeye He. 2021. Auto-Validate: Unsupervised Data Validation
Using Data-Domain Patterns Inferred from Data Lakes. In Proceedings of 2021
International Conference on Management of Data (SIGMOD). ACM, 1678–1691.

[30] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating columns with pre-trained
language models. In Proceedings of the 2022 International Conference on Man-
agement of Data. 1493–1503.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[32] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Pasca, Warren Shen,
Fei Wu, Gengxin Miao, and Chung Wu. 2011. Recovering Semantics of Tables
on the Web. Proceedings of the VLDB Endowment 4, 9 (2011).

[33] Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q Zhu. 2012.
Understanding tables on the web. In Conceptual Modeling: 31st International
Conference ER 2012, Florence, Italy, October 15-18, 2012. Proceedings 31. Springer,
141–155.

[34] Cong Yan and Yeye He. 2018. Synthesizing Type-Detection Logic for Rich
Semantic Data Types using Open-source Code. In Proceedings of 2018 Interna-
tional Conference on Management of Data (SIGMOD). ACM, 35–50.

[35] Dan Zhang, Madelon Hulsebos, Yoshihiko Suhara, Çağatay Demiralp, Jinfeng
Li, and Wang-Chiew Tan. 2020. Sato: contextual semantic type detection in
tables. In Proceedings of the VLDB Endowment, Vol. 13. VLDB Endowment,
1835–1848.

[36] Ziqi Zhang. 2017. Effective and efficient semantic table interpretation using
tableminer+. Semantic Web 8, 6 (2017), 921–957.

[37] Chen Zhao and Yeye He. 2019. Auto-em: End-to-end fuzzy entity-matching
using pre-trained deep models and transfer learning. In The World Wide Web
Conference. 2413–2424.

336

