
Time-Related Patterns Of Schema Evolution
Panos Vassiliadis

Univ. Ioannina
Ioannina, Greece
pvassil@cs.uoi.gr

Alexandros Karakasidis
Univ. Macedonia

Thessaloniki, Greece
a.karakasidis@uom.edu.gr

ABSTRACT
This paper presents a set of patterns on how schema evolution
takes place over time in Free Open-Source Systems that are built
on top of relational databases. To come up with these timing
patterns, we have studied 151 projects of a public dataset of
schema histories, with duration more than 12 months. The eight
timing patterns of schema evolution are largely grouped in 3
families: (a) the family of limited and focused-in-time change,
whose members differ only on when the change happens (early,
middle or late life of a project), (b) the family of regular updates,
whose members differ in the frequency of change, and (c) the
family of middle or late initiation of change, whose members
differ in the initiation of schema maintenance as well as the
frequency of change.

1 INTRODUCTION
Schema Evolution is the process of alteration of a database schema
via the addition, deletion, and update of its constituents and their
relationships. In the particular case of relational schema evo-
lution, the elements that can change are the tables, attributes,
constraints (including primary and foreign key, non null, data
type and value constraints) and views.

The goal of this paper is to investigate the timing nature of
schema evolution and extract patterns of how schemata evolve over
time.

In sharp contrast with its importance, schema evolution has
notoriously been under-studied in the more than 50 years of data-
base research. The literature on case studies, with the exception
of a single study [36], appears only after the late ’10s, when the
existence of public code repositories like GitHub or Gitlab allow
the publication of the history of DDL files of Free Open-Source
Software. Since then, the literature includes several studies of
the characteristics of relational schema evolution with a focus on
the volume, change-type breakdown and impact to surrounding
queries [36], [10],[24], [50], [31], [8], [37], [47], [46], [11], [44],
[12], [4], [42], [33],[45] – however, to the best of our knowledge,
none has come up with patterns of how schemata evolve over
time (see Section 2).

Patterns. The major contribution of this paper is that, for the
first time in the related literature, a set of time-related patterns
on how schema evolution unfolds in time is introduced. To fill the
gap in our scientific body of knowledge we had to overcome
several non-straightforward challenges: (i) previous work mostly
dealt only with a handful of case studies, making the extraction of
patterns impossible, due to the small size of their corpus; (ii) from
the methodological point of view, there is no established method
in our discipline for extracting patterns from schema histories;
(iii) no prior knowledge of how these patterns look like exists.
To address the volume challenge, we employ a large corpus of

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

195 relational, logical-level schema histories ([42], [45]) out of
which we extracted 151 schema histories of length higher than
12 months for further study. To address the methodological gap,
we have employed methods from empirical software engineering
[1], and iteratively grouped the collected schema histories in
patterns of similar time evolution in a qualitative fashion, later to
be quantitatively verified, too. We also verified the cohesion and
disjointedness of the patterns.

A first family of patterns, called Be Quick of Be Dead, concerns
2/3 of the dataset corpus, organized in four patterns of very little,
focused change. The most rigid of all is the Flatliner pattern,
which demonstrates no change whatsoever. There are 3 other
patterns ofminimal change, practically in a single point of change,
differing just in the timing of when this happens: Radical Sign for
early change, Sigmoid for middle-life change, and Late Riser for
late change. The sheer cardinality of this family demonstrates
vividly the aversion to change that we observe in the studies of
schema evolution at large numbers. A second family of patterns,
Stairway to Heaven, includes two patterns, Quantum Steps and
Regularly Curated, both with regular steps of schema evolution,
the former with few and the latter with more. Finally, the Scared
to Fall Asleep Again family of patterns includes two patterns
that demonstrate late change: Smoking Funnel with schema birth
in middle-life and regular curation afterwards and Siesta with
early schema birth, a very long period of inactivity and very late
focused changes.

Traits of change.We demonstrate that the anecdotal evidence
of “freeze the schema first; then build all the applications on top of
it”, although certainly majoritarian as a practice, is only partially
corroborated, as Fig. 3 suggests. In fact, we observe two important
traits. The first trait, aversion to change, concerns the 2/3 of the
projects and means that curators avoid change as much as they
can, resulting in the schema freezing shortly after birth with at
most a few changes. The second trait, concerns the 1/3 of the
projects, with observable, regular evolution, coming in several
fashions: rare or dense, yet regular, change (amassing to 25% of
the corpus), and, surprisingly, late change too, for an 11% of the
corpus.

Stats: (a) schemata are typically but not exclusively born early:
half projects show schema birth in the first 10% of time; (b) 42%
of the projects reach more than 90% of their total activity in the
first 25% of the project’s life, (c) attainment of the entire change
activity is mostly fast: 2 out of 3 projects have zero active months
from schema birth to 90% of their total activity.

Characteristics. Change is biased towards expansion and
mostly done via table additions and deletions rather than via
table refactoring. Patterns do not differ in their project duration.
In terms of activity volume, only Smoking Funnel and Regularly
Curated projects escape the "start small; show small change next"
norm.

Prediction. The point of schema birth, gives a coarse indica-
tion of the subsequent evolution: if born in M0 or after the first
year, the schema has a strong inclination towards rigidity (75%

 

 

Series ISSN: 2367-2005 310 10.48786/edbt.2025.25

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.25


and 64% resp.); birth within the first year however, gives a 53%
probability, resp.

Contributions. In a nutshell, the contributions of this paper
are as follows:

• We present, for the first time in the related literature, a
set of time-related patterns, i.e., archetype behaviors, on
how schema evolution unfolds in time. Specifically, we
introduce 3 families of patterns, including 8 patterns to
highlight the traits of change in schemata of FOSS projects.
The Be Quick or Be Dead family of patterns includes the
vast majority of schemata of 2/3 of the studied corpus
of projects with aversion to change. At the same time, a
sizeable minority of 25% of the corpus comprises the the
Stairway to Heaven family of patterns with steps of regular
change. Third, the the Scared to Fall Asleep Again family
of patterns refers to a small minority of 11% of the corpus
where schema change comes late in the life of a project.

• We validate the introduced pattern-set in terms of com-
mon sense, cohesion, disjointedness, completeness and
generalization.

• We present the relationship of time-related patterns to
other measures of schema evolution, like the total amount
of schema change, the point of schema birth and the mix-
ture of change types.

Roadmap. After reviewing related work in Section 2, we
present our experimental method in Section 3 and the resulting
set of schema evolution patterns in Section 4. In Section 5, we
present the validation of the pattern set that we introduce. In
Section 6, we discuss the relationship of the introduced patterns
to other measures of schema evolution activity. We conclude our
deliberations in Section 7.

2 RELATEDWORK
Studies of Schema Evolution. Typically, the studies in the area
of schema evolution concern the qualitative and quantitative de-
scription of schema evolution on the basis of few studied projects
(no more than a dozen). Several studies address this question in
the field of relational databases [36], [10],[24], [50], [31], [8], [37],
[47], [46], [11], [44], [12], [4], [35]. For completeness, we point
out the recent work on (i) non-relational databases [21], [3], [34]
– see [40] for an overview and (ii) content change [2], [38].

However, none of these studies was able to report on patterns
of how evolution happens over time, to a large extent due to
the very small corpus of schemata they study. Most studies are
interested in the change breakdown per type of change, as well
as aggregate information for the schema studied, and apart from
the occasional reporting for the schema size over time, there
are very few data for time behavior. [36] reports the monthly
heartbeat of a single schema with aggregate numbers of changes
per schema version (along with time information). [50] gives
the number of changes per revision. [10] reports the number
of commits per month and the number of changes per commit.
[31] gives schema size over %time progress. [8] gives the num-
ber of tables, attributes and changes per commit. [37] discusses
schema heartbeat characteristics mostly qualitatively. [44] lists
the number of tables and foreign keys over time. In [42], the
first large-scale study of 195 projects was reported (see a long
version in [43]). This corpus lays the foundation allowing us to
systematically study patterns of schema behavior at large scale.

It is noteworthy that whereas early studies [36], [10], [31]
focused (by selection) on projects with significant change, later

large-scale studies [42], [43],[45] restrict this evolutionary profile
only for a subset of actively evolving schemata and report aver-
sion to change (zero, or just a couple of time-points with schema
change) as well as the gravitation to rigidity (early change with a
long tail of inactivity in the schema line) as the typical pattern of
schema evolution for a large majority of the studied schemata.

Evolution is Hard. Schema evolution can have a very large
impact to the ecosystem built around the database [23, 39]. To al-
leviate the difficulty of the evolution, several attempts have been
made. [18] and [17] investigate multi-version database manage-
ment. Attempts to tackle data migration exist too: see [22, 40, 41]
and [19]. Research has also investigated how to adapt queries
whenever the schema changes [13], [16], [25], [27], [26], [28],
[29] – see [5] for an overview.

Schema and Source Co-evolution. In the meanwhile, there
are also works on how schema and source code co-evolve, both
in the area of studying the joint evolution and in the area of
proposing techniques to synchronize schema and applications
as they both change [36], [24], [50], [31], [15], [33]. A detailed
discussion of studies in source and schema co-evolution is found
in [45], which is the closest work to the current paper, discussing
the lag between the schema and source-code evolution, without
presenting time-related patterns of evolution, however.

Comparison to previous work. To the best of our knowl-
edge, although activity patterns in terms of volume, and statistical
patterns of table and foreign keys behavior have been previously
studied, the timing aspect has never been investigated in the past.
This is the first time ever that patterns of evolution in terms of time
are identified, visually demonstrated and quantitatively character-
ized.

3 EXPERIMENTAL METHOD
Our fundamental research question is: Is it possible to detect
patterns of schema evolution with respect to when evolution takes
place in the lifetime of a schema?

3.1 Protocol
The basic protocol that we have followed was as follows. First,
we have obtained the data set of [42], [45] coming with 195 his-
tories of schemata of Free Open-Source Software Projects based
on relational database support. The extracted schema histories
include (a) detailed sequences of versions of the schemata and
(b) the logical-level changes that took place (tables and attributes
added, deleted, maintained) and their quantitative measurement,
and, (c) the respective measurements of the history of the source
code of their entire encompassing projects, from GitHub. The
selection process for the data set of schema histories in [42] used
Big-Query to select projects with .sql files from the GitHub Ac-
tivity and the Library-io datasets; kept only original repositories,
with more than 0 stars and more than 1 contributor; cleaned up
noise (e.g., projects with the terms ‘example, demo, test, migrat’
in their path), to end up in 327 repositories, out of which 132 zero-
evolution repositories were omitted. For surviving significant
projects, their repository was locally cloned and used to extract
the schema history. Thus, the scope of the data set includes as many
projects from GitHub as possible that are valid, acknowledged, non-
toy, non-demo, and non-test. For details, we redirect the reader
to the respective papers ([42] and [45]). Monthly measurements
for both schema and source code evolution accompany the data
set. In addition, we visually represented the cumulative progress
of schema and source code per project.

311



For the purposes of the research reported here, we have ex-
cluded all projects with a life time less or equal to 12 months, in
order to be able to observe the events in the life of projects to
evolve for a minimum lifespan. Thus, all projects studied here
have more than one year’s life span. The resulting data set con-
sists of 151 projects.

Second, we manually searched for patterns of the schema line
and annotated projects accordingly. This process was iterative
and based solely on the aforementioned visual representation of
the cumulative progress of schema evolution. This bottom-up
process took several rounds before it converged into a set of stable
patterns, along with a set of exceptions that were intentionally
earmarked as such. The choice of manual annotation is typical
in research design and intentional: the idea is to have a golden
standard of meaningful, humanly-verified groups first, and then
to check whether they are also quantitatively meaningful. This
allows us to extract the different patterns by careful inspection of
only the subjects being studied (i.e., to alleviate bias as there are
no influences from quantitative properties), and only after a set of
meaningful patterns has been extracted, to search for quantitative
justifications. To forestall any possible criticism on this tactic,
we also refer the reader to [20, 30] for a discussion of manual
annotation and [7, 32, 48, 49] as examples from the database
literature. Most importantly, wemention [1] for amethodological
instruction of Grounded Theory [6], [9], [14], a method suited for
situations where patterns have to be extracted from collected data
via a manual, iterative generation of patterns via comparing every
new data item (here: schema history) to all previous patterns,
and adjusting the patterns accordingly.

Third, our initial qualitative assessment was also accompanied
by quantitative evidence that verifies that the essential disjoint-
ness of the discovered patterns (see Section 5), along with their
cohesion and completeness. A decision tree misclassified only 4
of 151 patterns after the manual classification had taken place
(Fig. 5). Our analysis also shows that patterns can be grouped in
larger families that are pairwise different, and internally cohesive
(with slight visual differences and similar numeric characteris-
tics).

Fourth, once all projects were assigned to the respective pat-
terns, the final data analysis took place. All data, results, charts
and auxiliary analyses are available at
https://github.com/DAINTINESS-Group/Schema_Evolution_Datasets.

3.2 Nomenclature and Metrics Used
We use the metrics of [45] and specifically the cumulative frac-
tional activity of schema and project heartbeats, which measures
the % cumulative change of schema evolution over time (typi-
cally, over normalized time progression as a percentage of project
lifetime). The unit for measuring schema evolution is the number
of affected attributes (born with new tables, injected into exist-
ing ones, deleted with removed tables, ejected from surviving
ones, with their data type changed, or their participation to a
primary/foreign key updated). Based on this cumulative measure-
ment of progress, we use the following metrics and landmarks
for the life of schemata:

Project Update Period (PUP): the time between the originating
version (referred to as 𝑉 0

𝑝 ) and the last commit of the project
- practically, the life span of the project. The granule of time
measurement is the month (and to this end we summed up main-
tenance activity by month). We also normalize time of PUP; all

Figure 1: Nomenclature for schema and source code histo-
ries [45]. The horizontal axis shows time as a percentage
of a project’s life. The vertical axis depicts the cumula-
tive progress as a percentage of the total amount of evo-
lution activity, for (a) the schema (dotted, blue line) and
(b) the source code (solid, green line). Two points, schema
birth and attainment of 90% of total activity, demarcate the
growth period. A vault occurs when the transition between
schema birth and top-band attainment is less than 10% of
the total time.

times used in the charts of this paper, unless otherwise stated,
measure time as a percentage of PUP.

Schema birth and volume of activity at birth. Schema birth
refers to the point when the schema appears for the first time in
the life of a project. Volume measures the percentage over the
total schema activity that the birth of the schema carries (quite
often the percentage of schema evolution at birth is very high
– a clear indicator for the absence of significant change in the
schema, esp., if schema birth happens early).

Time of attainment the Top-Band of Schema Activity: the time
point of the attainment of the Top Band threshold of 90% of the
total activity of schema evolution - practically signifies when the
schema evolution is close to full attainment.

Intervals between schema birth and reaching the top-band, as
well as between the attainment of top-band status and the end of
the project’s lifetime. Growth is the period between schema birth
and top-band. We say that the project has a vault if the time span
between schema birth and reaching the top-band is lower than
10% of project’s life. The interval between top-band attainment
and end signifies how long the tail of almost-no-change is in the
line of the schema activity (frequently, this line is too long).

Activity from schema birth to top-band. We measure active
months in the proper interval between the months of schema
birth and attainment of top-band (ActiveGrowthMonths). To nor-
malize the values, we report them as percentage of (a) the growth
period only, and, (b) the entire Project Update Period. The higher
the percentage is, the more steps schema evolution took, and the
denser the evolution rate is.

312



3.3 Quantization of the Measures of Schema
Evolution

To be able to perform analyses later, it is necessary to quantize
the different metrics that have been presented in this section,
into ordinal sets of labels. Table 1 presents (a) how the different
metrics have been quantized, as well as (b) the number of projects
that pertain to each of the produced labels.

The determination of limits was made with the goal of pro-
viding labels that (a) are reasonable, and, (b) coarsely divide the
metric into labels with similar amounts of projects pertaining
to them. As always, the target is not to a-posteriori fit the quan-
tization of the metrics to the patterns. Also, we want to avoid
overfitting the labels to the particular data set. The extreme val-
ues (zero and one) have particular semantics in most cases, too.
For example, discriminating the originating version from the
early versions of the schema history is reasonable both statisti-
cally, and, semantically. To give an example from Table 1, see the
quantization of Time Point Of Birth: one third of the schemata
were born in 𝑉 0

𝑝 ; another third in the first quarter of the time
(i.e., 105 of the 151 projects were born in the first 25% of the
project’s life); the final third is quantized as middle-life and late.
The quantization was made having in mind the goal to produce
general classes of behavior rather than overfit the data set (which
results in one exception in the Late Riser pattern – to be intro-
duced later– exactly because the labeling was not done with the
patterns in mind).

3.4 Statistical Properties of Time-related
Measures

3.4.1 Quantization of Metrics. We quantized the important
metrics in histograms of 10 buckets, with special care for special
values like 0 and 1. All the Shapiro-Wilks normality tests verify

Volume of
Birth (%Total
Change)

Low
<=0.25

Middle
(0.25 ..0.75]

High
(0.75..1)

Full
1

(16) (52) (44) (39)

Time Point of
Birth (%PUP)

𝑉 0
𝑝
0

Early
(0 .. 0.25]

Middle
(0.25..0.75]

Late
>75%

(52) (53) (33) (13)

Time point of
reaching Top
Band (%PUP)

𝑉 0
𝑝
0

Early
(0 .. 0.25]

Middle
(0.25..0.75]

Late
>75%

(23) (41) (47) (40)

Interval
(%PUP) (birth ..
top-band)

Zero
0

Soon
(0 .. 0.1]

Fair
(0.1 .. 0.35]

Long
(0.35 .. 0.75]

Very Long
>75%

(62) (26) (27) (23) (13)

Interval
(%PUP) (top-
band .. end]

Soon
<=0.25

Fair
(0 .. 0.25]

Long
(0.75..1)

Full
1

(40) (48) (40) (23)

Active months
as %growth

Zero
0

Few
(0 .. 0.2]

Fair
(0.2 .. 0.75] High >75%

(98) (22) (22) (9)

Active months
as %PUP

Zero
0

Fair
(0 .. 0.08]

High
(0.08 .. 0.5] Ultra >50%

(98) (20) (33) –
Table 1: Labeling limits of Schema Evolution Metrics (PUP:
project life span; Top-band: having reached 90% of total
schema evolution). The numbers in parentheses mark the
number of projects that pertain to the particular label.

the non-normal character of the data with the highest p-value
for any of the involved attributes in the order of 10−9. Table 1
demonstrates the breakdown of values of the different measures.
The statistical properties of the important time-related measures
are as follows:

• Volume of Birth (%Total Change). Reading from right to left,
we see that out of 151 projects, 39 projects reach Full (100%)
activity at schema birth, and 83 projects overall reach High
or Full activity at schema birth. Overall, more than half of
the projects exceed 75% of total activity at schema birth.

• Time point of Birth (%PUP). A large majority of schemata
is born early: 52 schemata (one third of the population)
are born in 𝑉 0

𝑝 . Two thirds of the projects (105 projects) see
schema birth at 𝑉 0

𝑝 or before 25% of the PUP. Not shown in
the table is that 74 schemata (half the corpus) are born in
the first 10% of time. As the distribution of points of birth
follows a power-law shape, the rest of the time points form
a long tail.

• Time point of Entering the Top Band (%PUP). 64 projects
(42%) reached the top band immediately at 𝑉 0

𝑝 (23 of them)
or before 25% of the PUP . Another 40 projects (26%) came
with a late top-attainment at higher than 75% of the PUP.
The rest of the projects were spread in the middle half
of the PUP. In other words, projects mostly reach top-band
soon, although mid-life and late completion of the evolution
do exist too.

• Interval Schema Birth-To-TopBand (%PUP) and Interval TopBand-
To-End (%PUP). 88 out of the 151 projects had an interval
from schema birth to top-band that was less than 10% of
the PUP, with 62 of them in zero time. 115 (75%) of the
projects had an interval of less than 35% PUP. The rise
from schema birth to the top is therefore mostly fast. Again,
the distribution of values follows a power-law shape. The
inverse situation holds for the TopBand-To-End interval,
which typically presents (very) long tails of schema inac-
tivity at the end of the projects’ life.

• Vaults. In line with the above, 58% of the projects had a
single vault in the cumulative progress line, and 42% did
not.

• Active Growth Months. 98 schemata (2/3 of the population)
had zero active months in the growth period, from schema
birth to the top. Not shown in the table is that another 17 had
exactly one month active. Combined, 76% of the population
had no more than 1 month of activity from schema birth to
top. If there should be a single metric of evidence for the
aversion to change, the super-focused nature of schema
evolution, and, schema stabilization,Active Growth Months
would be the one.

3.4.2 Correlations of Metrics. The correlations between the
time-related measures are also interesting. Figure 2 demonstrates
a "clean view" of the Spearman correlations and anti-correlations.
The correlation graph reveals some interesting properties. The
ActiveGrowthMonths is very tightly related to its normalized ver-
sions as percentages of the Project Update Period and the Growth
Period. To the extent that ActiveGrowthMonths is a simple and in-
tuitivemeasurewewill be using it in our subsequent deliberations
as representative of the respective metrics. A more interesting
positive correlation occurs when observing the percentage of
total schema change that took place at schema birth (BirthVol-
ume_pctTotal) and the normalized (as percentage of PUP) Interval

313



Figure 2: Spearman Correlations of Time-Related Metrics

between Point of Schema Birth and Point of Top Band Attainment
(IntervalBirthToTop_pctPUP). The higher the change percentage
at schema birth, the closer the attainment of the top band. At the
same time, it is really intriguing to see that both these measures
are strongly related to the months without change in the growth
period. As we have frequently advocated in the past [42, 45, 46],
aversion to change is a constant characteristic that we encounter
in our studies. Here, we see it again: the longer it takes to reach
the top-band, the more inactive months you include, i.e., people
prefer clustered groups of schema changes rather than constant
incremental maintenance. Finally, we can see that the Point of
Top-Band Attainment and the Interval from the Top-Band to the
End of the project are extremely strongly anti-correlated. This is
expected, as the later a project reaches the top band, the smaller
tail it can have. Also, there is a fairly strong relationship to Point
of Birth: a later schema birth time point pushes the top-band
attainment later, although the different "character of change" of
the projects make them have varying growth intervals that lower
their correlation to 0.61.

4 THE PATTERNS OF SCHEMA EVOLUTION
In this section, we identify 8 patterns of change organized in 3
pattern families (see also Figure 4). Specifically:

• The (most voluminous) Be Quick or Be Dead family with
patterns of focused change around the point of schema
birth (Flatliners, Radical Sign, Sigmoid, Late Risers)

• The Stairway To Heaven family (Quantum Steps, Regular
Curation ) for projects with fairly regular rate of change

• The Scared to Fall Asleep Again family (Siesta, Smoking
Funnel) with change starting (too) late in the life of the
project

All the definitions are based on a small subset of four features;
the defining values for each pattern are depicted in bold.

4.1 Flatliners
Flatliners is a category of schemata that are practically frozen and
include zero or very few changes to their logical schema, all of
which take place in the originating month of schema birth. These
projects are born at the originating version of the project and
remain unchanged until its end. The respective DDL file receives
commits, but these commits serve mostly comments, inclusion
of initialization values to reference tables or changes concerning
the tuning of the database - in any case all change is completed
within the first month, thus generating a flat schema line in the
diagram.

Definition 4.1. A flatliner schema comes with both a Point of
Schema Birth and a Top-Band Attainment Class at 𝑉 0

𝑝 .

Birth Class Top-Band
Point Class

Birth-To-Top
Interval Class

Active Growth
Months

𝑉 0
𝑝 𝑉 0

𝑝 Zero 0

As a consequence, the top band is attained immediately, at the
first point of the line, and all subsequent activity measures are
zero.

4.2 Radical Sign
The category of Radical Sign projects is the pattern with the
largest population of schemata. The shape of the line of the
cumulative schema evolution progress is the name-giver of this
pattern.

Definition 4.2. A radical sign schema comes with a Point of
Schema Birth Class𝑉 0

𝑝 or 𝑒𝑎𝑟𝑙𝑦 and a Top-Band Attainment Point
Class 𝑒𝑎𝑟𝑙𝑦.

Birth Class Top-Band
Point Class

Birth-To-Top
Interval Class

Active Growth
Months

𝑉 0
𝑝 or early early * 0

Overall, the projects of the radical sign pattern are born early
(in the first quarter of the lifespan of the project), and in a very
short period after schema birth, they rise to the top-band, and in
fact, to 100% of their cumulative schema evolution. The presence
of this climbing in a very short period signifies the presence of
a sharp vault in the graphical representation of the line of the
schema heartbeat. As all this happens early enough, the line of
cumulative progress of schema evolution includes a long tail of
inactivity.

4.3 Sigmoid
Sigmoid is a category of schemata that are born in the middle
of the life of the project and include a very sharp rise to the top
band at the point of birth, which is followed by a fairly long tail
of frozen inactivity. The line formed is a typical line of a sigmoid
function with right angles.

Definition 4.3. A sigmoid schema comes with a Point Of
Schema Birth Class𝑚𝑖𝑑𝑑𝑙𝑒 , a Top-Band Attainment Point Class
𝑚𝑖𝑑𝑑𝑙𝑒 , and a Schema Birth-To-Top Interval Class 𝑧𝑒𝑟𝑜 or 𝑠𝑜𝑜𝑛.

One can think of the sigmoid as the archetypical mother of
all the “almost-no-evolution" patterns - i.e., think of the shape of
the line of the cumulative schema heartbeat of the other patterns
as variations over sigmoid. Sigmoid differs from the radical sign
projects in the fact that the schema is born in the middle of the
lifetime of the project and very soon (in most cases, immediately)
freezes.

Birth Class Top-Band
Point Class

Birth-To-Top
Interval Class

Active Growth
Months

middle middle zero or soon 0-1

314



Figure 3: Examples of schema evolution time-related patterns (schema: blue dotted; src: green solid)

315



4.4 Late Risers
Schemata in the Late Risers pattern are born late and include
very little change afterwards. Due to this late birth, there is no
early or middle period of the schema lifetime, and thus the life
of the schema is pretty much summarized by this sharp vault.

Definition 4.4. A late riser schema comes with a Point Of
Schema Birth Class 𝑙𝑎𝑡𝑒 , a Top-Band Attainment Point Class 𝑙𝑎𝑡𝑒 ,
and a Schema Birth-To-Top Interval Class 𝑧𝑒𝑟𝑜 or 𝑠𝑜𝑜𝑛.

Birth Class Top-Band
Point Class

Birth-To-Top
Interval Class

Active Growth
Months

late late zero or soon 0

The “Be Quick or Be Dead” family of patterns constitutes a family
of very focused change very close to the schema birth point - the
only difference of the involved patterns is when schema birth takes
place.

4.5 Quantum Steps
The Quantum Steps pattern is characterized by the existence of
focused points of schema modification in the period between
schema birth and reaching the top band. The schema evolution
activity is not dense, but is focused on few (no more than 3)
active months in the journey between schema birth and top-band
attainment.

Definition 4.5. A quantum steps schema comes with two
variants, both with less than 3 active growth months:

• a variant with a Point of Schema Birth Class 𝑉 0
𝑝 or 𝑒𝑎𝑟𝑙𝑦,

and a Top-Band Attainment Point Class𝑚𝑖𝑑𝑑𝑙𝑒
• a variant with a Point of Schema Birth Class 𝑚𝑖𝑑𝑑𝑙𝑒 , a
Top-Band Attainment Point Class 𝑙𝑎𝑡𝑒 .

Birth Class Top-Band
Point Class

Birth-To-Top
Interval Class

Active Growth
Months

𝑉 0
𝑝 or early middle fair or long 0-3

middle late fair or long 0-3

The quantum steps pattern is probably themost heterogeneous
and inclusive pattern of all. In the major variant of the pattern,
the projects are mostly early born and come with all possible
volumes at schema birth, the line reaches the top band mostly in
medium time intervals from schema birth in few focused points
of schema evolution, and once the top band is reached, a fairly
long tail follows. In the second variant of the pattern, the schema
is born in the middle of the life of the project, and, slowly arrives
to the top band late in the lifetime of the project (thus with a
short tail afterwards). Again, the change is small and rare.

4.6 Regular Curation
The Regularly Curated pattern includes more active projects with
respect to the spread and density of change over time.

Definition 4.6. A regularly curated schema comes with two
variants, both with more than 3 active growth months:

• a variant with a Point Of Schema Birth Class 𝑉 0
𝑝 or 𝑒𝑎𝑟𝑙𝑦,

and a Top-Band Attainment Point Class𝑚𝑖𝑑𝑑𝑙𝑒 or 𝑙𝑎𝑡𝑒
• a variant with a Point Of Schema Birth Class 𝑚𝑖𝑑𝑑𝑙𝑒 , a
Top-Band Attainment Point Class 𝑙𝑎𝑡𝑒 .

Birth Class Top-Band
Point Class

Birth-To-Top
Interval Class

Active Growth
Months

𝑉 0
𝑝 or early middle or late long or very long > 3

middle late fair or long >3

Regularly curated projects have lives with frequent change of
the schema. Much like the quantum steps pattern, they comewith
two basic variants, which share the same time characteristics
with the quantum steps pattern, but just differ in the volume of
change. Again, in the first variant, the regularly curated projects
are born early with a fairly small percentage of the overall change
at schema birth. Then, progressively, over their lives, the schema
is consistently maintained and evolved. The top-band is typically
reached (very) long after schema birth, towards the last quarter
of the project’s life with a fair number of steps and a typically
short tail. In a second variant, the schema is born in the middle of
the life of the project, and all the involved durations are shrunk
accordingly.

The “Stairway to Heaven” family of patterns: both patterns,
involve a fairly regular pattern of change, with change steps dis-
tributed across time. Although different in the change rate, both
patterns refer to projects that do not reach the top band in a single
shot, as with the previous family of patterns, and progressively
climb to the top-band over a long period of time.

4.7 Siesta
The Siesta pattern includes projects whose schema is born early
(even at the originating version of the project) and, typically, at a
significant amount of its cumulative change. After birth, however,
the schema is frozen for a long period of time, although quite
later, towards the end of its life, the schema receives changes
again.

Definition 4.7. A siesta schema comes with a Point of Schema
Birth Class 𝑉 0

𝑝 or 𝑒𝑎𝑟𝑙𝑦, a Top-Band Attainment Point Class 𝑙𝑎𝑡𝑒 ,
and a Schema Birth-To-Top Interval Class 𝑣𝑒𝑟𝑦 𝑙𝑜𝑛𝑔.

Birth Class Top-Band
Point Class

Birth-To-Top
Interval Class

Active Growth
Months

𝑉 0
𝑝 or early late very long 0-3

Typically, Siesta projects are born early, and although they
remain in idleness for long periods, they eventually demonstrate
change in the schema later in their life. As such, they come with-
out a vault in their line and take more than 75% of the project’s
lifetime to reach the top band of cumulative schema activity.

4.8 Smoking Funnel
The Smoking Funnel pattern takes its name from the shape of the
cumulative schema evolution line. The schemata of this pattern

316



Figure 4: An overview of the different characteristics of the time-related patterns of schema evolution

(a) are born in the middle of the life of the project, (b) jump
to a medium level of total schema activity when born, and, (c)
continue to produce a fairly dense rate of schema evolution after
their birth.

Definition 4.8. A smoking funnel schema comes with a Point
of Schema Birth Class𝑚𝑖𝑑𝑑𝑙𝑒 , a Top-Band Attainment Point Class
𝑚𝑖𝑑𝑑𝑙𝑒 , and a Schema Birth-To-Top Interval Class 𝑓 𝑎𝑖𝑟 .

Birth Class Top-Band
Point Class

Birth-To-Top
Interval Class

Active Growth
Months

middle middle fair > 3

The Smoking Funnel schemata are born in the middle of the
project’s lifetime with a medium amount of the total schema
evolution at birth. In contrast to the first family of patterns of
super-focused change, where the top-band is reached imme-
diately, Smoking Funnel comes without vaults, but just a fair
amount of the total change at schema birth. The interval be-
tween schema birth and top band is typically fair and the tail
contains change. In other words, once born, the schemata of
Smoking Funnel projects are regularly evolved.

The “Scared to Fall Asleep Again” family of patterns: the afore-
mentioned two patterns, although very different in their character-
istics, resemble in that they include projects where the change is
not focused in a single point, and happens towards the end of the
lifetime of the project.

Pattern #prjs Exceptions Overlaps

Flatliner 23 – –
Radical Sign 41 – –
Sigmoid 19 2 –
Late Riser 14 1 –
Quantum Steps 23 2 –
Regularly Curated 14 – –
Smoking Funnel 7 – –
Siesta 10 3 –

Table 2: Exceptions and Overlaps of the Definitions of
Schema Evolution time-related patterns

5 VALIDATION OF THE PATTERNS
In this section, we demonstrate the justification of the introduced
patterns via the answering of the following validation questions:

• VQ1: Are these patterns genuine and reasonable? How can
we guarantee that the separation is not artificial and a-
posteriori fitted to the numbers?

• VQ2: Can we claim that the classification of projects into
different patterns is producing patterns that are (a) internally
cohesive and (b) pairwise disjoint?

• VQ3: How generalizable, i.e., how representative of the gen-
eral behavior of projects, are the results?

• VQ4: Is the taxonomy produced complete? How possible is it
that other behaviors do exist too?

317



Figure 5: Schema evolution time-related patterns classified via a decision tree

5.1 Are these Patterns Genuine and
Reasonable?

The main justification of the presented patterns lies in the fact
that they were produced as a result of primarily manual analysis,
and a-posteriori quantified justification. So, they were primarily
judged as reasonable, meaningful patterns, by inspecting the
charts of schema evolution of the collected projects, and only
afterwards, validated by inspecting their measurable properties.

The protocol started with a manual classification of the avail-
able projects, via the visual inspection of the schema evolution
cumulative progress – i.e., solely by observing the projects’ charts
like the ones appearing in Figure 3. Once the first grouping of
charts had be completed, the question raised was: "is this rea-
sonable and meaningful?" The following qualitative characteri-
zations were made:

• The "be quick or be dead" family of few sharp changes:
there were obviously too many projects with too little
activity done in single "shot". The only internal separation
of the patterns of the family was with respect to when
the schema was born and, almost immediately, practically
frozen.

• The "stairway to heaven" family of regular changes: an-
other non-trivial fraction of the projects demonstrated
progressive evolution characteristics at the beginning and
middle life of the schema, and possibly at the late phases
too – with variations, however, at the rate of change time-
points.

• The "scared to fall asleep again" family: another small part
of the corpus demonstrated signs of late change (patterns
differ at the existence of midlife change hiatus).

Although not completely expected, compared to what previous
research results would report, the results of the manual grouping
are meaningful and reasonable. Despite the fact that previous re-
sults had mostly focused to the volume of activity without taking
the timing so much into consideration, what we do know from
the related literature (see Section 2, mainly [31], [37], [44]) is that
quite frequently (although not exclusively) schema evolution is
significantly reduced, or frozen, after some time. Therefore, the
family of few sharp changes was quite expected. The family of
moderate, regular change was not a surprise either with respect
to the state of the art knowledge, which ascertained the exis-
tence of projects with moderate and high volume of change ([36],
[10],[24], [50], [31]). The presence of late-oriented change was a
surprise, however, given the state of the art and anecdotal evi-
dence: although we knew there are projects that produce schema
change at later periods of their life, the time-related patterns of
change of this family were never discussed in the literature or
otherwise.

As a side note, we must say that the aversion to change is not
omnipresent in the literature. A major reason is that studies with

just a handful of schemata ([36], [10],[24], [50], [31], [37]) had to
pick schemata that do demonstrate some change, otherwise there
is not much to report. On the other hand, studies like [42], [43]
that work with large numbers of schemata, or studies like [34]
working with necessity sampling of projects, clearly show the
aversion to change. Interestingly, the study of nosql schemata
in [34] reveals time behaviors that are visually quite close to the
patterns reported here (hinting to a potential universality of the
patterns that remains to be verified).

It is also obligatory to report that the original process produced
some line chart patterns that were subsequently re-arranged into
more reasonable families. Specifically:

• The Radical Sign pattern is the union of two sub-groups
of the original process. Practically, we merged a small
subgroup of 6 schemata born at the originating version
of the project (with slightly different shapes), with the
subgroup of schemata being born early, but not on 𝑉 0

𝑝 .
The merge is reasonable in the sense that the differences
are minor.

• TheQuantum Steps and the Regularly Curated patterns are
agglomerations of smaller line patterns that merged into
two cohesive groups, which are also pairwise disjoint in
terms of the volume of time-points of change. The formal
condition on the volume of time-points of change, which
distinguishes the two patterns, came later, and as a result,
reclassified 7 projects. We believe it is obligatory to report
this fact as part of the experimental protocol; however, we
also believe that the rearrangement is a-posteriori justified.

Moreover, we can also observe several desirable properties
in our pattern set. First, few exceptions do exist (see the follow-
ing subsection). The result of the pattern extraction process was
neither perfectly fit to the data, nor with colossal deviations. Sec-
ond, the patterns are disjoint and cover significantly (not fully)
the space of possible behaviors (see the subsection on disjoint-
edness and completeness). Moreover, each pattern came with
a reasonable size, neither overly dominating the rest, or being
insignificant.

Overall, based on all the above, the most fundamental guard
against statistics-oriented patterns came from the process itself:
all the statistics-related tasks, like the quantization of the time-
related attributes, the pairwise comparison of patterns or the
inspection of other attributes were performed only once the
bottom-up manual inspection and classification had been com-
pleted.

The pattern definitions came also after the manual classifica-
tion was performed, and had a very small effect, just for the Reg-
ularly Curated family. Wherever a project seemed more related
to a pattern despite the violation of the definition, the project
remained in the pattern to which it was originally assigned. This
is why exceptions also do exist, as we will demonstrate in the
sequel. So, basically, the subsequent statistical analysis is testing

318



the hypothesis: "did the manual grouping produce meaningful
groups?"

5.2 Pattern Cohesion
Pattern cohesion refers to the internal homogeneity of the projects
that pertain to each pattern. We encourage the reader to inspect
the detailed material at the accompanying web site of the paper
for their visual homogeneity. Table 2 presents the exceptions to
the patterns with respect to their definition for our 151 projects.
The 7 we found exceptions are too few and not particularly sig-
nificant to question the cohesion of the patterns:

• Two projects classified as Sigmoid violate the "middle-
born" part of the definition by being born early.

• A Late Riser project reaches the top band in middle life,
violating the requirement of late attainment of top-band.

• Siesta has 2 projects exceeding the 0-3 months growth ac-
tivity in the end, and another project that reaches growth
just ’long’ after schema birth (and not ’very long’).

• A Quantum Step project reaches top late rather than mid-
dle.

We also quantized each project’s time series to a vector of
20 measurements, one per interval of 5% of time (i.e., at 0%, 5%,
. . . of time), and computed the centroid for each pattern. We mea-
sured the Mean Distance to Centroid for each pattern. The MDC
ranges from 0.06 to 1.25, which is reasonable for vectors of 20
measurements in [0 . . . 1] (see the accompanying web site of the
paper).

5.3 Disjointedness
Disjointedness requires that the different patterns are essentially
different with one another. It is straightforward to verify that
our classification scheme attains disjointedness, as the formal
definitions cover disjoint areas in the space produced by the
Cartesian Product of values for the defining attributes. However,
apart from formally, the pattern set is also hiding an inherent,
essential disjointedness. The essential disjointedness is depicted
in Figure 6 reporting the placement of patterns in the active
domain space formed by the Cartesian Product of the domains
of the involved class-based metrics. We report only the active
domain that contains only the combinations which are populated
by projects, and, for each point of this multidimensional space,
we report the number of projects that pertain to it. So, for each
part of the active domain, we show how many projects "live"
there, and to which pattern they belong. With the exception of
(a) a couple of Siesta projects being born early that is overlapping
with Regularly Curated projects of similar definition, and, (b)
the Quantum Steps and Regularly Curated patterns that span
a large area of the domain space of values (understandably, as
they are produced by the union of similar sub-families) which
they would share had they not being discriminated by change
rate, the rest of the patterns are focused in a specific area of the
domain space and disjoint from the others. Quantum Steps and
Regularly Curated are still disjoint; we just point out that they
are the only patterns practically separated by change rate in their
growth period.

As a side-effect of the validation of pattern disjointedness, we
have extracted a simple decision tree from the labeled values of
their properties, after the manual annotation had been completed
(Figure 5). The simple classification tree shows that the patterns
can be fairly well (although not 100%) separated automatically,

with only 4 out of 151 projects that would have been erroneously
classified under this classification scheme.

5.4 Threats to Validity, Generalization and
Completeness

The main factors that affect the validity of our findings are factors
concerning the validity of the data set per se. As our data set is a
targeted subset of [42], several threats to validity are common.
We do refer the interested reader to [42] for extensive comments
on the validity and constraint ourselves to a concise treatment
of the most important facts, for the autonomy of the paper.

Scope. The scope of the paper concerns the evolution in time
of the logical level of relational schemata in meaningful Free
Open-Source Software projects, hosted in GitHub. We are not
covering proprietary schemata outside the FoSS domain. We do
not cover conceptual or physical schemata. We are also restricted
in relational schemata and not XML, JSON, or another format.

Generalization and External Validity. The external validity
of a study concerns the extent to which its findings are generaliz-
able to the general population. Here, we work with the corpus of
projects coming from [42] and [45], and, as mentioned in Section
3, we have established that it is representative enough of the
entire population described in the aforementioned scope.

A second threat to the external validity of our findings has to
do with the process of this paper. We believe that our findings
are representative of how schemata evolve in time, based on the
following observations. First, we have based our findings on a
substantial corpus of 151 significant projects with more than 12
months duration (which means ample time for the patterns to
appear). Second, the patterns produced are cohesive, disjoint and
not overfitted to the data set used.

Experimental validity. We have checked our change detec-
tion and chart-generating software via tests and code reviews;
hence, we are fairly confident on its correctness, and thus, trust its
output. We have also rechecked our manual allocation of projects
to patterns, as this was an iterative process.

5.5 Completeness
We cannot exclude the possibility that other patterns of change
do exist, although the overall situation hints that this is rather
unexpected. First, a large part of the space of possible value
combinations is already covered. Second, although there do exist
value combinations missing from Figure 6, several of them are
unattainable – e.g., a project with late schema birth, is obligatorily
restricted to have a late top-band attainment and a short tail.

6 RELATIONSHIP TO OTHER MEASURES OF
EVOLUTION

In this section, we discuss how different metrics of activity are
related to the time-related patterns that we introduce.

6.1 Relationship to Activity-Related Evolution
Measures

Interestingly, the time-related patterns are quite orthogonal to
most of the fundamental measures of schema evolution activity.
Most of the patterns, with the notable exception of Smoking
Funnel and Regularly Curated, demonstrate quite similar behavior.

Concerning Total Schema Activity, i.e., the total amount of
schema change that eventually took place in the life of the project
after schema birth, it is rather indifferent to the patterns. Because

319



Figure 6: Coverage of the space of possible values by the
time-related patterns of schema evolution

of the typically low values that schema evolution reaches, the
values of change are clustered along small numbers. The only ex-
ceptions are Smoking Funnel and Regular Curation, who escape
the tight overlap of the other patterns. There is a progressive
shift from (a) the be quick or be dead patterns (Radical Sign with
a median at 13 attributes and the rest less than 3), to (b) Siesta
and Quantum steps with somewhat higher medians (17 and 22
attributes changed), and, (c) to the Smoking Funnel and Regular
Curation which come with orders-of-magnitude higher values
(medians of 189 and 250 changed attributes, respectively). The
subdivision of Total Schema Activity to Total Schema Expansion
and Total Schema Maintenance follows the same behavior.

Why do we see this behavior? It is important to highlight that
the behavior towards schema evolution is not obligatorily in sync
with the behavior towards source code evolution. For example,
even in really frozen patterns, like, e.g., the populous Radical
Sign, we can see vast ranges of PUP values. Similarly, for the
schema size at birth. Concerning the differentiation of Smoking
Funnel and Regularly Curated projects (the two smallest patterns
in terms of population), it is important to highlight that these
two include the most active projects in terms of total amount of
change.

Thus, Smoking Funnel and Regularly Curated projects start
bigger and contain higher amounts of schema evolution activity.
One could argue that this combination of attributes quantitatively
discriminates these two groups of projects from the others.

6.2 Relationship to the Point of Schema Birth
Predicting how a schemawill evolve given some original evidence
is an extremely difficult problem. To the best of our knowledge,
there is no attempt to the problem so far for two reasons. First,
to a very large extent, the evolution depends heavily on the par-
ticularities of the development and curation team, along with
the idiosyncrasies of the project itself. Thus, predictions would
require a very detailed charting of both project and anthropocen-
tric characteristics. Second, one needs a really large corpus of
schema histories to come up with some broad approximation
from a statistical point of view.

We make such a preliminary attempt in this section, to give a
broad overview of how the point of schema birth and the future
behavior of a project in terms of its pattern of schema evolution
relate. Figure 7 depicts (a) the probabilities overall, and, (b) de-
pending on the month of schema birth (as an absolute value).
The rationale behind Figure 7 is: "Assume a curator, or an ex-
ternal assessor, who extracts (e.g., via git log and out tool set)
the history of changes of a software project and its relational
database. Can the curator make an educated guess on the future
of how the schema will evolve?" Based on the statistics from our
151 projects, we argue that the point of schema birth gives some
interesting estimations.

• Assuming that the schema is born during the first month
of the project life, the probability that the schema will be
completely frozen is 75% (!), as a flatliner or a radical sign.
A 14% probability remains for steady regular curation via
the Quantum Steps or Regular Curation patterns.

• Assuming the schema is born in the next six months, there
is a 53% chance that the schema will follow a sharp, fo-
cused evolution, and a 40% chance it will follow a regularly
curated life.

• The next six months demonstrate a drop in the number
of projects born (13), albeit with pretty much the same
distribution of probabilities for the families. The only sig-
nificant change is that the probability of a more active
regular curation rises to 23%.

• As the point of schema birth exceeds the first year, there is
a 64% chance of a sharp focused change, 21% for a regular
maintenance, and a 15% for a smoking funnel behavior.

As a side observation, Figure 7 also gives some results to the
question: "when are schemata born, in the life of a project?". The
data indicate (i) a probability of 34% (52/151) for a schema to be
born in M0, (ii) a 60% probability (90/151) for the schema to be
born in the first 6 months of the project (including M0), (iii) a
68% (103/151) probability for the schema to be born in the first year
of the project’s life, and, (iv) quite surprisingly, a 31% probability
of a project having its schema being born after the first year of the
project’s life.

6.3 Relationship to mixture of data type
change

We have studied how patterns relate to the internal breakdown
of change, in terms of expansion (attribute birth with new tables,
or injection to existing ones) and maintenance (attribute deletion,
data type or PK change). With the exception of few Radical Sign
projects that are oriented towards maintenance, the “Be Quick
or Be Dead” family involves small change, frequently being zero,
and an inclination towards expansion. Due to the small volume of
change, the patterns of the family are frequently monothematic in
their internal breakdown of change types. In contrast, the rest of

320



Figure 7: Probability of a schema following a certain time-related pattern, given its point of birth

the time-related patterns come with higher volumes of changes,
which is also related to a variety of change types. Both expansion
and maintenance are performed with the granule of change being
mostly the entire table (being inserted or deleted), rather than
the internal restructuring of existing tables. A detailed study is
included in the accompanying material of the paper.

7 CONCLUSIONS AND FUTURE WORK
The core contribution of this paper is the provision of a series of
patterns and pattern families on how developers and data curators
regulate schema evolution over time.We work with a large corpus
of 151 schema histories, and introduce 3 families of 8 patterns of
schema change: the Be Quick or Be Dead family of sharp, focused
change, the Stairway to Heaven family of steps of schema change,
and the Scared to Fall Asleep Again family with schema change
late in the project’s life.

A major result, mainly involving the Be Quick or Be Dead
family is that the "freeze-and-build" aversion to change is indeed
present at large and concerns 2/3 of the corpus. The result is sig-
nificant, because, now that we know that schemata evolve over
time mostly rarely and sharply, we can act in several ways.

• Research-wise, the research community can instigate re-
search efforts to facilitate a more active schema life for
databases. A major implication of the aversion-to-change
finding is that we need to reflect on our schema design
and software development premises. A clear problem here
is the loose coupling between software applications and
the underlying schema structure of their database. Schema
evolution, apart from the operational costs of data migra-
tion, breaks the mapping to the surrounding code, thus
incurring significant costs. Therefore, as researchers, we
should fundamentally rethink how schemata and applica-
tions are coupled in ways that allow smooth adaptation
of both to change.

• Moreover, software development teams can organize how
they chart schema-to-source mappings, in order to lessen
the effects of schema change to the code, and be able to
facilitate schema change better than what they do now.

At the same time, the rest of the projects evolve differently in
time, with regular (rare or dense) change; and, surprisingly, late

change too. Thus, we prove that we cannot rely solely on the
premise of aversion to change. Section 6.2 gives insights on how
likely it is to encounter change or rigidity in the life of a schema.

• Project managers can exploit the statistics of Figure 7 up-
front, to reserve time for handling change and its impact.
Hence, projects managers can prepare in advance on how
they plan / expect / drive schema change.

Finally, this paper concerns a type of result that is (sadly)
atypical for our data engineering community: the enrichment of
our knowledge –in a principled manner– on how the artifacts
that we invent (here: relational databases) are actually used in
practice.

• Part of our contribution is the topic itself, along with the
nomenclature, measures and methodological principles used.

• A clear implication, thus, is that the paper opens a road for
future research – e.g., schema evolution of non-traditional
data (e.g., NoSQL), or in non-FOSS projects.

Concerning possible roads for the future, we can envision
several possibilities.

• First, as already mentioned, Nosql schemata are a clear
case where this method can be applied, esp., since there
are obvious similarities with the few results that currently
exist [34]. This becomes more interesting if we consider
the anecdotal claim that nosql schemata are more “alive"
in terms of evolutionary activity. The entire issue remains
open to investigation.

• Another unsolved research problem is the provision of
solid foundations for the prediction of future behavior on
the basis of a meaningful model. This is a fairly important
result to be pursued, as it can allow the deduction of laws
on how schemata evolve.

• An even harder road to follow is to obtain and study
schema histories from proprietary schemata. For the last
50 years of the database discipline, this has been prac-
tically impossible, limiting our attempts to the study of
FOSS schemata, as soon as public repositories allowed us
to do so, in the last decade.

• Finally, developing educational material and practical ex-
ercises for our students, in order to train them on the
practical aspects of the topic is another important road for
the future.

321



REFERENCES
[1] Steve Adolph, Wendy Hall, and Philippe Kruchten. 2011. Using grounded

theory to study the experience of software development. Empir. Softw. Eng.
16, 4 (2011), 487–513. https://doi.org/10.1007/S10664-010-9152-6

[2] Tobias Bleifuß, Leon Bornemann, Dmitri V. Kalashnikov, Felix Naumann, and
Divesh Srivastava. 2021. The Secret Life of Wikipedia Tables. In Proceedings
of the 2nd Workshop on Search, Exploration, and Analysis in Heterogeneous
Datastores (SEA-Data 2021) co-located with 47th International Conference on
Very Large Data Bases (VLDB 2021), Copenhagen, Denmark, August 20, 2021
(CEUR Workshop Proceedings, Vol. 2929). CEUR-WS.org, 20–26.

[3] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
andHannes Voigt. 2019. Schema Validation and Evolution for GraphDatabases.
In 38th International Conference on Conceptual Modeling, ER 2019, Salvador,
Brazil, November 4-7, 2019, Proceedings. Springer, 448–456.

[4] Dimitri Braininger, WolfgangMauerer, and Stefanie Scherzinger. 2020. Replica-
bility and Reproducibility of a Schema Evolution Study in EmbeddedDatabases.
In ER 2020 Workshops CMAI, CMLS, CMOMM4FAIR, CoMoNoS, EmpER (Lecture
Notes in Computer Science, Vol. 12584). Springer, Vienna, Austria, 210–219.

[5] Loredana Caruccio, Giuseppe Polese, and Genoveffa Tortora. 2016. Synchro-
nization of Queries and Views Upon Schema Evolutions: A Survey. ACM
Trans. Database Syst. 41, 2 (2016), 9:1–9:41.

[6] Kathy Charmaz. 2006. Constructing Grounded Theory: A Practical Guide
Through Qualitative Analysis. Sage, Thousand Oaks.

[7] Christina Christodoulakis, Eric B. Munson, Moshe Gabel, Angela Demke
Brown, and Renée J. Miller. 2020. Pytheas: Pattern-based Table Discovery in
CSV Files. Proc. VLDB Endow. 13, 11 (2020), 2075–2089.

[8] Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens H.
Weber. 2015. Understanding database schema evolution: A case study. Sci.
Comput. Program. 97 (2015), 113–121.

[9] Juliet M. Corbin and Anselm Strauss. 1990. Basics of qualitative research:
Grounded theory procedures and techniques. Sage, Thousand Oaks, CA, US.

[10] Carlo Curino, Hyun Jin Moon, Letizia Tanca, and Carlo Zaniolo. 2008. Schema
Evolution in Wikipedia - Toward a Web Information System Benchmark. In
Proceedings of the Tenth International Conference on Enterprise Information
Systems, ICEIS 2008, June 12-16, 2008. Volume DISI, Barcelona, Spain, 323–332.

[11] Julien Delplanque, Anne Etien, Nicolas Anquetil, and Olivier Auverlot. 2018.
Relational Database Schema Evolution: An Industrial Case Study. In 2018 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2018,
September 23-29, 2018. IEEE Computer Society, Madrid, Spain, 635–644.

[12] Konstantinos Dimolikas, Apostolos V. Zarras, and Panos Vassiliadis. 2020. A
Study on the Effect of a Table’s Involvement in Foreign Keys to its Schema
Evolution. In 39th International Conference on Conceptual Modeling, ER 2020,
November 3-6, 2020 (Lecture Notes in Computer Science, Vol. 12400). Springer,
Vienna, Austria, 456–470.

[13] Spyridon K. Gardikiotis and Nicos Malevris. 2009. A two-folded impact analy-
sis of schema changes on database applications. Int. J. Autom. Comput. 6, 2
(2009), 109–123.

[14] Barney Glaser and Anselm Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine, Chicago Illinois.

[15] Mathieu Goeminne, Alexandre Decan, and TomMens. 2014. Co-evolving code-
related and database-related changes in a data-intensive software system. In
2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering, CSMR-WCRE 2014, February 3-6, 2014.
IEEE Computer Society, Antwerp, Belgium, 353–357.

[16] Michael Hartung, James F. Terwilliger, and Erhard Rahm. 2011. Recent Ad-
vances in Schema and Ontology Evolution. In Schema Matching and Mapping,
Zohra Bellahsene, Angela Bonifati, and Erhard Rahm (Eds.). Springer, 149–190.

[17] Kai Herrmann, Hannes Voigt, Torben Bach Pedersen, and Wolfgang Lehner.
2018. Multi-schema-version data management: data independence in the
twenty-first century. VLDB J. 27, 4 (2018), 547–571. https://doi.org/10.1007/
s00778-018-0508-7

[18] Kai Herrmann, Hannes Voigt, Jonas Rausch, Andreas Behrend, and Wolfgang
Lehner. 2018. Robust and simple database evolution. Inf. Syst. Frontiers 20, 1
(2018), 45–61.

[19] Abdulrahman Kaitoua, Tilmann Rabl, Asterios Katsifodimos, and Volker Markl.
2019. Muses: Distributed Data Migration System for Polystores. In 35th IEEE
International Conference on Data Engineering, ICDE 2019, Macao, China, April
8-11, 2019. 1602–1605.

[20] Barbara A. Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl
Brereton, Stuart M. Charters, Shirley Gibbs, and Amnart Pohthong. 2017.
Robust Statistical Methods for Empirical Software Engineering. Empir. Softw.
Eng. 22, 2 (2017), 579–630.

[21] Meike Klettke, Hannes Awolin, Uta Störl, Daniel Müller, and Stefanie
Scherzinger. 2017. Uncovering the evolution history of data lakes. In IEEE
International Conference on Big Data, BigData 2017, December 11-14, 2017. IEEE
Computer Society, Boston,A, USA„ 2462–2471.

[22] Meike Klettke, Uta Störl, Manuel Shenavai, and Stefanie Scherzinger. 2016.
NoSQL schema evolution and big data migration at scale. In 2016 IEEE Inter-
national Conference on Big Data (IEEE BigData 2016), Washington DC, USA,
December 5-8, 2016. 2764–2774.

[23] Thomas A. Limoncelli. 2019. SQL is no excuse to avoid DevOps. Commun.
ACM 62, 1 (2019), 46–49. https://doi.org/10.1145/3287299

[24] Dien-Yen Lin and Iulian Neamtiu. 2009. Collateral evolution of applications
and databases. In Proceedings of the joint international and annual ERCIM

workshops on Principles of software evolution (IWPSE) and software evolution
(Evol) workshops, August 24-28, 2009. ACM, Amsterdam, Netherlands, 31–40.

[25] PetrosManousis, Panos Vassiliadis, andGeorge Papastefanatos. 2013. Automat-
ing the Adaptation of Evolving Data-Intensive Ecosystems. In Proceedings of
32th International Conference on Conceptual Modeling (ER 2013), Hong-Kong,
China, November 11-13, 2013. 182–196.

[26] Petros Manousis, Panos Vassiliadis, and George Papastefanatos. 2015. Im-
pact Analysis and Policy-Conforming Rewriting of Evolving Data-Intensive
Ecosystems. Journal of Data Semantics 4, 4 (2015), 231–267. https://doi.org/
10.1007/S13740-015-0050-3

[27] Petros Manousis, Panos Vassiliadis, Apostolos V. Zarras, and George Papaste-
fanatos. 2015. Schema Evolution for Databases and Data Warehouses. In 5th
European Summer School on Business Intelligence, eBISS 2015, July 5-10, 2015,
Tutorial Lectures (Lecture Notes in Business Information Processing, Vol. 253).
Springer, Barcelona, Spain, 1–31.

[28] Andy Maule, Wolfgang Emmerich, and David S. Rosenblum. 2008. Impact
analysis of database schema changes. In 30th International Conference on
Software Engineering (ICSE 2008), May 10-18, 2008, Wilhelm Schäfer, Matthew B.
Dwyer, and Volker Gruhn (Eds.). ACM, Leipzig, Germany, 451–460.

[29] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou.
2010. HECATAEUS: Regulating schema evolution. In ICDE. IEEE, Long Beach,
California, USA, 1181–1184.

[30] Amandalynne Paullada, Inioluwa Deborah Raji, Emily M. Bender, Emily Den-
ton, and Alex Hanna. 2021. Data and its (dis)contents: A survey of dataset
development and use in machine learning research. Patterns 2, 11 (2021),
100336.

[31] Dong Qiu, Bixin Li, and Zhendong Su. 2013. An empirical analysis of the co-
evolution of schema and code in database applications. In Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, August 18-26, 2013.
ACM, Saint Petersburg, Russian Federation, 125–135.

[32] Mohammad Raza and Sumit Gulwani. 2020. Web Data Extraction using Hybrid
Program Synthesis: A Combination of Top-down and Bottom-up Inference.
In Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, June 14-19, 2020. ACM, online conference, 1967–
1978.

[33] Stefanie Scherzinger, Wolfgang Mauerer, and Haridimos Kondylakis. 2021.
DeBinelle: Semantic Patches for Coupled Database-Application Evolution.
In 37th IEEE International Conference on Data Engineering, ICDE 2021. IEEE,
Chania, Greece, 2697–2700.

[34] Stefanie Scherzinger and Sebastian Sidortschuck. 2020. An Empirical Study on
the Design and Evolution of NoSQL Database Schemas. In 39th International
Conference on Conceptual Modeling, ER 2020, November 3-6, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12400). Springer, Vienna, Austria, 441–
455.

[35] Robert E. Schuler, Jitin Singla, Brinda Vallat, Kate L. White, Helen M. Berman,
and Carl Kesselman. 2023. Database Evolution, by Scientists, for Scientists: A
Case Study. In 19th IEEE International Conference on e-Science, e-Science 2023,
Limassol, Cyprus, October 9-13, 2023. 1–10.

[36] D. Sjøberg. 1993. Quantifying schema evolution. Information and Software
Technology 35, 1 (1993), 35–44.

[37] Ioannis Skoulis, Panos Vassiliadis, and Apostolos V. Zarras. 2015. Growing
up with stability: How open-source relational databases evolve. Information
Systems 53 (2015), 363–385.

[38] Divesh Srivastava, Tobias Bleifuß, Leon Bornemann, Dmitri V. Kalashnikov,
and Felix Naumann. 2022. Exploring and Analyzing Change: The Janus Project.
In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, Atlanta, GA, USA, October 17-21, 2022, Mohammad Al
Hasan and Li Xiong (Eds.). ACM, 3.

[39] Michael Stonebraker, Raul Castro Fernandez, Dong Deng, and Michael L.
Brodie. 2017. Database Decay and What To Do About It. Commun. ACM 60, 1
(2017), 11. https://doi.org/10.1145/3014349

[40] Uta Störl, Meike Klettke, and Stefanie Scherzinger. 2020. NoSQL Schema
Evolution and Data Migration: State-of-the-Art and Opportunities. In 23rd
International Conference on Extending Database Technology, EDBT 2020, March
30 - April 02, 2020. OpenProceedings.org, Copenhagen, Denmark, 655–658.

[41] Uta Störl, Alexander Tekleab, Meike Klettke, and Stefanie Scherzinger. 2018.
In for a Surprise When Migrating NoSQL Data. In 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018.
IEEE Computer Society, 1662.

[42] Panos Vassiliadis. 2021. Profiles of Schema Evolution in Free Open Source
Software Projects. In 37th IEEE International Conference on Data Engineering,
ICDE 2021,April 19-22, 2021. IEEE, Chania, Greece, 1–12.

[43] Panos Vassiliadis and George Kalampokis. 2022. Taxa and super taxa of schema
evolution and their relationship to activity, heartbeat and duration. Inf. Syst.
110 (2022), 102109. https://doi.org/10.1016/j.is.2022.102109

[44] Panos Vassiliadis, Michail-Romanos Kolozoff, Maria Zerva, and Apostolos V.
Zarras. 2019. Schema evolution and foreign keys: a study on usage, heartbeat
of change and relationship of foreign keys to table activity. Computing 101,
10 (2019), 1431–1456.

[45] Panos Vassiliadis, Fation Shehaj, George Kalampokis, and Apostolos V. Zarras.
2023. Joint Source and Schema Evolution: Insights from a Study of 195 FOSS
Projects. In 26th International Conference on Extending Database Technology,
EDBT 2023, March 28-31, 2023. OpenProceedings.org, Ioannina, Greece, 27–39.

322



[46] Panos Vassiliadis and Apostolos V. Zarras. 2017. Schema Evolution Survival
Guide for Tables: Avoid Rigid Childhood and You’re En Route to a Quiet Life.
Journal of Data Semantics 6, 4 (2017), 221–241.

[47] Panos Vassiliadis, Apostolos V. Zarras, and Ioannis Skoulis. 2017. Gravitating
to rigidity: Patterns of schema evolution - and its absence - in the lives of
tables. Information Systems 63 (2017), 24–46.

[48] Enzo Veltri, Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2023. Data
Ambiguity Profiling for the Generation of Training Examples. In 39th IEEE
International Conference on Data Engineering, ICDE 2023, April 3-7, 2023. IEEE,

Anaheim, CA, USA, 450–463.
[49] Gerardo Vitagliano, Mazhar Hameed, Lan Jiang, Lucas Reisener, Eugene Wu,

and Felix Naumann. 2023. Pollock: A Data Loading Benchmark. Proc. VLDB
Endow. 16, 8 (2023), 1870–1882.

[50] ShengfengWu and Iulian Neamtiu. 2011. Schema evolution analysis for embed-
ded databases. InWorkshops Proceedings of the 27th International Conference
on Data Engineering, ICDE 2011, April 11-16, 2011. IEEE Computer Society,
Hannover, Germany, 151–156.

323


