
Coworking Scheduling with Network Flows
Mariia Anapolska∗

Research Group Combinatorial Optimization
RWTH Aachen University, Germany
anapolska@combi.rwth-aachen.de

Christina Büsing†
Research Group Combinatorial Optimization

RWTH Aachen University, Germany
buesing@combi.rwth-aachen.de

Tabea Krabs‡
Research Group Combinatorial Optimization

RWTH Aachen University, Germany
krabs@combi.rwth-aachen.de

Tobias Mömke§
Department of Computer Science
University of Augsburg, Germany

moemke@informatik.uni-augsburg.de

ABSTRACT

Collaborative usage of resources is becoming increasingly popular
in various fields. One common example are coworking spaces —
office rooms with work places that can be rented by individuals
on hourly basis. We consider the problem of assigning all booking
requests for a day to equivalent office rooms with different but fixed
opening times and fixed interchangeable closing times. The closing
times are flexible due to daily maintenance, e.g. cleaning, which
must be done in all rooms in an arbitrary order.

This problem is related to the known Interval Scheduling Prob-
lem with Machine Availabilities (ISMA), where each machine has
a contiguous availability interval, and each job presents a specific
time interval which has to be scheduled. According to our cowork-
ing scheduling application, we extend ISMA to Flexible Multithread
ISMA (FlexMISMA) by introducing machine capacities that model
the number of work places per room and by allowing to permute
the end times of machines’ availability periods.

In this paper, we determine a tight classification of necessary
conditions for the existence of a polynomial time algorithm for
FlexMISMA, assuming P ≠ NP. More specifically, we develop
a network flow model and present polynomial time algorithms
for instances (i) with two machines, and (ii) with arbitrarily many
machines of capacity one each. In the same time, we prove that in-
creasing the machine capacity to two renders FlexMISMANP-hard
for arbitrarily many machines. Furthermore, we complement result
(i) by showing that the problem is NP-hard already for instances
with three machines as a special case of the Vertex-Disjoint Paths
problem.

∗Supported by the Freigeist-Fellowship of the Volkswagen Stiftung and by the German
research council (DFG) Research Training Group 2236 UnRAVeL.
†Supported by the German Federal Ministry of Education and Research (grant
no. 05M16PAA) within the project “HealthFaCT - Health: Facility Location, Covering
and Transport’, by the Freigeist-Fellowship of the Volkswagen Stiftung and by the
German research council (DFG) Research Training Group 2236 UnRAVeL.
‡Supported by the Freigeist-Fellowship of the Volkswagen Stiftung and by the German
research council (DFG) Research Training Group 2236 UnRAVeL.
§Partially supported by the DFG Grant 439522729 (Heisenberg-Grant).

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen,
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

1 INTRODUCTION

Collaborative usage of resources is becoming increasingly popu-
lar in various fields, presenting new challenges for planning and
scheduling. For example, small businesses rent parts of storage
facilities or computer clusters for fixed time intervals when owning
a whole facility is not economical. One further example of such
collaboration are coworking spaces – office spaces typically con-
sisting of several office rooms, with work places that can be rented
by individuals on an hourly basis. Consider a coworking space
with several identical office rooms. The customers can book single
desks for an arbitrary continuous time period during the day, and
they are guaranteed not to be required to change the room during
their stay. Every day at the beginning and at the end of the official
opening hours, a cleaning team must visit all the rooms one by one.
Cleaning every room takes the same amount of time, thus the times
at which the team switches to another room are fixed (these times
are equal to the start time of the cleaning phase plus multiples of
the cleaning duration). The order in which the rooms are cleaned
is flexible. Since the rooms must be empty during the cleaning, the
order of room cleaning defines the effective availability periods of
rooms to the customers. When a new booking comes in, the planner
needs to decide whether it can be accepted, i.e. whether there is a
cleaning sequence and an assignment of all received bookings to
rooms which respects the rooms’ capacity and does not interfere
with the cleaning.

It is easy to recognize that this problem presents a variant of
Interval Scheduling with restricted machine availabilities, where
machines represent the rooms, intervals represent single bookings,
and restricted availability periods of machines are caused by room
cleaning in the morning and in the evening. Note that the rooms
accommodate several desks, which corresponds to machines being
able to process several jobs at a time.

1.1 Related work

There have been many approaches to extend Interval Scheduling by
restricted machine availabilities, cf. [8]. Brucker and Nordman [3]
introduce a variant of Interval Scheduling, the 𝑘-track assignment
problem, in which every machine is available only for a given time
interval. The authors consider both the case of identical machines
and a generalization where machines can process only given sub-
sets of jobs. Later, Kolen et al. [8] studied this problem using the
name Interval Scheduling with Machine Availabilities (ISMA). They
showed that the problem isNP-complete if the number of machines

Series ISSN: 2510-7437 11 10.48786/inoc.2022.03

https://OpenProceedings.org/
http://dx.doi.org/10.48786/inoc.2022.03

INOC 2022, June 7-10, 2022, Aachen, Germany

is part of the input but polynomially solvable for a fixed number of
machines.

There are several approaches to allow for multitasking machines
in ISMA. Mertzios et al. [9] consider a variant, called Interval Sched-
uling with Bounded Parallelism, in which all machines can concur-
rently process up to a given number of jobs. The authors consider
two objectives: minimizing the total active time of the machines
needed to process all jobs, and maximizing the number of processed
jobs given a number of machines. Another approach to allow for
multitasking machines was presented by Angelelli and Filippi [1].
They introduce Interval Scheduling with a Resource Constraint
(FISRC), where every machine and every job is additionally charac-
terized by a resource supply or demand.

Generalizations of interval scheduling include the well-studied
Unsplittable Flow problem on a path (UFP). In UFP, instead of ma-
chines we have a resource capacity that can be used by all scheduled
jobs and jobs have individual demands. While it is easy to decide
whether all jobs can be scheduled, the optimization problem where
we have to select a maximum cardinality or maximum weight sub-
set of jobs is NP-hard (generalizing Knapsack) and the currently
best result is a 5/3-approximation algorithm [7].

UFP has a geometric version called the Storage Allocation Prob-
lem (SAP) [2, 10] where all scheduled jobs have to be drawn as
non-overlapping axis-parallel rectangles. SAP with uniform job
demands corresponds to a multithread version of ISMA, where for
each pair of machines either the availability interval of one machine
is contained in the interval of the other or the two intervals are
disjoint.

1.2 Our Contribution

To model the coworking scheduling problem, we propose a twofold
generalization of the Interval Scheduling problem with Machine
Availabilities (ISMA) [8].

For one thing, we switch to multithread machines, i.e., we allow
machines to process several jobs at a time. In order to keep the
machines equivalent, we require all machines to have the same
capacity. Note that in this case, we may assume that the machines’
end times are interchangeable.

In the setting of coworking scheduling, we assume that all rooms
are identical, and that the transition time between the rooms for the
cleaning team can be neglected, so the rooms can be cleaned in any
order. However, every time the cleaning crew enters a new room
in the evening, the room becomes unavailable for the customers.
This implies that the periods during which the rooms are available
for bookings are not fixed, since the cleaning start times can be
permuted; the number of available rooms, in contrast, is fixed for
any point in time.

Therefore, the second adjustment to ISMA is the possibility to
permute the machine end times. In other words, the start and end
timesmainly depict information about when and how the number of
available machines changes. However, we may still assume without
loss of generality that every machine is preassigned a start time.
The task is to assign every machine an end time and to schedule
all jobs, or to decide that there is no such end time assignment
and schedule. Due to the increased flexibility, we call the problem
Flexible Multithread ISMA (FlexMISMA). Interestingly, despite the

added flexibility, FlexMISMA turns out to be at least as hard as
ISMA.

In this paper, we determine a tight classification of conditions
that are required to obtain a polynomial time algorithm for
FlexMISMA assuming P ≠ NP.

We start with analyzing the hardness depending on the number
of machines. In Section 3.1 we provide a network flow interpretation
of the problem. With its help we show that FlexMISMA can be
solved in polynomial time if the number of machines is at most
two. The general idea consists in computing a schedule for only
one machine at a time using a MaxFlow Algorithm to find vertex-
disjoint paths in a special graph. In a second step, we then transform
the solution to a feasible solution for both machines.

However, this technique does not work if the number of ma-
chines is at least three. We show in Section 3.2 that such instances
are NP-hard for FlexMISMA.

We continue by considering the case of machines with fixed ca-
pacity and show in Theorem 2 that FlexMISMA is NP-hard for ma-
chine capacity equal to two. To this end, we show that FlexMISMA
is at least as hard as ISMA, which is known to be NP-hard [8]. For
FlexMISMA with unit machine capacities, however, we show in
Theorem 3 that the problem essentially boils down to solving an
interval coloring instance and is thus solvable in polynomial time.

2 PROBLEM FORMULATION

We formulate the problem of coworking scheduling in terms of
classical machine scheduling.

Interval Scheduling with Machine Availabilities (ISMA) is a known
scheduling problem that incorporates a machine availability con-
straint into the Interval Scheduling problem. Specifically, ISMA
assumes that every machine has a fixed availability period. Kolen
et al. define ISMA as follows [8].

Definition 1 (ISMA). Given 𝑚 machines that are available in
periods [𝑠𝑖 , 𝑓𝑖) for 𝑖 ∈ [𝑚], and 𝑛 jobs that require processing in the
periods [𝑎 𝑗 , 𝑏 𝑗) for 𝑗 ∈ [𝑛], ISMA asks for a schedule that respects
the availability of each machine and schedules no two jobs with
overlapping processing intervals onto the same machine.

Since ISMA assumes that every machine processes at most one
job at a time, it is insufficient for modeling the entire coworking
scheduling problem. We extend the formulation of ISMA to allow
for multithread machines that can process several jobs simultane-
ously, which models the coworking offices hosting several desks.

Further, we integrate the interchangeability of the machines’
end times (which represent the start times of the evening room
cleaning). We formulate the problem in a general way by allowing
arbitrary, not necessarily equidistant, start and end times. This
leads to the following variant of Interval Scheduling where each
machine has an assigned start time, and the end times are given
but not preassigned to the machines.

Definition 2 (The Flexible Multithread ISMA problem
(FlexMISMA)). An instance of the Flexible Multithread ISMA
(FlexMISMA) problem is given by 𝑚 machines, their capacity
𝐶 ∈ N, start times (𝑠𝑖)𝑖∈[𝑚] for every machine, 𝑚 end times
(𝑓𝑖)𝑖∈[𝑚] that still have to be assigned to a machine, 𝑛 jobs, and
the jobs’ processing intervals [𝑎 𝑗 , 𝑏 𝑗) for 𝑗 ∈ [𝑛]. FlexMISMA

12

Coworking Scheduling with Network Flows INOC 2022, June 7-10, 2022, Aachen, Germany

𝑠1 𝑓1

𝑠2 𝑓2

𝑠3 𝑓3

𝑡

0 1 2 3 4 5 𝑇=6

(a) start and end times

1
2

3
4

5
6
7

8
9
10

11 𝑡

0 1 2 3 4 5 𝑇=6

(b) processing periods of jobs

𝑠1

𝑠2

𝑠3

𝑓1

𝑓3

𝑓2

1
2

3
4

5

6
7

8

9
10

11

(c) solution with 𝜏 = (2, 3)

Figure 1: An example of a FlexMISMA instance with𝑚 = 3
machines of capacity 𝐶 = 2.

asks for two assignments: a bijective assignment 𝜏 : [𝑚] → [𝑚]
of machines to end times with 𝑠𝑖 ⩽ 𝑓𝜏 (𝑖) for all 𝑖 ∈ [𝑚], and an
assignment 𝛼 : [𝑛] → [𝑚] of jobs to machines such that every
machine 𝑖 ∈ [𝑚] processes at most 𝐶 jobs simultaneously and only
between its start and end time, i.e.,

��{ 𝑗 ∈ 𝛼−1 (𝑖) | 𝑡 ∈ [𝑎 𝑗 , 𝑏 𝑗)}
�� ⩽ 𝐶

for all 𝑡 ∈ [𝑠𝑖 , 𝑓𝜏 (𝑖)), and 𝑠𝑖 ⩽ 𝑎 𝑗 < 𝑏 𝑗 ⩽ 𝑓𝜏 (𝑖) for all 𝑗 ∈ 𝛼−1 (𝑖).

All input parameters are assumed to be integer. Without loss
of generality, we assume that the earliest start time is 0, i.e., 0 =

min𝑖∈[𝑚] 𝑠𝑖 , and we define the latest end time as 𝑇 := max𝑖∈[𝑚] 𝑓𝑖 .
Observe that we can consider every multi-thread machine of

capacity𝐶 as a group of𝐶 single-thread machines that are required
to have the same start and end times. Hence, FlexMISMA is an
extension of ISMA in which the machines are partitioned into
groups by availability and the end times must be equal within each
group, but can be permuted between the groups.

Figure 1 shows an exemplary instance of FlexMISMA. This
instance is given by three machines with capacity 𝐶 = 2, and by
the job set with start and end times as displayed in the figure. One
feasible solution for the example instance is presented in Figure 1c.

The bijective function 𝜏 can also be interpreted as a permutation
on set [𝑚]. Therefore, we use in the following the permutation
representation. For example, in the solution presented in Figure 1c,
the end time assignment is given by the permutation 𝜏 =

(
2, 3

)
.

The time scale of an instance of both ISMA and FlexMISMA
can be compressed so as to contain only the significant time units
– the time units which are start or end times of machines or jobs.
The number of such time units is at most 2𝑛 + 2𝑚. Hence, we may
assume that 𝑇 ⩽ 2𝑛 + 2𝑚. Rescaling an instance in this manner
takes O((𝑛 +𝑚) log(𝑛 +𝑚)) time.

Hence, we can check in polynomial time whether, at some point
in time, more jobs need to be processed than there are machine

threads available, as the number of available machines at each
point in time can be derived from the start and end times. If that is
the case, the instance is automatically infeasible. We thus assume
in the following that at no point in time more jobs need to be
processed than there are threads available. Note that this does not
automatically imply feasibility. In the same way, we can verify in
polynomial time whether all machines are utilized to full capacity.
If this is not the case, we transform the instance by adding auxiliary
jobs with processing intervals of length one for the respective
underutilized time periods. This transformation has no influence
on the feasibility of a solution and needs only a polynomial number
of auxiliary jobs. Thus, we assume without loss of generality that
everymachine is utilized to full capacity in the available time period.

Finally, note that if there exist 𝑖, 𝑘 ∈ [𝑚] so that 𝑠𝑖 = 𝑓𝑘 , we can
simply remove them from the instance and reduce the number of
machines by one. Otherwise, depending on the assignment of end
times 𝜏 , we obtain either one machine with an empty availability
period or two machines with adjoining availability periods. In the
latter case, we can then combine those twomachines to onemachine
with a longer availability period. Thus, we assume in the following
𝑠𝑖 ≠ 𝑓𝑘 for all 𝑖, 𝑘 ∈ [𝑚].

The size of an instance of FlexMISMA is defined by three pa-
rameters: the number of jobs 𝑛, the number of machines𝑚 and the
machine capacity 𝐶 . Remarks above imply that the number of jobs
is bounded from below by the total machine capacity, i.e., 𝑛 ⩾ 𝑚 ·𝐶 .
We observe that the number of jobs is the main determinant of the
size of an instance of FlexMISMA. In the following complexity
study, we will focus on cases differentiated by values of parameters
𝑚 and 𝐶 , while the number of jobs remains unbounded.

3 COMPLEXITY FOR A CONSTANT NUMBER

OF MACHINES

In this section, we start studying the complexity of FlexMISMA.
We consider the case of a fixed number of machines, which corre-
sponds to scheduling a coworking space with a constant number of
rooms. The case of one machine is trivial, as it reduces to Interval
Scheduling; therefore, we proceed with the case of two machines,
which represents a coworking space with two equivalent rooms.

3.1 Polynomial-time algorithm for two

machines

The assumption of full machine utilization implies that in any
feasible solution for FlexMISMA, every machine processes exactly
𝐶 jobs at any time unit of its availability period. We call a non-
empty subset J of jobs feasible for machine 𝑖 ∈ [𝑚] and end time

𝑓 ∈ [1,𝑇], if for every time unit 𝑠𝑖 ⩽ 𝑡 < 𝑓, the set J contains
exactly 𝐶 jobs that must be processed at time 𝑡 , i.e., if for all 𝑡 ∈ N��{ 𝑗 ∈ J | 𝑡 ∈ [𝑎 𝑗 , 𝑏 𝑗)}

�� = {
𝐶, if 𝑠𝑖 ⩽ 𝑡 < 𝑓,

0, otherwise.

Note that all constraints of FlexMISMA are satisfied for a machine
with some assigned end time if the jobs of a corresponding feasible
set are assigned to it. In general, finding a feasible job set for one
machine and some end time is not sufficient to solve FlexMISMA.
However, this is sufficient if an instance of FlexMISMA has only
two machines.

13

INOC 2022, June 7-10, 2022, Aachen, Germany

Lemma 1. For an instance of FlexMISMA with𝑚 = 2 machines, 𝑛

jobs and end times (𝑓1, 𝑓2), let the subset J1 ⊆ [𝑛] of jobs be feasible
for machine 1 with end time 𝑓𝑖 ∈ {𝑓1, 𝑓2}. Denote by 𝑓𝑖′ the unique

remaining end time, where 𝑖′ ≠ 𝑖 . Then the set J2 := [𝑛] \ J1 is

feasible for machine 2 with end time 𝑓𝑖′ .

We omit the straightforward but technical proof of this Lemma.
As a consequence of Lemma 1, it suffices to find a feasible job

set for one machine and end time in order to solve FlexMISMA
for two machines. Therefore, we continue by proposing a method
based on network flow for finding such a feasible job set.

First, observe that the assumption of full utilization implies that
every job is immediately followed by another job, unless the former
ends at some machine’s end time, i.e., for a job 𝑗 ∈ [𝑛] holds 𝑏 𝑗 = 𝑓𝑖
for some 𝑖 ∈ [𝑚] or there exists a job 𝑗 ′ with 𝑎 𝑗 ′ = 𝑏 𝑗 . If the latter
holds true, we call job 𝑗 ′ a successor of 𝑗 .

We use this connection between jobs to construct a directed
graph 𝐺 = (𝑉 ,𝐴) that represents the FlexMISMA instance. This
graph is called the successor graph and contains three types of nodes:
a source vertex 𝑢 for every machine, a target vertex 𝑤 for every
end time, and a transit 𝑣 vertex for every job, i.e.,

𝑉 := {𝑢𝑖 ,𝑤𝑖 | 𝑖 ∈ [𝑚]} ∪ {𝑣 𝑗 | 𝑗 ∈ [𝑛]}.
The arcs of the network 𝐺 reflect the succession relationship: For
machine 𝑖 ∈ [𝑚], we construct arcs between the source vertex 𝑢𝑖
and all vertices 𝑣 𝑗 whose corresponding jobs start at the same time
as 𝑖 becomes available, i.e., 𝑠𝑖 = 𝑎 𝑗 . For end time number 𝑖 ∈ [𝑚],
we construct arcs between the target vertex 𝑤𝑖 and every vertex
𝑣 𝑗 whose corresponding job ends at 𝑓𝑖 , i.e., 𝑏 𝑗 = 𝑓𝑖 . For every two
transit vertices 𝑣 𝑗 and 𝑣 𝑗 ′ , we construct an arc from 𝑣 𝑗 to 𝑣 𝑗 ′ if and
only if 𝑗 ′ is a successor of 𝑗 , i.e., 𝑏 𝑗 = 𝑎 𝑗 ′ . Therefore,

𝐴 :={(𝑢𝑖 , 𝑣 𝑗) | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], 𝑠𝑖 = 𝑎 𝑗 }
∪{(𝑣 𝑗 ,𝑤𝑖) | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛], 𝑏 𝑗 = 𝑓𝑖 }
∪{(𝑣 𝑗 , 𝑣 𝑗 ′) | 𝑗, 𝑗 ′ ∈ [𝑛], 𝑏 𝑗 = 𝑎 𝑗 ′ }.

An exemplary FlexMISMA instance and its corresponding succes-
sor graph are shown in Figure 2. Remark that the successor graph
is acyclic and has |𝑉 | = 2 ·𝑚 + 𝑛 vertices and |𝐴| = O

(
𝑛2 +𝑚 · 𝑛

)
arcs. Therefore, its construction requires time polynomial in the
size of the underlying FlexMISMA instance.

We use the successor graph to construct feasible job sets for
the machines by computing families of vertex-disjoint 𝑢𝑖 -𝑤𝑖′ -paths.
Here, we use the term disjoint for internally vertex-disjoint paths.

Lemma 2. Let𝐶 vertex-disjoint𝑢𝑖 -𝑤𝑖′ -paths in the successor graph

of a FlexMISMA instance be given, where 𝑢𝑖 is a source node and𝑤𝑖′

is a target node. Then the set of jobs represented by the nodes that are

traversed by these paths is a feasible set for machine 𝑖 ∈ [𝑚] and end
time 𝑓𝑖′ . Conversely, if there is a feasible job set for machine 𝑖 and end

time 𝑓𝑖′ , then the successor graph contains 𝐶 disjoint 𝑢𝑖 -𝑤𝑖′ -paths.

Proof. Let 𝐶 𝑢𝑖 -𝑤𝑖′ -paths P1, . . . ,P𝐶 be given in the successor
graph, where 𝑖, 𝑖′ ∈ [𝑚]. For each path P𝑙 , with 𝑙 = 1, . . . ,𝐶 , let
𝐽𝑙 ⊆ [𝑛] be the set of corresponding jobs, i.e., 𝐽𝑙 = { 𝑗 ∈ [𝑛] | 𝑣 𝑗 ∈
P𝑙 }. Let J denote the union of all these job sets:

J B
𝐶⋃
𝑙=1

𝐽𝑙 .

𝑡𝑠1 𝑠2 𝑠3 𝑓1,2 𝑓3

1
2

3
4

5
6

7
8

9

10

11

12
13

(a) job set, start and end times

𝑢1

𝑢2

𝑢3

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8
𝑣9

𝑣10

𝑣11

𝑣12

𝑣13

𝑤1

𝑤2

𝑤3

(b) successor graph

Figure 2: Successor graph for the FlexMISMA instance with

𝑚 = 3 and 𝐶 = 2.

We show that the job set J satisfies the conditions of a feasible
set for machine 𝑖 . Since the paths are vertex-disjoint, the job sets
𝐽𝑙 are pairwise disjoint as well. By construction of the successor
graph, for each 𝑙 = 1, . . . ,𝐶 , the jobs in 𝐽𝑙 have disjoint processing
intervals that cover in total exactly the interval [𝑠𝑖 , 𝑓𝑖′), i.e., for all
𝑠𝑖 ⩽ 𝑡 < 𝑓𝑖′ there exists exactly one job 𝑗 ∈ 𝐽𝑙 with 𝑡 ∈ [𝑎 𝑗 , 𝑏 𝑗) and
[𝑎 𝑗 , 𝑏 𝑗) ⊆ [𝑠𝑖 , 𝑓𝑖′) for all 𝑗 ∈ 𝐽𝑙 . As a result,��{ 𝑗 ∈ J | 𝑡 ∈ [𝑎 𝑗 , 𝑏 𝑗)}

�� = {
𝐶, if 𝑠𝑖 ⩽ 𝑡 < 𝑓,

0, otherwise,

holds true and J is a feasible set for machine 𝑖 .
Conversely, let J ⊆ [𝑛] be a feasible job set for machine 𝑖 ∈ [𝑚]

and end time 𝑓𝑖′ . We explicitly construct the corresponding disjoint
paths. First, we color the jobs in J with𝐶 colors so that intersecting
jobs have different colors. Such a coloring exists by definition of a
feasible job set. Next, we color the corresponding transit vertices
in the successor graph accordingly. In addition, for easier notation,
we assign all 𝐶 colors to vertices 𝑢𝑖 and𝑤𝑖′ .

Next, we show that every color class 𝐽𝑙 , where 𝑙 ∈ [𝐶], yields a𝑢𝑖 -
𝑤𝑖′ -path. Notice that by definition of a feasible set for machine 𝑖 , for
every time unit 𝑡 the set J contains𝐶 jobs spanning 𝑡 . Therefore, at
any time unit of the machine’s availability period and for each color
𝑙 ∈ [𝐶], there is a job colored with color 𝑙 . Thus, in the successor
graph, every transit vertex of color 𝑙 is adjacent to exactly two other
vertices of color 𝑙 , to one by an outgoing and to one by an incoming
arc. Additionally, the source vertex 𝑢𝑖 and the target vertex𝑤𝑖′ are
adjacent each to exactly one transit vertex of color 𝑙 . As a result,
the vertices corresponding to job set 𝐽𝑙 form a 𝑢𝑖 -𝑤𝑖′ -path in the
successor graph. Since the color classes are pairwise disjoint, so are
the paths constructed from distinct color classes of J . □

14

Coworking Scheduling with Network Flows INOC 2022, June 7-10, 2022, Aachen, Germany

Lemma 1 and Lemma 2 imply that to solve FlexMISMA with
two machines, it suffices to find a family of 𝐶 disjoint paths with
common source and target vertices in the successor graph, or to
show that no such family exists. We suggest using a MaxFlow
subroutine to search for such disjoint paths. A flow in a graph
with unit edge capacities corresponds in general to a family of
edge-disjoint paths. We use the commonly known transformation
in order to ensure that the paths are also vertex disjoint: We split
every transit vertex 𝑣 𝑗 into two vertices 𝑣−

𝑗
and 𝑣+

𝑗
connected by

an arc (𝑣−
𝑗
, 𝑣+

𝑗
), and make all incoming arcs of the original vertex

incident to 𝑣−
𝑗
whereas the outgoing arcs of the original vertex

become incident to 𝑣+
𝑗
.

We use a subroutine that, given two vertices 𝑢 and 𝑤 and an
integer 𝐶 , finds a 𝑢-𝑤 -flow of value exactly 𝐶 . It can be easily
derived from MaxFlow solvers and runs in polynomial time. The
procedure solving FlexMISMAwith twomachines works as follows
after the successor graph is constructed. First, ask for a 𝑢1-𝑤1-flow
of value𝐶 . If there is no such flow, repeat the request for the target
𝑤2 instead of𝑤1. If again no flow was found, abort — the instance
is infeasible. Once a 𝑢1-𝑤𝑖 -flow 𝜙1 of value 𝐶 was found for some
𝑖 ∈ {1, 2}, assign to machine 1 the end time 𝑓𝑖 and all jobs 𝑗 ∈ [𝑛]
for which the corresponding node 𝑣 𝑗 was traversed by the flow.
Next, delete the sub-graph induced by the flow 𝜙1 from the network.
The remaining graph, called reduced, contains exactly one source
node, 𝑢2, and one target node, say 𝑤 ′. The remaining end time,
as well as all remaining jobs, are assigned to machine 2. In this
manner, the procedure not only finds two families of disjoint paths
in the successor graph, but also directly constructs a solution for
FlexMISMA.

The runtime of the procedure is determined by the runtime of the
MaxFlow subroutine, which, for𝑚 = 2, is called at most two times.
Hence, the procedure runs in polynomial time, and its correctness
follows from Lemmata 1 and 2.

Naturally, the algorithm can be applied to instances with any
constant number of machines while preserving the polynomial
runtime. However, since Lemma 1 does not hold for three or more
machines, the algorithm is not guaranteed to find a feasible solution.
An example for which the algorithm fails is shown in Figure 2: If the
highlighted flow is selected in the first iteration, then the reduced
graph contains no further 𝑢-𝑤 -flow of value 𝐶 . Nevertheless, due
to its polynomial runtime and partial correctness, our algorithm is
a promising heuristic for FlexMISMA.

3.2 FlexMISMA is NP-complete for three or

more machines

In the previous section, we saw a polynomial time algorithm
for FlexMISMA with two machines which loses its complete
correctness for three or more machines. In fact, FlexMISMA is
NP-complete for more than two machines.

Theorem 1. FlexMISMA is NP-complete if the number of ma-

chines is fixed and greater than two.

We prove the NP-completeness by a three-staged reduction. Due
to the page limit, we present only a sketch of the proof. While the
main ideas of the proof were already used by Garey et al. [6], we
have to take care of some small but important differences.

First, we show that FlexMISMA is at least as hard as Multithread
ISMA (MISMA) — an extension of ISMA which allows machines
to have different capacities greater than one (but preserves fixed
availability periods). The reduction is similar to the one presented
further in Theorem 2. Next, we show that MISMA is at least as hard
as the Permutation Partition problem (PPP), which is a decision
problem on symmetric groups and is inspired by the Word problem

for Products of Symmetric Groups introduced by Garey et al. [6].
PPP receives as input𝑚 numbers 𝐶𝑖 ∈ N, 𝑖 ∈ [𝑚], a partition

L := {𝐿1, . . . , 𝐿𝑚} of [𝑘], where 𝑘 =
∑
𝑖∈[𝑚] 𝐶𝑖 and |𝐿𝑖 | = 𝐶𝑖 , as

well as 𝑡 arbitrary subsets 𝑃𝑢 ⊆ [𝑘] for 𝑢 ∈ [𝑡]. We further define
the canonical partition M := {𝑀1, . . . , 𝑀𝑚} of [𝑘] via 𝑀𝑖 := {𝑟 ∈
N | ∑𝑖−1

𝑙=1 𝐶𝑙 < 𝑟 ⩽
∑𝑖
𝑙=1𝐶𝑙 } ⊂ [𝑘] for 𝑖 ∈ [𝑚] and the embedded

permutation groups 𝐺𝑢 := Stab([𝑘] \ 𝑃𝑢) ⊆ 𝑆𝑘 for 𝑢 ∈ [𝑡]. Here
Stab(𝑈) denotes the pointwise stabilizer of a set 𝑈 ⊆ [𝑘], and 𝑆𝑘
the symmetric group on 𝑘 elements. PPP then asks whether there
exists a permutation 𝜋 ∈ 𝐺𝑡 ◦ . . . ◦𝐺1 such that 𝜋 (𝑀𝑖) = 𝐿𝑖 for all
𝑖 ∈ [𝑚].

Finally, we prove the NP-completeness of PPP by a reduction
from the Directed Vertex-Disjoint Paths problem.

4 COMPLEXITY FOR A CONSTANT MACHINE

CAPACITY

In this section, we study FlexMISMA in the case of a fixed machine
capacity 𝐶 . We show that FlexMISMA can be solved in linear time
for 𝐶 = 1 using Interval Coloring, but is NP-complete for fixed
capacities 𝐶 ⩾ 2.

Theorem 2. FlexMISMA is NP-complete if machine capacity is

equal to 2.

Proof. We present a reduction from ISMA, which was proven to
beNP-hard [8]. Suppose that an instance of ISMA with𝑚 machines
available in periods [𝑠𝑖 , 𝑓𝑖) for 𝑖 ∈ [𝑚] and 𝑛 jobs with processing
intervals [𝑎 𝑗 , 𝑏 𝑗) for 𝑗 ∈ [𝑛] is given. We denote the time horizon
of this ISMA instance by 𝑇 := max𝑖∈[𝑚] 𝑓𝑖 .

Then, we construct an instance of FlexMISMAwith𝑚 machines,
with start times 𝑠′

𝑖
:= 𝑖 and with end times 𝑓 ′

𝑖
:= 𝑇 +𝑚+𝑖 for 𝑖 ∈ [𝑚],

and with capacity 𝐶′ := 2, see Figure 3. Note that, by construction,
all start (end) times are pairwise different, and every machine has
one thread more than its counterpart in ISMA. We further construct
𝑛′ := 𝑛 + 3𝑚 jobs with the following processing intervals. We first
shift the periods of jobs of the ISMA instance by𝑚; then, we add
𝑚 auxiliary jobs to occupy the additional threads; last, we add 2𝑚
jobs to pad the increased availability periods. We obtain

[𝑎′𝑗 , 𝑏
′
𝑗) :=


[𝑎 𝑗 +𝑚,𝑏 𝑗 +𝑚), 𝑗 ∈ [𝑛],
[𝑠′
𝑖
, 𝑓 ′
𝑖
), 𝑖 ∈ [𝑚], 𝑗 = 𝑛 + 𝑖,

[𝑠′
𝑖
, 𝑠𝑖 +𝑚), 𝑖 ∈ [𝑚], 𝑗 = 𝑛 +𝑚 + 𝑖,

[𝑓𝑖 +𝑚, 𝑓 ′
𝑖
), 𝑖 ∈ [𝑚], 𝑗 = 𝑛 + 2𝑚 + 𝑖 .

It remains to prove that the constructed FlexMISMA instance is
feasible if and only if the original ISMA instance is feasible.

Let 𝛼 : [𝑛] → [𝑚] represent a feasible solution to the ISMA
instance. We extend this solution to a solution for FlexMISMA as
follows: choose the end time assignment 𝜏 B id[𝑚] and extend
assignment 𝛼 to 𝛼 ′ : [𝑛′] → [𝑚] by filling the additional threads

15

INOC 2022, June 7-10, 2022, Aachen, Germany

𝑠1 𝑓1

𝑠2 𝑓2

𝑠3 𝑓3

1 2

3 4 5

6 7
𝑡

0 1 2 3 4 5 6 𝑇 ′=7

(a) ISMA instance

𝑠′1 𝑓 ′1

𝑠′2 𝑓 ′2

𝑠′3 𝑓 ′3

1 2

3 4 5

6 7

11

12

13

14

15

16

8

9

10
𝑡

0 1 2 3 4 5 6 7 8 9 10 11 12 𝑇 ′=13

(b) resulting FlexMISMA instance with capacity𝐶′ = 2

Figure 3: Transformation of ISMA to FlexMISMA for an

instance with three machines.

and extended availability periods with the additionally created jobs.
By construction, the assignment

𝛼 ′ (𝑗) :=
{
𝛼 (𝑗), 𝑗 ∈ [𝑛],
𝑖 ∈ [𝑚], 𝑎′

𝑗
= 𝑠′

𝑖
or 𝑏′

𝑗
= 𝑓 ′

𝑖
,

with time assignment 𝜏 = id[𝑚] yields a feasible solution for the
FlexMISMA instance.

Conversely, let 𝛼 ′ : [𝑛′] → [𝑚] and 𝜏 : [𝑚] → [𝑚] represent
a solution for the FlexMISMA instance. We still assume that all
machines are utilized to full capacity during their entire availability
period. Moreover, all start and end times of machines are distinct
by construction. Therefore, all jobs 𝑗 with 𝑎′

𝑗
= 𝑠′

𝑖
or 𝑏′

𝑗
= 𝑓 ′

𝜏 (𝑖) for
an 𝑖 ∈ [𝑚] are necessarily assigned to machine 𝑖 . Remark that, by
construction, these are exactly the jobs 𝑗 ∈ [𝑛′] \ [𝑛]. In particular,
the jobs with availability periods [𝑠′

𝑖
, 𝑓 ′
𝑖
) guarantee that 𝜏 = id. Note

that there exists at least one such job for every 𝑖 ∈ [𝑚]. Furthermore,
these jobs occupy their assigned machine during the complete
availability period. Therefore, every job 𝑗 ∈ [𝑛] is assigned by
𝛼 to a machine 𝑖 ∈ [𝑚] during the remaining availability period
[𝑠𝑖 +𝑚, 𝑓𝑖 +𝑚) with remaining capacity𝐶′−1 = 1. This corresponds
one to one to the availability periods and machine capacities of the
original ISMA instance. Thus, 𝛼 ′ | [𝑛] is a feasible solution for the
ISMA instance. □

It remains to consider FlexMISMA with machine capacity equal
to one. We show an efficient algorithm for this case.

Theorem 3. FlexMISMA with unit machine capacity is solvable

in time linear in the number of jobs.

Proof. In the case that every machine can process only one
job at a time, FlexMISMA can be formulated as the well-known
Interval Scheduling problem. Given an instance of FlexMISMA
with 𝑛 jobs and𝑚 machines, we transform it into an instance of
Interval Coloring with 𝑁 B 𝑛 + 2𝑚 intervals by representing

start times 𝑠𝑖 with intervals (0, 𝑠𝑖) and end times 𝑓𝑖 with intervals
(𝑓𝑖 ,𝑇 + 1) for all 𝑖 ∈ [𝑚].

The Interval Coloring problem is solved by a greedy algorithm in
time linear in the number of intervals, provided that the endpoints
of the intervals are sorted [4]. All interval endpoints in the instance
of Interval Scheduling are non-negative integers not greater than
𝑇 +1. Therefore, the counting sort can be applied, which has runtime
in O(2𝑁 +𝑇 + 1) = O(𝑛) [5]. □

Remark that FlexMISMA with single-thread machines differs
from ISMA only by the fact that permutations of the end times
of machines are allowed. We saw that weakening this one con-
straint transforms the NP-hard ISMA into a polynomially solvable
problem.

This observation completes the study of complexity of
FlexMISMA with fixed machine capacity. We conclude that the
coworking scheduling problem is polynomial time solvable for
single-desk offices, but becomes NP-hard if offices have two or
more desks each.

5 CONCLUSION

In this paper, we presented the interval scheduling extension
FlexMISMA and provided a tight classification of its hardness with
respect to the number of machines and their capacity. Furthermore,
we provided constructive algorithms for the polynomial-time
solvable cases.

There are natural optimization versions of the considered prob-
lem, which aim to find a maximum cardinality or maximum weight
subset of jobs that can be scheduled. An interesting direction for
future work is to find approximation algorithms for these problems.
Furthermore, due to the machine capacities, it is sensible to consider
jobs with individual demands, leading to a new problem closely
related to the Storage Allocation Problem, see Section 1.1.

REFERENCES

[1] Enrico Angelelli and Carlo Filippi. 2011. On the complexity of interval scheduling
with a resource constraint. Theoretical Computer Science 412, 29 (2011), 3650–
3657.

[2] Reuven Bar-Yehuda, Michael Beder, and Dror Rawitz. 2017. A Constant Factor
Approximation Algorithm for the Storage Allocation Problem. Algorithmica 77,
4 (2017), 1105–1127.

[3] P. Brucker and L. Nordmann. 1994. The k-track assignment problem. Computing

52, 2 (1994), 97–122.
[4] Martin C Carlisle and Errol L Lloyd. 1995. On the k-coloring of intervals. Discrete

Applied Mathematics 59, 93 (1995), 225–235.
[5] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2001.

Introduction To Algorithms (2 ed.). MIT Press, Cambridge, Chapter 8.2.
[6] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. 1980. The

Complexity of Coloring Circular Arcs and Chords. SIAM Journal on Algebraic

Discrete Methods (1980). https://doi.org/10.1137/0601025
[7] Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. 2018. A

(5/3 + 𝜖)-approximation for unsplittable flow on a path: placing small tasks into
boxes. In STOC. ACM, 607–619.

[8] Antoon W.J. Kolen, Jan Karel Lenstra, Christos H. Papadimitriou, and Frits C.R.
Spieksma. 2007. Interval scheduling: A survey. Naval Research Logistics (NRL)

54, 5 (2007), 530–543.
[9] George B. Mertzios, Mordechai Shalom, Ariella Voloshin, Prudence W.H. Wong,

and Shmuel Zaks. 2015. Optimizing busy time on parallel machines. Theoretical
Computer Science 562 (2015), 524–541. https://doi.org/10.1016/j.tcs.2014.10.033

[10] Tobias Mömke and Andreas Wiese. 2020. Breaking the Barrier of 2 for the
Storage Allocation Problem. In ICALP (LIPIcs, Vol. 168). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 86:1–86:19.

16

