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ABSTRACT

Facility Location Problems with Capacities, Revenues, and
Closest Assignments (FLP-CRCA) are an extension of the well
known, stronglyNP-complete Facility Location Problem (FLP).
With this extension, we recognise that facilities have an upper
capacity on the customers to be served, but also need to generate a
minimum revenue to be operated economically. Furthermore, we
acknowledge that customers have a strong preference towards their
closest facility.

We show that finding a feasible solution for FLP-CRCA is already
strongly NP-complete if the underlying graph forms a star, but
that the problem can be solved efficiently on paths and cycles.
In the case where the number of facilities is fixed, we propose a
pseudo-polynomial algorithm and show that the problem is weakly
NP-complete under this condition. Our results also hold for FLPs
with closest assignments and either capacities or revenues.

1 INTRODUCTION

Facility Location Problems (FLPs) are one of the most fundamen-
tal problems in combinatorial optimization [15]. In their most basic
version, facilities providing some kind of service for customers
need to be opened at potential sites and customers are assigned
to these facilities. The aim is to minimize the total cost consisting
of opening cost for the facilites and the service cost or traveling
cost for assigning the customers. Part of this problem’s success is
based on the broad applicability to real-world problems [1, 16]. In
practice, further constraints need to be considered. Upper capaci-
ties on the facilities, i.e., the number of customers or the demand a
facility can serve, prevent that customers wait too long at facilities.
Such problems are referred to as Capacitated FLPs (CFLPs). One
main difference between CFLPs and FLPs is that now customers can
not always be served by their closest facility. In reality, however,
customers are often free to choose their facility and prefer their
closest one. This potentially leads to some facilities being over-
loaded, while others only serve few customers. In order to prevent
such situations, the property of closest assignments is demanded:
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a constraint stating that each customer is to be assigned to their
closest open facility; cf. [8, 10] for reviews of closest assignment
constraints in integer programming. The closest assignment and
upper capacities improve the service quality for the customers. Fa-
cilities, however, are often assumed to be operated by individual
owners. In order to economically survive, they have to generate
a minimum threshold of revenues by serving customer demands.
This is achieved by introducing lower bounds on the revenue a
facility accumulates. A real world example which can be modeled
through Facility Location Problems with capacities, revenues and
closest assignments is the optimized distribution of pharmacies in a
given area under the following assumptions: due to time and space
constraints only a limited number of customers can be served; a
minimum revenue has to be generated by serving citizens due to the
financial independence; citizens use their closest open pharmacy.

The basic FLP isNP-complete in the strong sense [6, 14], which
makes the computation of optimal solutions in acceptable time
unlikely. This complexity result can be extendend to all of the prob-
lem’s generalizations. However, if the FLP is defined on a graph,
where the assignment costs are equal to the distances between
the customer nodes and the facility nodes, the FLP can be solved
efficiently if the graph is a tree [6]. For CFLPs, (pseudo-)polynomial
algorithms are known in special cases [11, 12]. To the best of the
authors’ knowledge, the literature on FLPs with Closest Assign-
ments (and Capacities) focuses on strengthening integer program-
ming formulations or developing heuristics [2–4, 7, 8, 10, 13, 17].
Research on the computational complexity of FLPs with Closest
Assignments mixed with capacity- and revenue-constraints is still
missing.

In this paper, we analyse Facility Location Problems with
Capacities, Revenues, and Closest Assignments (FLP-CRCA)
and derive some settings that are NP-complete and some that are
polynomially solvable. More specifically, we show that:

• finding a feasible solution for the FLP-CRCA is stronglyNP-
complete on star graphs - contrary to the general FLP, where
an optimal solution on trees can be found in polynomial
time [6] (Section 3).

• the FLP-CRCA on paths and cycles can be solved efficiently,
contrary to the CFLP (Section 4).

• for a fixed number of facilities, there is a pseudo-polynomial
algorithm and the problem becomes weakly NP-complete
(Section 5).

• these complexity results hold for FLPs with Closest As-
signments and either capacities or revenues.

With this work we close the research gap regarding the computa-
tional complexity of Facility Location Problems with Closest
Assignments mixed with capacitiy- and revenue-constraints.
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2 PROBLEM DEFINITION AND NOTATION

In this paper, we study the following setting. As an underlying
structure consider an undirected graphG = (V ,E), whereV denotes
the set of nodes and E the set of edges. The nodes represent the
locations of customers as well as the locations for potential facilities,
while the edges represent the street network connecting these sites.

The costs of assigning node v ∈ V to facility f ∈ V are denoted
by τ (v, f ) ∈ Z>0 and are defined to be the distance of a short-
est (v, f )-path with respect to weights δe> 0 on the edges e ∈ E. To
each node v ∈ V , we assign parameters, (rv ,dv ,Rv ,Cv , cv ) ∈ Z5≥0,
where rv ∈ Z≥0 represents the revenue a customer generates for
the serving facility and dv ∈ Z≥0 represents the customer’s demand

a serving facility has to satisfy. Furthermore, if a facility opens at
node v , it has to accumulate a minimum amount of revenue, de-
noted with Rv ∈ Z≥0 and the aggregated demand must not exceed
the capacity Cv ∈ Z≥0. Lastly, parameter cv denotes the costs of
opening a facility at node v .

With these considerations, we define the optimization problem
studied here.

Definition 2.1 (FLP-CRCA). We are given an undirected graph
with five non-negative parameters for each node and positive
weights on the edges, G = (V ,E, (rv ,Rv ,dv ,Cv , cv )v ∈V , (δe )e ∈E ).
Then, the FLP-CRCA consists in finding a subset F ⊆ V of nodes
for opening facilities and an assignment Λ : V → F of customers
to these facilities such that

(1) for each open facility its lower bound on revenue and upper
bound on capacity are not violated, i.e., Rf ≤

∑
v ∈Λ−1(f ) rv

and
∑
v ∈Λ−1(f ) dv ≤ Cf for all f ∈ F ,

(2) each customer is assigned to their closest open facility, that
is, there exist no v ∈ V and f ∈ F with τ (v, f ) < τ (v,Λ(v)),

(3) the cost of opening facilities and distances of the customers
is minimized, that is

∑
f ∈F cf +

∑
v ∈V τ (v,Λ(v)) → min .

Note that we assume, that the demand of a customer cannot be
split between two different facilities.

3 COMPLEXITY OF THE FLP-CRCA

It is common knowledge that the CFLP is strongly NP-complete.
However, to emphazise the difference in the complexity of the FLP-
CRCA and the CFLP, we first provide a reduction showing that
it is already strongly NP-complete to construct any solution for
the CFLP at all. This demonstrates that the CFLP’s complexity is
independent of a potential underlying graph defining the costs – in
contrast to the FLP-CRCA, as we will see in Section 4.

Theorem 3.1. Finding a feasible solution for CFLP is strongly

NP-complete.

Proof. We reduce from the strongly NP-complete problem
3-Partition [9] to a CFLP-instance. Let I = (A, (sa )a∈A,B) be
an instance of 3-Partition, with A being a set of 3m elements,
sizes sa ∈ Z≥0 for each element a ∈ A, such that sa ∈ (B/4,B/2)
and

∑
a∈A sa =mB, for a bound B ∈ Z≥0. The task is to partition A

into disjunct subsetsA1, . . . ,Am such that
∑
a∈Ai s(a) = B holds for

all i ∈ {1, . . . ,m}. We construct from this a CFLP-instance without
costs I ′ = (J , (dj )j ∈J , I , (Ci )i ∈I ) with customers J , demands dj ,
facilities I , and capacities Ci . For each a ∈ A, we define one facility

and one customer, that is, J = I = A. Furthermore, we set the
demands equal to the sizes da = sa and the capacities equal to the
bound Ca = B.

Note that, there exists a partitioning A1, . . . ,Am of A that is a
solution to instance I of 3-Partition iff there exists a feasible
solution to constructed CFLP-instance I ′.

CFLP is inNP since we can test the feasibility of an assignment
of customers such that each open facility’s capacity constraint is
met in linear time w.r.t. the size of set A. □

Considering a lower bound on the revenue is a generalization of
CFLPs. The closest assignment condition, however, brings a certain
structure to feasible solutions of FLP-CRCA-instances. We will see
in the next section that this makes the considered problem easier on
certain graph classes. However, already considering trees or stars
as underlying networks leads to an NP-complete problem.

Theorem 3.2. Finding a feasible solution for FLP-CRCA on stars

is strongly NP-complete.

Proof. We reduce again from 3-Partition, this time to an
FLP-CRCA-instance. Let I = (A, (sa )a∈A,B) be an instance of 3-
Partition as defined in the proof of Theorem 3.1. Any such instance
will be transformed into an FLP-CRCA-instanceI ′ = (V ,E, (rv ,Rv ,
dv ,Cv , cv )v ∈V , (δe )e ∈E ) as follows. The set of nodes V contains
one node a for every element a ∈ A and one extra node ξ ; hence,
|V | = |A|+1. SetRa = Ca = B and ra = da = sa , for eacha ∈ V \{ξ }.
For node ξ , set rξ = Rξ = dξ = Cξ = 0. Next, introduce the set
of edges e ∈ E. Connect the nodes so that the underlying graph is
an |A|-star, where node ξ is the center. Set δe = 1 for all edges e ∈ E.
Note, due to the choice of parameters in I ′, all facilities need to be
opened at a leaf in a feasible solution. Due to the underlying star
structure, each customer is either indifferent between the facilities
or uses the facility located at its own node.

Again, there exists a partitioning A1, . . . ,Am of A that is a solu-
tion to instance I of 3-Partition iff there exists a feasible solution
to constructed FLP-CRCA-instance I ′.

Finding the nearest facility for a node takes O(|V |) on stars.
Hence, the problem is still inNP, as testing whether each customer
is served by their nearest open facility can be done in O(|V |2). □

Thus, no (pseudo-)polynomial algorithm exists, unless P = NP.
However, in the next section, we will see that, in contrast to the
CFLP, feasible solutions on paths and cycles can be computed effi-
ciently.

4 POLYNOMIAL SPECIAL CASES

If the underlying graph is either a path or a cycle, any instance of
the FLP-CRCA can be solved efficiently. We show this via a reduc-
tion to the polynomially solvable Shortest s-t-Path Problem on
Directed Acyclic Graphs.

4.1 FLP-CRCA on Paths

We first consider the case where the underlying graph of the FLP-
CRCA is a path p = (1, . . . ,n). Since we have positive edge weights,
paths have the important property that all customers between the
most-left and most-right customer of the same facility must be also
served by it. That is, for every solution (F ,Λ : V → F ), the set of
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customers Λ−1(f ) assigned to a facility f ∈ F forms an interval
{li , . . . ,ui } containing f . Hence, the customers can be partitioned
into such intervals and every solution can be represented by a
sequence of triples (li , fi ,ui )

k
i=1, where fi denotes the location

of the i-th facility and nodes li ,ui the most-left and most-right
customer served by it. Note that, for f1 < · · · < fk , we have
li = ui−1 + 1, with u0 B 0, for all i ∈ [k]. Hence, it suffices to
consider tuples (fi ,ui ) for a complete representation of a solution.
However, while any feasible solution corresponds to a sequence of
tuples (fi ,ui )ki=1, not every sequence represents a feasible solution.

Definition 4.1. We call (f ,u) ∈ V 2 a feasible tuple if f ≤ u. We
call a sequence of feasible tuples (fi ,ui )ki=1 a feasible sequence if it
meets the following properties:

(a) it holds ui−1 < fi and uk = n,
(b) the customers served by facility fi yield

∑ui
v=ui−1+1 rv ≥ Rfi

and
∑ui
v=ui−1+1 dv ≤ Cfi ,

(c) for i ≥ 2, facility fi is not closer to customer ui−1 than
facility fi−1 and facility fi−1 is not closer to customerui−1+1
than facility fi , that is, τ (ui−1, fi ) ≥ τ (ui−1, fi−1) as well as
τ (ui−1 + 1, fi ) ≤ τ (ui−1 + 1, fi−1).

The relation between a feasible sequence and a solution to the
FLP-CRCA is elaborated in the next lemma.

Lemma 4.2. There is a 1-1 correspondence between feasible solu-

tions of the FLP-CRCA on paths and feasible sequences (fi ,ui )
k
i=1.

Proof. We already stated above that every solution (F ,Λ) can
be represented by a sequence (fi ,ui )ki=1 with f1 < · · · < fk and
{ f1, . . . fk } = F as well as ui = max{v ∈ [n]|Λ(v) = fi }. This se-
quence meets Property (a), as otherwise the sets Λ−1(fi ) would not
form intervals. Furthermore, Properties (b) and (c) follow directly
from Properties (1) and (2) in Definition 1.1.

Conversely, every feasible sequence (fi ,ui )ki=1 defines a solution
F = { f1, . . . fk } with Λ−1(fi ) = {ui−1 + 1, . . . ,ui }. This solution
is feasible, as Property (1) in Definition 1.1 follows from Property
(b); Property (2) is fulfilled, as no customer in the interval Λ−1(fi )
wants to deviate from facility fi iff this is true for the customers at
the boundaries, which is ensured by Property (c). □

For finding a feasible solution to the FLP-CRCA, we construct
a directed auxiliary graph G ′ = (V ′,A′, (wa )a∈A′), in which each
s − t-path corresponds to a feasible sequence. We introduce one
node for each feasible tuple together with two extra nodes s, t , i.e.,
V ′ = {(f ,u) ∈ [n]2 | f ≤ u} ∪ {s, t}. Starting at node s , the first arc
that we choose on our s − t-path corresponds to the first tuple in
our sequence. Hence, we have (s, (f ,u)) ∈ A′

iff tuple (f ,u) meets
Property (b). Afterwards, choosing an arc from (f ′,u ′) to (f ,u)
corresponds to (f ,u) being the successor of (f ′,u ′) in our sequence.
Hence, this arc exists iff Properties (a) – (c) are fulfilled. The last
tuple in the sequence needs to meet u = n, thus ((f ,n), t) ∈ A′ for
all f ∈ [n]. In conclusion,

A′ = {(s, (f ,u)) ∈ {s} × (V ′ \ {s, t}) | fulfills (b)}

∪ {((f ′,u ′), (f ,u)) ∈ (V ′ \ {s, t})2 | fulfills (a) – (c)}
∪ {((f ,u), t) ∈ (V ′ \ {s, t}) × {t} | u = n}.

FLP-CRCA-instance on a path:

1 2 3 43 1 2

Rv

rv

Cv

dv

cv

2
2
3

5

1
2
1

1

5
2
6

6

3
4
4

2
2 1 2 3

Auxiliary Graph G ′ :

s t

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

5

11

1
8

2

2

28

9

Figure 1: An instance of FLP-CRCA with an optimal solu-

tion, opening facilities 3 and 4, of value 13 and the corre-

sponding auxiliary graphG ′
with a shortest path of the same

value.

Finally, we define weights on the arcs such that the cost of an
s − t-path equals the cost of the corresponding solution:

wa =


0, if a = ((f ,u), t) ∈ A′

cf +
∑u
v=1 τ (f ,v), if a = (s, (f ,u)) ∈ A′

cf +
∑u
v=u′+1 τ (f ,v), if a = ((f ′,u ′), (f ,u)) ∈ A′.

For an example of the relationship between an FLP-CRCA-instance
on paths and its auxiliary graph, see Figure 1.

The following lemma states that there exists a solution to the FLP-
CRCA on paths iff there exists an s − t-path in the corresponding
auxiliary graph G ′. In this case, the cost of an optimal solution is
equal to the cost of a shortest s − t-path.

Lemma 4.3. There is a cost-preserving 1-1 correspondence between
solutions of the FLP-CRCA and s − t-paths in G ′

.

Proof. By construction of auxiliary graph G ′, every s − t-path
p′ = (s, (f1,u1), . . . , (fk ,n), t) corresponds to exactly one feasible
sequence (fi ,ui )ki=1, and thus, due to Lemma 4.2, also to one solu-
tion (F ,Λ) with F = { f1, . . . fk } and Λ−1(fi ) = {ui−1 + 1, . . .ui }.
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For the cost of p′, it holds∑
a∈p′

wa = w(s,(f1,u1)) +

k∑
i=2

w((fi−1,ui−1),(fi ,ui )) +w((fk ,n),t )

= cf1 +

u1∑
v=1

τ (f1,v) +
k∑
i=2

(cfi +

ui∑
v=ui−1+1

τ (fi ,v))

=
∑
f ∈F

(cf +
∑

v ∈Λ−1(f )

τ (f ,v))

=
∑
f ∈F

cf +
∑
v ∈V

τ (v,Λ(v)),

which is exactly the cost of solution (F ,Λ). □

Checking whether an arc is feasible and computing its weight
takes O(n) steps for each of the O(n4) possible arcs. Hence, we can
transform any FLP-CRCA instance on paths in such an auxiliary
graph in O(n5) steps. For computing a shortest s − t-path, first note
thatG ′ is an acyclic graph. This can be seen by sorting the nodes in
lexicographic order, i.e., s, (1, 1), (1, 2), . . . , (1,n), (2, 2), . . . , (n,n), t ,
and recognizing that there exists no backward-arc due to (a). Since
single-source shortest paths in directed acyclic graphs can be com-
puted in O(|V ′ | + |A′ |) [5] , we can compute a shortest path in
O(n4) steps. Altogether, we obtain the following.

Theorem 4.4. An optimal solution to FLP-CRCA can be computed

in O(n5) steps.

In practice, constructing the graph and finding a shortest path
can be sped up significantly by doing both in parallel. For this, we
iterate over the nodes in the lexicographic ordering. When reaching
node (f ,u), we only check whether there exist outgoing arcs if node
(f ,u) was reached before, as those arcs do not belong to a shortest
path otherwise.

From a modeler’s perspective, this result is useful if the real
world street network can be modeled as a path. For example, when
deciding where to open pharmacies in rural areas, where multiple
villages are connected by the same road, and each village is too
small such that at least one pharmacy could economically operate
in each of them. Real world examples are mountain passes with
hotels or small villages along the road in Switzerland.

Besides the practical applicability, it is also interesting to analyse
the theoretical impact of the constraints on the computational
complexity on basic graph structures. In the next subsection, for
example, we study how the algorithm on paths can be extended to
cycles.

4.2 FLP-CRCA on Cycles

In order to solve the FLP-CRCA on cycles, we reduce it to multiple
subproblems that are similar to the FLP-CRCA on paths.

Consider an instance on a cycle G = (V ,E) and an optimal
solution (F ∗,Λ∗ : V → F ∗). Note that there exists an edge e∗ ∈ E
such that the above solution is also feasible for the FLP-CRCA on
the path Ge∗ = (V ,E\{e∗}). To see this, consider a forest within G
that connects each customer v ∈ V with its serving facility Λ∗(v)
via a shortest path. The missing edges in the forest are exactly those
that can be deleted from E.

For now, assume that we are given e∗. Additionally, assume
w.l.o.g. e∗ = {n, 1}, that is, Ge∗ is the path pe∗ = (1, . . . ,n). In the
best case, we can compute a shortest path in the auxiliary graphG ′

e∗ ,
as defined in the previous subsection, that corresponds to (F ∗,Λ∗).
However, it is possible that the computed shortest path in G ′

e∗ cor-
responds to a solution (F ′,Λ′ : V → F ′) that is not feasible for the
original instance on G, as customer n might prefer facility Λ′(1)
over Λ′(n) or customer 1 might prefer facility Λ′(n) over Λ′(1).
Hence, we want to restrict ourselves to paths in G ′

e∗ that can be
“glued together” at the first tuple (f1,u1) and the last tuple (fk ,n)
such that the corresponding solution is feasible on G. For this, we
require that (f1,u1) can be a successor of (fk ,n) in accordance to
Definition 4.1. Unfortunately, this yields a shortest path problem in
which the feasible paths depend on the first chosen arc (s, (f1,u1)),
which is usually problematic. We resolve this issue by fixing a po-
tential last arc ((fk ,n), t) and removing all arcs (s, (f1,u1)) fromG ′

e∗
for which (f1,u1) is not a feasible successor of (fk ,n). Then every
s − (fk ,n)-path in the resulting graph corresponds to a solution
that is feasible to the original problem. Moreover, the path corre-
sponding to the optimal solution (F ∗,Λ∗) is contained in the graph
resulting from fixing arc ((Λ∗(n),n), t) and can thus be found by
computing a shortest s − (Λ∗(n),n)-path.

Naturally, we neither know Λ∗(n), nor do we have e∗ in advance.
However, testing all possible combinations e∗ ∈ E and Λ∗(n) ∈ V ,
we are guaranteed to find one yielding an optimal solution. In
summary, we solve n2 shortest path problems, each requiring O(n4)
steps. Deleting arcs (s, (f1,u1)) fromG ′

e for a fixed last arc ((fk ,n), t)
can be done on the fly in constant time for each arc while computing
the shortest path. As stated in the previous subsection, computing
an auxiliary graph G ′

e requires O(n5) steps. Note that G ′
{i,i+1} can

be computed efficiently fromG ′
{i−1,i } by reusing most of the graph.

This leads us to the following statement.

Theorem 4.5. The FLP-CRCA on cycles can be solved in O(n6).

For a better understanding of the procedure for solving FLP-
CRCA-instances on cycles, consider the following example.

Example 4.6. Consider an FLP-CRCA instance on a cycle with
parameters as introduced in Figure 1; cf. Figure 2. When fixing arc
((3, 4), t), arc (s, (3, 3)) has to be removed since tuple (3, 3) is not a
feasible successor of (3, 4); cf. auxiliary graphG ′

{4,1} in Figure 2. An
optimal solution of value 14 can be achieved by opening facilities 1
and 4. Note that, arc (s, (3, 3)) has also to be removed when fixing
arc ((4, 4), t): otherwise, customer 1 would deviate from facility 3
to facility 4 in the underlying cycle.

5 FIXED NUMBER OF FACILITIES

If the number of open facilities k ∈ N is fixed, we refer to the
problem as the k-FLP-CRCA. That is, we consider instances of the
FLP-CRCA and are only interested in optimal solutions where k
facilities are opened and k is not part of the input.

Lemma 5.1. Finding a feasible solution for k-FLP-CRCA on stars

is at least weakly NP-complete, already for k = 2.

Proof. The claim can be seen by a reduction from the weakly
NP-complete problem Partition [9]. In Partition, a finite setA is
considered; each element a ∈ A has a weight, sa ∈ Z+. The question
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FLP-CRCA-instance on a cycle with parameters Rv , rv ,Cv ,dv , cv as
considered in Figure 1:

1 2 3 43 1 2

3

Auxiliary Graph G ′
{4,1} :

s t

1,1 1,2 1,3 1,4

2,2 2,3 2,4

3,3 3,4

4,4

5

11

1
8

2

2

28

9

Figure 2: An instance of FLP-CRCA on a cycle with deleted

edge e∗ = {4, 1}. Note that, the optimal solution found in

Figure 1 is not feasible here.

is whether A can be partitioned into two disjunct sets A′,A \ A′

such that
∑
a∈A′ sa =

∑
a∈A\A′ sa C B.

For a given Partition instance I = (A, (sa )a∈A), we construct a
k-FLP-CRCA instance with k = 2 on a star analogously to the proof
of Theorem 3.2. We introduce one leaf node for each element a ∈ A
and one center node ξ . We set da = ra = sa and Ca = Ra = B, for
a ∈ V \ {ξ } as well as dξ = Cξ = rξ = Rξ = 0. Again, we define
δe = 1 for all edges e ∈ E of the star

Note that, there exists a partitioningA′,A \A′ ofA that is a solu-
tion to instance I of Partition iff there exists a feasible solution
to constructed k-FLP-CRCA-instance I ′.

As a special case of FLP-CRCA, the problem is in NP. □

In the following, we introduce a dynamic program that solves
anyk-FLP-CRCA-instance in pseudo-polynomial time, thus proving
that the problem is indeed weakly NP-complete. To that end, we
fix a set of facilities and test in pseudo-polynomial time whether
we find a closest assignment satisfying the revenue- and demand-
constraints. Let F ∈

(V
k
)
be a fixed set of facilities.We first determine

for each customer v ∈ V the set of closest facilities Fv ⊆ F to
which v can be assigned to. Afterwards, we compute labels

b : {1, . . . , |V |} ×
?
f ∈F

(
{0, . . . ,Cf } × {0, . . . ,Rf }

)
→ R ∪ {∞},

where b(i,C ′
f1
,R′

f1
, . . . ,C ′

fk
,R′

fk
) states the minimum cost of assign-

ing customers {1, . . . , i} ⊆ V so that facility f ∈ F accumulates
demand of at most C ′

f and revenue of at least R′
f , that is the value

of the subproblem

min
Λ:[i ]→F


∑
f ∈F

cf +
∑
v∈[i ]

τ (v, Λ(v))

������������

Λ(v) ∈ Fv ∀v ∈ [i]∑
v∈Λ−1(f )

dv ≤ C′
f ∀f ∈ F∑

v∈Λ−1(f )

rv ≥ R′
f ∀f ∈ F


. (1)

Note that, the labels with finite cost and parameters i = |V |, C ′
f ∈

{0, 1, . . . ,Cf } and R′ = Rf for all f ∈ F are exactly the labels cor-
responding to feasible solutions in (1) of considered k-FLP-CRCA-
instance with fixed set of facilities F ; the cost of an optimal solution
for fixed F is b(|V |,Cf1 ,Rf1 , . . . ,Cfk ,Rfk ).

To compute the labels, we use the recursion formula

b(i,C ′
f1
,R′

f1
, . . . ,C ′

fk
,R′

fk
)

= min
fj ∈Fi

{b(i − 1, . . . ,C ′
fj
− di ,R

′
fj
− ri , . . . ,C

′
fk
,R′

fk
) + τ (i, fj )}

together with the base values

b(0,C ′
f1
,R′

f1
, . . . ,C ′

fk
,R′

fk
) =


∑
f ∈F

cf , if C ′
f ≥ 0, R′

f ≤ 0 ∀f ∈ F

∞, otherwise.

This leads to the following result.

Theorem 5.2. The k-FLP-CRCA is weakly NP-complete and can

be solved in O(
( |V |

k
)
·k · |V | ·

∏
f ∈F (Cf ·Rf )) steps by using the above

dynamic program.

Proof. We show that the values computed by the recursion
formula are equal to the values of the subproblems (1).

For the base values, assigning no customers leaves us with the
opening costs

∑
f ∈F cf . Furthermore, assigning no customers meets

the capacity- and revenue-constraints of subproblem (1) iff C ′
f ≥ 0

and R′
f ≤ 0 holds for all f ∈ F .

When assigning customer i to a fixed facility f ′ ∈ Fi , the mini-
mum cost for assigning [i] and respecting capacities and revenues
(C ′

f ,R
′
f )f ∈F in subproblem (1) is given by

τ (i, f ′) + min
Λ∈P


∑
f ∈F

cf +
∑

v ∈[i−1]
τ (v,Λ(v))

 ,
with

P =



Λ : [i − 1] → F

����������������������

Λ(v) ∈ Fv ∀v ∈ [i − 1]∑
v ∈Λ−1(f )

dv ≤ C ′
f ∀f ∈ F \ { f ′}∑

v ∈Λ−1(f ′)

dv ≤ C ′
f ′ − di∑

v ∈Λ−1(f )

rv ≥ R′
f ∀f ∈ F \ { f ′}∑

v ∈Λ−1(f ′)

rv ≥ R′
f ′ − ri



,

which is by induction exactly the value of

b(i − 1, . . . ,C ′
f ′ − di ,R

′
f ′ − ri , . . . ,C

′
fk
,R′

fk
) + τ (i, f ′).

Taking the minimum cost over all f ′ ∈ Fi yields the optimal assign-
ment, which proves the correctness of the recursion formula.

For each set of facilities F ∈
(V
k
)
, computing the closest facilities

Fi ⊆ F for a customer i ∈ V can be done inO(k) steps if we compute
all distances in a preprocessing step. Computing a label requires
comparing |Fi | ≤ k values and can thus be done in O(k) steps. For
every set of facilities F ∈

(V
k
)
, we compute |V | ·

∏
f ∈F (Cf · Rf )

many labels, which yields the time-complexity stated above.
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The weak NP-completeness of the k-FLP-CRCA follows to-
gether with Lemma 5.1. □

Thus, as in the general Facility Location Problem, the FLP-
CRCA is easier to solve if the number of open facilities is fixed.
Note that this result is independent of the underlying network.

6 CONCLUSION

We showed that Facility Location Problems with Capacities,
Revenue, and Closest Assignments (FLP-CRCA) are already
computationally intractable if the underlying graph forms a star
- contrary to the famous Facility Location Problem, which is
known to be tractable on trees [6]. On paths and cycles, however,
the FLP-CRCA turns out to be computationally tractable - unlike
Capacitated Facility Location Problems. This discrepancy is
caused by the closest assignment property, which brings a special
structure to the solutions for FLP-CRCA-instances. Furthermore,
we showed that, if the number of open facilities is fixed, the FLP-
CRCA is weakly NP-complete for any underlying graph class. All
results presented here also hold for Facility Location Problems
with Closest Assignments and either capacities or revenues.

Further work includes the study of approximation algorithms
and analysing the complexity of further graph classes.
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