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ABSTRACT
In this work, we address the problem of optimally placing Virtual

Network Functions throughout a 5G network so that a given set of

Service Function Chains can achieve high levels of end-to-end avail-

ability. We tackle this problem from a combinatorial perspective

and propose a probabilistic approach to evaluate the real end-to-end

availability of a service. This generates a non-linear character to

the problem which is then linearized to derive an original integer

programming formulation for it. We also introduce new families of

valid inequalities reinforcing the proposed formulation. Based on

these inequalities, we derive an efficient branch-and-cut algorithm.

KEYWORDS
Network reliability, combinatorial optimization, valid inequalities

1 INTRODUCTION
Network Function Virtualization (NFV) is one of the key enabler

technologies for tackling the challenges of the upcoming 5G use-

cases requirements. These high-level-requirement use-cases include

autonomous vehicles, smart factories, smart cities, e-health, for in-

stance. With virtualization, Network Functions gain the ability to be

run as applications in Virtual Machines (VMs) or containers on off-

the-shelf hardware. This allows higher scalability, more flexibility

and reduces network management costs.

Virtual Network Functions (VNF) however are more prone to

errors and failures when compared to purpose-built hardware

[10, 14, 16]. Indeed, a major challenge for NFV is to ensure high

availability levels for its services. The service availability refers to

its probability of being operational when required and is defined as

the ratio between its expected uptime and total time values (see [2]).

A service in NFV-based networks – also called a Service Function

Chain (SFC) – is an origin-destination traffic demand composed of

a set of VNFs that must be visited in a given order along its route.

In this sense, an SFC is available if and only if all its VNFs can be

properly processed. Strict Service Level Agreements (SLAs) impose

that SFCs should be highly available (in some cases, for more than
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99.999% of the time, which roughly translates to 25.9 s downtime per

month [11, 15]). Then, backup VNFs must be placed on the network

so that the services can still be ensured even if some network nodes

fail.

Most of the literature related to SFC’s resilience is devoted to

securing the network against single-node failures. In this case, it

suffices to find two node-disjoint routes (a nominal and a backup)

for each SFC. In [4], nominal SFC routes are known in advance

and the goal is to find a minimum cost backup VNF placement. In

[13], the authors impose a single route for each SFC and focus on

minimizing the number of SFCs affected by a single node failure.

A few papers deal with multi-node failures. In [8, 9], heuristic

methods treating the multi-node failure scenario are presented.

These heuristics (i) construct a VNF assignment for each SFC based

on node’s remaining resources, (ii) reinforce the assignments by se-

quentially adding backup VNFs until the availability requirements

are met, and (iii) routing is then done through 𝑘-shortest paths com-

putations. An interesting exact approach is presented in [5], where

service availabilities are computed using a probabilistic approach.

However, each service is supposed to request only one VNF which

reduces the end-to-end availability computation complexity. In [16],

an in-between approach is considered where the goal is to protect

the network against single-node failures while knowing that the

failure of a node may impact other nodes (failure events are not

independent and are related to the network topology structure).

In this paper, we further explore the service availability defini-

tion considered in [5] with the purpose of providing a mathematical

model that optimizes VNF placements while formally taking into

account the SFCs’ availability. This allows us to ensure the required

SLAs within a multi-node failure scenario. The paper is organized

as follows. The problem is formally defined in Section 2 and its com-

putational complexity is briefly discussed in Section 3. In Section

4, we propose an original ILP formulation for the problem which

is then reinforced with valid inequalities in Section 5. To verify

the efficiency of the proposed inequalities, Section 6 is devoted

to the description of a branch-and-cut framework based on such

inequalities and Section 7 presents the preliminary computational

results obtained with this approach.

2 PROBLEM DEFINITION
Let 𝐺 = (𝑉 ,𝐴) be a directed, loopless, connected graph. Each node

𝑣 ∈ 𝑉 has a capacity 𝐶𝑣 ∈ R+, and an availability 0 < 𝑎𝑣 < 1, (i.e.,
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Figure 2: Illustration of a VNF assignment and the possible
SFC routes induced by it.

a risk of 1 − 𝑎𝑣 of being down). Moreover, let F be the set of VNF

types, where each VNF 𝑓 ∈ F has a resource consumption 𝑟 𝑓 ∈ R+,
and a placement cost 𝑐

𝑓
𝑣 ∈ R+ for each node 𝑣 ∈ 𝑉 . Finally, let 𝐾

be the set of SFC demands, where each demand 𝑘 ∈ 𝐾 is defined

by (i) an origin 𝑜𝑘 ∈ 𝑉 and a destination 𝑑𝑘 ∈ 𝑉 , (ii) a bandwidth
𝑏𝑘 ∈ R+, (iii) a required availability 𝐴𝑘 ∈ [0, 1], and (iv) an ordered

set of distinct VNFs 𝐹𝑘 ⊆ F that should be visited.

While different VNFs should be placed in series along the SFC

route (see Figure 1a), redundant VNFs must be placed in parallel

(see Figure 1b) so that whenever one fails, the SFC can be rerouted

through one of the redundancies. In serial composition, all sub-

components need to be operational for the system to be available.

For a parallel composition, however, it suffices that one subcompo-

nent is operational [12]. It follows that given two subcomponents

𝑖 and 𝑗 with respective availabilities 𝑎𝑖 and 𝑎 𝑗 , the availability

induced by their serial (resp. parallel) composition is 𝑎𝑖𝑎 𝑗 (resp.

1 −
[
(1 − 𝑎𝑖 ) (1 − 𝑎 𝑗 )

]
). Based on these remarks, we next describe

the VNF assignment of an SFC as well as the availability it induces.

Given an SFC requiring the visit of 𝑝 distinct VNFs, let S =

{𝑆1, . . . , 𝑆𝑝 } denote a VNF assignment for such SFC, where each

nonempty subset 𝑆𝑖 ⊆ 𝑉 , for 𝑖 = 1, . . . , 𝑝 , represents the set of

nodes where its 𝑖-th VNF can be processed. Figure 2 illustrates such

assignment. The subset 𝑆𝑖 ∈ S is also called the 𝑖-th section of an

SFC. From now on, let 𝐼𝑘 = {1, . . . , |𝐹𝑘 |} denote the set of sections
associated with SFC 𝑘 . The probability that the 𝑖-th VNF of the

considered SFC can be properly processed (i.e. the availability of its

𝑖-th section) is the probability that at least one of the nodes in 𝑆𝑖 is

operational. This probability, denoted by 𝑎(𝑆𝑖 ), is hence defined by

𝑎(𝑆𝑖 ) = 1 −
∏
𝑣∈𝑆𝑖

(
1 − 𝑎𝑣

)
. (1)

For an SFC to be operational, all its VNFs must be properly

processed. The end-to-end SFC availability induced by a VNF as-

signment S is denoted by 𝐴(S) and given by

𝐴(S) =
∏
𝑆 ∈S

𝑎(𝑆) =
∏
𝑆 ∈S

(
1 −

∏
𝑣∈𝑆

(
1 − 𝑎𝑣

))
. (2)

A VNF assignment S is said to satisfy the availability requirements

of an SFC 𝑘 if and only if 𝐴(S) ≥ 𝐴𝑘 .
Given a VNF assignment S𝑘 for each 𝑘 ∈ 𝐾 , let G = {S𝑘 :

𝑘 ∈ 𝐾} denote the associated global VNF assignment. A global VNF

assignment G is said to be feasible if the availability requirements of

each SFC 𝑘 ∈ 𝐾 is satisfied and the amount of resources consumed

on any given node 𝑣 ∈ 𝑉 is at most the node’s capacity 𝐶𝑣 , that is,∑
𝑘∈𝐾,𝑖∈𝐼𝑘 :𝑣∈𝑆𝑘

𝑖

𝑏𝑘𝑟
𝑓 (𝑖,𝑘) ≤ 𝐶𝑣 ∀𝑣 ∈ 𝑉 ,

where 𝑓 (𝑖, 𝑘) is a function mapping the 𝑖-th element of 𝐹𝑘 , that is,

the 𝑖-th VNF of SFC 𝑘 .

Notice that a node 𝑣 ∈ 𝑉 can only process a given VNF 𝑓 ∈ F if 𝑓

is placed on such node. Therefore, given a global VNF assignement

G, let 𝑉𝑓 (G) ⊆ 𝑉 denote, for any 𝑓 ∈ F , the set of nodes where 𝑓
must be placed, that is,

𝑉𝑓 (G) =
⋃
𝑘∈𝐾

⋃
𝑖∈𝐼𝑘 :

𝑓 (𝑖,𝑘)=𝑓

𝑆𝑘𝑖 .

The cost induced by a global VNF assignment G is therefore∑
𝑓 ∈F

∑
𝑣∈𝑉𝑓 (G)

𝑐
𝑓
𝑣 ,

and our goal is to find the feasible global VNF assignment inducing

the minimum cost.

3 COMPUTATIONAL COMPLEXITY
Even without taking into account the availability restrictions, the

problem is already NP-Hard. Indeed, if each SFC requires the same

and only one VNF, then the problem reduces to choosing aminimum

cost subset of nodes 𝑆 ⊆ 𝑉 where the VNF should be placed such

that 𝑆 is able to treat all SFCs. This is equivalent to a Variable Cost

and Size Bin-Packing Problem
1
(see [6, 7]) where bins and items

correspond to nodes and SFCs, respectively.

Furthermore, dealing with availability restrictions on their own

is also an NP-Hard problem. Indeed, if node capacities are said to

be unlimited and there is only one SFC (i.e., 𝐾 = {𝑘}) requiring a
single VNF to be considered, then the problem reduces to finding

a minimum cost subset of nodes 𝑆 ⊆ 𝑉 where the VNF should

be placed such that the SFC required availability is achieved, i.e.,
𝑎(𝑆) ≥ 𝐴𝑘 . This is clearly equivalent to a (Nonlinear) Knapsack

Problem (see [3]) where each item corresponds to a node in 𝑉 .

4 ILP FORMULATION
In this section, a natural formulation for the problem is described.

The binary variables 𝑥𝑣𝑖𝑘 indicate whether or not the 𝑖-th VNF of

SFC 𝑘 can be processed on node 𝑣 (i.e., if 𝑥𝑣𝑖𝑘 = 1 then 𝑣 ∈ 𝑆𝑘
𝑖
,

otherwise 𝑣 ∉ 𝑆𝑘
𝑖
). For each node 𝑣 ∈ 𝑉 and VNF 𝑓 ∈ F , the

variable 𝑦
𝑓
𝑣 indicates whether or not VNF 𝑓 is placed on node 𝑣 .

min

∑
𝑣∈𝑉

∑
𝑓 ∈F

𝑐
𝑓
𝑣𝑦

𝑓
𝑣 (3)

subject to

1
The Variable Cost and Size Bin-Packing Problem is a generalization from the well-

known Bin-Packing Problem where each bin has its own capacity and cost.
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𝑣∈𝑉

𝑥𝑣𝑖𝑘 ≥ 1 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 , (4)

𝑥𝑣𝑖𝑘 ≤ 𝑦
𝑓 (𝑖,𝑘)
𝑣 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 , 𝑣 ∈ 𝑉 , (5)∑

𝑘∈𝐾

∑
𝑖∈𝐼𝑘

𝑏𝑘𝑟
𝑓 (𝑖,𝑘)𝑥𝑣𝑖𝑘 ≤ 𝐶𝑣 ∀𝑣 ∈ 𝑉 , (6)

∏
𝑖∈𝐼𝑘

(
1 −

∏
𝑣∈𝑉

(
1 − 𝑎𝑣𝑥𝑣𝑖𝑘

))
≥ 𝐴𝑘 ∀𝑘 ∈ 𝐾, (7)

𝑥𝑣𝑖𝑘 ∈ {0, 1} ∀𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 , (8)

𝑦
𝑓
𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝑉 , 𝑓 ∈ F . (9)

The objective function (3) evaluates the total VNF placement

cost. The assignment constraints (4) ensure that at least one VNF

should be assigned to each section of each SFC. The VNF placement

constraints (5) impose that a VNF can only be assigned to an SFC if

it is already placed. The capacity constraints (6) guarantee that the

capacity of each node is not exceeded. Availability constraints (7)

force the SFCs’ Service Level Agreement to be respected. Finally,

constraints (8) and (9) settle the domains of variables.

The presence of constraints (7) however clearly makes the pro-

posed formulation non-linear. Such non-linearity is difficult to be

handled by traditional commercial solvers (e.g., CPLEX, Gurobi).
Thereby we next propose a linear reformulation of such constraints.

For this, consider the following set of inequalities.∑
(𝑣,𝑖) ∈(𝑉×𝐼𝑘 )\S

𝑥𝑣𝑖𝑘 ≥ 1 ∀𝑘 ∈ 𝐾,S ⊆ 𝑉 × 𝐼𝑘 : 𝐴(S) < 𝐴𝑘 . (10)

Proposition 4.1. An integer solution 𝑥 satisfies inequalities (7) if
and only if it satisfies inequalities (10).

Proof. Let G = {S𝑘 : 𝑘 ∈ 𝐾} denotes the global VNF assign-

ment associated with solution 𝑥 , where S𝑘 = {(𝑣, 𝑖) : 𝑥𝑣𝑖𝑘 = 1}. Let
𝑥 be an integer solution satisfying inequalities (7). Then, 𝐴(S𝑘 ) ≥
𝐴𝑘 for any 𝑘 ∈ 𝐾 . We next show that inequalities (10) are all sat-

isfied by 𝑥 . For this, suppose there exists 𝑘 ′ ∈ 𝐾 and S′ ⊆ 𝑉 × 𝐼𝑘′

for which ∑
(𝑣,𝑖) ∈(𝑉×𝐼𝑘′ )\S′

𝑥𝑣𝑖𝑘′ = 0.

By definition, S𝑘 ⊆ S′ and hence 𝐴(S′) ≥ 𝐴(S𝑘 ) ≥ 𝐴𝑘 , which
concludes the first part of the proof. To finish the proof, suppose

now that 𝑥 does not satisfy inequalities (7). Then, there exists𝑘 ′ ∈ 𝐾
for which 𝐴(S𝑘′) < 𝐴𝑘

′
. It follows that, by definition, inequality

(10) associated with 𝑘 ′ and S𝑘′ is violated. □

Proposition 4.1 shows that inequalities (10) are sufficient for en-

suring the required availabilities and hence, we can now replace

the non-linear inequalities (7) for (10). The resulting formulation

– defined by (3)-(6),(8)-(10) – is linear but also non-compact since

it requires an exponential number of constraints. A standard ap-

proach is hence to relax such constraints and append them when

violated. For this, one needs to deal with the separation problem

associated with inequalities (10). Recall that for a family of valid

inequalities I, the separation problem for I consists of either find-

ing an inequality in I violated by a given vector (𝑥,𝑦) or proving
that (𝑥,𝑦) satisfies all the inequalities in I. For inequalities (10),

the associated separation problem amounts to solve a (non-linear)

Knapsack Problem (c.f. Section 3), that is, an NP-Hard problem.

Proposition 4.2. The separation problem for inequalities (10) can
be solved in linear time when vector (𝑥,𝑦) is integer.

Proof. Notice that every component of vector (𝑥,𝑦) is binary.
For each 𝑘 ∈ 𝐾 , let S𝑘 = {(𝑣, 𝑖) : 𝑥𝑣𝑖𝑘 = 1}. There exists an

inequality in (10) violated by (𝑥,𝑦) if and only if there exists 𝑘 ∈ 𝐾
such that 𝐴(S𝑘 ) < 𝐴𝑘 , which can be checked in linear time. □

As a consequence, we propose to solve the associated separa-

tion problem heuristically
2
whenever the solution is fractional and

exactly otherwise. Nevertheless, such an approach leads to perfor-

mance issues and the reasons are twofold:

(1) The initially relaxed constraints are the only ones enforc-

ing the assignment of backup VNFs (which directly impacts

the objective function). Since their separation problem is

only solved exactly on integer solutions, the dual bound

convergence is significantly slowed down.

(2) Even if inequalities (10) well-define the availability require-

ments, they are not strong inequalities. Indeed, the inclusion

of a violated inequality (10) imposes that one non-assigned

VNF should be in the solution. Such information is quite

vague and hence the inclusion of a huge number of inequali-

ties is required to obtain a feasible solution.

The next section is thus dedicated to the reinforcement of the

studied formulation through the investigation of valid inequalities.

5 FORMULATION STRENGTHENING
As briefly discussed in the previous section, a major challenge

consists of providing good bounds on the number of VNFs required

to secure a given SFC without having to appeal to the linearized

availability constraints (10). In order to derive such bounds, let us

consider the following related combinatorial problem.

Given a set of nodes𝑉 and an SFC composed of 𝑝 VNF types, find

the VNF assignmentS∗ that induces the highest possible availability
for such SFC while placing exactly 𝑛 ∈ N VNFs (𝑛 ≥ 𝑝) over the
node-set 𝑉 . We next show that this combinatorial problem may be

solved in polynomial time and we use it to derive valid inequalities

reinforcing the previously considered formulation.

Claim 1. If S = {𝑆1, . . . , 𝑆𝑝 } is an optimal assignment, then each
subset 𝑆𝑖 is composed of the |𝑆𝑖 | most available nodes.

Claim 2. If S = {𝑆1, . . . , 𝑆𝑝 } is an optimal assignment, then every
assignment built from a permutation of sets 𝑆1, . . . , 𝑆𝑝 is also optimal.

Proof. The availability function 𝐴(S) defined by (2) is commu-

tative over the elements of S. □

Claim 3. If S = {𝑆1, . . . , 𝑆𝑝 } is an optimal assignment, then the
difference between the number of nodes in any two sets 𝑆𝑖 and 𝑆 𝑗
within S is at most one, that is, |𝑆𝑖 | − |𝑆 𝑗 | ≤ 1.

Proof. The proof is done by contradiction. Suppose that S =

{𝑆1, . . . , 𝑆𝑝 } is an optimal assignment where there exists 𝑖 and 𝑗 for

which |𝑆𝑖 | − |𝑆 𝑗 | ≥ 2. From Claim 1, 𝑆𝑖 and 𝑆 𝑗 are composed of the

2
Our heuristic procedure greedily constructs a VNF assignment S for each SFC 𝑘 by

iteratively picking the pair (𝑣, 𝑖) that maximizes 𝑥𝑣𝑖𝑘 and minimizes𝐴(S ∪ (𝑣, 𝑖)) .
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most available nodes and hence 𝑆 𝑗 ⊂ 𝑆𝑖 . Let 𝑢𝑖 ∈ 𝑆𝑖 be the least
available node in 𝑆𝑖 . By definition, 𝑢𝑖 ∉ 𝑆 𝑗 .

Consider the VNF assignment S∗ = {𝑆∗
1
, . . . , 𝑆∗𝑝 }, where 𝑆∗𝑘 = 𝑆𝑘

for any 𝑘 ∈ {1, . . . ,𝑚} \ {𝑖, 𝑗}, 𝑆∗
𝑗
= 𝑆 𝑗 ∪𝑢𝑖 and 𝑆∗𝑖 = 𝑆𝑖 \𝑢𝑖 . Since 𝑢𝑖

is the least available node in 𝑆𝑖 , we have 𝑎(𝑆𝑖 ) > 𝑎(𝑆∗𝑖 ) > 𝑎(𝑆
∗
𝑗
) >

𝑎(𝑆 𝑗 ). Moreover,

𝑎(𝑆∗𝑖 ) = 1 −
∏
𝑣∈𝑆𝑖 (1 − 𝑎𝑣)

1 − 𝑎𝑢𝑖
=
𝑎(𝑆𝑖 ) − 𝑎𝑢𝑖

1 − 𝑎𝑢𝑖
,

and

𝑎(𝑆∗𝑗 ) = 1 −
©­«

∏
𝑣∈𝑆 𝑗
(1 − 𝑎𝑣)

ª®¬
(
1 − 𝑎𝑢𝑖

) = 𝑎(𝑆 𝑗 ) + 𝑎𝑢𝑖 (1 − 𝑎(𝑆 𝑗 )) .

Next we show that 𝐴(S∗) > 𝐴(S), a contradiction since S is

optimal. By definition,

𝐴(S∗) = 𝐴(S)
𝑎(𝑆∗

𝑗
)𝑎(𝑆∗

𝑖
)

𝑎(𝑆 𝑗 )𝑎(𝑆𝑖 )
= 𝐴(S)

(
1 +

𝑎𝑢𝑖 (𝑎(𝑆𝑖 ) − 𝑎(𝑆∗𝑗 ))
𝑎(𝑆 𝑗 )𝑎(𝑆𝑖 ) (1 − 𝑎𝑢𝑖 )

)
.

Since 𝑎(𝑆𝑖 ) > 𝑎(𝑆∗𝑗 ), we have 𝐴(S
∗) > 𝐴(S). □

As a result of Claims 1, 2 and 3, a simple greedy algorithm –

see Algorithm 1 – solves the previously presented combinatorial

problem.

Algorithm 1: Computation of VNF assignment S∗ induc-
ing the highest possible availability with exactly 𝑛 VNFs

Let 𝑆∗
𝑖
= ∅ for 𝑖 = 1, . . . , 𝑝 ;

for 𝑗 = 0, . . . , 𝑛 − 1 do
𝑖 ← 𝑗 mod 𝑝 + 1;

Add the most available node in 𝑉 \ 𝑆∗
𝑖
to 𝑆∗

𝑖
;

end
Return S∗ = {𝑆∗

1
, . . . , 𝑆∗𝑝 } ;

5.1 Valid inequalities
Remark 1. If S is a VNF assignment such that 𝐴(S) ≥ 𝐵, then

𝐴(S′) ≥ 𝐵 for any S′ ⊆ S, since from equations (1) and (2) we have
that 𝐴(S′) ≥ 𝐴(S).

We next combine the results obtained from Remark 1 and Algo-

rithm 1 in order to derive reinforcing valid inequalities. For this,

let 𝜂 (𝑈 , 𝑝, 𝐵) ∈ N denote the minimum number of VNFs required

to be installed within node-set 𝑈 ⊆ 𝑉 so that an SFC composed

of 𝑝 sections can meet the availability requirement 𝐵. Notice that

𝜂 (𝑈 , 𝑝, 𝐵) can be easily computed in polynomial time with the help

of Algorithm 1. From the definition of 𝜂 (𝑈 , 𝑝, 𝐵), the following

inequalities are obviously valid.∑
𝑖∈𝐼𝑘

∑
𝑣∈𝑉

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑉 , |𝐼𝑘 |, 𝐴𝑘 ) ∀𝑘 ∈ 𝐾.

Such inequalities provide a lower bound on the number of VNFs

required to be assigned to a given SFC. This can be further extended

using Remark 1, which gives rise to the following Chain Cover
inequalities.∑

𝑖∈𝑄

∑
𝑣∈𝑉

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑉 , |𝑄 |, 𝐴𝑘 ) ∀𝑘 ∈ 𝐾,𝑄 ⊆ 𝐼𝑘 . (11)

Proposition 5.1. The Chain Cover inequalities (11) are valid.

Proof. From Remark 1, the VNF assignment associated with sec-

tions in𝑄 must induce an availability of at least 𝐴𝑘 . Thus, inequali-

ties (11) are clearly valid from the definition of 𝜂 (𝑉 , |𝑄 |, 𝐴𝑘 ). □

Chain Cover inequalities provide important information con-

cerning the minimum number of VNFs to be assigned over the

sections of an SFC. However, such a number is constructed follow-

ing the principles of Algorithm 1, that is, only the most available

nodes in 𝑉 are actually taken into account. If for any reason (e.g.,
elevated cost, insufficient capacity, etc) some of these nodes are

banned from being used, such lower bound might increase. We next

focus on this case to derive a new family of valid inequalities. For

this, consider the following Node Cover inequalities.∑
𝑣∈𝑉 \𝑈

𝜂 (𝑈 , 1, 𝐴𝑘 )𝑥𝑣𝑖𝑘 +
∑
𝑣∈𝑈

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑈 , 1, 𝐴𝑘 )

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 ,𝑈 ⊆ 𝑉 . (12)

Proposition 5.2. The Node Cover inequalities (12) are valid.

Proof. Let 𝑆 denote the set of nodes where the 𝑖-th VNF of SFC 𝑘

can be processed for an arbitrary feasible solution. If there is a node

𝑣 ∈ 𝑆 such that 𝑣 ∈ 𝑉 \𝑈 , then the inequality is clearly satisfied.

Hence, suppose 𝑆 ⊆ 𝑈 . In this case, we have that |𝑆 | ≥ 𝜂 (𝑈 , 1, 𝐴𝑘 )
from Remark 1 and thus the inequality is also verified. □

Notice that inequalities (12) might become quite loose when

there exists a node 𝑣 ∈ 𝑉 \ 𝑈 that can process the 𝑖-th VNF of

SFC 𝑘 . For this reason, we next propose a lifted version of such

inequalities. For this, let 𝛽 (𝑣 ′,𝑉 , 𝐵) denote the minimum number

of backup VNF replicas that need to be assigned in parallel to 𝑣 ′

within the node-set 𝑉 so that a certain availability requirement

𝐵 is reached. Remark that such number can be easily obtained by

slightly modifying the computation of 𝜂 (𝑉 , 1, 𝐵). Indeed, it suffices

to oblige node 𝑣 ′ to be part of the VNF assignment in Algorithm 1.

Moreover, let𝑉 (𝑣) denote the subset of nodes in𝑉 that are at most

as available as 𝑣 , that is,

𝑉 (𝑣) =
{
𝑢 ∈ 𝑉 : 𝑎(𝑢) ≤ 𝑎(𝑣)

}
. (13)

The Lifted Node Cover inequalities are defined as follows.∑
𝑣∈𝑉 \𝑈

𝑐𝑣𝑥𝑣𝑖𝑘+
∑
𝑣∈𝑈

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑈 , 1, 𝐴𝑘 ) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 ,𝑈 ⊆ 𝑉 , (14)

where 𝑐𝑣 = max

(
𝜂 (𝑈 , 1, 𝐴𝑘 ) − 𝛽 (𝑣,𝑈 ∪𝑉 (𝑣), 𝐴𝑘 ), 1

)
.

Proposition 5.3. Lifted Node Cover inequalities (14) are valid.

Proof. Let 𝑆 denote the set of nodes where the 𝑖-th VNF of

SFC 𝑘 can be processed for an arbitrary feasible solution. That is,

𝑆 = {𝑣 ∈ 𝑉 : 𝑥𝑣𝑖𝑘 = 1}. If 𝑆 ⊆ 𝑈 , then the inequality is satisfied

since inequalities (12) are valid. Hence, let us focus on the case

where 𝑆 ⊈ 𝑈 . Let 𝑣 ′ denote the most available node in 𝑆 \𝑈 . By
definition, 𝑆 ⊆ 𝑈 ∪𝑉 (𝑣 ′) and hence |𝑆 \ 𝑣 ′ | ≥ 𝛽 (𝑣 ′,𝑈 ∪𝑉 (𝑣 ′), 𝐴𝑘 ).
Since 𝑐𝑣′ ≥ 𝜂 (𝑈 , 1, 𝐴𝑘 )−𝛽 (𝑣,𝑈 ∪𝑈𝑣, 𝐴𝑘 ) and every other coefficient

is at least 1, the inequality is verified. □
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Chain Cover inequalities (11) deal with the non-linearity of the

availability function arising from the chaining of VNFs. Node Cover

inequalities (12) treat the availability non-linearity appearing rather

from the parallel assignment of VNFs. These two ideas are next

combined to form a single large family of valid inequalities. The

Generalized Cover inequalities are defined as follows.∑
𝑖∈𝑄

∑
𝑣∈𝑉 \𝑈

𝜂 (𝑈 , |𝑄 |, 𝐴𝑘 )𝑥𝑣𝑖𝑘 +
∑
𝑖∈𝑄

∑
𝑣∈𝑈

𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑈 , |𝑄 |, 𝐴𝑘 )

∀𝑘 ∈ 𝐾,𝑄 ⊆ 𝐼𝑘 ,𝑈 ⊆ 𝑉 . (15)

Proposition 5.4. Generalized Cover inequalities (15) are valid.

Proof. Let S = {𝑆1, . . . , 𝑆 |𝐼𝑘 |} denote the VNF assignment of

SFC 𝑘 for an arbitrary feasible solution. That is, 𝑆𝑖 = {𝑣 ∈ 𝑉 : 𝑥𝑣𝑖𝑘 =

1}, for any 𝑖 ∈ 𝐼𝑘 . If there exists a node 𝑣 ∈ 𝑆𝑖 , for any 𝑖 ∈ 𝑄 , such
that 𝑣 ∈ 𝑉 \𝑈 , then the inequality is clearly satisfied. Hence, suppose

𝑆𝑖 ⊆ 𝑈 , for every 𝑖 ∈ 𝑄 . In this case, at least𝜂 (𝑈 , |𝑄 |, 𝐴𝑘 ) VNFsmust

be assigned to SFC 𝑘 and hence

∑
𝑖∈𝑄

∑
𝑣∈𝑈 𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑈 , |𝑄 |, 𝐴𝑘 ).

The inequality is thus verified. □

Next, consider the following Section Failure inequalities.∑
𝑣∈𝑉

(
log

(
1 − 𝑎𝑣

) )
𝑥𝑣𝑖𝑘 ≤ log

(
1 −𝐴𝑘

)
∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 . (16)

Proposition 5.5. The Section Failure inequalities (16) are valid.

Proof. LetS = {𝑆1, . . . , 𝑆 |𝐼𝑘 |} denote a feasible VNF assignment

for an SFC 𝑘 ∈ 𝐾 , that is, 𝐴(S) ≥ 𝐴𝑘 . It follows directly from

Remark 1 that 𝑎(𝑆𝑖 ) ≥ 𝐴𝑘 for any 𝑖 ∈ 𝐼𝑘 , i.e.,∏
𝑣∈𝑆𝑖

(
1 − 𝑎𝑣

)
≤ 1 −𝐴𝑘 ∀𝑖 ∈ 𝐼𝑘 . (17)

Notice that if inequalities (17) hold, then

log

©­«
∏
𝑣∈𝑆𝑖

(
1 − 𝑎𝑣

)ª®¬ ≤ log

(
1 −𝐴𝑘

)
∀𝑖 ∈ 𝐼𝑘 ,

also hold. Using the fundamental property of logarithms that states

log(𝑎𝑏) = log(𝑎) + log(𝑏), such inequalities can be rewritten as∑
𝑣∈𝑆𝑖

(
log

(
1 − 𝑎𝑣

) )
≤ log

(
1 −𝐴𝑘

)
∀𝑖 ∈ 𝐼𝑘 .

Since by definition 𝑥𝑣𝑖𝑘 = 1 for 𝑣 ∈ 𝑆𝑖 and 𝑥𝑣𝑖𝑘 = 0 for 𝑣 ∈ 𝑉 \ 𝑆𝑖 ,
inequalities (16) are hence valid. □

It is worth noting that if one searches for Cover inequalities (see

[1]) associated with Section Failure inequalities (16), the inequalities

obtained form a subset of the linearized availability constraints (10).

So far, all the introduced valid inequalities have dealt with the

availability restrictions. We next propose a family of valid inequali-

ties reinforcing the capacity constraints (6). The Stronger Capacity
inequalities are defined as follows.∑

𝑘∈𝐾,𝑖∈𝐼𝑘 :𝑓 (𝑖,𝑘)=𝑓
𝑏𝑘𝑟

𝑓 𝑥𝑣𝑖𝑘 ≤ 𝐶𝑣𝑦
𝑓
𝑣 ∀𝑣 ∈ 𝑉 , 𝑓 ∈ 𝐹 . (18)

Proposition 5.6. Stronger Capacity inequalities (18) are valid.

Proof. If a VNF is placed on node 𝑣 , then the amount of re-

sources it consumes must be at most the node’s capacity. □

6 BRANCH-AND-CUT FRAMEWORK
We next describe the branch-and-cut framework we have developed

based on the results obtained from Section 5. In this framework

we consider the linearized formulation (3)-(6),(8)-(10) presented

in Section 4 reinforced with Chain Cover inequalities (11), Lifted

Node Cover inequalities (14), Section Failure inequalities (16) and

Stronger Capacity inequalities (18).

As stated in Section 4, the separation problem for the linearized

availability constraints (10) is solved exactly whenever an integer

solution is found. This allows us to guarantee the feasibility of the

solution provided by the end of the optimization procedure.

Since the Section Failure inequalities (16) and the Stronger Ca-

pacity inequalities (18) appear in polynomial numbers, storing them

in a pool and checking, by enumeration, whether they all are sat-

isfied remains an efficient way of handling them. For the Chain

Cover inequalities (11) and Lifted Node Cover inequalities (14) we

next focus on their separation problems.

Proposition 6.1. The separation problem for the Chain Cover
inequalities (11) can be solved in polynomial time.

Proof. For a given SFC 𝑘 ∈ 𝐾 , the right-hand side of the inequal-
ity depends only on the cardinality of subset 𝑄 ⊆ 𝐼𝐾 . Therefore,
one can compute 𝜂 (𝑉 , |𝑄 |, 𝐴𝑘 ), for |𝑄 | = 1, . . . , |𝐼𝑘 |, in polynomial

time. Additionally, for each chosen cardinality of 𝑄 , the left-hand

side can be easily minimized by choosing the sections 𝑖 ∈ 𝐼𝑘 with

the smallest values of

∑
𝑣∈𝑉 𝑥𝑣𝑖𝑘 . □

Solving the separation problem for Lifted Node Cover inequali-

ties (14) is less trivial since the value of the right-hand side depends

not only on the cardinality of subset 𝑈 ⊆ 𝑉 but also on its com-

position. For this reason, we consider the following sub-family of

inequalities (14) that can be separated in polynomial time by simple

enumeration:∑
𝑣∈𝑉 \𝑉 (𝑢)

𝑐𝑣𝑥𝑣𝑖𝑘 +
∑

𝑣∈𝑉 (𝑢)
𝑥𝑣𝑖𝑘 ≥ 𝜂 (𝑉 (𝑢), 1, 𝐴𝑘 ), (19)

for any 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑘 , 𝑢 ∈ 𝑉 , where 𝑉 (𝑣) is defined as in (13) and

𝑐𝑣 = max

(
𝜂 (𝑉 (𝑢), 1, 𝐴𝑘 ) − 𝛽 (𝑣,𝑉 (𝑣), 𝐴𝑘 ), 1

)
.

At each node of the branch-and-cut tree, the separation routines

are called following a hierarchical order defined by their compu-

tational complexity – from the simplest to the hardest – and once

a violated inequality is found, the node is re-optimized with the

additional cut. All cuts are globally valid. A branching operation is

performed once no separation routine can find a violated inequality.

7 COMPUTATIONAL RESULTS
In order to evaluate the efficiency of our approach, this section pro-

vides some preliminary results on the computational performances

obtained over a small set of randomly generated instances. Two

availability scenarios – denoted by Constant and Variable – were

examined on a small network containing 15 nodes. In Constant case,
all nodes are considered to have the same fixed availability which

is set to 0.90. On Variable, each node has an availability taken at

random between 0.90 and 0.99. For each availability scenario, five

sets of |𝐾 | ∈ {10, 20, 30, 40} SFCs were randomly generated, where
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Table 1: Computational results comparison

Instance opt time (s) gap (%)
|𝐾 | Type (I) (R) (I) (R) (I) (R)

10 C 4/5 5/5 0.07 0.04 3.94 0

20 C 3/5 5/5 2.9 1.12 4.35 0

30 C 3/5 5/5 65.5 16.9 15.9 0

40 C 1/5 2/5 2236 540.6 9.48 1.35

10 V 5/5 5/5 3.3 0.2 0 0

20 V 4/5 5/5 95.7 65.8 0.72 0

30 V 0/5 2/5 - 1776 13.3 7.70

40 V 0/5 0/5 - - 25.3 14.9

each SFC is required to visit between 1 and 5 VNFs chosen at ran-

dom from a set of 8 VNF types. Moreover, each SFC has a required

availability between 0.9999 and 0.999999, which is in accordance

with specifications in [15].

Table 1 summarizes the computational results obtained using

the initial linearized formulation (3)-(6), (8)-(10) – columns (I)
– and the reinforced formulation featured in our branch-and-cut

framework – columns (R). All our computational experiments

were implemented in C++ and performed using the state-of-the-art

MIP solver CPLEX 12.10 on a computer equipped with a 1.60 GHz

Intel Core i5-8265U processor and 16 Gb RAM. A time limit of one

hour was imposed in each run. For each instance size and type

(C for Constant and V for Variable), the number of instances that

could be solved to optimality within the time limit is displayed

under column opt. Column time (s) provides the average time in

seconds required to achieve optimality. Column gap (%) displays

the average remaining gap for the instances that could not be solved

within time limit.

For the Constant scenario, out of the 20 tested instances, only

11 could be solved to optimality within the time limit by the initial

formulation. Our branch-and-cut approach allowed us to solve up

to 17 instances to optimality in less than one hour. Indeed, up to

30 demands, all instances could be optimally solved. Moreover, the

remaining instances were left with a relatively small gap. For the

Variable scenario, the performance of the initial formulation was

even worse. Only 9 out of the 20 tested instances could be solved

to optimality and none of them had more than 20 demands. With

our branch-and-cut framework, 3 more instances could be opti-

mally solved. Besides, the average remaining gaps for the unsolved

instances were considerably reduced.

The gain of performance observed with our branch-and-cut ap-

proach is largely due to its capability of rejecting unfeasible solu-

tions earlier in the optimization. Indeed, the average number of

linearized availability constraints added by the exact separation

problem (and hence later in the optimization) dropped from 1440 to

13 in the Constant case and from 1608 to 748 in the Variable case. In

addition, considering only the instances that could be solved with

both approaches, the branch-and-cut framework was on average

2.92 times faster, and the average number of nodes that were re-

quired to be explored in the enumeration tree to prove optimality

went down from 148.3 thousand to 38 thousand in the Constant

case and from 55.6 thousand to 7.5 thousand in the Variable case.

8 FINAL REMARKS AND NEXT STEPS
In this work, we have studied the problem of optimally placing

VNFs throughout a given network so that a set of SFCs can achieve

their required availability. The non-linearity inherent to the defi-

nition of the end-to-end availability of an SFC represents a major

challenge in such problem. We have proposed an original ILP for-

mulation that solves the addressed optimization problem. Such ILP

was then reinforced through the investigation of valid inequalities

and preliminary computational results testify in favor of their ef-

ficiency. Even with the improvements proposed in this paper, our

approach can only solve instances of limited size. With this in mind,

the use of heuristics can help improve the primal bounds faster

and hence speed up the convergence towards the optimal solution.

The next steps may also include the consideration of SFCs’ routing

aspect explicitly into the formulation so that maximum SFC delay

constraints and link capacity constraints can be imposed in order

to treat a more generalized problem.
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