Short Paper

O

proceedings

Spatially Combined Keyword Searches

Artur Titkov
Johannes Gutenberg University Mainz, Germany
artitkov@uni-mainz.de

ABSTRACT

Data have become increasingly more complex over the past years;
entities are easily ‘tagged’ with different types of auxiliary infor-
mation, such as text and spatial locations. Examples include geo-
tagged news and micro-blogs, map and social services etc. Spatial
keyword search is a popular retrieval task in such collections,
where objects are reported by their distance to the query location
and the relevance of their text to the query keywords. However,
the case of spatially combining multiple keyword searches was
never studied. Under this prism, we introduce two novel retrieval
tasks that either spatially join (SpaJKS) or determine the clos-
est pairs among (SpaRKS) the results of independent keyword
searches. To efficiently compute SpaJKS and SpaRKS queries, we
also present five strategies employing different types of indexing.
Last, our experimental analysis evaluates the performance of
these strategies on both real and synthetic spatio-textual objects.

1 INTRODUCTION

The proliferation of geo-positioning technologies and services
has resulted in an abundance of geospatial datasets augmented
with text information. Examples include Pol datasets from on-
line map and social websites (e.g., Yelp and FourSquare), geo-
tagged photos with text description in photo sharing websites
(e.g., Flickr and Instagram), geo-tagged micro-blogs (e.g., Twit-
ter) and news. In this context, previous work for spatial keyword
search has mainly focused on three types of queries [4, 7, 9]. First,
given a location ¢ and a set of keywords i/, the k-NN (Boolean)
Containment query in [6, 13, 24], returns the k spatio-textual
objects closely located to ¢, whose text description contains all
keywords in . Second, instead of ranking the objects solely on
their spatial distance to the query location ¢, the ranking or top-k
query in [11, 17, 21, 23], retrieves the k objects with the highest
spatio-textual relevance, defined as a combination of the objects’
distance to ¢ and the similarity of their text description to set .
Last, the (Boolean) Range query studied in [8, 10, 14, 16, 22, 25],
retrieves all objects within distance € from location ¢, whose text
description contains all keywords in set /.

The above queries involve a single keyword search with re-
spect to a given set of keywords ¢. The difference lies on how
the objects are ranked/filtered, i.e., either considering exclusively
their distance to the query location ¢ or by also measuring the
relevance of their description to set 1. In some cases however,
users are interested in posing multiple keyword searches and
then spatially combine their results. Consider for example the
scenario in Figure 1. A German-speaking family is planning their
relocation to Brooklyn, New York. They are interested in an apart-
ment which (1) offers specific amenities, e.g., a balcony and a
private gym, and (2) is conveniently located nearby a German-
speaking kindergarten, e.g., less than 1km away, with an outdoor-
playground. The family’s search for an ideal apartment can be

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

403

Panagiotis Bouros
Johannes Gutenberg University Mainz, Germany
bouros@uni-mainz.de

nl o
e *
B 2
B, -.
. 4 iz
dist(1, B) = 1.8km . pet 1=
dist(1,C) = 1.2km =
dist(2, B) = 300m s
dist(2, C) = 900m
-
L
apartment | amenities | [kindergarten | description
1 balcony, pool, gym A German, indoor-playground
2 balcony, gym B German, outdoor-playground
3 balcony, pool C German, outdoor-playground
D outdoor playground

Figure 1: Motivation example

formulated as two independent keyword searches (potentially
issued on separate data sources), using set ¥/, = {balcony, gym} for
the apartments and ;. = {German, outdoor playground} for the
kindergartens. Their results are then spatially joined with respect
to the 1km distance constraint. Kindergartens B, C in Figure 1
offer a German-speaking program and an outdoor-playground. At
the same time, apartments 1, 2 match the family’s criteria for a
balcony and a gym, but only apartment 2 will be recommended,
as apartment 1 is located over 1km away from the qualifying
kindergartens.

To our knowledge, the above scenario is not considered by
existing works in spatial keyword search. It is also not covered by
spatio-textual joins [2], where objects are joined on their distance
in space and their text similarity, or by collective spatio-textual
search [5], where groups of objects that collectively cover a single
set of keywords are returned. Only, spatial rank joins [19, 20]
relate to our work, but in this case ranked lists of objects are
spatially joined while in our case the keyword search results
are completely unranked. To fill this gap, we propose two novel
retrieval tasks that spatially combine the results of independent
keyword searches. In brief, given collections of spatio-textual ob-
jects R, S and sets of keywords yg, Vs, a Spatially Joined Keyword
Searches query (SpaJKS) returns all object pairs (r,s) € R X S,
located within a given distance threshold ¢, so that the text de-
scription of r (resp. s) satisfies the keyword search over R (resp. S)
based on g (resp. ¥'s). Intuitively, SpaJKS combines two keyword
searches with a spatial distance join. The second task termed
Spatially Ranked Keyword Searches query (SpaRKS) replaces the
spatial e-distance join of SpaJKS with a k-closest pairs operation,
retrieving the k most closely located pairs of objects (r, s) that
qualify the keyword searches. Intuitively, unlike SpaJKS, SpaRKS
allows us to control the number of returned objects, which oth-
erwise can be overwhelming large, where in reality, only a small
fraction is actually reviewed by the users [15].

The key contributions of this paper are summarized as follows:

e Section 2 formally introduces the problem of spatially
combining keyword searches as a novel, interesting type
of spatial keyword search.

10.48786/edbt.2022.30

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.30

e Given two collections of spatio-textual objects, we de-
fine two variations, termed the Spatially Joined Keyword

Searches (SpaJKS) and the Spatially Ranked Keyword Searches

(SpaRKS) queries.

e Section 3 discusses five evaluation strategies for SpaJKS
and SpaRKS queries, considering different types of index-
ing structures and query processing techniques.

e Section 4 conducts an experimental analysis using both
real-world and synthetic datasets to compare and analyse
the efficiency of the presented evaluation strategies.

2 PRELIMINARIES

We define a spatio-textual object o as a (0.id, 0.loc, o.text) triplet,
modeling the identity, the location, and the text description of
o, respectively. Entry o.loc takes values from the 2-dimensional
space, while o.text is a set of terms from a finite global dictio-
nary D. We next revisit three query operations, which act as the

building blocks for the problem at hand.

Definition 2.1 (Keyword Search). Let O be a collection of spatio-
textual objects. Given a set of keywords ¢ = {k1,...,km}, a
keyword search query (KSearch) returns every object in O whose
text description contains all keywords from set /. Formally:

KSearch(O,¢) ={o€ O : ¢ C o.text}

For every pair of objects 0; and o0z, we denote their distance
in the 2-dimensional space with respect to o1.loc and 0y.loc, as
dist(01, 02). Without loss of generality, we consider the Euclidean
distance of the objects for the rest of this paper.

Definition 2.2 (Spatial Distance Join). Let R and S be two collec-
tions of spatio-textual objects. Given a threshold €, a spatial dis-
tance join query (SpJoin) returns all pairs of objects (r,s) € RX S
located within a distance that does not exceed €. Formally:

SpJoin(R, S, €) = {(r,s) € Rx S : dist(r,s) < €}

Definition 2.3 (k-Closest Pairs). Let R, S be two collections of
spatio-textual objects. Given a positive integer k, a k-closest pairs
query (CPairs) returns the k pairs of objects (r, s) € R x S with
the lowest distances. Formally:

e |CPairs(R, S, k)| = k, and
e CPairs(R,S,k) = {(r,s) € RXS : VY(r’,s”) ¢ CPairs(R, S, k),
dist(r’,s”) = dist(r,s)}

We now define the two variations to the problem of spatially
combining keyword searches.

Definition 2.4 (Spatially Joined Keyword Searches). Let R, S
be two collections of spatio-textual objects. Given two sets of
keywords yr, s and a spatial distance threshold e, a Spatially
Joined Keyword Searches query (SpaJKS), returns all pairs of
objects (r,s) € SpJoin(R’,S’, €) with R” = KSearch(R, ¥g) and
S’ = KSearch(S, ys).

Definition 2.5 (Spatially Ranked Keyword Searches). Let R, S
be two collections of spatio-textual objects. Given two sets of
keywords yr, s and a positive integer k, a Spatial Ranked Key-
word Searches query (SpaRKS), returns the k pairs of objects
(r,s) € CPairs(R’,S’, k) with R’ KSearch(R, yg) and S’ =
KSearch(S, ¥s).

Without loss of generality, we introduced above both SpaJKS
and SpaRKS as binary operations but they can be straightfor-
wardly extended to involve multiple input collections and key-
word searches. However, we leave the efficient evaluation of these

404

Table 1: Evaluation strategies

[strategy “ indexing used]
text-first text inverted indices /g, s
spatial-first spatial R-trees TR, Ts
spatial probing spatial & text inverted index 7R, R-tree 75

inverted index Jg , IR-tree Hsg
IR-trees Hg, Hs
spatio-textual grid Gg s

spatio-textual probing ||text & spatio-textual

join-based spatio-textual

ALGORITHM 1: Text-first strategy for SpaJKS

Input
Output

:inverted indices TR, I, keyword sets Y/r, /s, threshold €
:all object pairs (r, s) € SpaJKS(R, S, ¥R, ¥s, €)

R’ « SetContainmentQuery(Zg, ¥r); > Keyword search on R [12]
S’ « SetContainmentQuery(Zs, ¥s); > Keyword search on S [12]
sort R and S'; > Sort in one dimension
output all (, s) € PlaneSweepJoin(R’, S’, €); > Compute Spjoin [1]

IR R

non-binary operations as future work, considering for instance
techniques from multi-way spatial joins [18].

3 EVALUATING SpaJKS & SpaRKS QUERIES

We next study the efficient evaluation of SpaJKS and SpaRKS
queries. We present five strategies depending on how the input
collections are indexed. Sections 3.1 and 3.2 focus on SpaJKS
while Section 3.3 discusses the necessary changes for SpaRKS.
Table 1 summarizes all the different strategies in this section.

3.1 Using Spatial and/or Text Indexing

3.1.1 Text-first Strategy. We start off with a text-first strategy,
assuming that both R, S collections are textually indexed. Under
this setting, the SpaJKS query is evaluated in two phases. First, we
use text indexing to evaluate the keyword searches of the query,
ie., to compute R’ = KSearch(R,) and S” = KSearch(S, ys).
Next, we spatially join the intermediate results in R’, S’ with
respect to the distance threshold e. Algorithm 1 is a high-level
pseudocode of this text-first strategy. We assume that R, S are in-
dexed by inverted indices 1R, 7, respectively. Keyword searches
R’ = KSearch(R,yg) and S’ = KSearch(S, s) are evaluated
with standard set containment techniques, e.g., the cross-cutting
approach from [12]. Last, as R/, $’ are not spatially indexed!,
SpJoin(R’,S’, €) is efficiently computed by sorting R’, S” in one
dimension of the space and then applying a plane-sweep based
join [1].

3.1.2 Spatial-first Strategy. If both collections are spatially
indexed, we can alternatively prioritize the spatial predicate
in SpaJKS. Under this, the spatial-first strategy first computes
SpJoin(R, S, €). Then, the text descriptions for every reported pair
(r,s) are compared against sets YR, s, respectively, to determine
whether both r, s objects qualify the corresponding keyword
searches. To avoid redundant computations, the result of each
Yr C r.text and s C s.text check is cached and thus, conducted
only once. Algorithm 2 is a high-level pseudocode of the spatial-
first strategy. The inputs are indexed by the 7g, 75 R-trees and
the SpJoin(R, S, €) e-distance join is computed by synchronously
traversing the trees as in [3].

3.1.3 Spatial-probing Strategy. For the third strategy, we as-
sume that one of the input collections (e.g., R) is textually indexed
and the other spatially (e.g., S). Under this setting, the spatial join
predicate in SpaJKS can be evaluated via a set of spatial range

!Note that even if the input R, S collections were also spatially indexed, R’, S’
would not be because they stem from the preceding text searches.

ALGORITHM 2: Spatial-first strategy for SpaJKS

Input :R-trees TR, Ts, keyword sets g, {5, threshold €
Output :all object pairs (r, s) € SpaJKS(R, S, ¥R, s, €)

1 foreach (r, s) € RtreeJoin(7g, 7s, €) do
2 L if Yygr C r.text and s C s.text then
3

L output (r, s);
ALGORITHM 3: Spatial-probing strategy for SpaJKS
Input

> Compute SpJoin [3]
> Keyword searches
> Update result

:inverted index TR, R-tree 75, keyword sets Yr, Vs,
threshold e
:all object pairs (r, s) € SpaJKS(R, S, ¥r, s, €)

1 R’ « SetContainmentQuery(Zg, Yr); > Keyword search on R [12]
2 foreachr € R’ do
3 foreach s € DiskRangeQuery(7s, r.loc, €) do
on S
L if s C s.text then
5

| output (r, s);

queries. Specifically, we first compute R’ = KSearch(R, yg) us-
ing the text indexing on R. Then, for each object r € R’, we
employ the spatial indexing on S to execute a disk-based range
query of radius €, centered at r.loc. To pair and output r with
an s object returned by this range query we also need to check
if Y5 C s.text holds; as before, the result of this test is cached.
Algorithm 3 illustrates a high-level code of this spatial-probing
strategy; the disk-based range queries are evaluated by traversing
the 7s R-tree in a depth-first fashion.

Output

> Range query

'S

> Keyword search on S
> Update result

3.2 Using Spatio-textual Indexing

Despite their simplicity, the above strategies suffer from the fol-
lowing shortcomings. The text- and spatial-first use one type
of indexing and they are thus sensitive to the selectivity of the
keyword searches and the spatial join predicate in SpaJKS, respec-
tively. On one hand, for the text-first strategy, keyword searches
of low selectivity will incur large intermediate results, and thus,
an expensive follow-up spatial e-distance join. On the other hand,
the spatial-first strategy is negatively affected when SpJoin re-
turns a large number of (r,s) pairs, not only due to the high
processing cost of the join but also because of the large num-
ber of text checks required to output the final results. Last, the
spatial-probing strategy does use both spatial and text indexing,
but we expect to perform well when at least one the keyword
searches is very selective, the results of which will be used to
probe the spatial index on the other collection. Otherwise, the
cost of computing SpJoin via a set of disk-based range queries
will be prohibitively high.

In view of these shortcomings, we next explain how SpaJKS
queries can benefit from spatio-textual indexing. By prioritizing
neither of the query predicates, these strategies are able to prune
objects both spatially and textually at the same time.

3.2.1 Spatio-textual-probing Strategy. We first reconsider the
probing strategy from Section 3.1.3 and replace the spatial in-
dexing on S with spatio-textual. This spatio-textual-probing strat-
egy executes a text-aware disk-based range query for each r €
KSearch(R, Yg), to determine, at the same time, all objects s € S
within e distance from r.loc with s C s.text. For this purpose,
the S input collection is indexed by an IR-tree [11] which aug-
ments every node of a traditional R-tree with an inverted index.
Intuitively, while traversing the tree, we only visit nodes whose
MBR overlaps with the current disk-based range and their text

405

€< ¢€g €>¢€g

Figure 2: Spatially joinable cells; current cell c highlighted
in black, cell edge length denoted by ¢,

description contains all keywords in {/s; the text description of a
node is the union of the text descriptions for all objects indexed
under its subtree. We efficiently identify such nodes using the
incorporated inverted indices.

3.22 Join-based Strategy. Last, we consider spatio-textual in-
dexing under a join-based evaluation strategy for SpaJKS queries.
We devise two versions of this strategy employing different
spatio-textual indexing. For the first, we assume that the objects
are indexed by two IR-trees. Under this, we extend the R-tree
join algorithm of [3] to incorporate the keyword searches on the
YR, Us sets. Intuitively, we consider only pairs of nodes (ng, ng)
whose MBRs overlap and their text descriptions qualify the key-
word searches; for the latter, we use again the inverted indices in
the IR-tree nodes.

For the second version, we replace the IR-trees with the spatio-
textual grid partitioning from [2].2 In brief, the 2-dimensional
space is divided by a uniform m X m grid; every object is as-
signed to exactly one cell of this grid. The objects of a grid cell
c are then textually indexed by local inverted indices 7, .
Given a SpaJKS(R, S, YR, Vs, €) query, we first determine which
combinations of grid cells contain spatially joinable objects; we
distinguish between two cases. If the query threshold € is equal
or smaller than the edge length of the grid cells, denoted by g4,
then every r object inside a cell ¢ can be spatially joined only
with s objects from c itself and the 8 cells adjacent to c; the rest
of the grid can be ignored.> Otherwise, if € > €g, we extend this
joinable area to include the next ring(s) of neighboring cells until
the edge length of this area exceeds e. Figure 2 illustrates the
two cases. Under this, to evaluate the SpaJKS query, it suffices
to traverse the spatio-textual grid and compute for each cell ¢, a
set of SpaJKS(Rc, Sj, ¥R, ¥'s, €) mini-queries, where partition R,
stores all r objects assigned to ¢ and S; denotes the S partitions
of the joinable cells to c. These mini-queries are evaluated us-
ing the text-first strategy. As a cell partition, e.g., Sj, is involved
into multiple mini-queries, we avoid redundant computations by
maintaining a sorted copy of SJ'. KSearch(S;, ¥s).

3.3 The Case of SpaRKS Queries

Finally, we discuss how our strategies are extended for SpaRKS.
First, we use a top-k list L to maintain the best object pairs found
so far; initially, L is empty. Until the first k object pairs (r, s)
that qualify the keyword searches are determined, all strategies
are unable to perform any spatial pruning. After this point, we
use the highest distance in L as threshold e to perform spatial
pruning similar to the SpaJKS case. Contrary though to SpaJKS,
this threshold decreases as new qualifying pairs with lower dis-
tances are identified. Second, we prioritise the query evaluation

2In [2], the grid is built online as the extent of every cell equals the query threshold
€. For SpaJKS queries, we assume the grid is of fixed granularity and constructed
offline or already exists.

3Special cases arise for the cells located at the corners or the borders of the space,
where fewer than 9 cells are considered

text-first —>%— spatial-probing —H— spatio-textual-probing —©—

join-based_IR-tree —A—

ZKA/kU r

join-based_grid —v—

. M
el

iid

Avg. query time [msec]

Avg. query time [msec]

05 1 510
Text selectivity ([R’|=[S’]) [x1000]

50

10
) = 10*
E 10 A g A
= g 3 ot
T 1" ;
210 5B, v
z < 10%g]
EJe s
o 10 =10
2 B3

10! <10

001 005 0.1 05 1 1 2 3 4 5
Spatial selectivity (¢) [% of space] #keywords ([Wgl=|wgl)
.

10°
g - 10°
E ot z
g 5T w0
P = 10
£ gy
z £
g I s mmm—
=l 2§ 2 10?
=10 1 Y ee——
< A g

10! < ql

1 510 50 100 3005
Cardinality ([R|=|S]) [x1000000]

10 30
Avg text description ([p=L|)

50

Figure 3: Synthetics: defaults, |[R’|/|S’| = 1, [R’| = |S’| = 5k,
€ = 0.1% Yg| = [¢s| = 3, [R| = IS| = 10m, Ig = Is = 10

_ 10 H— B _ 10
2 g -t
R
£ T R - e P
P o
F . P
£ =Y = e A
g g , X%U
&0 5 100G
@ ER—
E z

107! 107!

1 510 50 100 1 510 50 100
Relative text selectivity (|R/|S)) Text selectivity ([R'|=[S’]) [x100]

_ 10t 1 .
E 7 10y
2B} g 5 58
E10 £ 10
g 2
£ 26 £ e
) SR — T
5 g //V/v
10 £
3" @ 10° /

100 <]07|§

001 005 0.1 05 1 1 2 34 s

Spatial selectivity (€) [% of space] # keywords ([Wgl=lw)

Figure 4: Polybot: defaults, |R’|/|S’| = 1, |R’| = |S"| = 1000,
€=0.1%, |yr| = [ys| = 3

according to dist, which allows us to early terminate the pro-
cess without computing the entire R X S product. Strategies that
employ R-trees or IR-trees traverse now the trees in a best-first
fashion, examining nodes or pairs of nodes by distance in increas-
ing order. Last, the text-first and the join-based strategy with the
spatio-textual grid rely on the sorting to prioritize the search.

4 EXPERIMENTAL ANALYSIS

Our evaluation was conducted on a dual Intel(R) Xeon(R) Gold
6130 CPU clocked at 2.10GHz with 750GBs of RAM. All strategies
were implemented in C++, compiled using gec (v4.11.2) with -O3.

Datasets. We experimented with both real and synthetic spatio-
textual objects; note that all data (including the indices) resided
in main memory. Specifically, Polybot real dataset [10] contains
6.1M crawled Web pages whose locations were assigned via geo-
coding; the text description of every page contains 200 terms
on average. We generated the synthetic datasets varying their
cardinality from 1m to 100m objects, and the average length of

406

the text description per object from 3 to 50. The locations of
the objects follow a clustered distribution in the [0, 1]? space,
with 10 randomly selected locations as cluster centers, while the
frequencies of the terms follow a zipfian distribution over a 100k
global dictionary.

Tests. For each evaluation strategy, we measured its response
time over 10k queries, while varying their spatial selectivity via
threshold € (as a percentage of the space), the selectivity of the
keyword searches via the cardinality of the intermediate results
[R’| = |KSearch(R, ¥g)|, |S’| = |KSearch(S, ¥’s)|, and the number
of keywords |{/r|, |{/s|. To better understand the effect of the text
selectivity, we also vary the relative selectivity of the keyword
searches in |R’|/|S’| ratio. In every test, we vary one paramater
and fix the rests in their default. Without loss of generality, we use
the same collection as R, S inputs (R = S). Last, we assume that
the necessary indices for each strategy pre-exist (for other types
of spatial, text or spatio-textual queries), i.e., R-trees/IR-trees of
a 4KBs page and a 50x50 spatio-textual grid for join-based_grid,
and thus, we focus only on query response times.

Results. Due to lack of space, we provide plots only for SpaJKS
queries; the results for SpaRKS follow similar trends. Figure 3 and
4 report the response times of the strategies for Synthetic and the
Polybot collections. Also, we omit spatial-first as its times were
orders of magnitude higher than the rest. Essentially, we can
classify the strategies into 3 tiers based on their performance. At
the bottom tier (worst performance), we always find spatial-first
and depending on the SpJoin cost either join-based_IR-tree or the
spatial-probing. Spatial-textual-probing is in general competitive
and so placed in the second tier, especially on synthetics and
when varying the|R’|/|S’| ratio and one of the keyword searches
is very selective. Compared to spatial-probing, spatio-textual-
probing is faster in the majority of the tests. Recall that spatio-
textual indexing allows us to perform both spatial and textual
pruning while probing the tree. The top tier contains text-first
and join-based_grid which in almost of all tests outperform the
rest; exceptions arise in extreme cases, e.g., in Synthetics and
[R’|/|S’| = 100 where the big difference in selectivity of the
keyword searches benefits the probing approaches. Although
text-first benefits from the nature of SpaRKS, i.e., executing the
keyword searches first may significantly reduce the number of
candidates, join-based_grid is in fact the fastest strategy overall.
This is because join-based_grid accelerates the keyword searches,
sorting and join by splitting them into small tasks (mini-queries).

5 CONCLUSIONS

We introduced the tasks of spatially joined and spatially ranked
keyword searches as novel instances of spatial keyword search.
For their efficient evaluation, we discussed multiple strategies
relying on spatial, text or spatio-textual indexing. Our tests on
both real and synthetic datasets showed that the join-based ap-
proach using a spatio-textual grid inspired by [2] is consistently
the fastest. For the future, we plan to investigate the case of spa-
tially combining multiple keyword searches and extend our work
to consider other types of text search, e.g., similarity search.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the computing time granted
on the supercomputer Mogon at Johannes Gutenberg University
Mainz (hpc.uni-mainz.de).

REFERENCES

(1]

[2
(3]

[4

=

=

[10]

Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570—
581.

Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. 2012. Spatio-textual simi-
larity joins. Proc. VLDB Endow. 6, 1 (2012), 1-12.

Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. 1993. Efficient
Processing of Spatial Joins Using R-Trees. In ACM SIGMOD. 237-246.

Xin Cao, Lisi Chen, Gao Cong, Christian S. Jensen, Qiang Qu, Anders Skovs-
gaard, Dingming Wu, and Man Lung Yiu. 2012. Spatial Keyword Querying. In
ER. 16-29.

Xin Cao, Gao Cong, Christian S. Jensen, and Beng Chin Ooi. 2011. Collective
spatial keyword querying. In SIGMOD. 373-384.

Ariel Cary, Ouri Wolfson, and Naphtali Rishe. 2010. Efficient and Scalable
Method for Processing Top-k Spatial Boolean Queries. In SSDBM. 87-95.
Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. 2013. Spatial
Keyword Query Processing: An Experimental Evaluation. Proc. VLDB Endow.
6,3 (2013), 217-228.

Yen-Yu Chen, Torsten Suel, and Alexander Markowetz. 2006. Efficient query
processing in geographic web search engines. In ACM SIGMOD. 277-288.
Zhida Chen, Lisi Chen, Gao Cong, and Christian S. Jensen. 2021. Location-
and keyword-based querying of geo-textual data: a survey. VLDB j. 30, 4
(2021), 603-640.

Maria Christoforaki, Jinru He, Constantinos Dimopoulos, Alexander
Markowetz, and Torsten Suel. 2011. Text vs. space: efficient geo-search query
processing. In CIKM. 423-432.

Gao Cong, Christian S. Jensen, and Dingming Wu. 2009. Efficient Retrieval of
the Top-k Most Relevant Spatial Web Objects. Proc. VLDB Endow. 2, 1 (2009),
337-348.

Dong Deng, Chengcheng Yang, Shuo Shang, Fan Zhu, Li Liu, and Ling Shao.
2019. LCJoin: Set Containment Join via List Crosscutting. In IEEE ICDE. 362~
373.

407

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. 2008. Keyword Search on
Spatial Databases. In ICDE. 656-665.

Ramaswamy Hariharan, Bijit Hore, Chen Li, and Sharad Mehrotra. 2007. Pro-
cessing Spatial-Keyword (SK) Queries in Geographic Information Retrieval
(GIR) Systems. In SSDBM. 16.

Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, Filip
Radlinski, and Geri Gay. 2007. Evaluating the accuracy of implicit feedback
from clicks and query reformulations in Web search. ACM Trans. Inf. Syst. 25,
2 (2007), 7

Ali Khodaei, Cyrus Shahabi, and Chen Li. 2010. Hybrid Indexing and Seamless
Ranking of Spatial and Textual Features of Web Documents. In DEXA. 450~
466.

Zhisheng Li, Ken C. K. Lee, Baihua Zheng, Wang-Chien Lee, Dik Lun Lee,
and Xufa Wang. 2011. IR-Tree: An Efficient Index for Geographic Document
Search. IEEE Trans. Knowl. Data Eng. 23, 4 (2011), 585-599.

Nikos Mamoulis and Dimitris Papadias. 2001. Multiway spatial joins. ACM
Trans. Database Syst. 26, 4 (2001), 424-475.

Shuyao Qi, Panagiotis Bouros, and Nikos Mamoulis. 2013. Efficient Top-k
Spatial Distance Joins. In SSTD. 1-18.

Shuyao Qi, Panagiotis Bouros, and Nikos Mamoulis. 2020. Top-k spatial
distance joins. Geolnformatica 24, 3 (2020), 591-631.

[21] Jodo B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Norvag.

[22]

[23]
[24]

[25]

2011. Efficient Processing of Top-k Spatial Keyword Queries. In SSTD. 205-222.
Subodh Vaid, Christopher B. Jones, Hideo Joho, and Mark Sanderson. 2005.
Spatio-textual Indexing for Geographical Search on the Web. In SSTD. 218—
235.

Dingming Wu, Gao Cong, and Christian S. Jensen. 2012. A framework for
efficient spatial web object retrieval. VLDB J. 21, 6 (2012), 797-822.
Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. 2013. Inverted
linear quadtree: Efficient top k spatial keyword search. In ICDE. 901-912.
Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and Wei-Ying Ma.
2005. Hybrid index structures for location-based web search. In CIKM. 155—
162.

