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ABSTRACT
It is well-known that 1-tuple domination (classical domination)
is NP-hard for general graphs. For circular-arc graphs, it is ef-
ficiently solvable due to M.S. Chang (1998). On the other side,
efficient algorithms of a known generalization —𝑘-tuple domi-
nation (𝑘 fixed)— of 1-tuple domination are not developed for
circular-arc graphs and 𝑘 greater than 2. In this work we intro-
duce a new circular-arc graph subclass. For this subclass, we
present a lower bound for the 𝑘-tuple domination number for
every positive integer 𝑘 . Finally, we find the exact value of these
numbers by proving how to achieve this bound.
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1 INTRODUCTION
Domination in graphs is useful in different applications. There ex-
ist many variations — such as 𝑘-tuple domination among others—
regarding slight differences in their definitions. These differences
make circular-arc graph subclasses adequate and useful mostly
due to their relation to “circular” issues, such as in forming sets
of representatives, in resource allocation in distributed comput-
ing systems, in coding theory [11], and in testing for circular
arrangements of genetic molecules [6].

The decision problem (fixed 𝑘) associated with 𝑘-tuple dom-
ination is NP-hard [7] but polynomial time solvable in some
graph classes (see for example [1, 3, 7, 8]). For proper interval
graphs, efficient algorithms for this problem are developed in [2]
for 𝑘 = 1, and in [7] for the remaining values of 𝑘 (in fact this
algorithm was built for strongly chordal graph which constitute
a superclass of proper interval graphs).

In the class of circular-arc graphs (superclass of proper interval
graphs), it follows from previous works by Bui-Xuan et al. (2013)
and by Belmonte et al. (2013) —in the context of locally checkable
vertex subset problems in graph classes with quickly computable
and bounded min-width— that the 𝑘-tuple domination problem
is solvable in time O(|𝑉 (𝐺) |6𝑘+4). More efficient algorithms for
this class are presented for 1-tuple domination in [2], and for
2-tuple domination in [9].

It remains challenging to find algorithms for these problems
in subclasses of circular-arc graphs for values of 𝑘 greater than 2
that are more efficient than the existing ones.
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In [4], the authors give a faster (linear) algorithm for this
problem on web graphs (which are regular circular-arc graphs
with certain symmetry).

Our aim is to continue finding faster algorithms for 𝑘-tuple
domination in subclasses of circular-arc graphs. In this direction
we introduce a subclass of circular-arc graphs that generalizes
some web graphs. We use the results in [4] to find the exact value
of the 𝑘-tuple domination number as well as a minimum 𝑘-tuple
dominating set for this new graph class, for all positive integer
number 𝑘 .

This contribution is organized as follows. In Section 2 we
present some basic definitions and results that we use throughout
the paper. In Section 3 we introduce the definition of 𝑄-web
graphs and present some of their properties. Sections 4 and 5
are devoted to study the 𝑘-tuple domination number of 𝑄-web
graphs for all values of 𝑘 .

2 PRELIMINARIES
We consider finite simple graphs, where 𝑉 (𝐺) and 𝐸 (𝐺) denote
the vertex and edge sets respectively, of a graph 𝐺 . When the
graph is clear from the context, we simply write 𝑉 and 𝐸 to
respectively denote 𝑉 (𝐺) and 𝐸 (𝐺) .

Given a graph 𝐺 and 𝑆 ⊆ 𝑉 , the subgraph induced by 𝑆 is
denoted by 𝐺 [𝑆]. When 𝐺 ′ = 𝐺 [𝑆] for some 𝑆 ⊆ 𝑉 , 𝐺 ′ is an
induced subgraph of𝐺 . The graph𝐺 − 𝑆 stands for𝐺 [𝑉 \ 𝑆] and,
for simplicity, we write 𝐺 − 𝑣 instead of 𝐺 − {𝑣}, for 𝑣 ∈ 𝑉 . A
graph 𝐺 ′ is an edge subgraph of 𝐺 if 𝑉 (𝐺 ′) = 𝑉 (𝐺) and 𝐸 (𝐺 ′) is
a subset of 𝐸 (𝐺).

The complete graph 𝐾𝑟 is the graph having 𝑟 vertices all of
which are pairwise adjacent.

A clique in 𝐺 is a subset 𝑄 ⊆ 𝑉 inducing a complete graph in
𝐺 .

An independent set in 𝐺 is a subset of pairwise nonadjacent
vertices in 𝐺 .

The closed neighborhood of 𝑣 ∈ 𝑉 is 𝑁 [𝑣] = 𝑁 (𝑣) ∪ {𝑣}, where
𝑁 (𝑣) = {𝑢 ∈ 𝑉 (𝐺) : 𝑢𝑣 ∈ 𝐸}. When we need to mention the
graph 𝐺 explicitly, we write 𝑁𝐺 (𝑣) (or 𝑁𝐺 [𝑣]). The degree of
vertex 𝑣 ∈ 𝑉 is deg(𝑣) = |𝑁 (𝑣) |.

The minimum degree of 𝐺 , denoted by 𝛿 (𝐺), is the minimum
cardinality of 𝑁 (𝑣) between all vertices 𝑣 ∈ 𝑉 .

A graph𝐺 is circular-arc if it has an intersection model consist-
ing of arcs in a circle, i.e. if there is a one-to-one correspondence
between the vertices of𝐺 and a family of arcs on a circle such that
two distinct vertices are adjacent in 𝐺 when the corresponding
arcs intersect in the circle.

Given positive integer numbers 𝑛 and 𝑚 with 𝑚 ≥ 1 and
𝑛 ≥ 2𝑚 + 1, the web graph𝑊𝑚

𝑛 is the graph having vertex set
{𝑣1, . . . , 𝑣𝑛} and 𝑣𝑖𝑣 𝑗 being an edge in 𝐸 (𝑊𝑚

𝑛 ) if 𝑗 ≡ 𝑖±𝑙 , (𝑚𝑜𝑑 𝑛),
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𝑙 ∈ {1, . . . ,𝑚} [10]. From its definition, it is clear that deg(𝑣) =
2𝑚 for each 𝑣 ∈ 𝑉 (𝑊𝑚

𝑛 ).
Given a graph 𝐺 , with 𝑉 = {𝑣1, . . . , 𝑣𝑛}, its adjacency matrix

is the square 𝑛 × 𝑛 0, 1-matrix 𝑁 (𝐺) = (𝑚𝑖 𝑗 ), where 𝑚𝑖 𝑗 = 1
if and only if 𝑣𝑖𝑣 𝑗 ∈ 𝐸 (𝐺). Note that 𝑁 (𝐺) is symmetric and
has 0’s on the main diagonal. The augmented adjacency matrix
or neighborhood matrix, 𝑁 [𝐺], is defined as 𝑁 [𝐺] = 𝑁 (𝐺) + 𝐼 ,
where 𝐼 is the identity matrix of appropriate size. For a graph
𝐺 , the characteristic vector of a set 𝑅 ⊆ 𝑉 is the vector on |𝑉 |
components, whose component 𝑖 is 1 when 𝑖 ∈ 𝑅 and is 0 when
𝑖 ∉ 𝑅. If we index the row set of𝑁 [𝐺] by𝑉 = {𝑣1, . . . , 𝑣𝑛}, the i-th
row of 𝑁 [𝐺] is the characteristic vector of 𝑁 [𝑣𝑖 ], for 𝑖 = 1, . . . , 𝑛.

According to A. Tucker [11], a 0, 1-matrix satisfies the circular
1’s property (Circ1P) for columns if its rows can be permuted so
that the l’s in each column are circular (appear in a circularly
consecutive fashion by thinking of the matrix as wrapped around
a cylinder). It is not difficult to see that the augmented adjacency
matrix of a web graph satisfies the Circ1P for columns. It is proved
in [11] that graphs whose augmented adjacency matrix has the
Circ1P for columns are circular-arc.

Given 𝐺 and a non-negative integer 𝑘 , 𝐷 ⊆ 𝑉 is a 𝑘-tuple
dominating set in𝐺 if in every closed neighbourhood there are at
least 𝑘 elements of 𝐷 ; i.e. |𝑁 [𝑣] ∩ 𝐷 | ≥ 𝑘 , for each 𝑣 ∈ 𝑉 . Notice
that 𝐺 has a 𝑘-tuple dominating set if and only if 𝑘 ≤ 𝛿 (𝐺) + 1.
Also, if 𝐺 has a 𝑘-tuple dominating set 𝐷 , then |𝐷 | ≥ 𝑘 . When
𝑘 ≤ 𝛿 (𝐺) + 1, the size of a 𝑘-tuple dominating set of minimum
size in 𝐺 is denoted by 𝛾×𝑘 (𝐺) and called 𝑘-tuple domination
number of𝐺 [5]. If 𝑘 > 𝛿 (𝐺) +1, 𝛾×𝑘 (𝐺) is defined as∞. Observe
that 𝛾×1 (𝐺) = 𝛾 (𝐺), the classical domination number, i.e. the
concept of tuple domination generalizes the well-known concept
of domination in graphs. Besides, note that 𝛾×0 (𝐺) = 0 for ev-
ery graph 𝐺 . When 𝐺 is not connected, the 𝑘-tuple domination
number of𝐺 is the sum of the 𝑘-tuple domination numbers of its
connected components. Throughout this work𝐺 is a connected
graph and 𝑘 , an integer number with 𝑘 ≤ 𝛿 (𝐺) +1. Given a graph
𝐺 and a fixed positive integer 𝑘 , the 𝑘-tuple domination problem
is to find a 𝑘-tuple dominating set in 𝐺 of size 𝛾×𝑘 (𝐺).

3 𝑄-WEB GRAPHS
In this section we introduce a new subclass —𝑄-web graphs— of
circular-arc graphs and give the first lower bound for the 𝑘-tuple
domination number in 𝑄-web graphs.

Definition 3.1. For non negative integer numbers𝑚, 𝑠, 𝑗 with
𝑚, 𝑠 ≥ 3 and 1 ≤ 𝑗 ≤ 𝑚 − 1, the𝑄-web graph𝑄 ( 𝑗, 𝑠,𝑚) is defined
as follows. All sums in the subscripts are taken modulo 𝑠 .

The vertex set of𝑄 ( 𝑗, 𝑠,𝑚) has 𝑠𝑚 elements and is partitioned
into the 2𝑠 sets of the form:

• 𝐴𝑖 = {(𝑖 − 1) (𝑚 − 𝑗) + 1, . . . , (𝑖 − 1) (𝑚 − 𝑗) +𝑚 − 𝑗}, for
𝑖 = 1, . . . , 𝑠 and

• 𝑃𝑖 = {1𝑖 , . . . , 𝑗𝑖 }, for 𝑖 = 1, . . . , 𝑠 .
The edge set of 𝑄 ( 𝑗, 𝑠,𝑚) is defined as follows:
• the subgraph induced by

⋃𝑠
𝑖=1𝐴𝑖 is theweb graph𝑊

𝑚−𝑗
𝑠 (𝑚−𝑗) ;

• 𝑃𝑖 is a clique, for every 𝑖 = 1, . . . , 𝑠 ;
• for 𝑖 = 1, . . . , 𝑠 , the adjacencies between the vertices in
𝑃𝑖 and 𝑃𝑖+1 are given by 𝑙𝑖ℎ𝑖+1 for ℎ = 1, . . . , 𝑙 − 1 and
𝑙 = 2, . . . , 𝑗 ;

• every vertex in 𝑃𝑖 is adjacent to every vertex in 𝐴𝑖 ∪𝐴𝑖−1
for 𝑖 = 1, . . . , 𝑠 .

From the definition above, observe that
⋃𝑠

𝑡=1{𝑙𝑡 } is an inde-
pendent set in 𝑄 ( 𝑗, 𝑠,𝑚), for each 𝑙 = 1, . . . , 𝑗 ;

Example 3.2. According to Definition 3.1, the vertex set of
𝑄 (2, 5, 5) is partitioned into 𝐴1 = {1, 2, 3}, 𝐴2 = {4, 5, 6}, 𝐴3 =

{7, 8, 9}, 𝐴4 = {10, 11, 12}, 𝐴5 = {13, 14, 15}, 𝑃1 = {11, 21}, 𝑃2 =

{12, 22}, 𝑃3 = {13, 23}, 𝑃4 = {14, 24} and 𝑃5 = {15, 25}.
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Figure 1: The graph 𝑄 (2, 5, 5) in Example 3.2.

For 𝑖 = 1, . . . , 𝑠 , 𝑃𝑖 is called the 𝑖-th leg and, for 𝑝 ∈ {1, . . . , 𝑗}
𝐿𝑝 =

⋃𝑠
𝑖=1

{
𝑝𝑖
}
is called the 𝑝-th level set of 𝑄 ( 𝑗, 𝑠,𝑚). It is not

difficult to check that deg(𝑣) = 2(𝑚 − 1) for each 𝑣 ∈ 𝑃𝑖 and
𝑖 = 1, . . . , 𝑠 and deg(𝑣) = 2𝑚 for 𝑣 ∈ ⋃𝑠

𝑖=1𝐴𝑖 .
When necessary, the subsets 𝐴𝑖 , 𝑃𝑖 and 𝐿𝑖 of 𝑉 are indicated

respectively as 𝐴𝑖 ( 𝑗, 𝑠,𝑚), 𝑃𝑖 ( 𝑗, 𝑠,𝑚) and 𝐿𝑖 ( 𝑗, 𝑠,𝑚).
The following relationship will be crucial and states that every

𝑄-web graph is an induced subgraph of other𝑄-web graph. More
precisely, for every 𝑗 , 𝑠 and𝑚 it holds:

𝑄 ( 𝑗, 𝑠,𝑚) = 𝑄 ( 𝑗 + 1, 𝑠,𝑚 + 1) − 𝐿𝑗+1 ( 𝑗 + 1, 𝑠,𝑚 + 1).
Figure 2 shows an scheme of graphs 𝑄 ( 𝑗, 𝑠,𝑚) for 𝑗 = 1, 2, 3

and fixed 𝑠 and𝑚. For the sake of clarity, we have not included
all the edges having one endpoint in 𝑃𝑖 and the other in 𝐴𝑖 but
only one of them, and the same for those with both endpoints in⋃𝑠

𝑖=1𝐴𝑖 .
Let us now prove that the neighbourhood matrix of a 𝑄-web

graph has the Circ1P for columns. Thus, due to Tucker [11], it
turns out that 𝑄-web graphs are circular-arc.

Proposition 3.3. If 𝐺 is a 𝑄-web graph then 𝑁 [𝐺] has the
Circ1P for columns.

Proof. Let 𝐺 = 𝑄 ( 𝑗 .𝑠,𝑚), for some𝑚, 𝑠 ≥ 3 and 𝑗 with 1 ≤
𝑗 ≤ 𝑚 − 1. Consider matrix 𝑁 [𝐺] whose rows are indexed as
follows, for each 𝑖 = 1, . . . , 𝑠 :

• for 𝑡 ∈ {(𝑖 − 1)𝑚 + 1, (𝑖 − 1)𝑚 + 2, . . . , (𝑖 − 1)𝑚 + 𝑗}, the
𝑡-th row of 𝑁 [𝐺] is the characteristic vector of the closed
neighborhood of vertex (𝑡 − (𝑖 − 1)𝑚)𝑖 of 𝑃𝑖 ;

• for 𝑡 ∈ {𝑖 𝑗 + (𝑖 − 1) (𝑚 − 𝑗) + 1, 𝑖 𝑗 + (𝑖 − 1) (𝑚 − 𝑗) +
2, . . . , 𝑖 𝑗 + (𝑖 − 1) (𝑚 − 𝑗) + (𝑚 − 𝑗)}, the 𝑡-th row of 𝑁 [𝐺]
is the characteristic vector of the closed neighborhood of
vertex 𝑡 − 𝑖 𝑗 of 𝐴𝑖 .

This proves that 𝑁 [𝐺] has the Cic1P for columns. □

The first graph of Figure 3 shows the graph 𝑄 (1, 3, 5), where
the dotted lines correspond to a 3-cycle that were deleted from
the web graph𝑊 5

15. In general, the graph 𝑄 ( 𝑗, 𝑠,𝑚) is an edge
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Figure 2: Scheme of 𝑄-web graphs 𝑄 ( 𝑗, 𝑠,𝑚), for 𝑗 = 1, 2, 3.

subgraph of the web𝑊𝑚
𝑠𝑚 that is obtained after deleting from

𝑊𝑚
𝑠𝑚 , the edges in 𝑗 consecutive cycles of length 𝑠 .
We observe that the definition of 𝑄-web graphs could be ex-

tended by considering 𝑗 = 0 also, meaning that “no cycle is
deleted’. However, since the 𝑘-tuple domination problem is al-
ready solved for web graphs, we keep the definition of 𝑄-web
graphs for 𝑗 ≥ 1.

Since 𝛿 (𝑄 ( 𝑗, 𝑠,𝑚)) = 2𝑚 − 2 for all 𝑗 , 𝑠 and𝑚, in the sequel 𝑘
is always a non negative integer with value at most 2𝑚 − 1.

Let𝑄 ( 𝑗, 𝑠,𝑚) be a𝑄-web graph for some 𝑗 , 𝑠 and𝑚 and 𝐷 be a
𝑘-tuple dominating set in𝑄 ( 𝑗, 𝑠,𝑚). From the fact that𝑄 ( 𝑗, 𝑠,𝑚)
is an edge subgraph of the web𝑊𝑚

𝑠𝑚 , it is not difficult to check
that 𝐷 is a 𝑘-tuple dominating set of the web graph𝑊𝑚

𝑠𝑚 as well.
Due to the fact that the 𝑘-tuple domination number of webs is
known [4], the following natural lower bound arises, for every
𝑘 ≤ 2𝑚 − 1:
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Figure 3: 𝑄 (1, 3, 5) as an edge subgraph of𝑊 5
15. Relabelling

of 𝑄 (1, 3, 5) (vertices in red are those in 𝐿1).

𝛾×𝑘 (𝑄 ( 𝑗, 𝑠,𝑚)) ≥ 𝛾×𝑘
(
𝑊𝑚

𝑠𝑚

)
=

⌈
𝑘𝑠𝑚

2𝑚 + 1

⌉
. (1)

4 TUPLE DOMINATION ON GRAPHS
𝑄 (1, 𝑠,𝑚)

Let us begin this section by improving, for 𝑗 = 1, the lower bound
in Equation (1).

Proposition 4.1. Let𝑄 (1, 𝑠,𝑚) be a𝑄-web graph with 𝑠,𝑚 ≥ 3
and 𝑘 be any non negative integer with 𝑘 ≤ 2𝑚 − 1. Then, it holds
that

𝛾×𝑘 (𝑄 (1, 𝑠,𝑚)) ≥
⌈
𝑘𝑠

2

⌉
.

Proof. Let 𝐷 be a 𝑘-tuple dominating set in 𝑄 (1, 𝑠,𝑚) and
consider the partition of 𝑉 (𝑄 (1, 𝑠,𝑚)) given by the sets 𝑃𝑖 and
𝐴𝑖 with 𝑖 = 1, . . . , 𝑠 .

Let 𝑡 := |𝐷 ∩ 𝐿1 |. Then we have

2 |𝐷 | =
𝑠∑︁
𝑖=1

|𝐴𝑖 ∩ 𝐷 | +
𝑠∑︁
𝑖=1

|𝐴𝑖+1 ∩ 𝐷 | + 2𝑡 . (2)

From their definition, 𝑁 (1𝑖 ) = 𝐴𝑖 ∪𝐴𝑖−1 for each 𝑖 = 1, . . . , 𝑠
(sum taken modulo 𝑠). Since 𝐷 is a 𝑘-tuple dominating set in
𝑄 (1, 𝑠,𝑚) and using (2), we have
𝑠∑︁
𝑖=1

𝑘 ≤
𝑠∑︁
𝑖=1

��𝑁 [1𝑖 ] ∩ 𝐷
�� = 𝑡 + 𝑠∑︁

𝑖=1
|𝐴𝑖 ∩ 𝐷 | + |𝐴𝑖−1 ∩ 𝐷 | = 2|𝐷 | −𝑡,

and thus
|𝐷 | ≥ 𝑘𝑠 + 𝑡

2 ≥ 𝑘𝑠

2 .

Since 𝛾×𝑘 (𝐺) ∈ Z+ for every graph 𝐺 , we have the desired
bound. □
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We prove in the next theorem that the lower bound in Propo-
sition 4.1 can be achieved with 𝑗 = 1. Then we obtain the exact
value of the 𝑘-tuple domination number of 𝑄 ( 𝑗, 𝑠,𝑚) for 𝑗 = 1
that will lead in the following section to compute the correspond-
ing domination number for every 𝑄-web graph.

Theorem 4.2. Let 𝑄 (1, 𝑠,𝑚) be a 𝑄-web graph with 𝑠,𝑚 ≥ 3
and 𝑘 any non negative integer with 𝑘 ≤ 2𝑚 − 1. Then, it holds
that

𝛾×𝑘 (𝑄 (1, 𝑠,𝑚)) =


𝑘𝑠

2 for even 𝑘,

(𝑘 − 1)𝑠
2 +

⌈ 𝑠
2

⌉
for odd 𝑘.

Proof. Following Proposition 4.1, it only remains to prove
that there exists a 𝑘-tuple dominating set 𝐷 in 𝑄 (1, 𝑠,𝑚) of the
desired size.

Suppose 𝑘 is even, i.e. 𝑘 = 2𝑟 for some 𝑟 ≥ 1. We define the
set 𝐷 =

⋃𝑠
𝑗=1𝐴

′
𝑗
where, for each 𝑗 = 1, . . . , 𝑠 , 𝐴′

𝑗
= {𝑖 𝑗1, . . . , 𝑖

𝑗
𝑟 } is

a subset of 𝑟 consecutive vertices of 𝐴 𝑗 and such that

|𝑖 𝑗𝑟 − 𝑖
𝑗+1
1 | =𝑚 − 1 − 𝑟 .

We refer as𝐴 𝑗𝐴 𝑗+1-vertices, to the𝑚−1−𝑟 consecutive vertices
𝑙 𝑗1 , 𝑙 𝑗2 , . . . , 𝑙 𝑗𝑚−1−𝑟 in the set (𝐴 𝑗 ∪𝐴 𝑗+1) \ (𝐴′

𝑗
∪𝐴′

𝑗+1) (see Figure
4). By definition, it holds that

𝑖
𝑗

1 < 𝑖
𝑗

2 < · · · < 𝑖 𝑗𝑟 < 𝑙 𝑗1 < · · · < 𝑙 𝑗𝑚−1−𝑟 < 𝑖
𝑗+1
1 < · · · < 𝑖 𝑗+1𝑟 .
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Figure 4: Notation for the proof of Theorem 4.2.

Let 𝑣 ∈ 𝑉 (𝑄 (1, 𝑠,𝑚)). We divide our analysis according to
𝑣 ∈ 𝐿1 or not, and prove in each case, that 𝑣 has at least 𝑘 = 2𝑟
neighbours in the set 𝐷 .

If 𝑣 = 1𝑖 ∈ 𝐿1 then |𝑁 [1𝑖 ] ∩ 𝐷 | = |𝐴′
𝑖−1 ∪ 𝐴

′
𝑖
| = 𝑘 , for each

𝑖 = 1, . . . , 𝑠 . Thus |𝑁 [𝑣] ∩ 𝐷 | ≥ 𝑘 .
If 𝑣 ∈ 𝑉 (𝑄 (1, 𝑠,𝑚)) \𝐿1 —i.e. 𝑣 ∈ 𝐴 𝑗∗ for some 𝑗∗ ∈ {1, . . . , 𝑠}—

since 𝐴′
𝑗∗ ⊆ 𝐴 𝑗∗ we have 𝐴′

𝑗∗ ⊆ 𝑁 [𝑣], and then

|𝑁 [𝑣] ∩𝐴′
𝑗∗ | = |𝐴′

𝑗∗ | = 𝑟 . (3)

We then show that 𝑣 has 𝑟 additional neighbours in 𝐷 \𝐴′
𝑗∗ . We

divide the proof into the two possible cases: 𝑣 ∉ 𝐷 or 𝑣 ∈ 𝐷 .
If 𝑣 ∉ 𝐷 and 𝑣 is a 𝐴 𝑗∗𝐴 𝑗∗+1-vertex, since 𝑣 ∈ 𝐴 𝑗∗ we have

|𝑣−𝑖 𝑗
∗+1

𝑟 | ≤ |𝑙 𝑗∗1 −𝑖
𝑗∗+1
𝑟 | = |𝑙 𝑗∗1 −𝑙 𝑗∗ (𝑚−1−𝑟 ) | + |𝑙 𝑗∗ (𝑚−1−𝑟 ) −𝑖

𝑗∗+1
𝑟 | =

=𝑚 − 1 − 𝑟 − 1 + 𝑟 =𝑚 − 2.

This implies 𝐴′
𝑗∗+1 ⊂ 𝑁 [𝑣] and then |𝑁 [𝑣] ∩ 𝐴′

𝑗∗+1 | = 𝑟 . Oth-
erwise (𝑣 ∉ 𝐷 and 𝑣 is a 𝐴 𝑗∗−1𝐴 𝑗∗ -vertex), since 𝑣 ∈ 𝐴 𝑗∗ we
have
|𝑣 − 𝑖 𝑗

∗−1
1 | ≤ |𝑙 ( 𝑗∗−1)𝑚−1−𝑟 − 𝑖

𝑗∗−1
1 | =𝑚 − 1 − 𝑟 − 1 + 𝑟 =𝑚 − 2.

This implies 𝐴′
𝑗∗−1 ⊂ 𝑁 [𝑣] and then |𝑁 [𝑣] ∩𝐴′

𝑗∗−1 | = 𝑟 . In both
cases, it holds |𝑁 [𝑣] ∩ 𝐷 | ≥ 𝑟 + 𝑟 = 𝑘 .

If 𝑣 ∈ 𝐷 , i.e. 𝑣 = 𝑖 𝑗𝑡 for some 𝑡 ∈ {1, . . . , 𝑟 }, we consider𝑤 such
that |𝑖 𝑗𝑡 −𝑖

𝑗+1
𝑤 | =𝑚−1. Since |𝐴′

𝑗
| = 𝑟 , it holds 𝑟−𝑡+1+𝑚−1−𝑟+𝑤 =

𝑚 − 1 implying𝑤 = 𝑡 − 1 (see Figure 5). Analogously, let 𝑝 satisfy
|𝑖 𝑗𝑡 − 𝑖 𝑗−1𝑝 | = 𝑚 − 1. Then 𝑡 − 1 +𝑚 − 1 − 𝑟 + 𝑟 − 𝑝 + 1 = 𝑚 − 1,
implying 𝑝 = 𝑡 .

A'j-1

i jtm-1-r
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w

Figure 5: 𝑣 = 𝑖 𝑗𝑡 for some 𝑡 ∈ {1, . . . , 𝑟 } in the proof of Theo-
rem 4.2

Then |𝑁 [𝑖 𝑗𝑡 ]∩(𝐴′
𝑗−1∪𝐴

′
𝑗+1) | = 𝑤+𝑟−𝑝+1 = 𝑡−1+𝑟−𝑡+1 = 𝑟 .

Again we conclude that |𝑁 [𝑣] ∩ 𝐷 | ≥ 𝑘 .
In all, 𝐷 is a 𝑘-tuple dominating set in 𝑄 (1, 𝑠,𝑚) in this case.
When 𝑘 is odd, let us define the set 𝐷 :=

⋃𝑠
𝑗=1𝐴

′
𝑗
, where

𝐴′
𝑗
= {𝑖 𝑗1, . . . , 𝑖

𝑗

𝑟+1} for odd 𝑗 and 𝐴
′
𝑗
= {𝑖 𝑗1, . . . , 𝑖

𝑗
𝑟 } for even 𝑗 , are

in each case consecutive vertices of𝑊𝑚−1
𝑠 (𝑚−1) and |𝑖 𝑗

𝑟+1 − 𝑖
𝑗+1
1 | =

𝑚 − 1 − |𝐴′
𝑗
|. We follow a similar reasoning as the one when 𝑘 is

even, by splitting it into the subcases given by odd 𝑠 and even 𝑠 .
In both cases we conclude that 𝐷 is a 𝑘-tuple dominating set in
𝑄 (1, 𝑠,𝑚) of the desired size. □

5 TUPLE DOMINATION ON GRAPHS
𝑄 ( 𝑗, 𝑠,𝑚), 𝑗 > 1

We are able to solve the problem for 𝑄 ( 𝑗, 𝑠,𝑚) for 𝑗 > 1. Recall
that

𝑄 ( 𝑗 − 1, 𝑠,𝑚 − 1) = 𝑄 ( 𝑗, 𝑠,𝑚) − 𝐿𝑗 ( 𝑗, 𝑠,𝑚)
for every 𝑗 , 𝑠 and𝑚, where 𝐿𝑗 ( 𝑗, 𝑠,𝑚) is the 𝑗-th level of𝑄 ( 𝑗, 𝑠,𝑚).

Theorem 5.1. Let 𝑄 ( 𝑗, 𝑠,𝑚) be a 𝑄-web graph with 𝑠,𝑚 ≥ 3,
1 ≤ 𝑗 ≤ 𝑚 − 1 and 𝑘 be any non negative integer with 𝑘 ≤ 2𝑚 − 3.
Then, it holds that

𝛾×𝑘 (𝑄 ( 𝑗, 𝑠,𝑚)) =


𝑘𝑠

2 for even 𝑘,

(𝑘 − 1)𝑠
2 +

⌈ 𝑠
2

⌉
for odd 𝑘.

Sketch of the Proof. We prove by induction on 𝑗 for 2 ≤
𝑗 ≤ 𝑚 − 1, that

𝛾×𝑘 (𝑄 ( 𝑗, 𝑠,𝑚)) = 𝛾×𝑘 (𝑄 ( 𝑗 − 1, 𝑠,𝑚 − 1)) ,
and then apply the result of Theorem 4.2.

The result holds for 𝑗 = 2 by noting that 𝑄 (2, 𝑠,𝑚) is isomor-
phic to an edge subgraph of 𝑄 (1, 𝑠,𝑚) and then clearly, given a
𝑘-tuple dominating set in𝑄 (2, 𝑠,𝑚), this set is a 𝑘-tuple dominat-
ing set in 𝑄 (1, 𝑠,𝑚) as well. Thus,

𝛾×𝑘 (𝑄 (1, 𝑠,𝑚)) ≤ 𝛾×𝑘 (𝑄 (2, 𝑠,𝑚)) .
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Since 𝑘 ≤ 2𝑚 − 3 = 𝛿 (𝑄 (1, 𝑠,𝑚 − 1)) + 1, and the 𝑘 tuple dom-
ination number does not depend on 𝑚 from Theorem 4.2, we
have

𝛾×𝑘 (𝑄 (1, 𝑠,𝑚)) = 𝛾×𝑘 (𝑄 (1, 𝑠,𝑚 − 1)) .
On the other hand, from the proof of Theorem 4.2, there exists

a minimum 𝑘-tuple dominating set 𝐷 in 𝑄 (1, 𝑠,𝑚 − 1) such that

𝐷 ⊆
𝑠⋃
𝑖=1

𝐴𝑖 (1, 𝑠,𝑚 − 1) .

It can be checked that |𝑁𝑄 (2,𝑠,𝑚) [𝑣] ∩ 𝐷 | ≥ 𝑘 for every 𝑣 ∈
𝑉 (𝑄 (2, 𝑠,𝑚)), thus 𝐷 is a 𝑘-tuple dominating set in 𝑄 (2, 𝑠,𝑚)
and

𝛾×𝑘 (𝑄 (2, 𝑠,𝑚)) ≤ |𝐷 | = 𝛾×𝑘 (𝑄 (1, 𝑠,𝑚 − 1)) .
In all

𝛾×𝑘 (𝑄 (2, 𝑠,𝑚)) = 𝛾×𝑘 (𝑄 (1, 𝑠,𝑚 − 1)) ,

and in this way we have proved the base case.
The proof of the inductive step follows a similar reasoning.

□

Up to now we have solved the 𝑘-tuple domination problem in
𝑄-web graphs 𝑄 ( 𝑗, 𝑠,𝑚) except for 𝑘 = 2𝑚 − 2 and 𝑘 = 2𝑚 − 1.
Since these two values of 𝑘 require a different treatment, we
present them separately.

Theorem 5.2. Let 𝑄 ( 𝑗, 𝑠,𝑚) be a 𝑄-web graph with 𝑠,𝑚 ≥ 3.
Then, it holds that

𝛾×(2𝑚−2) (𝑄 ( 𝑗, 𝑠,𝑚)) = 𝑠𝑚 −
⌊ 𝑠
2

⌋
.

Sketch of the Proof. For the proof we consider the set

𝐷 =

𝑠⋃
𝑖=1

𝐴𝑖 ∪
𝑗⋃

𝑝=2
𝐿𝑝 ∪ 𝐷1

where 𝐷1 ⊆ 𝐿1, 𝐷1 ∩ 𝑃1 ≠ ∅, if 𝐷1 ∩ 𝑃𝑖 ≠ ∅ then 𝐷1 ∩ 𝑃𝑖+1 = ∅
for all 𝑖 = 1, . . . , 𝑠 , and such that |𝐷1 | =

𝑠

2 if 𝑠 is even and |𝐷1 | =
𝑠 − 1
2 + 1 if 𝑠 is odd, and prove that 𝐷 is a 𝑘-tuple dominating set

in 𝑄 ( 𝑗, 𝑠,𝑚). In this way we have

𝛾×(2𝑚−2) (𝑄 ( 𝑗, 𝑠,𝑚)) ≤ |𝐷 | = 𝑠 (𝑚 − 2) + 𝑠 +
⌈ 𝑠
2

⌉
= 𝑠𝑚 −

⌊ 𝑠
2

⌋
.

We then prove that, given a 𝑘-tuple dominating set 𝐷 in
𝑄 ( 𝑗, 𝑠,𝑚) and a set 𝑆 ⊆ 𝑉 \ 𝐷 with |𝑆 | =

⌊ 𝑠
2

⌋
+ 1, then nor

𝑆 is a subset of 𝐿𝑝 for 𝑝 = 1, . . . , 𝑗 neither 𝑆 is a subset of
⋃𝑠

𝑖=1𝐴𝑖 ,
leading to

|𝐷 | ≥ 𝑠𝑚 −
⌊ 𝑠
2

⌋
.

The result follows. □

Theorem 5.3. Let 𝑄 ( 𝑗, 𝑠,𝑚) be a 𝑄-web graph with 𝑠,𝑚 ≥ 3
and 1 ≤ 𝑗 ≤ 𝑚 − 1. Then, it holds that

𝛾×(2𝑚−1) (𝑄 ( 𝑗, 𝑠,𝑚)) = 𝑠𝑚.

Proof. We only have to note that, for 𝑡 ∈ {1, . . . , 𝑗}, deg(𝑡𝑖 ) =
2𝑚 − 2 for each 𝑖 = 1, . . . , 𝑠 . This implies that every (2𝑚 − 1)-
tuple dominating set of 𝑄 ( 𝑗 .𝑠 .𝑚) must include the union of all
the neighborhoods 𝑁 [𝑡𝑖 ] for all 𝑖 = 1, . . . , 𝑠 and 𝑡 ∈ {1, . . . , 𝑗}.
Since this union is the whole vertex set 𝑉 (𝑄 ( 𝑗, 𝑠,𝑚)), the result
follows. □

We apply the results of Theorems 5.1, 5.2 and 5.3 to obtain the
𝑘-tuple domination numbers for the graph 𝑄 (2, 5, 5) in Example
3.2 (see Figure 1).

Example 5.4. For the graph in Example 3.2 we have:

𝛾×𝑘 (𝑄 (2, 5, 5)) =



3 if 𝑘 = 1,
5 if 𝑘 = 2,
8 if 𝑘 = 3,
10 if 𝑘 = 4,
13 if 𝑘 = 5,
15 if 𝑘 = 6,
18 if 𝑘 = 7,
23 if 𝑘 = 8,
25 if 𝑘 = 9.

Corollary 5.5. Given integer numbers 𝑚, 𝑠, 𝑗 with 𝑚, 𝑠 ≥ 3
and 1 ≤ 𝑗 ≤ 𝑚−1 and the vertex set partition of of𝑄 ( 𝑗, 𝑠,𝑚) given
by 𝐴𝑖 and 𝑃𝑖 , for 𝑖 = 1, . . . , 𝑠 , the 𝑘-tuple domination problem can
be solved efficiently on 𝑄 ( 𝑗, 𝑠,𝑚) for any fixed 𝑘 .

6 CONCLUSIONS
As far as we know, the most recent results concerning 𝑘-tuple
domination in graph subclasses of circular-arc graphs were given
for web graphs in [4]. In this work we introduced the class of
𝑄-web graphs that generalizes certain web graphs, and proved
that they have the Circ1P for columns, thus being circular-arc
graphs.

The main contribution of this paper is to find faster algo-
rithms that do not depend on 𝑘 , for the 𝑘-tuple domination prob-
lem on the new subclass of circular-arc graphs introduced. As a
by-product, a 𝑘-tuple dominating set on 𝑄-web graphs can be
obtained explicitly.

The results obtained up to now inspire to continue the study
of 𝑘-tuple domination in circular-arc graphs, in order to find
efficient algorithms that do not depend on 𝑘 in the whole graph
class.
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