Minimum Concurrency for Assembling Computer Music

Carlos E. Marciano
Federal University of Rio de Janeiro
Rio de Janeiro, RJ
cemarciano@poli.ufrj.br

Felipe M. G. Franca
Federal University of Rio de Janeiro
Rio de Janeiro, RJ
felipe@ieee.org

Abilio Lucena
Federal University of Rio de Janeiro
Rio de Janeiro, RJ
abilioLucena@cos.ufrj.br

Ludi G. Simonetti
Federal University of Rio de Janeiro
Rio de Janeiro, RJ
ludi@cos.ufrj.br

ABSTRACT
An effective algorithmic solution for resource-sharing problems in heavily loaded systems is Scheduling by Edge Reversal (SER), essentially providing some level of concurrency by describing an order of operation for nodes in a graph. The resulting concurrency is a hard metric to optimize, as the decision problems associated with obtaining its extrema have been proved to be NP-complete. In this paper, we propose a novel approach involving longest cycles for solving the Minimum Concurrency Problem to proven optimality. Moreover, we show how this model can be used in the field of algorithmic composition to assemble a maximum-length loop of original computer music, capturing fundamental concepts in music theory. To illustrate this strategy, we present a complementary simulation accessible through the Web.

1 INTRODUCTION
Resource-sharing problems arise naturally in many scenarios, where graph algorithms are often employed to provide a distributed, asynchronous scheduling solution. By representing each process as a node, we define that nodes are connected by an edge if and only if they share a resource. Specifically, in neighborhood-constrained systems, a process is only allowed to operate if and only if all of its neighbors are idle, meaning that all of its required resources must be available at the time of operation. As a consequence, multiple processes requiring the same resource form a clique, a complete sub-graph in which only one node is allowed to operate at a time. A connected undirected graph representing resource dependencies among processes, as illustrated in Figure 1(a), will be referred to as a resource graph throughout this paper.

Under a heavy load assumption, where nodes are constantly demanding access to their required resources, an effective scheduling algorithm to ensure fairness and prevent starvation is Scheduling by Edge Reversal (SER). Introduced by Gafni and Bertsekas [7] in 1981 and later formalized by Barbosa and Gafni [3] in 1989, SER has inspired many distributed resource-sharing applications ranging from asynchronous digital circuits [5] to the control of traffic lights in road junctions [4].

The execution of SER may be summarized as follows: by taking a directed acyclic graph (DAG) such as the one in Figure 1(b) as input, SER simultaneously operates all sinks, meaning that all nodes with no outgoing edges are allowed to utilize the resources they demand to perform their corresponding tasks. Once every sink is done operating, the orientation of their incoming edges is reverted, effectively allowing other nodes to become sinks themselves. This process is repeated indefinitely, as each new iteration will generate a new DAG, allowing different nodes to utilize resources and operate. Eventually, orientations will start repeating themselves, leading to the existence of periods. In fact, as observed by Barbosa and Gafni [3], all nodes operate the same number of times within a given period. Figure 1(c) illustrates this procedure.

In order to apply SER to any resource graph and obtain a corresponding schedule, an initial acyclic orientation must be generated. This initial DAG will directly impact the overall concurrency of the edge reversal procedure, leading to periods of different lengths and of different orientations. Intuitively, a highly concurrent dynamic will result in more nodes operating simultaneously while minimizing the amount of steps where each node is idle. Although a formal definition of concurrency is kept for Section 2, it’s already inevitable to inquire about the complexity of problems such as obtaining the orientations that lead to the extrema of this metric. In fact, the decision problems associated with identifying the maximum as well as the minimum concurrency yielded by a given resource graph have been proved to be NP-complete by Barbosa and Gafni [3] and by Arantes Jr [11], respectively.

Contrary to intuition, obtaining the orientations of a resource graph from which SER will provide minimum concurrency is advantageous to a number of applications. For instance, Gonçalves et al. have employed SER under minimum concurrency to diminish the amount of Web marshalls needed for the distributed decontamination of Webgraphs [9, 14, 16], while Alves et al. have shown, through simulations of real conflagration scenarios, that less concurrency implies in a reduced number of automated firefighters required to control the flames [2]. However, despite SER’s intrinsic connection to rhythms, no application in the field of algorithmic composition exists in the literature. As such, this paper presents a novel mechanism which, under minimum concurrency, schedules musical phrases to create the lengthiest possible original tracks that capture fundamental concepts in music theory, such as rhythm and polyphony. This is only possible by developing an optimization strategy for solving the Minimum Concurrency Problem (MCP), which is also presented in this work as an original contribution.

The following is how the remainder of this paper is organized. In Section 2, we recall some graph-theoretic definitions associated with SER, including a formal metric for concurrency. Section 3, in turn, describes the concepts involved in our proposed reformulation of MCP. Finally, in Section 4, we show how minimum concurrency under SER can be used to assemble a maximum-length loop of computer music, expressing our concluding remarks and future work suggestions in Section 5.
\section{Graph-Theoretic Background}

Initially, as defined in Barbosa and Gafni \cite{3}, we shall characterize the necessary terminology to define \textit{concurrency} under \textit{SER}. As such, let $G = (V, E)$ be a connected undirected graph where $|E| \geq |V|$ (i.e., G is not a tree). Let $\kappa \subseteq V$ denote an undirected simple cycle in G, that is, a set of vertices that form a sequence of length $|\kappa| + 1$ of the form $i_0, i_1, \ldots, i_{|\kappa|-1}, i_0$. If κ is traversed from i_0 to $i_{|\kappa|-1}$, we say that it is traversed in the clockwise direction. Otherwise, we say that it is traversed in the counterclockwise direction. Let K denote the set of all simple cycles of G.

Moreover, an \textit{acyclic orientation} of G is a function expressed as $\omega : E \rightarrow V$ such that no undirected cycle κ of the form $i_0, i_1, \ldots, i_{|\kappa|-1}, i_0$ exists for which $\omega(i_0, i_1) = i_1, \omega(i_1, i_2) = i_2, \ldots, \omega(i_{|\kappa|-1}, i_0) = i_0$. Let Ω denote the set of all acyclic orientations of G.

Lastly, given an undirected simple cycle κ and an \textit{acyclic orientation} ω, let $n_{cw}(\kappa, \omega)$ be defined as the number of edges oriented clockwise by ω in κ. Similarly, let $n_{ccw}(\kappa, \omega)$ be defined as the number of edges oriented by ω in the counterclockwise direction. Therefore, the \textit{concurrency} of a graph G is defined as a function $\gamma : \Omega \rightarrow \mathbb{R}$ such that:

\[
\gamma(\omega) = \min_{\kappa \in K} \left\{ \frac{\min\{n_{cw}(\kappa, \omega), n_{ccw}(\kappa, \omega)\}}{|\kappa|} \right\}
\]

In other words, given an orientation ω, we check every simple undirected cycle κ of G and calculate the number of edges oriented in the clockwise direction as well as the number of edges oriented in the counterclockwise direction. We take the minimum of these two values and divide the result by the size of the undirected cycle κ. Whichever $\kappa \in K$ returns the smallest value will dictate the system’s concurrency.

Finally, we must note that an equivalent result can also be obtained from a dynamic analysis. Let a \textit{period} of length p be a sequence of distinct acyclic orientations $\omega_0, \ldots, \omega_{p-1}$ induced by the execution of \textit{SER}. Let m be the number of times a node \textit{operates} within a \textit{period}, which is equal to all nodes. The expression $\gamma(\omega) = m/p$ is equivalent to Equation 1, despite being less significant to this paper. As an example, the concurrency provided by the schedule in Figure 1(c) is equal to 1/3, and can be obtained through both expressions.

\section{Obtaining Minimum Concurrency}

Our main goal in this section is to propose a linear-time algorithm for obtaining the minimum concurrency yielded by a resource graph G given one of its longest simple cycles as input. This reduction will essentially provide a computational model for the \textit{Minimum Concurrency Problem} (MCP), allowing previously developed techniques for the \textit{Longest Cycle Problem} (LCP \cite{8}) to also be effective for MCP.

Figure 1: Scheduling by Edge Reversal as a distributed solution for scheduling processes (nodes) in a resource-sharing system.
Initially, we shall derive a different expression for minimizing \(\gamma(\omega)\) over all \(\omega \in \Omega\). Given that \(\Omega\) is a finite set, let \(\gamma^*\) denote the minimum value that Equation 1 assumes over all \(\omega \in \Omega\):

\[
\gamma^* = \min_{\omega \in \Omega} \min_{v \in G} \left\{ \min_{u \in \text{vertex}} \left(\frac{n_{cw}(k_v, k_u)}{n_{cw}(k_v, k_u)} \right) \right\}
\]

(2)

The following lemma holds:

Lemma 3.1. \(\gamma^* = \min_{v \in G} \left\{ \frac{1}{|K|} \right\}\).

Proof. Consider Equation 1. For a given \(\omega'\), let \(\kappa'\) be the simple cycle that minimizes the internal fraction. Let \(x\) be defined as \(x = \min \{n_{cw}(\kappa', \omega'), n_{cw}(\kappa', \omega')\}\), bringing Equation 1 to a value of \(y(\omega') = x / |K|\).

However, for every \(k \in K\), there will always exist an acyclic orientation \(\omega\) such that \(n_{cw}(k, \omega) = 1 \) and \(n_{cw}(k, \omega) = |k| - 1\), or vice versa (this follows immediately from the fact that a directed cycle would only exist if and only if either \(n_{cw}(k, \omega) = 0\) or \(n_{cw}(k, \omega) = 0\)).

Therefore, there must also exist an orientation \(\omega\) for \(\kappa'\) such that either \(n_{cw}(\kappa', \omega) = 1\) or \(n_{cw}(\kappa', \omega) = 1\). Consequently, if \(\omega'\), when applied to \(\kappa'\), didn’t produce the result \(x = 1\), there will necessarily exist another acyclic orientation \(\omega\) that will lead to \(y(\omega) = 1 / |K|\).

Now, consider Equation 2. If \(\gamma^*\) is less than \(1 / |K|\), then there must exist a simple cycle \(\kappa\) which, under an orientation \(\omega^*\), will produce \(1 / |K| < 1 / |K|\). As such, Equation 2 has become a minimization problem over all \(k \in K\). \(\square\)

Lemma 3.1 is essentially the problem of finding a longest undirected cycle of \(G\), whose minimum concurrency will be equal to the reciprocal of the size of its circumference.

We now show how to obtain \(\omega^*\), an orientation for which \(y(\omega^*) = \gamma^*\). Let \(\kappa^*\) be a longest simple cycle of \(G\), meaning that \(|\kappa^*| \geq |k|\) for all \(k \in K\). The following theorem holds:

Theorem 3.2. Given any longest cycle \(\kappa^* \in K\) as input, there exists a linear-time algorithm for finding an orientation \(\omega^*\) such that \(y(\omega^*)\) is minimum over all \(\omega \in \Omega\).

Proof. The proof of Lemma 3.1 states that minimum concurrency will be attained if an orientation \(\omega^*\) is applied to \(G\) under the condition that \(n_{cw}(\kappa^*, \omega^*) = 1\) and \(n_{cw}(\kappa^*, \omega^*) = |\kappa^*| - 1\) or vice versa, where \(\kappa^*\) is a longest cycle. Orienting \(\kappa^*\) under the aforementioned conditions can be performed in linear-time by traversing the cycle \(\kappa^*\) and assigning an increasing identification number \(1, ..., |\kappa^*|\) to each visited vertex, resulting in a topological ordering of the cycle. By orienting the corresponding edges towards the vertices with lower identification numbers, only one edge (connecting the vertices with the highest and the lowest identification numbers) will be oriented in the opposite direction from the other \(|\kappa^*| - 1\) edges, fulfilling the requirement.

It is now necessary to prove that it is possible to orient the remaining edges of \(G\) such that the resulting orientation \(\omega^*\) is always acyclic. Let \(S = V - \kappa^*\) be the set of the remaining vertices of \(G\). Let us assign an increasing identification number \(|\kappa^*| + 1, ..., |V|\) to each vertex in \(S\), and then orient all edges of \(G\) towards the vertices with lower identification numbers. By contradiction, if the resulting orientation \(\omega^*\) were cyclic, there would need to exist a path \(i_0, i_1, ..., i_n\) (i.e., a directed cycle). However, since edges always lead to vertices of lower identification numbers, it is impossible to return to \(i_0\) after leaving it, for any \(i_n \in V\). As such, no cycles are formed. \(\square\)

Algorithm 1: A linear-time algorithm for finding an acyclic orientation that leads to minimum concurrency given a longest cycle as input.

Input: Undirected graph \(G = (V, E)\) and longest cycle \(\kappa^* \subseteq V\)

Output: Acyclic orientation \(\omega^*\) for which \(\gamma(\omega^*)\) is minimum

1. \(id = 1\)
2. \(v = \kappa^*.\text{getFirstVertex}()\)
3. **for** \(i = 1\) **to** \(\kappa^*.\text{size}()\) **do**
 - Assign \(id\) to \(v\)
 - Increment \(id\)
 - \(v = \kappa^*.\text{getClockwiseNeighborOf}(v)\)
4. **end**
5. **while** a vertex \(v \in V\) with no id exists **do**
 - Assign \(id\) to \(v\)
 - Increment \(id\)
6. **end**
7. Create an empty orientation \(\omega^*\)
8. **foreach** undirected edge \(uv \in E\) **do**
 - if \(id(v) > id(u)\) then
 - Orient edge such that \(\omega^*(u, v) = u\)
 - else
 - Orient edge such that \(\omega^*(u, v) = v\)
 - **end**
9. **end**
10. **return** \(\omega^*\)

Finally, we structure the proof discussed in Theorem 3.2 as the algorithmic procedure presented in Algorithm 1. Its correctness relies on the aforementioned proof. Note that linear-time is attained only if the method \(\text{getClockwiseNeighborOf}(v)\) is \(O(1)\). This will depend on the data structure used for storing \(\kappa^*\), which is usually an array containing the vertices of the cycle in the order they should be visited. In this case, \(\text{getClockwiseNeighborOf}(v)\) will simply return the next element in the array and fulfill the \(O(1)\) requirement. Since \(G\) is always a connected graph where \(|E| \leq |V|\) as defined in Section 2, the overall time complexity of the algorithm is \(O(m)\), where \(m = |E|\).

4 ASSEMBLING COMPUTER MUSIC

As expressed by Shan and Chiu [19], effective computer music generation is the dream of computer music researchers. Previous explicit approaches (where composition rules are specified by humans) have resorted to Hidden Markov Models to capture the sequence requirements of melody [17], but are usually limited to composing counterpoint or harmonization for already existing tunes [6].

In this section, we show how a system under SER’s minimum concurrency is capable of generating a maximum-length loop of pre-recorded musical phrases, while respecting fundamental concepts in music theory and creating original melodies for blues, jazz and rock music. In Subsection 4.1, we introduce the terminology that will be used throughout Subsection 4.2 to provide a strategy for representing musical phrases as graphs. Lastly, in Subsection 4.3, we discuss implementation-specific details for a complementary simulation included in Appendix A.
Figure 2: A resource graph where nodes marked as “A” and “C” represent antecedent and consequent phrases, respectively. Nodes connected by an edge are unable to be executed simultaneously, but are allowed to be played in sequence.

4.1 Music Theory Definitions
Initially, we shall define the necessary terminology from music theory employed throughout this section, for which we resort to Schmidt-Jones’ book [18]. A musical phrase corresponds to a group of individual notes that, together, express a definite melodic idea. It is customary for phrases to appear in pairs: the first phrase often sounds unfinished until it is completed by the second, almost as if the latter were answering a question posed by the former. Phrases that respect this dynamic are called antecedent and consequent, respectively.

A bar (or measure) is a group of beats that occur during a segment of time. When more than one independent melody takes place during the same bar, we call a piece of music polyphonic (e.g. Pachelbel’s “Canon”; last chorus of “One Day More”, from the musical “Les Miserables”). Finally, a lick, or short motif, corresponds to a brief musical idea that appears in many pieces of the same genre. In this work, a pair of antecedent and consequent phrases, when played sequentially, will also be referred to as a lick.

4.2 Graph Representation
Although we believe that music generation through SER can be employed to assemble any musical unit (such as chords or individual notes) into a composition, the application we propose revolves around scheduling phrases. Specifically, we would like to capture the following requirements:

(i) A consequent phrase may only be played after an antecedent phrase, forming a lick;
(ii) If two or more phrases are playing at the same time, either they are all antecedent or all consequent;
(iii) Phrases of different intensities (e.g. number of notes) may not go well together;
(iv) The final composition must be a loop, contain all available phrases and be of maximum length.

When arranging previously recorded (or generated) phrases into a graph, our goal is to structure which phrases can be played sequentially and which can be played simultaneously, creating a polyphony. By representing each phrase as a node, we are able to capture the aforementioned restrictions through the insertion of edges. In a resource graph, an edge between two nodes represents the inability of those nodes to operate at the same time. As such, an edge between two phrases is able to prevent them from occurring during the same bar, while allowing each separate phrase to be played in sequence.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Antecedent</td>
</tr>
<tr>
<td>Genre</td>
<td>Blues</td>
</tr>
<tr>
<td>Note Count</td>
<td>8</td>
</tr>
<tr>
<td>File</td>
<td>antec02.mp3</td>
</tr>
</tbody>
</table>

(a) An antecedent phrase. (b) Node attributes.

Figure 3: An example of a node and its attributes.

Above, in Figure 3, we present the information contained within each node. A note count, corresponding to the number of notes within a phrase, is used to measure its intensity. For this specific example, two nodes will be connected to each other if and only if:

(1) they’re of different types (antecedent and consequent);
(2) their note count is within a specified threshold;
(3) and they belong to the same genre.

Moreover, we’d like to make this example more interesting by allowing a transition between two different genres: blues and jazz. By introducing transitional phrases that incorporate elements from both genres, a more seamless changeover can be achieved. Antecedent phrases from blues and jazz, when connected to transitional nodes, can act as gateways that allow access to their respective genres.

Figure 2 illustrates all the previously discussed components. Nodes marked as “A” and “C” represent antecedent and consequent phrases, respectively. The further a node is from a transitional node, the more intense is the phrase it represents. Due to the antecedent / consequent dynamic, the resulting graph is bipartite, for which MCP remains NP-complete [12].
4.3 Implementation Details

In order to demonstrate the ideas discussed in Subsection 4.2, we have developed a simulation showing how the phrase-scheduling dynamic, when applied to a graph such as the one in Figure 2, is able to produce musical loops of maximum length. In this subsection, we document our steps and discuss implementation details that may be useful for future work. The final result, featuring the resource graph from Figure 2, larger instances require a computational approach. As such, we relied on the Simple Cycle Problem branch-and-cut strategy proposed in Lucena, Cunha and Simonetti [15], which is based on a formulation that decomposes simple cycles into one simple path and an additional edge. We implemented this procedure in the C programming language and used the XPress Mixed Integer Programming package to solve linear programs and manage the branch-and-cut tree.

Despite the example from Figure 2 only containing 15 nodes, our computational results have shown that the aforementioned strategy is able to solve, in under 1 hour, instances of random graphs with as many as 2 000 nodes and 40 034 edges (probability $p = 0.01$ for an edge to exist between two nodes), being an appealing approach for larger instances. In turn, a linear-time implementation of Algorithm 1 is employed to provide an acyclic orientation for the resource graph, yielding minimum concurrency. The pipeline presented in Figure 4 summarizes this process.

![Figure 4: Implementation pipeline for solving MCP.](image)

Note, however, that initial orientations may violate requirement (ii), which states that antecedent and consequent phrases are not allowed to be played together. This is because sinks may be formed anywhere in the graph when orienting nodes outside the original longest cycle. However, this is merely an initialization issue: once a SER period is reached, the system will enforce, through the edge-reversal dynamic, that antecedent phrases will only become sink nodes when a consequent phrase reverts its edges, and vice versa.

Having attained minimum concurrency for the resource graph in Figure 2, we switched our attention to developing a visualization strategy. From a compatibility perspective, a web simulation built in JavaScript is both lightweight and easy to access on most platforms. Moreover, two convenient libraries, available under the MIT License, made this choice even more appealing: Vis.js [1], which enabled us to visually represent any graph and handle the necessary edge-reversal dynamics; and Howler.js [20], providing a reliable audio interface when dealing with multiple files.

Finally, we curated audio recordings responsible for the rhythm sections (also known as backing tracks) and recorded all antecedent and consequent phrases on an electric guitar. Given that this small simulation is comprised of only 15 nodes, the process of syncing each phrase to their corresponding backing track was performed manually. For instance, a 12-Bar Blues composition may alternate between antecedent and consequent phrases every 2 bars. Different phrases have different starting points within this window, requiring an offset to account for synchronization. However, once synced, phrases may be played whenever a new 2-bar window starts. As such, by setting the edge-reversal frequency to 2 bars, every phrase will sound natural when their corresponding node becomes a sink.

5 CONCLUSION

In this paper, two main contributions to SER were presented: first, we reformulated the Minimum Concurrency Problem, providing a viable approach for its optimization and allowing many empirically attractive LCP solvers to also be effective for MCP. Secondly, we proposed a novel strategy for assembling original computer music, which schedules all available building blocks (in our example, musical phrases) into a maximum-length loop, all while incorporating essential music-theoretical restrictions.

Regarding SER’s debut in algorithmic composition, we are eager to discover how other researchers and musicians may employ this technique and its variations to create unique songs. We note that the Web is a never-ending repository of musical phrases, many of which are encoded in MIDI format. MIDI is a technical standard that allows a musical pattern to be described and synthesized by a computer [10], replacing the need for physical recording and manual synchronization. This gain in development speed can allow for the modelling of truly large resource graphs, producing hour-long tracks of exclusively distinctive music.

Another aspect that can be investigated is controlling the level of polyphony within a song. For instance, higher concurrency values imply in a large number of independent melodies occurring during the same bar, which may lead to undesirable noise throughout the composition. As such, minimum concurrency not only provides a maximum-length loop of music, but also avoids an oversaturation of sounds that may lead to low-quality polyphony. Currently, we investigate how octave information (the frequency range in which the fundamental pitch of each note is found) can be used to control which sounds should be played simultaneously (e.g.: a phrase whose notes were recorded near octave C_3 could be played alongside a phrase with notes situated around octave C_4). This approach would avoid melody lines competing for the same frequency range, leading to more distinguishable and pleasant sounds.

Lastly, we invite other researchers to investigate a viable computational model for the Maximum Concurrency Problem, which consists of maximizing Equation 1 over the set of acyclic orientations Ω. This breakthrough would impact many distributed resource-sharing applications, such as routing Automated Guided Vehicles (AGVs) [13], scheduling job shops [13] and controlling traffic lights in road junctions [4]. Naturally, new engaging applications that could benefit from SER’s simplicity are also an interesting theme for future research, especially when combined with new theoretical advancements for this technique.

A MUSICAL SIMULATION

The musical simulation referred to throughout this paper is available online at the following website, and can be viewed in any browser: https://cemarciano.github.io/Song-Generator/.

This simulation is an open-source project distributed under the GNU GPL v3.0 License. Source code is available at the following website: https://github.com/cemarciano/Song-Generator.
REFERENCES

[18] Catherine Schmidt-Jones. 2007. Understanding Basic Music Theory. OpenStax CNX, Houston, TX, USA. http://cnx.org/content/col10363/1.3/
