An On-Line Approximation Algorithm for Mining Frequent Closed Itemsets Based on Incremental Intersection

Koji Iwanuma
University of Yamanashi
4-4-11 Takeda, Kofu-shi
Yamanashi, Japan
iwamura@yamanashi.ac.jp

Yoshitaka Yamamoto
University of Yamanashi
4-4-11 Takeda, Kofu-shi
Yamanashi, Japan
yyamamoto@yamanashi.ac.jp

Shoshi Fukuda
University of Yamanashi
4-4-11 Takeda, Kofu-shi
Yamanashi, Japan

ABSTRACT

We propose a new on-line ϵ-approximation algorithm for mining closed itemsets from a transactional data stream, which is also based on the incremental/cumulative intersection principle. The proposed algorithm, called LC-CloStream, is constructed by integrating CloStream algorithm and Lossy Counting algorithm. We investigate some behaviors of the LC-CloStream algorithm. Firstly we show the incompleteness and the semi-completeness for mining all frequent closed itemsets in a stream. Next, we give the completeness of ϵ-approximation for extracting frequent itemsets from a transaction stream.

Keywords

On-line algorithm, approximation, closed itemset, intersection, completeness

1. INTRODUCTION

Intersecting transactions in a data set is an alternative characterization of closed itemsets [1, 3, 4], which naturally leads to an incremental/cumulative computation of closed itemsets in a transaction data stream. CloStream [6] is an exact-computing on-line mining algorithm, which is a direct implementation of the incremental intersecting approach. Such an incremental intersection approach, however, has great difficulties, in practice, for quitting or breaking intersections in early stages, because it is difficult to predict in advance that current intersection operations never produce any frequent closed itemsets [1].

In this paper, we propose a new on-line ϵ-approximation algorithm for mining closed itemsets from a stream, which is also based on the incremental/cumulative intersection principle. The proposed algorithm, called LC-CloStream, is constructed by integrating CloStream [6] algorithm and Lossy Counting algorithm [2]. LC-CloStream succeeded in overcoming the above difficulties using ϵ-approximation [2, 5].

We study fundamental properties of LC-CloStream algorithm. Firstly we show the incompleteness and the semi-completeness for mining all frequent closed itemsets in a stream. Next, we give the completeness of ϵ-approximation for extracting frequent itemsets from a transaction streams.

2. PRELIMINARIES

Let $I = \{e_1, e_2, \ldots, e_r\}$ be a set of items. A non-empty subset A of I is called an itemset (or transaction). A transaction stream of length N is a sequence of N transactions (A_1, A_2, \ldots, A_N). In this paper, we denote items as a, b, c, \ldots, and itemsets as A, B, C, \ldots. We also abbreviate an itemset $\{e_1, e_2, \ldots, e_m\}$ as $e_1 \cdot e_2 \cdot \cdot \cdot e_m$, for simplicity.

Let S be a stream $\langle A_1, \ldots, A_N \rangle$ and B be an itemset. We define a multiset $K(B, t)$ at time t ($1 \leq t \leq N$) as $K(B, t) = \{A_j \in S | B \subset A_j, 1 \leq j \leq t\}$. The frequency of B at time t, denoted as $sup(B, t)$, is $|K(B, t)|$. Given a minimal frequency threshold σ ($0 < \sigma < 1$), B is frequent at time t in S if $sup(B, t) \geq \sigma \cdot t$. An itemset B is closed at time t in S if there is no itemset C such that $B \neq C$ and $B \subset C$ and $sup(B, t) = sup(C, t)$.

The following recursive relation makes it possible to incrementally compute closed itemsets in a stream S. Let $CIS(S)$ be a set of all closed itemsets in S and δ be a well-known concatenation operator of two sequences.

Proposition 1 ([1, 3]). Let S be a stream $\langle A_1, \ldots, A_N \rangle$. We have:

$CIS(A_1) = \{A_1\}$

$CIS(S_k) \circ (A_{k+1}) = CIS(S_k) \cup \{A_{k+1}\} \cup \{B | \exists C \in CIS(S_k) : C \subset A_{k+1}\}$

where S_k is the k element prefix of S, i.e., $\langle A_1, \ldots, A_k \rangle$.

CloStream [6] is an on-line exact counting algorithm for mining closed itemsets in a stream, which uses the above recursive relation in a straightforward way, and thus cannot avoid a combinatorial explosion problem caused by $CIS(S)$.

3. LC-CLOSTREAM

The LC-CloStream algorithm maintains an internal frequency table TS. Formally, TS is a set of tuples $(B, f(B), \delta(B))$, where B is an itemset, $f(B)$ is the number of occurrences of B after the time t_B when B was lastly stored in TS, and $\delta(B)$ is the maximal error count at time t_B. We write the frequency table TS at time t as $TS(t)$, and similarly for $f(B, t)$ and $\delta(B, t)$. Let $SP(B, t)$ denote the set of supersets of B belonging to the frequency table $TS(t)$, that is, $SP(B, t) = \{ C \in TS(t) | B \subset C \}$. We define $\max SP(B, t)$ as follows:

$\max SP(B, t) = \arg \max_{C \in SP(B, t)} \{ f(C, t) + \delta(C, t) \}$

The former part of LC-CloStream algorithm, i.e., in lines 5 to 18, performs the incremental intersection and the latter

Series ISSN: 2367-2005

704

©2016, Copyright is with the authors. Published in Proc. 19th International Conference on Extending Database Technology (EDBT), March 15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceedings.org. Distribution of this paper is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0
Algorithm 1 LC-CloStream algorithm

Input: a stream $S = \langle A_1, A_2, \ldots, A_N \rangle$, a relative minimal frequency threshold σ ($0 < \sigma < 1$), a maximal permissible error ratio ϵ ($0 < \epsilon < \sigma$).

Output: a family FCS of frequent closed item sets in S.

1: $t \leftarrow 1$ ▷ t is a current time
2: Initialize the frequency table TS.
3: while $t \leq N$ do
4: Read A_t.
5: for each $B \in TS$ do
6: $C \leftarrow B \cap A_t$ ▷ i.e. the case of $SP(C, t) \neq \emptyset$
7: if $C \neq \emptyset$ then
8: $D \leftarrow \text{max}SP(C)$
9: if $C \notin TS$ then ▷ register C as a new entry
10: $TS \leftarrow TS \cup \{ (C, f(D) + 1, \delta(D)) \}$
11: else ▷ increase the frequency value of C
12: $TS \leftarrow (TS - \{ (C, f(C), \delta(C)) \})$
13: $\cup \{ (C, f(D) + 1, \delta(D)) \}$
14: end if
15: end if
16: if $A_t \notin TS$ then ▷ register A_t as a new entry
17: $TS \leftarrow TS \cup \{ (A_t, 1, \epsilon \cdot (t - 1)) \}$
18: end if
19: for each $B \in TS$ do ▷ ϵ-elimination
20: if $f(B) + \delta(B) \leq \epsilon \cdot t$ then
21: $TS \leftarrow TS - \{ (B, f(B), \delta(B)) \}$
22: end if
23: end for
24: end while
25: return $FCS(N) = \{ B \in TS \mid f(B) + \delta(B) \geq \sigma \cdot N \}$

Theorem 1 (Semi-completeness for closed itemsets). Let S be a stream of length N and B be a frequent closed itemset in S. If B is NOT ϵ-extendable, then $B \in FCS(N)$.

Definition 2. Let S be a stream of length N, σ be a minimal frequency threshold and $FCS(N)$ be a output produced from S by LC-CloStream algorithm. Then we define $RS(S)$ as follows:

$RS(S) = FCS(N) \cup \{ C \mid 3B \in FCS(N) : C \subset B, C \neq \emptyset \}$

Theorem 2 (Completeness for itemsets). Let S be a stream of length N and B be a frequent itemset in S. Then $B \in RS(S)$.

Definition 3. Let S be a stream of length N and ϵ be a maximal error ratio. For any itemset B at time t ($1 \leq t \leq N$), we define $F(B, t)$ and $\Delta(B, t)$ as follows:

1. if $SP(B, t) = \emptyset$, then $F(B, t) = 0$, $\Delta(B, t) = \epsilon \cdot t$
2. if $SP(B, t) \neq \emptyset$, then $F(B, t) = f(\text{max}SP(B, t), t)$, $\Delta(B, t) = \delta(\text{max}SP(B, t), t)$.

We call $F(B, t) + \Delta(B, t)$ the estimated frequency of B at time t.

Notice the estimated frequency $F(B, t) + \Delta(B, t)$ is defined based on $TS(t)$ of time t, while the counting frequency $f(B, t) + \delta(B, t)$ depends just on $TS(t - 1)$ of the previous time $t - 1$.

Theorem 3 (\(\epsilon\)-approximation of frequency). Let S be a stream of length N and ϵ be a maximal error ratio. For any itemset B, we have $F(B, N) \leq \sup(B, N) \leq F(B, N) + \epsilon \cdot N$.

4. CONCLUSIONS

LC-CloStream can avoid a part of combinational explosion problems in a bursty transactional data stream [5]. In the future, we will study an efficient implementation using a sophisticated data structure, and also have a plan to investigate a more advanced framework where the frequency table has a fixed constant size [5].

5. ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Numbers 25730133 and 25330256, and also supported by JST PRESTO (Sakigake).

6. REFERENCES