
Accelerating Spatial Range Queries

Alexandros Stougiannis¶, Farhan Tauheed†‡, Thomas Heinis†, Anastasia Ailamaki†
¶Department of Computer and Systems Sciences, Stockholm University, Sweden

†Data-Intensive Applications and Systems Lab, École Polytechnique Fédérale de Lausanne, Switzerland
‡Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Switzerland

ABSTRACT
It is increasingly common for domain scientists to use com-
putational tools to build and simulate spatial models of the
phenomena they are studying. The spatial models they
build are more and more detailed as well as dense and are
consequently difficult to manage with today’s tools. A cru-
cial problem when analyzing spatial models of increasing
detail is the scalable execution of range queries. State-of-
the-art approaches like the R-Tree perform suboptimally on
today’s models and do not scale for more dense, future mod-
els. The problem is that the amount of overlap in the tree
structure increases as a function of the level of detail/density
in the model.

In this demonstration we showcase ZOOM, a new tool to
efficiently execute spatial range queries on increasingly de-
tailed (denser) models. ZOOM is based on FLAT, a novel
range query execution approach that effectively decouples
the query execution time from the density of the dataset,
thereby ensuring efficient query execution. At the core of
the demonstration thus is the visualization of the novel query
execution strategy of FLAT which we contrast with a visu-
alization of the query execution of the R-Tree.

1. INTRODUCTION
In many scientific disciplines it has become standard prac-

tice for scientists to simulate the phenomena they study on
a supercomputer. The cycle of modeling the phenomena,
simulating it and comparing the simulation results with the
actual phenomena helps the scientists to better understand
the phenomena. More and more precise instruments, a bet-
ter understanding of the phenomena and the abundance of
computational power lead scientists to build and simulate
increasingly detailed/dense and big spatial models. Access-
ing, building and analyzing progressively dense models, how-
ever, challenges current data management tools. The ability
to access the important parts of their data, i.e., their mod-
els, efficiently so they can analyze, build and simulate new
models is crucial.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

Figure 1: A visualization of a very small model featuring
thousands of neurons (left) and a single neuron where the
shape/morphology is modelled with a fine-grained surface
mesh (right).

The neuroscientists we collaborate with in the Blue Brain
Project (BBP [11]) suffer from the problem of dense models
in their work. Based on data acquired in years of anatomical
research, the neuroscientists in the BBP build and simulate
biophysically realistic models of the rodent neocortex, the
most detailed computer models of the brain to date. A vi-
sualization of a model is shown in Figure 1 (left). Today’s
models feature up to one million neurons, each modeled with
its exact shape (represented with a very fine-grained surface
mesh featuring millions of polygons - an example is shown
in Figure 1 (right)) and electrophysiological properties.

Because the spatial models used are so fine-grained, each
neuron is modeled with millions of mesh polygons, state-of-
the-art methods do not support neuroscientists in the effi-
cient analysis of the spatial brain models. The problem will
only become worse as they model the brain increasingly fine-
grained, modeling parts of it on the molecular level (e.g., the
synapses). Similar trends, building ever finer-grained mod-
els, can also be seen in other disciplines, e.g., increasingly
fine grained earthquake simulations [6, 9] or detailed models
for simulating protein synthesis [13].

Motivated by the challenges the neuroscientists face we
have developed FLAT, a novel spatial index. FLAT ensures
that, although the models become more detailed and the
datasets more dense, range queries can still be executed effi-
ciently. This is not only important in neuroscience, but also
in other scientific disciplines. The first experimental system

713

of FLAT was initially presented at ICDE 2012 [15] show-
ing that it scales better than R-Tree based approaches on
increasingly dense datasets from neuroscience as well as on
datasets from other domains.

Contributions And Innovation: We demonstrate and
visualize ZOOM, a tool to aid neuroscientists navigate through
the brain. ZOOM is based on the novel execution strategy
of spatial range queries of FLAT and illustrates its benefits
in terms of faster query execution. FLAT in essence takes
the ideas and principles of the B+-Tree and applies them
to three dimensional data. Instead of adding pointers to
the leaf nodes for the efficient execution of a range query
in one dimension, FLAT uses the pointers in three dimen-
sions. With this basic idea and through the careful design of
the data structures, FLAT significantly outperforms several
R-Tree approaches. Audience members are able to define
queries and to see them executed on FLAT and the R-Tree,
visualizing both strategies as well as monitoring the execu-
tion with statistics.

Visual Experience: The audience is able to interact with
ZOOM through a graphical user interface to execute queries
on a neuroscience dataset, i.e., the neocortex of a rat. Pre-
defined queries can be executed but the audience can also
define their own queries on a small visualization of the neo-
cortex. Each query is executed on both FLAT as well as the
R-Tree and during the simultaneous execution, statistics for
both approaches are shown in real-time. More importantly,
the query execution is explained while the query executes,
impressively visualizing FLAT’s novel execution strategy for
spatial range queries and contrasting it with a visualization
of the R-Tree execution strategy. The result of the query, a
subset of the neocortex surface mesh, is also visualized.

2. RELATED WORK
Database research has produced many approaches to in-

dex volumetric spatial objects [4] in recent years.
Some of the approaches exploit particularities of the datasets

indexed, e.g., for connected tetrahedral meshes [12].
Arguably the seminal data structure to index generic spa-

tial objects is the R-Tree [7]. The R-Tree is a disk-based,
multi-dimensional generalization of the B-Tree [2] that re-
cursively encloses objects in minimum bounding rectangles
(MBRs). Several extensions of the basic approach have been
proposed, all, however, suffer to varying degrees from the
problem of overlap and dead space. A first class addresses
the overlap issue through repeated insertion [3] or through
replication [14]. The second class, the bulk-loading R-Trees,
assumes that all data is known a priori and exploits this
to minimize the MBRs and thus to reduce overlap. Multi-
ple bulk-loading approaches have been developed, some for
datasets where the objects have rather uniform distribution
of objects and objects sizes [8, 10] and others which work
particularly well on extreme data [1, 5] (with respect to as-
pect ratio or distribution).

Despite the numerous improvements and approaches to
alleviate the problem of overlap in the R-Tree, it still in-
troduces considerable I/O overhead, thereby slowing down
query execution. The denser a dataset is, i.e., the more spa-
tial elements are in the same unit of space, the more overlap
the bounding boxes of the R-Tree have, the bigger the I/O
overhead becomes and consequently the slower query execu-
tion becomes.

3. FLAT QUERY EXECUTION
ZOOM uses at its core FLAT’s query execution strategy to

evaluate spatial range queries. The novel aspect of FLAT’s
execution strategy is its use of neighborhood information,
i.e., what spatial elements neighbor each other, to speed up
query execution independent of data density. In the follow-
ing we briefly discuss how the neighborhood information is
computed, how this information is stored and how it is used
to execute range queries.

3.1 Indexing
To index a dataset, FLAT first groups spatially close ob-

jects on the same disk page. We refer to these disk pages
as objects pages. For each object page FLAT computes the
page MBR, the minimum bounding rectangle containing all
objects on the page, and more importantly, the neighbor-
hood information, i.e., pointers to other spatially close ob-
ject pages. More precisely, if object page O1 contains an
element which is close to another element on page O2, then
FLAT stores a pointer from O1 to O2.

The page MBR and neighborhood information is stored
in the seed index, a traditional spatial index (an R-tree):
each page MBR is indexed with the seed index. In the leafs
of the seed index, along with the page MBR we also store
a reference to the object page as well as the neighborhood
information, i.e, pointers to leaf nodes that contain spatially
close page MBRs.

Figure 2 shows the data structures and their relation-
ships. The rectangles at the bottom represent the object
pages which pack spatially close objects while the arrows ex-
press neighborhood (i.e., an arrow between two object pages
means the pages neighbor each other). The tree structure at
the top represents the seed index and stores in its leaf nodes
the MBRs of each object page. Furthermore, along with the
MBR of each object page O it stores a pointer to the ac-
tual object page O as well as pointers to all neighbors of O.
The pointers to the neighbors point to the leaf nodes where
the neighbor information is stored in (i.e., MBR, pointer to
object page etc.).

Spatially Close
Objects Grouped
On Object Pages

Seed Tree Leaf Nodes
Storing Pointer to Object
Pages And Pointer To
Neighbors

Seed Tree Index
Nodes

Figure 2: FLAT groups spatially close elements on object
pages (rectangles at the bottom) and inserts the MBRs into
the seed tree (tree structure at the top).

3.2 Querying
With the seed index containing page MBRs and neigh-

borhood information, FLAT computes the result of range

714

queries in two phases:

• Seed Phase: In the first phase of the query execu-
tion, FLAT retrieves from the seed index an arbitrary
page MBR that intersects with the query range. Re-
trieving an arbitrary element (page MBR) is a cheap
operation, even from an R-tree which is subject to the
problem of overlap in face of dense data. As opposed
to retrieving a specific element or a range (and thus
following many paths in the tree due to overlap), only
one single path has to be followed from the root of the
tree to one of the leafs to retrieve an arbitrary element
in the query range. The complexity of this operation is
hence typically in the order of the height of the R-Tree.

• Crawl Phase: Once an element in the query range
has been retrieved, FLAT recursively follows the neigh-
borhood links until no more page MBR can be found
that intersects with the query. All payload pages refer-
enced by the page MBRs are retrieved and all spatial
objects on it are tested if they are in the query region.

Because both phases are independent of dataset density,
the seed phase depends on the height of the seed index (R-
Tree) and the crawl phase depends on the size of the result,
the overall approach is independent of the data density and
thus scales to more dense datasets.

4. DEMONSTRATION
The demonstration has two parts. In a first part we ex-

plain ZOOM and the approach of FLAT by way of a poster.
In the second part the user can execute queries of which the
result is visualized. More importantly, as the query is ex-
ecuted, the statistics of the query execution are calculated
as well as shown and the functioning of the algorithms is
visually illustrated.

4.1 Part I: Explanation of FLAT
In this part of the demonstration, we use a poster to ex-

plain the audience ZOOM and how FLAT at its core is able
to decouple the execution time from the density of the spa-
tial model/dataset. We explain in detail the limitations of
tree-based approaches and explain FLAT’s novel query exe-
cution strategy, i.e., the two phases of query execution, the
seed phase which is independent of dataset density and the
crawl phase which only depends on the size of the result set.

4.2 Part II: Executing Queries
ZOOM (and with it FLAT) is currently used in the work-

flow of the neuroscientists of the BBP in order to build mod-
els and to visualize the model. For the first, a plethora
of small range queries is executed to test if any other ele-
ment intersects, for the latter larger range queries are ex-
ecuted to retrieve whatever is in the field of vision of the
user/neuroscientists.

In this demonstration users execute queries on both in-
dexes simultaneously to emulate a race between the two in-
dexes. We use real neuroscience data, i.e., a small part of the
neocortex of the rat brain containing just 10’000 neurons.

4.2.1 Interactive Query Execution
In the second part of the demo the user can execute queries

and the execution as well as the result is visualized. The

queries are executed on both, FLAT and the R-Tree. The
user can choose on what variant of the R-Tree (i.e, Hilbert [8],
STR [10], Priority R-Tree [1] or TGS [5]) the query is exe-
cuted.
Prepared Queries: To simplify the query execution for
the user we have a selection of predefined queries that can
be chosen. The predefined queries retrieve interesting areas
of the rat’s neocortex.
User Defined/Interactive Query: With ZOOM the user
can also interactively define and execute his own queries in
areas of interest. On a small visualization of the brain model
the user can move around and resize a query box. Once
content with the query, the user can choose to execute it.
The query selection is shown in Figure 3.

Figure 3: ZOOM’s interactive query selection on a small
part of the rodent neocortex.

4.2.2 Visual Experience
The visual experience of the demo has three components.

Result Visualization: The dataset indexed is a mesh rep-
resentation of the 10’000 neuron model of the rat’s neocor-
tex. To illustrate the result and how it is retrieved by FLAT
and the R-Tree, ZOOM continuously visualizes it with a
three dimensional representation, i.e., every part of the re-
sult successively retrieved from disk through the index is
added to the visualized model as the query runs.

Figure 4: Statistics for both, R-Tree and FLAT, which are
updated live during query execution.

715

Statistics: While executing the query, bar charts are con-
tinuously updated to show how many pages each approach
retrieves from disk. For FLAT bar charts with the number
of objects pages and seed tree disk pages are shown. For the
R-Tree we show the number of leaf pages/nodes and inter-
nal pages/nodes retrieved, thereby illustrating the overlap
in the R-Tree. As the screenshot in Figure 4 shows, detailed
statistics including the time for the execution of both queries
are shown.

Algorithm Illustration: The exact procedure of how the
two algorithms work is shown in the demo. For FLAT
we show how it recursively crawls the neighborhood of the
seed element by depicting the bounding box of every disk
page (the bounding box containing all elements on the page)
loaded as is shown in Figure 5. With this the audience can
clearly see how only the minimum disk pages needed are
loaded from disk. In case of the R-Tree we also show the
bounding box of every page/node retrieved from disk and
color it so it becomes clear that some pages are retrieved
multiple times due to overlap. To further illustrate the is-
sue of overlap in the R-Tree variant chosen, we show in a
histogram how many nodes are accessed on each level of the
tree. The histogram clearly shows that nodes on the upper
level (other than the leaf level) are accessed much more fre-
quently than those on the leaf level, hence clearly showing
overlap in the tree structure.

Figure 5: Illustration of the query execution strategy of
FLAT, showing the order of the parts of the query result
loaded, i.e., crawling through the result.

5. CONCLUSIONS
More precise instruments and the abundance of compu-

tational power combined with an ever better understanding
of the phenomena leads scientists in general and neurosci-
entists in particular to build increasingly detailed spatial
models of the phenomena under scrutiny. Doing so leads to
an ever better understanding of the phenomena but, at the
same time, also leads to massive amounts of dense spatial
data that is difficult to analyze. As a consequence we have
developed ZOOM, a tool to visualize neuroscience data, and
FLAT, a spatial index with a novel range query execution

strategy at its core. FLAT’s query execution strategy de-
couples the time for executing queries from the density of
the spatial model.

This demo showcases ZOOM, a tool for visualizing neuro-
science data based on FLAT. Queries on real neuroscience
are executed on FLAT and the R-Tree simultaneously while
visualizing both execution strategies as the queries run. To
demonstrate the benefits of FLAT, statistics (execution time,
I/O etc.) are shown at query runtime as well. ZOOM also
provides the user with a interactive graphical interface where
queries can be defined. Similar to ZOOM’s use by neurosci-
entists, the result of the query, the neurons in the query
range, are visualized.

6. REFERENCES
[1] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The

Priority R-tree: a practically efficient and worst-case
optimal R-tree. In SIGMOD ’04.

[2] R. Bayer. Binary B-Trees for Virtual Memory. In
Proceedings of the Workshop on Data Description,
Access and Control, 1971.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: an efficient and robust access
method for points and rectangles. SIGMOD Record,
19(2):322–331, 1990.

[4] V. Gaede and O. Günther. Multidimensional Access
Methods. ACM Computing Surveys, 30(2), 1998.

[5] Y. J. Garćıa, M. A. López, and S. T. Leutenegger. A
Greedy Algorithm for Bulk Loading R-trees. In GIS
’96.

[6] J. Gray, A. Szalay, A. Thakar, P. Kunszt,
C. Stoughton, D. Slutz, and J. Vandenberg. Data
Mining the SDSS SkyServer Database. In Technical
Report, MSR-TR-2002-01, Microsoft Research, 2002.

[7] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In SIGMOD ’84.

[8] I. Kamel and C. Faloutsos. Hilbert R-Tree: An
Improved R-Tree using Fractals. In VLDB ’94.

[9] D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp. A 14.6
Billion Degrees of Freedom, 5 Teraflops, 2.5 Terabyte
Earthquake Simulation on the Earth Simulator. In SC
’03.

[10] S. Leutenegger, M. Lopez, and J. Edgington. STR: a
Simple and Efficient Algorithm for R-Tree Packing. In
ICDE ’97.

[11] H. Markram. The Blue Brain Project. Nature Reviews
Neuroscience, 7(2):153–160, 2006.

[12] S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu,
D. R. O’Hallaron, and G. Heber. Efficient Query
Processing on Unstructured Tetrahedral Meshes. In
SIGMOD ’06.

[13] K. Y. Sanbonmatsu, S. Joseph, and C.-S. Tung.
Simulating movement of tRNA into the ribosome
during decoding. Proceedings of the National Academy
of Sciences, 102(44):15854–15859, 2005.

[14] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional
Objects. In VLDB ’87.

[15] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann,
H. Markram, and A. Ailamaki. Accelerating range
queries for brain simulations. In ICDE ’12.

716

