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ABSTRACT 

Skyline queries are a well-established technique for database 
query personalization and are widely acclaimed for their intuitive 

query formulation mechanisms. However, when operating on 
incomplete datasets, skylines queries are severely hampered and 
often have to resort to highly error-prone heuristics. 
Unfortunately, incomplete datasets are a frequent phenomenon, 
especially when datasets are generated automatically using 
various information extraction or information integration 
approaches. Here, the recent trend of crowd-enabled databases 
promises a powerful solution: during query execution, some 

database operators can be dynamically outsourced to human 
workers in exchange for monetary compensation, therefore 
enabling the elicitation of missing values during runtime. 
Unfortunately, this powerful feature heavily impacts query 
response times and (monetary) execution costs. In this paper, we 
present an innovative hybrid approach combining dynamic crowd-
sourcing with heuristic techniques in order to overcome current 
limitations. We will show that by assessing the individual risk a 

tuple poses with respect to the overall result quality, crowd-
sourcing efforts for eliciting missing values can be narrowly 
focused on only those tuples that may degenerate the expected 
quality most strongly. This leads to an algorithm for computing 
skyline sets on incomplete data with maximum result quality, 
while optimizing crowd-sourcing costs.   

Categories and Subject Descriptors 

H.2.4 [Query Processing] 

General Terms 

Algorithms, Human Factors 

Keywords 

Skyline Queries, Crowd-Sourcing, Incomplete Data. 

1. INTRODUCTION 
Crowd-Enabled DBMS [1] are currently a hot topic in the 
database community due to their promise of bridging the gap 
between somewhat inflexible yet efficient relational data 
management, and somewhat inefficient yet flexible human 

intelligence in retrieval tasks. Hence, such systems are particularly 
well-suited to deal with the challenges posed by modern 
applications. In particular, crowd-enabled DBMS allow for 
dealing with the widespread problem of incomplete data in an 
effective manner during runtime: queries may request missing 
values or even complete tuples by dynamically creating crowd-

sourcing tasks eliciting the missing information from other 
sources. These tasks, generally called HITs1, are then executed by 
human workers who are usually paid for their efforts.  

Clearly this approach is a powerful tool, but each time a HIT has 
to be executed, the monetary costs and the runtime of a particular 
query increases, opening up a whole new field of relational query 
optimization [2]. While this problem is not too pronounced for 
traditional SQL-style queries (if one wants to retrieve for instance 
a person’s email address, the task simply has to be crowd-sourced 
whenever it is missing), the problem may get arbitrarily difficult 
in case of aggregations or expensive predicates. Considering for 

example similarity operators, statistical aggregations, or ranking 
queries it is easy to see that the result set’s correctness is largely 
dependent on the number and respective behaviour of missing 
values. 

Focusing on skyline queries, in this paper we show how to 
manage this new optimization problem in crowd-enabled 
databases queries under the common issue of incomplete data. 
Skyline queries indeed form a perfect illustrative example: They 
are an important class for personalized query processing, but in 
contrast to simple factoid answers like e.g., email addresses, the 
skyline is a subset of database tuples formed by connections to 

other tuples following the notion of Pareto optimality. Of course, 
the query process can be approached in a naïve fashion: if any 
skyline algorithm is executed on a crowd-enabled database, the 
DB will automatically retrieve all missing values via crowd-
sourcing during the runtime of the algorithm, retrieving the 
correct skyline set. However, this also leads to maximum costs in 
terms of money and runtime, since all missing values with respect 
to all database tuples need to be elicited from the crowd. In 

particular, the naïve retrieval does not take into account whether a 
tuple will be part of the final result set or not – which forms the 
optimization challenge: maximum correctness at minimum costs. 

Therefore, in this paper, we will focus on cost optimizations for 
skyline queries in crowd-enabled databases. We show how to 
perform crowd-enabled skyline queries in a cost-efficient manner. 
In particular, we introduce a heuristic approach which will slightly 
compromise the expected result quality in order to significantly 
reduce query costs and runtimes. Our approach shows that not all 
missing values need to be crowd-sourced (in contrast to naïve 

                                                             

1  HIT: Human Intelligence Task, the smallest unit of crowd-sourceable 

work; many similar HITs are organized in HIT groups 
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querying), but instead we deal with the majority of the database 
tuples heuristically. This allows a significant reduction in the 
required number of crowd-sourcing tasks, but also introduces an 
(potentially significant) error into the computation of the resulting 
skyline set depending on the quality of the heuristic.  

One of the more successful heuristic approaches for skyline 
computation on incomplete data is missing data prediction. In 

order to control and minimize the error introduced by this 
prediction, we introduce the notion of prediction risk, i.e. the risk 
quantified by the probable impact each tuple may have on the 
skyline correctness whenever a predicted value is used without 
crowdsourcing. By computing this risk factor, we can restrict the 
crowd-sourcing efforts to exactly those tuples which will strongly 
affect the result quality with high probability, and use suitable 
value predictions for all remaining tuples posing only a limited 
threat to the overall result quality. By adjusting the number of 

HITs to be issued, the algorithm can be customized in order to 
find the best trade-off between costs, performance, and result 
quality in each given application scenario. In particular, this 
allows for achieving a good skyline result quality quickly after 
issuing just a few actual crowd-sourcing tasks.  

Our contribution in this paper can be summarized as follows: 

 We design a cost-aware workflow for crowd-enabled skyline 
query execution over incomplete data 

 We illustrate the design space within that workflow, and show 
different heuristics and implementation decisions 

 We develop a heuristic for assessing the risk of a given 
predicted database tuple with respect to skyline quality 

We provide an exhaustive evaluation of our heuristics and show 

that our approach provides high-quality results saving costs at 
least one order of magnitude less compared to naïve crowd-
sourcing.  

The remainder is structured as follows: the next chapter discusses 
related topics and how our system differs from previous 
approaches. Then, we present our workflow for crowd-enabled 
skyline queries with missing values, focusing on value prediction, 
prediction quality assessment, tuple risk computation, and crowd-
sourcing of potentially harmful tuples. Finally, we provide 
extensive evaluations of our approach and conclude with a 
summary and outlook. 

2. TOWARDS CROWD-ENABLED 

SKYLINE QUERIES 
In the following section, we provide an overview of crowd-
enabled databases and the state of the art for completing missing 
information in datasets. Furthermore, we briefly summarize 

skyline queries and current heuristic approaches for dealing with 
skyline computation on incomplete data. 

2.1 Crowd-Enabled DBs and Missing Data 
Crowd-enabled DBMS [1], [3], [4] fuse traditional relational 
technology with the cognitive power of people at query time, 
enabled by crowd-sourcing services like Amazon’s Mechanical 
Turk, CrowdFlower, or SamaSource. The crowd can be used to 

complete data missing in tables in a query-driven fashion, i.e. 
queries can be executed despite incomplete data by either filling 
empty fields or inserting completely new tuples at runtime. 
Moreover, even complex cognitive tasks like reference 
reconciliation can be performed, and the crowd can be leveraged 
to “implement” database operators requiring cognitive abilities 
like scoring tuples with respect to perceived criteria (e.g., scoring 

images by visual appeal) or performing perceptual comparisons 
(e.g., tagging images with emotions or moods). While such 
cognitive tasks are a highly interesting feature with respect to 
personalization and preferences modeling, in the following we 
focus on the aspect of missing data.  

In previous studies on crowd sourcing it has been shown under 
certain constraints that missing values in database tuples can be 

elicited with surprising efficiency and quality as long as the 
information is generally available [5]. Especially for factual data 
that can be looked-up on the Web without requiring expert 
knowledge (e.g., product specifications, telephone numbers, 
addresses, etc.), the expected data quality is quite high with only a 
moderate amount of quality assurance (e.g., majority votes). For 
example, [5] reports that crowd-sourced manual look-ups of 
movie genres in IMDB.com are correct in ~95% of all cases with 
costs of $0.03 per tuple (including quality assurance). 

In a brief pre-study, we examined two typical aggregated datasets 
for e-commerce. Both contain technical specifications of cell 

phones and have been crawled in summer 2011 from meta-
shopping directory sites, namely PhoneArena.com2 and Heise.de3. 
Such datasets are very representative for our approach: they have 
been aggregated over some time integrating multiple sources, 
being subsequently employed to help users decide on a particular 
purchase. Furthermore, all data missing in these datasets is still 
available on the Web somewhere (e.g., the manufacturers’ sites) 
and can thus be elicited via crowd-sourcing. However, obtaining 
this data automatically is very challenging. In particular, we 

observed that in the Heise dataset 10% of all values are missing 
(for 1,131 different phones with a total of 48 attributes), and for 
the PhoneArena dataset 26% of all values are missing (399 phones 
with 37 attributes).  

2.2 Skyline Queries and Missing Information 
Skyline Queries [6] are a popular personalization technique for 
databases, successfully bridging set-based SQL queries and top-k 
style ranking queries [7]. They implement the economic concept 

of Pareto optimality and thus allow for very intuitive and simple 
personalization: for each relevant attribute users simply provide a 
preference order under ceteris paribus semantics (e.g., “lower 
prices are preferred to higher prices assuming that all other 
attributes are equal”). Then, for any two tuples, where one tuple is 
preferred regarding one or more attribute(s) but equal with respect 
to the remaining attribute(s), rational users will always prefer the 
first object over the second one (the first object Pareto dominates 

the second one). Thus, the skyline set is computed by retrieving 
only tuples which are not dominated by any other tuple, i.e. all 
Pareto optimal tuples. Computing skyline sets is considered to be 
an expensive operation. Therefore, a variety of algorithms have 
been designed to significantly push the computation performance 
[8], e.g., by presorting [9], partitioning [10], or parallelization 
[11].  

But regardless of the chosen algorithm, to compute skylines the 
value of each relevant attribute has to be accessed at least once for 
each tuple. Here, two major solution strategies can be chosen to 
deal with missing information: a) eliciting all missing information 

during / before computing the skyline in order to work on a 
complete dataset or b) dealing with missing information 
heuristically, which results in skylines afflicted with some error 
depending on the quality of the heuristic.  

                                                             
2 http://www.phonearena.com/phones 
3 http://www.heise.de/mobil/handygalerie/ 
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Heuristic approaches dealing with missing and/or uncertain data 
have been proposed in the past. Some approaches rely on using 
some default procedure to deal with missing information (or 
NULL values), e.g., by treating them as being incomparable or 
assuming the best/worst possible values [12]. One of the first 

works explicitly focusing on computing skylines over incomplete 
data is [13]. Here the actual Pareto semantics of skylines is 
changed: a tuple dominates other tuples, if it is better regarding at 
least one attributes and at least equal or showing NULL values in 
all other attributes. However, this implies non-transitive 
dominance relationships and may lead to cyclic dominance 
behaviour, which has to be resolved. However, the problem of 
missing information can also be treated differently: instead of 

changing semantics, algorithms on incomplete data should aim at 
computing approximate skyline sets as similar as possible to what 
would have been retrieved had all information been available. 
Therefore, in our work, the criteria for judging the quality of a 
skyline heuristic is the error induced by tuples with missing 
values as compared to the real skyline computed from a complete 
dataset.  

Our goal is also loosely related to the area of probabilistic 
databases, since incompleteness can be seen as a source of 
uncertainty. Uncertainty is inherent in many emerging 
applications, such as sensor networks, data cleaning, moving 

objects, etc. Consequently, research in probabilistic databases has 
sparked much interest, and even skyline queries with uncertainty 
have already been considered. Most approaches follow the 
semantics of ‘possible worlds’: from a database perspective, 
uncertainty occurs either at attribute level [14] or at tuple level 
[15], [16]. There are two models to describe uncertain objects: 
continuous or discrete uncertainty models [17], [18]. For 
continuous uncertainty models, each uncertain object is assigned 

some interval that comprises all its probable values associated 
with a probability density function [19]. In contrast, discrete 
uncertainty models are utilized for applications lacking explicit 
density functions. Here, each uncertain object is represented by a 
set of instances. Each instance has a skyline probability that 
reflects the probability of its occurrence whilst not being 
dominated by any occurring instance of another object. Finally, 
the skyline probability of the object is the sum of all of its 
instances’ skyline probabilities [20], [21].  

Since we focus on the case of crowd-enabled databases, we 
cannot rely on concurrently existing possible worlds. Uncertainty 

is considered on attribute level due to incompleteness and missing 
values. Thus, there are only two choices for each incomplete tuple 
during query processing: blindly accept some predicted value or 
safely crowd-source the task. But, since all predicted values 
introduce some uncertainty, suitable error bounds associated with 
the prediction algorithm have to be assigned. We claim that for 
determining these bounds outliers can be ignored and a heuristic 
quantification of the error in terms of false positives/negatives 
leads to cost-efficient and high-quality skyline query processing. 

3. WORKFLOW OF CROWD-ENABLED 

SKYLINE QUERIES  
In the following, we present the workflow of our heuristic system. 
For effectively optimizing crowd-sourcing costs the system 

should be self-tuning: for each database instance the best fitting 
parameters to reduce crowd-sourcing have to be decided 
heuristically while keeping the expected skyline correctness high. 
This design is desirable since the prediction algorithms’ quality 
varies greatly with the properties of the data. In this sense, our 
workflow in Figure 1 offers a toolbox allowing different 

implementation strategies for the basic components. Generally, 
predictions for all tuples with missing information are made 
before skylines can be computed. But, then for some high 

impact/risk tuples, the predicted values are superseded by crowd-
sourcing judgements. Eventually, the skyline can be computed 
with high accuracy. We now outline the respective design space 
for all components and provide reference implementations as a 
basis for later evaluation: 

Assume a relational base dataset   including incomplete tuples 

(judging from practice, at most 30% of tuples will be incomplete). 
Furthermore, we have a library of prediction algorithms and 
heuristics for dealing with incomplete data in skyline 
computation. 

 

Definition 1 (Dataset): Formally, a base dataset   is an 

instance of a database relation     
      

  on   attributes 

        with   
  as domain of attribute    using   to denote a 

missing value, i.e.   
         . Each tuple   is denoted 

by    (       ). For simplicity and to allow for easy 

comparisons, in the rest of the paper we only consider score 
values with respect to preferences, i.e. numerical domains and 

linearized categorical preferences normalized to      . 
Moreover, the subset of all complete tuples    is given by 

         |                      and the subset of all 

incomplete tuples is then denoted as         . 
 

Now assume a user is stating a skyline query. Such a query is 
given by any set of preferences over the attributes of the base 
dataset. A query may also contain additional meta-data for 
describing the required result quality, maximal query budget, 
response time requirements, etc. (see section 3.5). 

 

Definition 2 (Numerical Preferences and Pareto Dominance):     
A numerical preference    over attribute    with a numerical 

domain    is a total order over   . If attribute value      is 

preferred over value     , then (   )    , also written as 

      (“  dominates   wrt. to   ”). Analogously, we define 

     for       or     . Without loss of generality, we 

consider only maximum score preferences (i.e. all score values are 

in      , with 0 as worst and 1 as most preferred score). 

 

Figure 1 System Workflow 

base dataset R
(incl. incomplete tuples)

prediction quality

assessment & 

algorithm selection 

prediction algorithm

library

e
x
p

e
ct

e
d

 p
re

d
ic

ti
o
n

q
u

a
li

ty
 

missing value 

prediction

chosen

algorithm PA

risk assessment

of predicted tuples

wrt. to query

threshold selection & 

tuple filtering

crowd sourcing
(HITs & quality control)

test sample RS

all tuples 

(incl. incomplete tuples)

all tuples 

(with predicted values)

all tuples (with predicted 

values and risk)
user

skyline computation

skyline result set

risky tuples

corrected tuples

co
rr

e
ct

e
d

 t
u

p
le

s
 f

o
r 

im
p

ro
v
in

g
 b

a
s
e
 d

a
ta

s
e
t

“safe” tuples

crowd

query 

467



We define the concept of Pareto dominance        between 

tuples               by        with respect to all 

attributes, and    dominates   with respect to at least one attribute: 

                                                 
A skyline query is given by a set of preferences   

         , with one preference for each attribute. 

3.1 Missing Value Prediction 
In the following, we provide a brief overview of value prediction 
algorithms. Numerous studies have already examined different 
approaches with varying complexities for dealing with missing 
data values. Some approaches simply discard incomplete 
instances by feature or object marginalization [22], acquire the 
missing data at a cost [23] (e.g., by manually eliciting them), or 
employ reduced or hybrid models [23]. However, the most 

common way is to estimate and replace missing values (in this 
paper called value prediction, in literature also often referred to as 
imputation).  

There are two major families of imputation algorithms [24]: 
predictive value imputation and distribution based imputation. 
Whilst value imputation directly estimates missing values, 
distribution based imputation estimates the conditional 
distribution of missing values upon which the predictions will be 
based, e.g., in the C4.5 decision tree generation algorithm [25]. 
Most popular methods for predictive value imputation are mean 
imputation, median imputation, mode imputation, nearest 

neighbour imputation, regression imputation [26], and imputation 
using decision tree algorithms like CART [27]. More complex 
imputations seek to also reflect the correlation structure of data, 
and induce relationships between the available attribute values 
and missing features [28], e.g., surrogate splits for classification 
trees [29]. The correct choice of an imputation method depends on 
multiple factors:  

 The data’s nature and the percentage of its missing values. 

For example, imputation may be quite misleading when 
applied to astronomical datasets, where the missing values are 
often physically meaningful [30] and do not necessarily 
follow simple patterns. 

 The time of imputation, i.e. at induction time (on historical 

training data) or at prediction time (in the test cases). 
Particularly, it has been shown that imputations are quite 
successful at induction time [31], [32].  

 The missing data model: missing at random (MAR), missing 

completely at random (MCAR) or not missing at random 
(NMAT). while imputation can be a reasonable approach for 
both MAR and MCAR, there is no way to impute values 
reliably with NMAR, because the values were never observed 
[32]. 

Please note that in this paper we assume that values are at least 
approximately missing at random, as is often the case when 
aggregating or extracting datasets automatically. 

In particular this means that for each tuple most attribute values 
are available, while just some are randomly missing. The same 

holds for attributes: for each attribute most tuples will have a 
respective value. In cases where for any attribute or tuple no or 
only very few values are given, the prediction algorithms may not 
return reliable results, and overall prediction quality will be low. 
Still, our system will be able to detect and deal with such cases by 
replacing unreliably predicted values with accurate crowd-sourced 
values in the workflow. 

In our later experiments, we will mainly rely on k-nearest 
neighbour imputation (KNN) as it has been shown to be quite 
robust when the percentage of missing values increases [27]. 
Furthermore, KNN can predict both qualitative and quantitative 
attributes, doesn’t require the creation of a predictive model for 

each attribute with missing data, and can work with instances 
having multiple missing values.  

Additionally, aiming to also test our work using prediction 
algorithms with lower complexity and resulting precision, we 
chose the simpler median imputation technique. Unlike mean 
imputation, which is affected by the presence of outliers, utilizing 
the median assures robustness [27]. 

3.2 Assessing Prediction Quality  
Before queries can be processed, the system has to assess the 
effectiveness of prediction algorithms with respect to the current 

dataset. Unfortunately, prediction effectiveness is hard to assess 
analytically. Therefore, we sample the current prediction quality 
by periodically measuring performance in a small test scenario. 

For this purpose, a suitable test sample       is prepared by 

obfuscating complete tuples: values are removed in a similar 
pattern in which information is missing in the base dataset. In our 
reference implementation, we randomly remove values from the 
test sample such that the percentage of missing values per 
attribute matches the base dataset. We then apply each algorithm 
in the prediction algorithm library on this test sample to obtain 

predictions for the values which had just been removed. Thus, we 
can assess the expected prediction quality of each algorithm on 
the current dataset by measuring the error between the predicted 
values and the respective original values, e.g., by the overall mean 

squared error  ̅  of all predicted tuples and attributes. 

Moreover, more detailed statistics about the behaviour of each 

algorithm is stored to be used in later stages of our workflow. In 
particular, for each attribute    we elicit the mean error    ̅ 

between the predictions and the real values, and the standard 

deviation   
  of those errors. In order to increase the accuracy of 

the quality analysis at the cost of additional effort, the results of 
multiple sampling runs may be aggregated. Finally, the algorithm 
   showing the smallest overall mean squared error is selected 
for later predicting all missing values.  

 

Definition 3 (Error Vector): For prediction algorithm    and 

base dataset  , an error analysis vector   
   with  ̅  as mean 

squared error of all attributes,   ̅ as mean error of attribute   , and 

  
  as respective standard deviation is given by:     

   
( ̅    ̅      ̅    

      
 ) 

3.3 Quantifying Potential Skyline Errors 
After the selected prediction algorithm has been used to predict all 

missing values for the current base dataset, the system has to 
decide for which tuples the predicted values are used during 
skyline processing - and for which tuples they are replaced by 
accurate values obtained from crowd-sourcing judgements. This 
step has the highest impact on the overall system performance, 
and has two extreme cases: 

 no tuple is crowd-sourced, and only predicted values are used. 

Here, the costs are minimal (no crowd-sourcing necessary), 
and the result quality strictly depends on the accuracy of the 
used prediction algorithm. While in general, the quality 
achieved by this approach will be very low, for some highly 
predictable datasets (like the NBA dataset shown in chapter 
4), it will nonetheless provide usable results at very low costs.  
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 all tuples are crowd-sourced, and all predictions are discarded 

and replaced. This extreme case will result in very high costs 
due to the large number of required crowd-sourcing HITs 
(which cost time and money). However, with adequate quality 
control, we can assume that all values obtained via crowd-
sourcing are highly accurate. Therefore, this case shows very 
high result quality, especially when encountering 
systematically biased and therefore hard to-predict datasets. 

In our system, we exploit the synergy between the two extreme 
cases by crowd-sourcing only the most risky tuples (i.e. tuples 

having a low prediction quality and having a possibly large impact 
on the skyline computation). For all tuples considered safe (e.g., 
tuples that have only a small effect on the skyline computation or 
can be predicted accurately), the predicted values are simply used. 
Therefore, the next crucial step is to assess the risk of each 
predicted tuple, and then tuples can be classified as being “risky” 
or “safe”. 

For illustrating the general problem space of this challenge, 
consider Figure 2: here, without loss of generality we focus on 
tuples in just two dimensions. Most tuples are complete (in 
accordance with our assumption that only up to ~30% of all 

values are missing at random). When ignoring all incomplete 
tuples the resulting skyline is given by               .  

 

Definition 4 (Skyline of the Complete Subset): On the subset of 

complete tuples    and a set of preferences  ,      is defined as: 

             (    )         |                 
 

The tuples with missing values in the base dataset are denoted 

by        . In Figure 2, these tuples are shown in their 
approximate position when applying the chosen prediction 

algorithm. Obviously, in a 2-dimensional example at most one 
attribute value per tuple can be missing: let us assume 
               are missing values in dimension 2 and 
               in dimension 1. Since the predicted value may 

not necessarily be correct, in reality the respective tuples could be 
located anywhere along the dashed lines. It is easy to see that the 
quality of the skyline set computed by using predicted values can 
vary strongly depending on how correct the predictions are. For 
illustration again consider Figure 2: the skyline set using predicted 
values is                     . However, now assume the value 

of    had been predicted vastly too high and its real value would 

allow    to dominate     (i.e.    lies left of the skyline frontier). 

Then the skyline quality would have several problems. First,    

would not be part of the correct skyline: it is a false positive. 
Second, this prediction error also affects   ,   , and   , which are 

actually not dominated by    and therefore should have been part 

of the skyline; the three tuples are false negatives. All remaining 
tuples are not affected by the prediction error of    (true positives 

or true negatives). In summary, using   ’s predicted value may 

result in three false negatives and one false positive. Based on 
these observations, we developed a heuristic to rank all tuples 

needing prediction with respect to their potential to induce errors 
(in terms of false negatives or false positives). We will consider 
each predicted tuple individually.  

It is easy to see that the only tuples with a chance to be false 
positives or false negatives are those with either predicted values, 
or complete tuples which are not dominated by any other 
complete tuple (i.e. all tuples in     ). Complete tuples dominated 

by any other complete tuple are always true negatives, and can 
therefore be ignored. Furthermore, the potential of introducing 
errors into the skyline computation heavily depends on the 
prediction accuracy of each single tuple. While in theory, the 

predicted tuples in Figure 2 could be located anywhere along the 
dashed lines, some locations are more likely than others, 
depending on the current tuple, the base dataset, and the chosen 
prediction algorithms. Unfortunately, correctly assessing the exact 
prediction accuracy per tuple is very complex. Therefore we use 
the following heuristic model to capture each tuple’s potential to 
induce errors: we assume the prediction accuracy for each 
predicted tuple to be within normal bounds, i.e. we entirely ignore 
outliers having extremely irregular values which cannot be 

captured by the chosen prediction algorithm. For quantifying the 
“normal” accuracy behaviour of a given predicted tuple   , we 

rely on the algorithm accuracy statistics   
   elicited during the 

algorithm selection step in chapter 3.2. With these statistics, we 
quantify the prediction interval of    assuming that the algorithm 

estimated any missing value including the respective systematic 
prediction error   ̅ and additionally overestimated or 

underestimated each value by the standard deviation, i.e.    
 . 

Then, the two interesting cases are the upper bound tuple    and 

the lower bound tuple   , because these two tuples dominate the 

largest / lowest number of other tuples when finally computing the 
skyline under normal error assumption. 

 

Definition 5 (Upper/Lower Bound Tuple): Let      be a tuple 

with incomplete values, and    be the predicted tuple using some 

prediction algorithm. Then the upper/lower bound tuples    and 

    are defined attribute-wise as follows:  
 

  
  {

   (    )                              

    (    )   (  
    ̅)    

         
 

 

  
  {

   (    )                              

    (    )   (  
    ̅)    

       
 

 

In the following, we focus on the expected errors for each 

predicted tuple    when computing the skyline of        , 

 

Figure 2: Predicted Tuples and the Skyline 
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assuming that the real values for    are bounded by    and   . 

For illustrating the possible effects on the skyline, we present four 
scenarios in Figure 5 which are discussed in the following. Later, 
we generalize our observations designing an algorithm which 
computes all possible false positives and false negatives for any 
given tuple: (Please note that we sum up the different 

variations   ,   , and    as   when discussing the skyline sets): 

 Scenario a) In this scenario,    is a skyline tuple (no tuple of 
     dominates   ) Therefore, when computing the skyline    

dominates   . The resulting predicted skyline is      

         . Now, if   is predicted too low within the normal 
bounds of error, then in the worst case (indicated by   ) it 

could additionally dominate   , and the correct skyline should 

be       . From this perspective,    is a possible false 

positive in     . On the other hand, if   is predicted to high, 

then in the worst case (   ) it would still be a skyline object, 

but would not dominate    anymore. This results in the 

skyline set             . Therefore, in this case,    could be a 

false negative with respect to the predicted skyline     . 

Hence, assuming normal prediction accuracy    could induce 
up to one false positive, and one false negative. 

 Scenario b) Again    a predicted skyline tuple, resulting in the 

skyline                  . Similar to scenario a),    can 

be a false positive, if   is predicted too low (   is dominated 

by   ). But additionally, if   is predicted too high, and in 

reality is   , then the resulting skyline would be           , 
and   itself would be a false positive. Therefore, in this 
scenario, two different false positives can result from normal 
error behaviour.  

 Scenario c) In this scenario,    is no skyline tuple, resulting 

in                . But if   was predicted too low (its real 

value is   ), then it becomes a skyline objects, and therefore   

itself is a false negative in     . In this case it would 

dominate   , which in turn results in a false positive.  

 Scenario d) Finally, there may be tuples which do not result in 

any false positives or negatives under normal error conditions. 
This is shown in this last scenario. 

 

Based on the previous example scenarios, we will now formalize 
the set of false positives and false negatives for a given predicted 
tuple    in several easy-to-implement rules. 

 

False positives can be computed using the rule out of the 
following four having a matching precondition (see Figure 4): 

a) If    is a skyline tuple, and no tuple dominates its least 

preferable tuple   , then all tuples which are dominated by   , but 

not by    are potential false positives.  

b) Analogously to the previous case, but    is dominated by a 

skyline tuple. Therefore, tuple    can be a false positive. 

c) If    is not a skyline tuple, then it can be responsible for false 

positives only if    dominates some skyline tuples (which then 
would not be skyline objects anymore). 

d) If both    and    are dominated, then no false positives can 
occur within normal error bounds. 

Formally, these rules lead to the following definition:  

 

Definition 6 (Set of False Positives): Let      ( ) be a 

predicted tuple with its upper/lower bound tuples    and   . Also, 

     is the skyline of all tuples in    with respect to the 

preferences  . Then, the set of possible false positives   (  ) can 

be computed by the one of these four rules: 
 

a) If  (         (     ))  (         (     )) then 

               (  )  {      |( 
    )   (     )} 

 

b) If  (         (     ))   (         (     ))  then 

               (  )  {      |( 
     )   (     )}       

 

c) If  (         (      ))   (         ( 
     ))  then 

               (  )         |( 
     )  

 

d) If  (         (      ))   (         ( 
     )) then 

               (  )    
 

 

Analogously, the set of false negatives is defined as follows (see 
Figure 5):  

a) If    is a skyline tuple, and all tuples dominated by    are also 

dominated by   , then there can be no false negatives. 

b) If    is a skyline tuple, and there exists tuples dominated by   , 

but not by   , then all those tuples are potential false negatives.  

c) If    is not a skyline tuple, but    would be in the skyline, then 

   is a potential false negatives. 

d) If both    and    are no skyline tuples, then there can be no 
false negatives. 

 

 

Figure 5: Example Error Scenarios 

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

a)
b)

c) d)

 

Figure 3: False Positives assuming normal error behaviour 

 

Figure 4: False Negatives assuming normal error behaviour 
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 Definition 7 (Set of False Negatives): Let    be a predicted 

tuple with its upper/lower bound tuples    and   . Let      be the 

skyline of all tuples in    with respect to the preferences  . Then, 

the set of possible false negatives   (  ) can be computed by the 

one of these four rules: 
 

a) If  (         (     ))   

           (         ( 
    )  (     )) then 

                      (  )    
 

b) If  (         (     ))   

           (         ( 
    )  (     )) then  

  (  )  {      |( 
     )  (     )} 

 

c) If  (        (     ))  (         (     )) then      

                     (  )       
 

d)     (        (     ))  (         (     )) then 

                     (  )    
 

The following two lemmas are necessary to show the 
completeness and non-ambiguousness of the rules in Definition 6 
and 7: 

 

Lemma 1  (Definition 6 is complete and non-ambiguous): 
Let             (     ), and             (     ), 
and             ( 

     ). 
Then the preconditions of the four cases of Definition 6 can be 
written as follows: 
a)              b)              

c)          d)          

Furthermore, additional semantic constraints resulting from the 
definition of Pareto dominance follow:    is a stronger version of 

  , therefore      . Also, with respect to false positives, 

condition    does not matter at all whenever    is a skyline 

object, i.e.     holds. Therefore, we can rewrite: 

a)           (      )    b)         (   
   )  
c)             d)                

It is easy to see that (       )      , showing that the 

conditions are complete (       is not possible due to    
  ).  

Also,(   )  (   )  (   )  (   )  (   )  (  
 )        holds, showing that the conditions are pairwise 

disjunctive.   ∎     
 

Lemma 2 ( Definition 7 is complete and non-ambiguous): 
Let             (     ), and             (     ), 
and             ( 

    )  (     ). 
Then the preconditions of the four cases of Definition 7 can be 
written as follows: 
a)              b)              

c)           d)         

Similar to Lemma 1, additional semantic constraints        and 

        (“if    is a skyline object, no object can dominate 

  ”) hold. Also,    is irrelevant for false negatives whenever    is 

not a skyline object (  ). Therefore, we can rewrite: 

a)                  b)                   

c)          (      )   

d)         (      ) 
Again, (       )       holds (note that        is not 

possible due to      ), and also 
(   )  (   )  (   )  (   )  (   )  (   )        
∎  

3.4 Ranking Tuples for Crowd-Sourcing 
Using the cardinalities of the sets of false negatives   (  ) and 

false positives   (  ) for each predicted tuple   , we are able 

now to finally assign a score for ranking tuples with respect to 

their priority to be crowd-sourced. This score reflects the potential 
severity of the error introduced by a predicted tuple when 
prediction quality is within normal bounds. 

Definition 8 (Tuple Score): Given the set of false negatives 

  (  ), false positives   (  ), and a weighting factor        , 
the score of a tuple    can be computed as: 

 

     (  )    |  (  )|  (   )  |  (  )| 
 

The weighting factor   can be used to adapt the ranking behaviour 

to reflect different use case requirements with respect to false 
positives and false negatives. We propose the usage of one of the 
following three heuristics: 

      : A default setting which handles false negatives 
similar to false positives. 

        : This setting emphasizes the weight of false 
negatives and can be motivated from the user’s point of view: 

when a user examines the skyline result set, false negatives 
mean that a Pareto-optimal tuple is not visible for the user, 
limiting his/her choices and maybe preventing an optimal 
decision. In contrast, although false positives burden the user 
with additional cognitive overhead for filtering, they still 
allow for an optimal decision. Therefore, false negatives can 
be seen as being worse. 

 Auto-adjust  : The weighting factor   can also be determined 
automatically for each dataset. The following simulated 
crowd-sourcing can be automatically performed for different 

values of  : using the prepared sample    (see 3.2), all 

missing values are predicted and then tuples are ranked with 
the current  . Then, the top scored tuples are replaced by 

correct values, as if crowd-sourced. After computing skylines, 
we choose the   having the smallest error compared to the 

real skyline. This results in the value of   which will most 

probably minimize the resulting skyline error. While this 

sampling process imposes additional computational effort, this 
effort is low compared to a later execution of crowd-sourcing 
HITs.  

Please note that the informedness error measure used in our 
experiments (see 3.6) does not distinguish between false positives 
and false negatives, hence the effect of   is minor. However, 

when using different error measures, auto-adjusting and choosing 
a correct   may become more significant. 

3.5 HIT Creation  
After all predicted tuples are scored, “safe” and “risky” tuples 
need to be determined. This is done by ranking all tuples 
according to their score, and selecting the top-  highest scored 

tuples for crowd-sourcing (as they have the highest error potential, 
and are thus unsafe).   should be chosen in accordance with 

quality requirements or additional meta-data provided by the user. 
There are many different options to how   can be obtained, 
allowing for a high degree of customization, e.g.: 

 The user directly provides   as part of the query. 

 The user provides a maximum tolerable error. Then, the 

system can again rely on sampling (similar to determining   

automatically) for determining   such that it provides the 
required quality. 
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 The user does not provide any additional constraints. Then, 

the system can again rely on sampling to find the best trade-
off between the result quality and the number of crowd-
sourced tuples. We will briefly discuss this in section 4.2.  

 Enhancing previous options, the users could also provide 

monetary or time constraints, limiting the maximum or 
minimum number of tuples to be crowd-sourced. 

After all unsafe tuples have been determined, HITs are created 
and issued to a suitable crowd-sourcing platform. The size of the 
HITs and required quality control procedures (e.g., majority votes, 
gold questions, etc.) depend on the type of missing information 
(see [33] for more details on different types of missing 
information and quality control). After all crowd judgements have 
been collected, the obtained values can be written to the base 
dataset as completed tuples, therefore decreasing the degree of 

missing values over time. Finally, the skyline is computed (using 
predicted values for safe tuples) and returned to the user. 

 

Definition 9 (Final Skyline): Given the subset of complete 

tuples    and incomplete tuples   , a prediction algorithm    

with the error vector   
  , and the weighting factor   and ranking 

limit  , the final predicted skyline can be computed with the 

following algorithm: 
 

           ⋃ (                   )        

      {             |       (     (  ))    )   

        {             |       (     (  ))   )   

       ⋃ (              )            

   =                  

            (    )  {      |                  
 

In our initial system workflow as presented in Figure 1, only a 

single crowd-sourcing iteration is performed, i.e. all unsafe tuples 
are crowd-sourced in one large batch, distributed over several 
HITs executed in parallel for minimal response time. This means, 
tuple ranking relies on many assumptions, as our tuple score is 
computed for each tuple individually respecting only complete 
tuples. However, if query response times are not a priority, higher 
quality with less crowd-sourcing operations (and therefore lower 
monetary costs) can be achieved by issuing smaller batches, and 

then dynamically re-ranking all tuples after each batch. As HITs 
cannot be executed in parallel anymore, this approach obviously 
takes longer. The effects of various batch sizes are also evaluated 
in section 4.4. 

3.6 Measuring Skyline Error 
For measuring the actual error of a skyline set using predicted 
values, we rely on a popular metric from information retrieval. In 
particular, we expand on the measure of informedness [34]. 

Informedness quantifies how informed a computed result is when 
compared to a result derived by chance. The informedness 
measure is based on recall and inverse recall. In contrast to using 
recall alone, it considers both error types, false positives and false 
negatives, while at the same time also respecting true positives 
and true negatives. Therefore, it is a quite fair and unbiased 
measure, which is also used in our evaluations in chapter Error! 

Reference source not found., and during sample runs for 
determining   automatically. 

Definition 10 (Skyline Error): Let    be a dataset with 

predicted and/or crowd-sourced values, and    the respective 

dataset containing the same tuples, but missing values replaced 

with their real values, with      and       being the respective 

skylines. The error between both sets can be computed by (some 
arguments omitted): 

 

     (           )               (..) 
 

            (           )
       (  )           (  )    

 

      (           )   
             (  )

             (  )               (  )
  

 

         (           )   
             (  )

             (  )               (  )
  

4. EVALUATIONS 
In the following section, we extensively evaluate our proposed 
heuristics and system workflow with respect to different influence 
factors and configuration parameters on multiple real world 
datasets: 

a) Our first dataset is the well-known NBA player statistics 
(http://www.basketballreference.com), as frequently used in 
skyline research. It consists of 21,961 tuples. For each player, we 
used 6 attributes, i.e. games played, points scored, rebounds, 
assists, and goals. We use maximum preferences, resulting in a 
skyline of 75 tuples. 

b) The second dataset contains 1,597 notebooks, crawled in 2010 
from Dooyoo.de

 
(http://www.dooyoo.de/notebook). This dataset 

features 8 attributes: CPU frequency (maximum), CPU type 
(categorical preference encoded by a score), RAM (max.), HD 
(max.), display size (max.), weight (min.), and manufacturer 
(categorical score), resulting in a skyline of 35 tuples. 

c) The third dataset describes different car models, crawled from 
Heise.de (http://www.heise.de/autos/neuwagenkatalog) in 2011, 
contains 7,755 tuples with the following attributes: price (min.), 
power (max.), acceleration (max.), fuel consumption (min.), CO2 
emission (min.), and taxes (min.). It results in a skyline of 268 
tuples. 

Unless explicitly stated otherwise, for the following experiments, 
we assumed 20% of missing values and α = 0.6 to slightly 
emphasize false negatives. All experiments but 4.5 rely on 
simulation; the presented results are average results of 100 
simulation runs for each experiment. 

4.1 Prediction Quality on Different Datasets 
Two prediction algorithms were chosen for the following 
experiments: k-nearest neighbour prediction (KNN), and median 
prediction. According to section 3.2, we assessed the prediction 
quality of those two algorithms for all datasets, resulting in error 

vectors   
   ( ̅    ̅      ̅    

      
 ). 

The results for each dataset are shown in Tables 1-3 (we show the 
absolute values of   ). In general, we can summarize that KNN 

unsurprisingly shows much better prediction performance for all 
datasets. Furthermore, on average, missing values within the NBA 
dataset can be predicted significantly better than values for the 
other datasets. Moreover, we can see that even within each 
dataset, some attributes can be predicted more accurately than 
others, e.g., games played in the NBA set has a mean error of 
~0.34, while most other attributes of the NBA set have mean 
errors ~0.07. This experiment clearly stresses the importance of 

choosing a correct algorithm (especially when the library contains 
multiple advanced prediction algorithms besides KNN), and 
respecting different prediction behaviours between attributes, as 
this directly reflects on the number of risky tuples which should 
be crowd-sourced.  
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4.2 Effectiveness of the Ranking Heuristic & 

Crowd-Sourcing  
In the following, we will showcase the effectiveness of our 
ranking heuristic for all three datasets and both prediction 
algorithms by incrementally crowd-sourcing one tuple at a time 
and measuring the skyline error (20% missing values,      , 

batch size = 1). Figure 6 and 7 show results for our ranking 
heuristic to select the next tuple to be crowd-sourced, instead of 

randomly selecting any incomplete tuple for crowd-sourcing. 
With the notable exception of the NBA dataset using KNN 
prediction, it is clearly visible that by pure prediction (i.e. no 
crowd-sourced tuples), the skyline quality is very low (error for 
median: NBA 28.5%, notebook 45.4%, cars 81%; error for KNN: 
NBA 7.2%, notebook 28.4%, cars 62%).  

Also, for most cases, the skyline error is significantly reduced 
when using our heuristic after just a few crowd-sourced tuples 
(i.e. by increasing  ), while this effect is much less pronounced if 

tuples are randomly selected. For example, consider cars with 
KNN prediction: for decreasing the error from 60% down to 20% 
only 27 tuples needs to be crowd-sourced on average using our 

heuristic, while for reaching a similar improvement with 
randomly selected tuples 145 tuples need to be crowd-sourced. 
Also note that 20% missing values translates to an absolute of 
4,392 tuples missing in the NBA dataset, 319 tuples for 
notebooks, and 1,551 tuples for cars. Therefore, tremendous effort 
can be saved, if users are willing to accept minor reductions with 
respect to skyline quality. 

The high prediction accuracy of the NBA dataset (which was 
already visible in the last experiment) leads to an already low 
initial skyline error when only relying on prediction, leaving only 
limited room for improvement. By choosing   dynamically our 

system can take advantage of this fact, e.g. when a user provided 
quality constraint enforces a maximum error of 10%, no crowd-
sourcing needs to be performed. 

Furthermore, these experiments show another interesting effect 

which can be exploited: when using our heuristic, the error is 
reduced very quickly for the first few crowd-sourcing operations, 
but the quality improvements will slow down after a while. This 
means, for most datasets, there is a  , for which we have the 

optimal trade-off between low error rates, and low query 
execution costs. We can use this observation for automatically 
determining the most efficient   during sampling runs prior to the 

actual crowd-sourcing as described in chapter 3.5 by determining 
the inflection point of the error curve. For example, using the cars 
dataset with KNN, by crowd-sourcing 36 or 76 tuples (both being 
inflection points), a very good ratio between quality and costs can 
be achieved.   

4.3 Impact of Missing Value Percentages  
Now we examine the impact of the percentage of missing values 
in the base dataset by measuring skyline error from 1% up to 20% 
missing values. In Figure 8, the error for the cars dataset is 
illustrated for     (using only prediction) and      (which is 

a rather low value given that there are 1,551 tuples with missing 
values). Comparing the skyline error computed purely prediction-
based versus a small number of crowd-sourced tuples, the 

difference is substantial. At 20% missing values the observed 
error is almost double, reaching 60% for     and about 33% for 

    . We repeated the same experiment for the NBA dataset, 

shown in Figure 9. Here, the skyline error increases only slowly 
for increasing numbers of incomplete tuples due to the high 
accuracy of the KNN predictor, with only little potential for 

crowd-sourcing tasks to improve the result (   , corresponding 
to the inflection point of the error curve).  

4.4 Other Influence Factors and Parameters 
In the next experiments, we examine the effects of batch sizes 
(chapter 3,5) and the weighting factor   (chapter 3.4). 

We used relative batch sizes, i.e. the number of tuples which are 
crowd-sourced in one batch before tuples are re-ranked depends 
on the number of predicted skyline tuples. The results are shown 
in Figure 10: a batch size of 5% (i.e. 2 tuples per batch) gives a 
faster improvement per crowd-sourced tuple (and therefore per 
dollar) than larger batches. However, since less crowd-sourcing 

tasks can be performed in parallel, this results in longer query 
times. Measured for different batch sizes, improving the skyline 
error from 65% to 25%, 12 tuples for 5% batch size, 26 tuples for 
25% batch size, and 45 tuples for 50% batch size are required. 
Therefore, for batch sizes, there is a clear trade-off between 
quality and costs. 

In the next experiment, we examined the effects of different   

values. In order to test the impact of different   values, the 

underlying skyline error measurement needs to weight false 
negatives and false positives with different emphasis, otherwise 
changing   values won’t be reflected in the computed error. The 

informedness measure which we used in all other experiments 

Table 1: Computed error analysis vectors for NBA dataset 

 
NBA 

KNN Median 

   : 0.0510    : 0.053 

|  |   
       

  

Games played 0.34 0.38 0.43 0.41 

Points scored 0.08 0.08 0.45 0.24 

Total rebounds 0.05 0.07 0.07 0.07 

Assists 0.08 0.07 0.08 0.07 

Field goals made 0.06 0.07 0.06 0.07 

Table 2: Computed error analysis vectors for cars dataset 

 
Cars 

KNN Median 

   : 0.077    : 1.135 

|  |   
       

  

Price 0.25 0.5 0.83 0.65 

Power 0.10 0.12 0.75 0.39 

Acceleration 0.22 0.34 0.45 0.38 

Fuel consumption 0.20 0.35 0.12 0.33 

CO2 Emission 0.21 0.35 0.06 0.33 

Taxes 0.26 0.4 0.12 0.35 

Table 3: Computed error analysis vectors for notebooks dataset 

 
Notebooks 

KNN Median 

   : 0.093    : 1.376 

|  |   
    

    
  

CPU 0.36 0.39 0.67 0.47 

CPU Frequency 0.25 0.35 0.14 0.35 

RAM 0.25 0.31 0.21 0.29 

Hard drive 0.15 0.21 0.12 0.21 

Display Type 0.24 0.40 0.39 0.42 

Weight 0.15 0.35 0.13 0.34 
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lacks this property; therefore we used the well-known F-measure 
in this experiment. F-measure is the harmonic mean weighted 
average of both precision and recall. The computed value falls 
between [0,1] with 1 being the best and 0 being the worst. The 
factor   in the following definition puts additional weight on 

precision or recall, and therefore also on false negatives or false 

positives. For this experiment, we use  =5 in order to penalize the 
false negative.  

 

     (    )  
                

(             )       
  

 

The results are shown in Figure 11, and it can be seen that 
different   values lead to very similar performance with respect to 

the f-measure. Therefore, the choice of   is mostly a matter of 

user preferences and has only little impact on common error 
measures. 

4.5 Crowd-Sourcing Costs: Time and Money 
Finally, we measure the efficiency of our approach in terms of 
time and money in a real crowd-sourcing experiment. For this, we 

rely on the crowd-sourcing platform CrowdFlower.com. We focus 
again on the cars dataset with      and 25% batch size 

(corresponding to an average of 14 tuples per batch). This yielded 
6 crowd-sourcing batches, 14 tuples each, with the last batch 
comprised of only 10 tuples. Those batches have been executed 
sequentially, and all predicted tuples were re-ranked after each 
batch. To assure high quality, a majority vote of four crowd 
judgments was performed for each tuple. Furthermore, we used 
28% Gold questions (i.e. tasks for which the correct results are 

known upfront in order to filter out unreliable workers, see [33]). 
These quality measures increase the number of crowd judgements 
to an overall of 416 judgments for obtaining the correct values of 
80 tuples. During a calibration run, it turned out that performing a 
single judgement takes about 60 seconds. Following the general 
guidelines of CrowdFlower, we paid $0.19 per 5 judgements (i.e. 
one HIT are 5 judgements), for a total cost of $5.01 per batch (for 

72 crowd judgements overall, yielding the correct results for 14 
tuples, i.e. ~5 judgements per tuple; also, additional fees for 
administration and platform usage are incorporated). This results 
in an average runtime of 25 minutes for one batch. 

The end results are shown in Figure 12 and 13, where the error 
reduction from initially 62% down to 12% costs roughly $28, and 
takes 125 minutes. The query time required can be decreased by 

increasing the batch size in order to exploit that more crowd-
sourcing tasks can be executed in parallel.  

5. SUMMARY AND OUTLOOK 
In this paper, we presented a novel approach for the challenge of 
dealing with missing information in datasets in connection with 
skyline query processing. This challenge can be naively 
approached by using crowd-enabled databases, eliciting all 
missing values from the crowd before computing the skyline. 

However, we showed that by using carefully tailored heuristics 
and prediction algorithms, only a tiny fraction of all incomplete 
tuples actually need to be crowd-sourced in order to obtain high 
quality approximate skyline results at very low costs. This was 
achieved by identifying and crowd-sourcing only those tuples 
which potentially have a large negative impact on the result set 
quality, while using standard value prediction algorithms for 
approximating all other tuples. For instance, by crowd-sourcing 
only 80 out of 1,551 incomplete tuples for a practical car dealer 

dataset, the resulting skyline error was only 10% when using our 
heuristic measures compared to 35% for random crowd-sourcing. 
Based on this idea, we presented a workflow for a fully self-
tuning and adaptable system that can be easily deployed for 
different prediction algorithms, various datasets, and result quality 
requirements. In our extensive evaluations, we showed the 
superior performance of our approach, and identified the impact 
of relevant influence factors. 

In future work, we will expand on this concept by exploring 
additional heuristics and optimization techniques, and also 

 

Figure 6: Decreasing skyline error while crowd-sourcing using Median prediction (heuristic and random tuple selection)  

 

Figure 7: Decreasing skyline error while crowd-sourcing using KNN prediction (heuristic and random tuple selection) 
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incorporate additional prediction algorithms, like for example 
crowd-enabled value prediction techniques [35]. Furthermore, we 
will adapt our system to additional problems domains like top-k 
retrieval on incomplete data.  
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Figure 8: Skyline error for different %missing values (cars) 
 

 
Figure 9: Skyline error for different %missing values (NBA) 

 

 
Figure 10: Quality with different batch sizes 

 

 

Figure 11: Effect of   values (cars dataset – y-axis uses f-

measure) 
 

 

Figure 12: Crowd-Sourcing Costs in Dollars (Cars data) 
 

Figure 13: Time required for crowd-sourcing 
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