
Skyline Queries in Crowd-Enabled Databases
Christoph Lofi

National Institute of Informatics
Tokyo 101-8430, Japan

lofi@nii.ac.jp

Kinda El Maarry
Institut für Informationssysteme

Technische Universität Braunschweig
Braunschweig, Germany

elmaarry@ifis.cs.tu-bs.de

Wolf-Tilo Balke
Institut für Informationssysteme

Technische Universität Braunschweig
Braunschweig, Germany

balke@ifis.cs.tu-bs.de

ABSTRACT

Skyline queries are a well-established technique for database
query personalization and are widely acclaimed for their intuitive

query formulation mechanisms. However, when operating on
incomplete datasets, skylines queries are severely hampered and
often have to resort to highly error-prone heuristics.
Unfortunately, incomplete datasets are a frequent phenomenon,
especially when datasets are generated automatically using
various information extraction or information integration
approaches. Here, the recent trend of crowd-enabled databases
promises a powerful solution: during query execution, some

database operators can be dynamically outsourced to human
workers in exchange for monetary compensation, therefore
enabling the elicitation of missing values during runtime.
Unfortunately, this powerful feature heavily impacts query
response times and (monetary) execution costs. In this paper, we
present an innovative hybrid approach combining dynamic crowd-
sourcing with heuristic techniques in order to overcome current
limitations. We will show that by assessing the individual risk a

tuple poses with respect to the overall result quality, crowd-
sourcing efforts for eliciting missing values can be narrowly
focused on only those tuples that may degenerate the expected
quality most strongly. This leads to an algorithm for computing
skyline sets on incomplete data with maximum result quality,
while optimizing crowd-sourcing costs.

Categories and Subject Descriptors

H.2.4 [Query Processing]

General Terms

Algorithms, Human Factors

Keywords

Skyline Queries, Crowd-Sourcing, Incomplete Data.

1. INTRODUCTION
Crowd-Enabled DBMS [1] are currently a hot topic in the
database community due to their promise of bridging the gap
between somewhat inflexible yet efficient relational data
management, and somewhat inefficient yet flexible human

intelligence in retrieval tasks. Hence, such systems are particularly
well-suited to deal with the challenges posed by modern
applications. In particular, crowd-enabled DBMS allow for
dealing with the widespread problem of incomplete data in an
effective manner during runtime: queries may request missing
values or even complete tuples by dynamically creating crowd-

sourcing tasks eliciting the missing information from other
sources. These tasks, generally called HITs1, are then executed by
human workers who are usually paid for their efforts.

Clearly this approach is a powerful tool, but each time a HIT has
to be executed, the monetary costs and the runtime of a particular
query increases, opening up a whole new field of relational query
optimization [2]. While this problem is not too pronounced for
traditional SQL-style queries (if one wants to retrieve for instance
a person’s email address, the task simply has to be crowd-sourced
whenever it is missing), the problem may get arbitrarily difficult
in case of aggregations or expensive predicates. Considering for

example similarity operators, statistical aggregations, or ranking
queries it is easy to see that the result set’s correctness is largely
dependent on the number and respective behaviour of missing
values.

Focusing on skyline queries, in this paper we show how to
manage this new optimization problem in crowd-enabled
databases queries under the common issue of incomplete data.
Skyline queries indeed form a perfect illustrative example: They
are an important class for personalized query processing, but in
contrast to simple factoid answers like e.g., email addresses, the
skyline is a subset of database tuples formed by connections to

other tuples following the notion of Pareto optimality. Of course,
the query process can be approached in a naïve fashion: if any
skyline algorithm is executed on a crowd-enabled database, the
DB will automatically retrieve all missing values via crowd-
sourcing during the runtime of the algorithm, retrieving the
correct skyline set. However, this also leads to maximum costs in
terms of money and runtime, since all missing values with respect
to all database tuples need to be elicited from the crowd. In

particular, the naïve retrieval does not take into account whether a
tuple will be part of the final result set or not – which forms the
optimization challenge: maximum correctness at minimum costs.

Therefore, in this paper, we will focus on cost optimizations for
skyline queries in crowd-enabled databases. We show how to
perform crowd-enabled skyline queries in a cost-efficient manner.
In particular, we introduce a heuristic approach which will slightly
compromise the expected result quality in order to significantly
reduce query costs and runtimes. Our approach shows that not all
missing values need to be crowd-sourced (in contrast to naïve

1 HIT: Human Intelligence Task, the smallest unit of crowd-sourceable

work; many similar HITs are organized in HIT groups

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EDBT/ICDT '13, March 18 - 22 2013, Genoa, Italy.

Copyright 2013 ACM 978-1-4503-1597-5/13/03…$15.00.

465

querying), but instead we deal with the majority of the database
tuples heuristically. This allows a significant reduction in the
required number of crowd-sourcing tasks, but also introduces an
(potentially significant) error into the computation of the resulting
skyline set depending on the quality of the heuristic.

One of the more successful heuristic approaches for skyline
computation on incomplete data is missing data prediction. In

order to control and minimize the error introduced by this
prediction, we introduce the notion of prediction risk, i.e. the risk
quantified by the probable impact each tuple may have on the
skyline correctness whenever a predicted value is used without
crowdsourcing. By computing this risk factor, we can restrict the
crowd-sourcing efforts to exactly those tuples which will strongly
affect the result quality with high probability, and use suitable
value predictions for all remaining tuples posing only a limited
threat to the overall result quality. By adjusting the number of

HITs to be issued, the algorithm can be customized in order to
find the best trade-off between costs, performance, and result
quality in each given application scenario. In particular, this
allows for achieving a good skyline result quality quickly after
issuing just a few actual crowd-sourcing tasks.

Our contribution in this paper can be summarized as follows:

 We design a cost-aware workflow for crowd-enabled skyline
query execution over incomplete data

 We illustrate the design space within that workflow, and show
different heuristics and implementation decisions

 We develop a heuristic for assessing the risk of a given
predicted database tuple with respect to skyline quality

We provide an exhaustive evaluation of our heuristics and show

that our approach provides high-quality results saving costs at
least one order of magnitude less compared to naïve crowd-
sourcing.

The remainder is structured as follows: the next chapter discusses
related topics and how our system differs from previous
approaches. Then, we present our workflow for crowd-enabled
skyline queries with missing values, focusing on value prediction,
prediction quality assessment, tuple risk computation, and crowd-
sourcing of potentially harmful tuples. Finally, we provide
extensive evaluations of our approach and conclude with a
summary and outlook.

2. TOWARDS CROWD-ENABLED

SKYLINE QUERIES
In the following section, we provide an overview of crowd-
enabled databases and the state of the art for completing missing
information in datasets. Furthermore, we briefly summarize

skyline queries and current heuristic approaches for dealing with
skyline computation on incomplete data.

2.1 Crowd-Enabled DBs and Missing Data
Crowd-enabled DBMS [1], [3], [4] fuse traditional relational
technology with the cognitive power of people at query time,
enabled by crowd-sourcing services like Amazon’s Mechanical
Turk, CrowdFlower, or SamaSource. The crowd can be used to

complete data missing in tables in a query-driven fashion, i.e.
queries can be executed despite incomplete data by either filling
empty fields or inserting completely new tuples at runtime.
Moreover, even complex cognitive tasks like reference
reconciliation can be performed, and the crowd can be leveraged
to “implement” database operators requiring cognitive abilities
like scoring tuples with respect to perceived criteria (e.g., scoring

images by visual appeal) or performing perceptual comparisons
(e.g., tagging images with emotions or moods). While such
cognitive tasks are a highly interesting feature with respect to
personalization and preferences modeling, in the following we
focus on the aspect of missing data.

In previous studies on crowd sourcing it has been shown under
certain constraints that missing values in database tuples can be

elicited with surprising efficiency and quality as long as the
information is generally available [5]. Especially for factual data
that can be looked-up on the Web without requiring expert
knowledge (e.g., product specifications, telephone numbers,
addresses, etc.), the expected data quality is quite high with only a
moderate amount of quality assurance (e.g., majority votes). For
example, [5] reports that crowd-sourced manual look-ups of
movie genres in IMDB.com are correct in ~95% of all cases with
costs of $0.03 per tuple (including quality assurance).

In a brief pre-study, we examined two typical aggregated datasets
for e-commerce. Both contain technical specifications of cell

phones and have been crawled in summer 2011 from meta-
shopping directory sites, namely PhoneArena.com2 and Heise.de3.
Such datasets are very representative for our approach: they have
been aggregated over some time integrating multiple sources,
being subsequently employed to help users decide on a particular
purchase. Furthermore, all data missing in these datasets is still
available on the Web somewhere (e.g., the manufacturers’ sites)
and can thus be elicited via crowd-sourcing. However, obtaining
this data automatically is very challenging. In particular, we

observed that in the Heise dataset 10% of all values are missing
(for 1,131 different phones with a total of 48 attributes), and for
the PhoneArena dataset 26% of all values are missing (399 phones
with 37 attributes).

2.2 Skyline Queries and Missing Information
Skyline Queries [6] are a popular personalization technique for
databases, successfully bridging set-based SQL queries and top-k
style ranking queries [7]. They implement the economic concept

of Pareto optimality and thus allow for very intuitive and simple
personalization: for each relevant attribute users simply provide a
preference order under ceteris paribus semantics (e.g., “lower
prices are preferred to higher prices assuming that all other
attributes are equal”). Then, for any two tuples, where one tuple is
preferred regarding one or more attribute(s) but equal with respect
to the remaining attribute(s), rational users will always prefer the
first object over the second one (the first object Pareto dominates

the second one). Thus, the skyline set is computed by retrieving
only tuples which are not dominated by any other tuple, i.e. all
Pareto optimal tuples. Computing skyline sets is considered to be
an expensive operation. Therefore, a variety of algorithms have
been designed to significantly push the computation performance
[8], e.g., by presorting [9], partitioning [10], or parallelization
[11].

But regardless of the chosen algorithm, to compute skylines the
value of each relevant attribute has to be accessed at least once for
each tuple. Here, two major solution strategies can be chosen to
deal with missing information: a) eliciting all missing information

during / before computing the skyline in order to work on a
complete dataset or b) dealing with missing information
heuristically, which results in skylines afflicted with some error
depending on the quality of the heuristic.

2 http://www.phonearena.com/phones
3 http://www.heise.de/mobil/handygalerie/

466

Heuristic approaches dealing with missing and/or uncertain data
have been proposed in the past. Some approaches rely on using
some default procedure to deal with missing information (or
NULL values), e.g., by treating them as being incomparable or
assuming the best/worst possible values [12]. One of the first

works explicitly focusing on computing skylines over incomplete
data is [13]. Here the actual Pareto semantics of skylines is
changed: a tuple dominates other tuples, if it is better regarding at
least one attributes and at least equal or showing NULL values in
all other attributes. However, this implies non-transitive
dominance relationships and may lead to cyclic dominance
behaviour, which has to be resolved. However, the problem of
missing information can also be treated differently: instead of

changing semantics, algorithms on incomplete data should aim at
computing approximate skyline sets as similar as possible to what
would have been retrieved had all information been available.
Therefore, in our work, the criteria for judging the quality of a
skyline heuristic is the error induced by tuples with missing
values as compared to the real skyline computed from a complete
dataset.

Our goal is also loosely related to the area of probabilistic
databases, since incompleteness can be seen as a source of
uncertainty. Uncertainty is inherent in many emerging
applications, such as sensor networks, data cleaning, moving

objects, etc. Consequently, research in probabilistic databases has
sparked much interest, and even skyline queries with uncertainty
have already been considered. Most approaches follow the
semantics of ‘possible worlds’: from a database perspective,
uncertainty occurs either at attribute level [14] or at tuple level
[15], [16]. There are two models to describe uncertain objects:
continuous or discrete uncertainty models [17], [18]. For
continuous uncertainty models, each uncertain object is assigned

some interval that comprises all its probable values associated
with a probability density function [19]. In contrast, discrete
uncertainty models are utilized for applications lacking explicit
density functions. Here, each uncertain object is represented by a
set of instances. Each instance has a skyline probability that
reflects the probability of its occurrence whilst not being
dominated by any occurring instance of another object. Finally,
the skyline probability of the object is the sum of all of its
instances’ skyline probabilities [20], [21].

Since we focus on the case of crowd-enabled databases, we
cannot rely on concurrently existing possible worlds. Uncertainty

is considered on attribute level due to incompleteness and missing
values. Thus, there are only two choices for each incomplete tuple
during query processing: blindly accept some predicted value or
safely crowd-source the task. But, since all predicted values
introduce some uncertainty, suitable error bounds associated with
the prediction algorithm have to be assigned. We claim that for
determining these bounds outliers can be ignored and a heuristic
quantification of the error in terms of false positives/negatives
leads to cost-efficient and high-quality skyline query processing.

3. WORKFLOW OF CROWD-ENABLED

SKYLINE QUERIES
In the following, we present the workflow of our heuristic system.
For effectively optimizing crowd-sourcing costs the system

should be self-tuning: for each database instance the best fitting
parameters to reduce crowd-sourcing have to be decided
heuristically while keeping the expected skyline correctness high.
This design is desirable since the prediction algorithms’ quality
varies greatly with the properties of the data. In this sense, our
workflow in Figure 1 offers a toolbox allowing different

implementation strategies for the basic components. Generally,
predictions for all tuples with missing information are made
before skylines can be computed. But, then for some high

impact/risk tuples, the predicted values are superseded by crowd-
sourcing judgements. Eventually, the skyline can be computed
with high accuracy. We now outline the respective design space
for all components and provide reference implementations as a
basis for later evaluation:

Assume a relational base dataset including incomplete tuples

(judging from practice, at most 30% of tuples will be incomplete).
Furthermore, we have a library of prediction algorithms and
heuristics for dealing with incomplete data in skyline
computation.

Definition 1 (Dataset): Formally, a base dataset is an

instance of a database relation

 on attributes

 with
 as domain of attribute using to denote a

missing value, i.e.
 . Each tuple is denoted

by (). For simplicity and to allow for easy

comparisons, in the rest of the paper we only consider score
values with respect to preferences, i.e. numerical domains and

linearized categorical preferences normalized to .
Moreover, the subset of all complete tuples is given by

 | and the subset of all

incomplete tuples is then denoted as .

Now assume a user is stating a skyline query. Such a query is
given by any set of preferences over the attributes of the base
dataset. A query may also contain additional meta-data for
describing the required result quality, maximal query budget,
response time requirements, etc. (see section 3.5).

Definition 2 (Numerical Preferences and Pareto Dominance):
A numerical preference over attribute with a numerical

domain is a total order over . If attribute value is

preferred over value , then () , also written as

 (“ dominates wrt. to ”). Analogously, we define

 for or . Without loss of generality, we

consider only maximum score preferences (i.e. all score values are

in , with 0 as worst and 1 as most preferred score).

Figure 1 System Workflow

base dataset R
(incl. incomplete tuples)

prediction quality

assessment &

algorithm selection

prediction algorithm

library

e
x
p

e
ct

e
d

 p
re

d
ic

ti
o
n

q
u

a
li

ty

missing value

prediction

chosen

algorithm PA

risk assessment

of predicted tuples

wrt. to query

threshold selection &

tuple filtering

crowd sourcing
(HITs & quality control)

test sample RS

all tuples

(incl. incomplete tuples)

all tuples

(with predicted values)

all tuples (with predicted

values and risk)
user

skyline computation

skyline result set

risky tuples

corrected tuples

co
rr

e
ct

e
d

 t
u

p
le

s
 f

o
r

im
p

ro
v
in

g
 b

a
s
e
 d

a
ta

s
e
t

“safe” tuples

crowd

query

467

We define the concept of Pareto dominance between

tuples by with respect to all

attributes, and dominates with respect to at least one attribute:

A skyline query is given by a set of preferences

 , with one preference for each attribute.

3.1 Missing Value Prediction
In the following, we provide a brief overview of value prediction
algorithms. Numerous studies have already examined different
approaches with varying complexities for dealing with missing
data values. Some approaches simply discard incomplete
instances by feature or object marginalization [22], acquire the
missing data at a cost [23] (e.g., by manually eliciting them), or
employ reduced or hybrid models [23]. However, the most

common way is to estimate and replace missing values (in this
paper called value prediction, in literature also often referred to as
imputation).

There are two major families of imputation algorithms [24]:
predictive value imputation and distribution based imputation.
Whilst value imputation directly estimates missing values,
distribution based imputation estimates the conditional
distribution of missing values upon which the predictions will be
based, e.g., in the C4.5 decision tree generation algorithm [25].
Most popular methods for predictive value imputation are mean
imputation, median imputation, mode imputation, nearest

neighbour imputation, regression imputation [26], and imputation
using decision tree algorithms like CART [27]. More complex
imputations seek to also reflect the correlation structure of data,
and induce relationships between the available attribute values
and missing features [28], e.g., surrogate splits for classification
trees [29]. The correct choice of an imputation method depends on
multiple factors:

 The data’s nature and the percentage of its missing values.

For example, imputation may be quite misleading when
applied to astronomical datasets, where the missing values are
often physically meaningful [30] and do not necessarily
follow simple patterns.

 The time of imputation, i.e. at induction time (on historical

training data) or at prediction time (in the test cases).
Particularly, it has been shown that imputations are quite
successful at induction time [31], [32].

 The missing data model: missing at random (MAR), missing

completely at random (MCAR) or not missing at random
(NMAT). while imputation can be a reasonable approach for
both MAR and MCAR, there is no way to impute values
reliably with NMAR, because the values were never observed
[32].

Please note that in this paper we assume that values are at least
approximately missing at random, as is often the case when
aggregating or extracting datasets automatically.

In particular this means that for each tuple most attribute values
are available, while just some are randomly missing. The same

holds for attributes: for each attribute most tuples will have a
respective value. In cases where for any attribute or tuple no or
only very few values are given, the prediction algorithms may not
return reliable results, and overall prediction quality will be low.
Still, our system will be able to detect and deal with such cases by
replacing unreliably predicted values with accurate crowd-sourced
values in the workflow.

In our later experiments, we will mainly rely on k-nearest
neighbour imputation (KNN) as it has been shown to be quite
robust when the percentage of missing values increases [27].
Furthermore, KNN can predict both qualitative and quantitative
attributes, doesn’t require the creation of a predictive model for

each attribute with missing data, and can work with instances
having multiple missing values.

Additionally, aiming to also test our work using prediction
algorithms with lower complexity and resulting precision, we
chose the simpler median imputation technique. Unlike mean
imputation, which is affected by the presence of outliers, utilizing
the median assures robustness [27].

3.2 Assessing Prediction Quality
Before queries can be processed, the system has to assess the
effectiveness of prediction algorithms with respect to the current

dataset. Unfortunately, prediction effectiveness is hard to assess
analytically. Therefore, we sample the current prediction quality
by periodically measuring performance in a small test scenario.

For this purpose, a suitable test sample is prepared by

obfuscating complete tuples: values are removed in a similar
pattern in which information is missing in the base dataset. In our
reference implementation, we randomly remove values from the
test sample such that the percentage of missing values per
attribute matches the base dataset. We then apply each algorithm
in the prediction algorithm library on this test sample to obtain

predictions for the values which had just been removed. Thus, we
can assess the expected prediction quality of each algorithm on
the current dataset by measuring the error between the predicted
values and the respective original values, e.g., by the overall mean

squared error ̅ of all predicted tuples and attributes.

Moreover, more detailed statistics about the behaviour of each

algorithm is stored to be used in later stages of our workflow. In
particular, for each attribute we elicit the mean error ̅

between the predictions and the real values, and the standard

deviation
 of those errors. In order to increase the accuracy of

the quality analysis at the cost of additional effort, the results of
multiple sampling runs may be aggregated. Finally, the algorithm
 showing the smallest overall mean squared error is selected
for later predicting all missing values.

Definition 3 (Error Vector): For prediction algorithm and

base dataset , an error analysis vector
 with ̅ as mean

squared error of all attributes, ̅ as mean error of attribute , and

 as respective standard deviation is given by:

(̅ ̅ ̅

)

3.3 Quantifying Potential Skyline Errors
After the selected prediction algorithm has been used to predict all

missing values for the current base dataset, the system has to
decide for which tuples the predicted values are used during
skyline processing - and for which tuples they are replaced by
accurate values obtained from crowd-sourcing judgements. This
step has the highest impact on the overall system performance,
and has two extreme cases:

 no tuple is crowd-sourced, and only predicted values are used.

Here, the costs are minimal (no crowd-sourcing necessary),
and the result quality strictly depends on the accuracy of the
used prediction algorithm. While in general, the quality
achieved by this approach will be very low, for some highly
predictable datasets (like the NBA dataset shown in chapter
4), it will nonetheless provide usable results at very low costs.

468

 all tuples are crowd-sourced, and all predictions are discarded

and replaced. This extreme case will result in very high costs
due to the large number of required crowd-sourcing HITs
(which cost time and money). However, with adequate quality
control, we can assume that all values obtained via crowd-
sourcing are highly accurate. Therefore, this case shows very
high result quality, especially when encountering
systematically biased and therefore hard to-predict datasets.

In our system, we exploit the synergy between the two extreme
cases by crowd-sourcing only the most risky tuples (i.e. tuples

having a low prediction quality and having a possibly large impact
on the skyline computation). For all tuples considered safe (e.g.,
tuples that have only a small effect on the skyline computation or
can be predicted accurately), the predicted values are simply used.
Therefore, the next crucial step is to assess the risk of each
predicted tuple, and then tuples can be classified as being “risky”
or “safe”.

For illustrating the general problem space of this challenge,
consider Figure 2: here, without loss of generality we focus on
tuples in just two dimensions. Most tuples are complete (in
accordance with our assumption that only up to ~30% of all

values are missing at random). When ignoring all incomplete
tuples the resulting skyline is given by .

Definition 4 (Skyline of the Complete Subset): On the subset of

complete tuples and a set of preferences , is defined as:

 () |

The tuples with missing values in the base dataset are denoted

by . In Figure 2, these tuples are shown in their
approximate position when applying the chosen prediction

algorithm. Obviously, in a 2-dimensional example at most one
attribute value per tuple can be missing: let us assume
 are missing values in dimension 2 and
 in dimension 1. Since the predicted value may

not necessarily be correct, in reality the respective tuples could be
located anywhere along the dashed lines. It is easy to see that the
quality of the skyline set computed by using predicted values can
vary strongly depending on how correct the predictions are. For
illustration again consider Figure 2: the skyline set using predicted
values is . However, now assume the value

of had been predicted vastly too high and its real value would

allow to dominate (i.e. lies left of the skyline frontier).

Then the skyline quality would have several problems. First,

would not be part of the correct skyline: it is a false positive.
Second, this prediction error also affects , , and , which are

actually not dominated by and therefore should have been part

of the skyline; the three tuples are false negatives. All remaining
tuples are not affected by the prediction error of (true positives

or true negatives). In summary, using ’s predicted value may

result in three false negatives and one false positive. Based on
these observations, we developed a heuristic to rank all tuples

needing prediction with respect to their potential to induce errors
(in terms of false negatives or false positives). We will consider
each predicted tuple individually.

It is easy to see that the only tuples with a chance to be false
positives or false negatives are those with either predicted values,
or complete tuples which are not dominated by any other
complete tuple (i.e. all tuples in). Complete tuples dominated

by any other complete tuple are always true negatives, and can
therefore be ignored. Furthermore, the potential of introducing
errors into the skyline computation heavily depends on the
prediction accuracy of each single tuple. While in theory, the

predicted tuples in Figure 2 could be located anywhere along the
dashed lines, some locations are more likely than others,
depending on the current tuple, the base dataset, and the chosen
prediction algorithms. Unfortunately, correctly assessing the exact
prediction accuracy per tuple is very complex. Therefore we use
the following heuristic model to capture each tuple’s potential to
induce errors: we assume the prediction accuracy for each
predicted tuple to be within normal bounds, i.e. we entirely ignore
outliers having extremely irregular values which cannot be

captured by the chosen prediction algorithm. For quantifying the
“normal” accuracy behaviour of a given predicted tuple , we

rely on the algorithm accuracy statistics
 elicited during the

algorithm selection step in chapter 3.2. With these statistics, we
quantify the prediction interval of assuming that the algorithm

estimated any missing value including the respective systematic
prediction error ̅ and additionally overestimated or

underestimated each value by the standard deviation, i.e.
 .

Then, the two interesting cases are the upper bound tuple and

the lower bound tuple , because these two tuples dominate the

largest / lowest number of other tuples when finally computing the
skyline under normal error assumption.

Definition 5 (Upper/Lower Bound Tuple): Let be a tuple

with incomplete values, and be the predicted tuple using some

prediction algorithm. Then the upper/lower bound tuples and

 are defined attribute-wise as follows:

 {

 ()

 () (
 ̅)

 {

 ()

 () (
 ̅)

In the following, we focus on the expected errors for each

predicted tuple when computing the skyline of ,

Figure 2: Predicted Tuples and the Skyline

dimension 1

d
im

e
n

si
o
n

 2
(p

re
fe

rr
e
d

)

(preferred)

complete tuples

skyline tuple (excluding
predicted values)

tuples with predicted value

skyline tuples with

predicted value

skyline frontier error lines

s1

s2

s3

s4

s5

s6

p2

p3

p1

p4

p5

p6

p7

p8

469

assuming that the real values for are bounded by and .

For illustrating the possible effects on the skyline, we present four
scenarios in Figure 5 which are discussed in the following. Later,
we generalize our observations designing an algorithm which
computes all possible false positives and false negatives for any
given tuple: (Please note that we sum up the different

variations , , and as when discussing the skyline sets):

 Scenario a) In this scenario, is a skyline tuple (no tuple of
 dominates) Therefore, when computing the skyline

dominates . The resulting predicted skyline is

 . Now, if is predicted too low within the normal
bounds of error, then in the worst case (indicated by) it

could additionally dominate , and the correct skyline should

be . From this perspective, is a possible false

positive in . On the other hand, if is predicted to high,

then in the worst case () it would still be a skyline object,

but would not dominate anymore. This results in the

skyline set . Therefore, in this case, could be a

false negative with respect to the predicted skyline .

Hence, assuming normal prediction accuracy could induce
up to one false positive, and one false negative.

 Scenario b) Again a predicted skyline tuple, resulting in the

skyline . Similar to scenario a), can

be a false positive, if is predicted too low (is dominated

by). But additionally, if is predicted too high, and in

reality is , then the resulting skyline would be ,
and itself would be a false positive. Therefore, in this
scenario, two different false positives can result from normal
error behaviour.

 Scenario c) In this scenario, is no skyline tuple, resulting

in . But if was predicted too low (its real

value is), then it becomes a skyline objects, and therefore

itself is a false negative in . In this case it would

dominate , which in turn results in a false positive.

 Scenario d) Finally, there may be tuples which do not result in

any false positives or negatives under normal error conditions.
This is shown in this last scenario.

Based on the previous example scenarios, we will now formalize
the set of false positives and false negatives for a given predicted
tuple in several easy-to-implement rules.

False positives can be computed using the rule out of the
following four having a matching precondition (see Figure 4):

a) If is a skyline tuple, and no tuple dominates its least

preferable tuple , then all tuples which are dominated by , but

not by are potential false positives.

b) Analogously to the previous case, but is dominated by a

skyline tuple. Therefore, tuple can be a false positive.

c) If is not a skyline tuple, then it can be responsible for false

positives only if dominates some skyline tuples (which then
would not be skyline objects anymore).

d) If both and are dominated, then no false positives can
occur within normal error bounds.

Formally, these rules lead to the following definition:

Definition 6 (Set of False Positives): Let () be a

predicted tuple with its upper/lower bound tuples and . Also,

 is the skyline of all tuples in with respect to the

preferences . Then, the set of possible false positives () can

be computed by the one of these four rules:

a) If (()) (()) then

 () { |(
) ()}

b) If (()) (()) then

 () { |(
) ()}

c) If (()) ((
)) then

 () |(
)

d) If (()) ((
)) then

 ()

Analogously, the set of false negatives is defined as follows (see
Figure 5):

a) If is a skyline tuple, and all tuples dominated by are also

dominated by , then there can be no false negatives.

b) If is a skyline tuple, and there exists tuples dominated by ,

but not by , then all those tuples are potential false negatives.

c) If is not a skyline tuple, but would be in the skyline, then

 is a potential false negatives.

d) If both and are no skyline tuples, then there can be no
false negatives.

Figure 5: Example Error Scenarios

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

a)
b)

c) d)

Figure 3: False Positives assuming normal error behaviour

Figure 4: False Negatives assuming normal error behaviour

s1

s3s2

s1

s3

a)

false positives

b)

c)

s2

s1

s3s2

d)

s1

s3

s2

s1

s3s2

s1

s3

a)

false n

b)

c)

s2

s3s2 s3s2

d)

470

 Definition 7 (Set of False Negatives): Let be a predicted

tuple with its upper/lower bound tuples and . Let be the

skyline of all tuples in with respect to the preferences . Then,

the set of possible false negatives () can be computed by the

one of these four rules:

a) If (())

 ((
) ()) then

 ()

b) If (())

 ((
) ()) then

 () { |(
) ()}

c) If (()) (()) then

 ()

d) (()) (()) then

 ()

The following two lemmas are necessary to show the
completeness and non-ambiguousness of the rules in Definition 6
and 7:

Lemma 1 (Definition 6 is complete and non-ambiguous):
Let (), and (),
and (

).
Then the preconditions of the four cases of Definition 6 can be
written as follows:
a) b)

c) d)

Furthermore, additional semantic constraints resulting from the
definition of Pareto dominance follow: is a stronger version of

 , therefore . Also, with respect to false positives,

condition does not matter at all whenever is a skyline

object, i.e. holds. Therefore, we can rewrite:

a) () b) (
)
c) d)

It is easy to see that () , showing that the

conditions are complete (is not possible due to
).

Also,() () () () () (
) holds, showing that the conditions are pairwise

disjunctive. ∎

Lemma 2 (Definition 7 is complete and non-ambiguous):
Let (), and (),
and (

) ().
Then the preconditions of the four cases of Definition 7 can be
written as follows:
a) b)

c) d)

Similar to Lemma 1, additional semantic constraints and

 (“if is a skyline object, no object can dominate

 ”) hold. Also, is irrelevant for false negatives whenever is

not a skyline object (). Therefore, we can rewrite:

a) b)

c) ()

d) ()
Again, () holds (note that is not

possible due to), and also
() () () () () ()
∎

3.4 Ranking Tuples for Crowd-Sourcing
Using the cardinalities of the sets of false negatives () and

false positives () for each predicted tuple , we are able

now to finally assign a score for ranking tuples with respect to

their priority to be crowd-sourced. This score reflects the potential
severity of the error introduced by a predicted tuple when
prediction quality is within normal bounds.

Definition 8 (Tuple Score): Given the set of false negatives

 (), false positives (), and a weighting factor ,
the score of a tuple can be computed as:

 () | ()| () | ()|

The weighting factor can be used to adapt the ranking behaviour

to reflect different use case requirements with respect to false
positives and false negatives. We propose the usage of one of the
following three heuristics:

 : A default setting which handles false negatives
similar to false positives.

 : This setting emphasizes the weight of false
negatives and can be motivated from the user’s point of view:

when a user examines the skyline result set, false negatives
mean that a Pareto-optimal tuple is not visible for the user,
limiting his/her choices and maybe preventing an optimal
decision. In contrast, although false positives burden the user
with additional cognitive overhead for filtering, they still
allow for an optimal decision. Therefore, false negatives can
be seen as being worse.

 Auto-adjust : The weighting factor can also be determined
automatically for each dataset. The following simulated
crowd-sourcing can be automatically performed for different

values of : using the prepared sample (see 3.2), all

missing values are predicted and then tuples are ranked with
the current . Then, the top scored tuples are replaced by

correct values, as if crowd-sourced. After computing skylines,
we choose the having the smallest error compared to the

real skyline. This results in the value of which will most

probably minimize the resulting skyline error. While this

sampling process imposes additional computational effort, this
effort is low compared to a later execution of crowd-sourcing
HITs.

Please note that the informedness error measure used in our
experiments (see 3.6) does not distinguish between false positives
and false negatives, hence the effect of is minor. However,

when using different error measures, auto-adjusting and choosing
a correct may become more significant.

3.5 HIT Creation
After all predicted tuples are scored, “safe” and “risky” tuples
need to be determined. This is done by ranking all tuples
according to their score, and selecting the top- highest scored

tuples for crowd-sourcing (as they have the highest error potential,
and are thus unsafe). should be chosen in accordance with

quality requirements or additional meta-data provided by the user.
There are many different options to how can be obtained,
allowing for a high degree of customization, e.g.:

 The user directly provides as part of the query.

 The user provides a maximum tolerable error. Then, the

system can again rely on sampling (similar to determining

automatically) for determining such that it provides the
required quality.

471

 The user does not provide any additional constraints. Then,

the system can again rely on sampling to find the best trade-
off between the result quality and the number of crowd-
sourced tuples. We will briefly discuss this in section 4.2.

 Enhancing previous options, the users could also provide

monetary or time constraints, limiting the maximum or
minimum number of tuples to be crowd-sourced.

After all unsafe tuples have been determined, HITs are created
and issued to a suitable crowd-sourcing platform. The size of the
HITs and required quality control procedures (e.g., majority votes,
gold questions, etc.) depend on the type of missing information
(see [33] for more details on different types of missing
information and quality control). After all crowd judgements have
been collected, the obtained values can be written to the base
dataset as completed tuples, therefore decreasing the degree of

missing values over time. Finally, the skyline is computed (using
predicted values for safe tuples) and returned to the user.

Definition 9 (Final Skyline): Given the subset of complete

tuples and incomplete tuples , a prediction algorithm

with the error vector
 , and the weighting factor and ranking

limit , the final predicted skyline can be computed with the

following algorithm:

 ⋃ ()

 { | (()))

 { | (()))

 ⋃ ()

 =

 () { |

In our initial system workflow as presented in Figure 1, only a

single crowd-sourcing iteration is performed, i.e. all unsafe tuples
are crowd-sourced in one large batch, distributed over several
HITs executed in parallel for minimal response time. This means,
tuple ranking relies on many assumptions, as our tuple score is
computed for each tuple individually respecting only complete
tuples. However, if query response times are not a priority, higher
quality with less crowd-sourcing operations (and therefore lower
monetary costs) can be achieved by issuing smaller batches, and

then dynamically re-ranking all tuples after each batch. As HITs
cannot be executed in parallel anymore, this approach obviously
takes longer. The effects of various batch sizes are also evaluated
in section 4.4.

3.6 Measuring Skyline Error
For measuring the actual error of a skyline set using predicted
values, we rely on a popular metric from information retrieval. In
particular, we expand on the measure of informedness [34].

Informedness quantifies how informed a computed result is when
compared to a result derived by chance. The informedness
measure is based on recall and inverse recall. In contrast to using
recall alone, it considers both error types, false positives and false
negatives, while at the same time also respecting true positives
and true negatives. Therefore, it is a quite fair and unbiased
measure, which is also used in our evaluations in chapter Error!

Reference source not found., and during sample runs for
determining automatically.

Definition 10 (Skyline Error): Let be a dataset with

predicted and/or crowd-sourced values, and the respective

dataset containing the same tuples, but missing values replaced

with their real values, with and being the respective

skylines. The error between both sets can be computed by (some
arguments omitted):

 () (..)

 ()
 () ()

 ()
 ()

 () ()

 ()
 ()

 () ()

4. EVALUATIONS
In the following section, we extensively evaluate our proposed
heuristics and system workflow with respect to different influence
factors and configuration parameters on multiple real world
datasets:

a) Our first dataset is the well-known NBA player statistics
(http://www.basketballreference.com), as frequently used in
skyline research. It consists of 21,961 tuples. For each player, we
used 6 attributes, i.e. games played, points scored, rebounds,
assists, and goals. We use maximum preferences, resulting in a
skyline of 75 tuples.

b) The second dataset contains 1,597 notebooks, crawled in 2010
from Dooyoo.de

(http://www.dooyoo.de/notebook). This dataset

features 8 attributes: CPU frequency (maximum), CPU type
(categorical preference encoded by a score), RAM (max.), HD
(max.), display size (max.), weight (min.), and manufacturer
(categorical score), resulting in a skyline of 35 tuples.

c) The third dataset describes different car models, crawled from
Heise.de (http://www.heise.de/autos/neuwagenkatalog) in 2011,
contains 7,755 tuples with the following attributes: price (min.),
power (max.), acceleration (max.), fuel consumption (min.), CO2
emission (min.), and taxes (min.). It results in a skyline of 268
tuples.

Unless explicitly stated otherwise, for the following experiments,
we assumed 20% of missing values and α = 0.6 to slightly
emphasize false negatives. All experiments but 4.5 rely on
simulation; the presented results are average results of 100
simulation runs for each experiment.

4.1 Prediction Quality on Different Datasets
Two prediction algorithms were chosen for the following
experiments: k-nearest neighbour prediction (KNN), and median
prediction. According to section 3.2, we assessed the prediction
quality of those two algorithms for all datasets, resulting in error

vectors
 (̅ ̅ ̅

).

The results for each dataset are shown in Tables 1-3 (we show the
absolute values of). In general, we can summarize that KNN

unsurprisingly shows much better prediction performance for all
datasets. Furthermore, on average, missing values within the NBA
dataset can be predicted significantly better than values for the
other datasets. Moreover, we can see that even within each
dataset, some attributes can be predicted more accurately than
others, e.g., games played in the NBA set has a mean error of
~0.34, while most other attributes of the NBA set have mean
errors ~0.07. This experiment clearly stresses the importance of

choosing a correct algorithm (especially when the library contains
multiple advanced prediction algorithms besides KNN), and
respecting different prediction behaviours between attributes, as
this directly reflects on the number of risky tuples which should
be crowd-sourced.

472

4.2 Effectiveness of the Ranking Heuristic &

Crowd-Sourcing
In the following, we will showcase the effectiveness of our
ranking heuristic for all three datasets and both prediction
algorithms by incrementally crowd-sourcing one tuple at a time
and measuring the skyline error (20% missing values, ,

batch size = 1). Figure 6 and 7 show results for our ranking
heuristic to select the next tuple to be crowd-sourced, instead of

randomly selecting any incomplete tuple for crowd-sourcing.
With the notable exception of the NBA dataset using KNN
prediction, it is clearly visible that by pure prediction (i.e. no
crowd-sourced tuples), the skyline quality is very low (error for
median: NBA 28.5%, notebook 45.4%, cars 81%; error for KNN:
NBA 7.2%, notebook 28.4%, cars 62%).

Also, for most cases, the skyline error is significantly reduced
when using our heuristic after just a few crowd-sourced tuples
(i.e. by increasing), while this effect is much less pronounced if

tuples are randomly selected. For example, consider cars with
KNN prediction: for decreasing the error from 60% down to 20%
only 27 tuples needs to be crowd-sourced on average using our

heuristic, while for reaching a similar improvement with
randomly selected tuples 145 tuples need to be crowd-sourced.
Also note that 20% missing values translates to an absolute of
4,392 tuples missing in the NBA dataset, 319 tuples for
notebooks, and 1,551 tuples for cars. Therefore, tremendous effort
can be saved, if users are willing to accept minor reductions with
respect to skyline quality.

The high prediction accuracy of the NBA dataset (which was
already visible in the last experiment) leads to an already low
initial skyline error when only relying on prediction, leaving only
limited room for improvement. By choosing dynamically our

system can take advantage of this fact, e.g. when a user provided
quality constraint enforces a maximum error of 10%, no crowd-
sourcing needs to be performed.

Furthermore, these experiments show another interesting effect

which can be exploited: when using our heuristic, the error is
reduced very quickly for the first few crowd-sourcing operations,
but the quality improvements will slow down after a while. This
means, for most datasets, there is a , for which we have the

optimal trade-off between low error rates, and low query
execution costs. We can use this observation for automatically
determining the most efficient during sampling runs prior to the

actual crowd-sourcing as described in chapter 3.5 by determining
the inflection point of the error curve. For example, using the cars
dataset with KNN, by crowd-sourcing 36 or 76 tuples (both being
inflection points), a very good ratio between quality and costs can
be achieved.

4.3 Impact of Missing Value Percentages
Now we examine the impact of the percentage of missing values
in the base dataset by measuring skyline error from 1% up to 20%
missing values. In Figure 8, the error for the cars dataset is
illustrated for (using only prediction) and (which is

a rather low value given that there are 1,551 tuples with missing
values). Comparing the skyline error computed purely prediction-
based versus a small number of crowd-sourced tuples, the

difference is substantial. At 20% missing values the observed
error is almost double, reaching 60% for and about 33% for

 . We repeated the same experiment for the NBA dataset,

shown in Figure 9. Here, the skyline error increases only slowly
for increasing numbers of incomplete tuples due to the high
accuracy of the KNN predictor, with only little potential for

crowd-sourcing tasks to improve the result (, corresponding
to the inflection point of the error curve).

4.4 Other Influence Factors and Parameters
In the next experiments, we examine the effects of batch sizes
(chapter 3,5) and the weighting factor (chapter 3.4).

We used relative batch sizes, i.e. the number of tuples which are
crowd-sourced in one batch before tuples are re-ranked depends
on the number of predicted skyline tuples. The results are shown
in Figure 10: a batch size of 5% (i.e. 2 tuples per batch) gives a
faster improvement per crowd-sourced tuple (and therefore per
dollar) than larger batches. However, since less crowd-sourcing

tasks can be performed in parallel, this results in longer query
times. Measured for different batch sizes, improving the skyline
error from 65% to 25%, 12 tuples for 5% batch size, 26 tuples for
25% batch size, and 45 tuples for 50% batch size are required.
Therefore, for batch sizes, there is a clear trade-off between
quality and costs.

In the next experiment, we examined the effects of different

values. In order to test the impact of different values, the

underlying skyline error measurement needs to weight false
negatives and false positives with different emphasis, otherwise
changing values won’t be reflected in the computed error. The

informedness measure which we used in all other experiments

Table 1: Computed error analysis vectors for NBA dataset

NBA

KNN Median

 : 0.0510 : 0.053

| |

Games played 0.34 0.38 0.43 0.41

Points scored 0.08 0.08 0.45 0.24

Total rebounds 0.05 0.07 0.07 0.07

Assists 0.08 0.07 0.08 0.07

Field goals made 0.06 0.07 0.06 0.07

Table 2: Computed error analysis vectors for cars dataset

Cars

KNN Median

 : 0.077 : 1.135

| |

Price 0.25 0.5 0.83 0.65

Power 0.10 0.12 0.75 0.39

Acceleration 0.22 0.34 0.45 0.38

Fuel consumption 0.20 0.35 0.12 0.33

CO2 Emission 0.21 0.35 0.06 0.33

Taxes 0.26 0.4 0.12 0.35

Table 3: Computed error analysis vectors for notebooks dataset

Notebooks

KNN Median

 : 0.093 : 1.376

| |

CPU 0.36 0.39 0.67 0.47

CPU Frequency 0.25 0.35 0.14 0.35

RAM 0.25 0.31 0.21 0.29

Hard drive 0.15 0.21 0.12 0.21

Display Type 0.24 0.40 0.39 0.42

Weight 0.15 0.35 0.13 0.34

473

lacks this property; therefore we used the well-known F-measure
in this experiment. F-measure is the harmonic mean weighted
average of both precision and recall. The computed value falls
between [0,1] with 1 being the best and 0 being the worst. The
factor in the following definition puts additional weight on

precision or recall, and therefore also on false negatives or false

positives. For this experiment, we use =5 in order to penalize the
false negative.

 ()

()

The results are shown in Figure 11, and it can be seen that
different values lead to very similar performance with respect to

the f-measure. Therefore, the choice of is mostly a matter of

user preferences and has only little impact on common error
measures.

4.5 Crowd-Sourcing Costs: Time and Money
Finally, we measure the efficiency of our approach in terms of
time and money in a real crowd-sourcing experiment. For this, we

rely on the crowd-sourcing platform CrowdFlower.com. We focus
again on the cars dataset with and 25% batch size

(corresponding to an average of 14 tuples per batch). This yielded
6 crowd-sourcing batches, 14 tuples each, with the last batch
comprised of only 10 tuples. Those batches have been executed
sequentially, and all predicted tuples were re-ranked after each
batch. To assure high quality, a majority vote of four crowd
judgments was performed for each tuple. Furthermore, we used
28% Gold questions (i.e. tasks for which the correct results are

known upfront in order to filter out unreliable workers, see [33]).
These quality measures increase the number of crowd judgements
to an overall of 416 judgments for obtaining the correct values of
80 tuples. During a calibration run, it turned out that performing a
single judgement takes about 60 seconds. Following the general
guidelines of CrowdFlower, we paid $0.19 per 5 judgements (i.e.
one HIT are 5 judgements), for a total cost of $5.01 per batch (for

72 crowd judgements overall, yielding the correct results for 14
tuples, i.e. ~5 judgements per tuple; also, additional fees for
administration and platform usage are incorporated). This results
in an average runtime of 25 minutes for one batch.

The end results are shown in Figure 12 and 13, where the error
reduction from initially 62% down to 12% costs roughly $28, and
takes 125 minutes. The query time required can be decreased by

increasing the batch size in order to exploit that more crowd-
sourcing tasks can be executed in parallel.

5. SUMMARY AND OUTLOOK
In this paper, we presented a novel approach for the challenge of
dealing with missing information in datasets in connection with
skyline query processing. This challenge can be naively
approached by using crowd-enabled databases, eliciting all
missing values from the crowd before computing the skyline.

However, we showed that by using carefully tailored heuristics
and prediction algorithms, only a tiny fraction of all incomplete
tuples actually need to be crowd-sourced in order to obtain high
quality approximate skyline results at very low costs. This was
achieved by identifying and crowd-sourcing only those tuples
which potentially have a large negative impact on the result set
quality, while using standard value prediction algorithms for
approximating all other tuples. For instance, by crowd-sourcing
only 80 out of 1,551 incomplete tuples for a practical car dealer

dataset, the resulting skyline error was only 10% when using our
heuristic measures compared to 35% for random crowd-sourcing.
Based on this idea, we presented a workflow for a fully self-
tuning and adaptable system that can be easily deployed for
different prediction algorithms, various datasets, and result quality
requirements. In our extensive evaluations, we showed the
superior performance of our approach, and identified the impact
of relevant influence factors.

In future work, we will expand on this concept by exploring
additional heuristics and optimization techniques, and also

Figure 6: Decreasing skyline error while crowd-sourcing using Median prediction (heuristic and random tuple selection)

Figure 7: Decreasing skyline error while crowd-sourcing using KNN prediction (heuristic and random tuple selection)

474

incorporate additional prediction algorithms, like for example
crowd-enabled value prediction techniques [35]. Furthermore, we
will adapt our system to additional problems domains like top-k
retrieval on incomplete data.

6. ACKNOWLEDGEMENTS
Parts of this work were supported by funds provided by the
DAAD FIT programme (http://www.daad.de/fit/).

REFERENCES
[1] M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R.

Xin, “CrowdDB: Answering queries with
crowdsourcing,” in ACM SIGMOD Int. Conf. on
Management of Data, 2011.

[2] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller,
“Human-powered sorts and joins,” Proceedings of the

VLDB Endowment, vol. 5, no. 1, pp. 13–24, Sep. 2011.
[3] A. Parameswaran and N. Polyzotis, “Answering queries

using humans, algorithms and databases,” in Conf. on
Innovative Data Systems Research (CIDR), 2011.

[4] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C.
Miller, “Crowdsourced Databases : Query Processing
with People,” in Conf. on Innovative Data Systems
Research (CIDR), 2011.

[5] C. Lofi, J. Selke, and W.-T. Balke, “Information

Extraction Meets Crowdsourcing: A Promising Couple,”
Datenbank-Spektrum, vol. 12, no. 1, 2012.

[6] S. Börzsönyi, D. Kossmann, and K. Stocker, “The
Skyline Operator,” in Int. Conf. on Data Engineering
(ICDE), 2001.

[7] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation
algorithms for middleware,” in Symposium on Principles
of Database Systems (PODS), 2001.

[8] P. Godfrey, R. Shipley, and J. Gryz, “Algorithms and
analyses for maximal vector computation,” The VLDB
Journal, vol. 16, no. 1, pp. 5–28, Sep. 2007.

[9] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-
based skyline evaluation,” ACM Transactions on
Database Systems, vol. 33, no. 4, 2008.

[10] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive
skyline computation in database systems,” ACM Trans.

Figure 8: Skyline error for different %missing values (cars)

Figure 9: Skyline error for different %missing values (NBA)

Figure 10: Quality with different batch sizes

Figure 11: Effect of values (cars dataset – y-axis uses f-

measure)

Figure 12: Crowd-Sourcing Costs in Dollars (Cars data)

Figure 13: Time required for crowd-sourcing

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140

Sk
yl

in
e

 E
rr

o
r

Number of crowd-sourced tuples

50% batch size (Avg. # o tuples / batch: 28)

25% batch size (Avg. # of tuples / batch: 14)

5% batch size (Avg. # of tuples / batch: 2)

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Sk
yl

in
e

 Q
u

al
it

y

Number of crowd-sourced tuples

α =0.9

α =0.8

α =0.7

α =0.6

0

10

20

30

40

50

60

70

$0 $5 $10 $15 $20 $25

Sk
yl

in
e

Er
ro

r

Cost ($)

0

10

20

30

40

50

60

70

0 25 50 75 100 125

Sk
yl

in
e

Er
ro

r

Time (Minutes)

475

Database Syst., vol. 30, no. 1, pp. 41–82, 2005.
[11] J. Selke, C. Lofi, and W.-T. Balke, “Highly Scalable

Multiprocessing Algorithms for Preference-Based
Database Retrieval,” in Int.Conf.on Database Systems for
Advanced Applications (DASFAA), 2010.

[12] W. T. Balke, U. Güntzer, and W. Siberski, “Restricting
skyline sizes using weak Pareto dominance,” Informatik -
Forschung und Entwicklung, vol. 21, no. 3–4, pp. 165–
178, May 2007.

[13] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski,
“Skyline Query Processing for Incomplete Data,” in Int.
Conf. on Data Engineering (ICDE), 2008, vol. 30, no. 2.

[14] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast and

Simple Relational Processing of Uncertain Data,” in Int.
Conf. on Data Engineering (ICDE), 2008.

[15] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and
D. Suciu, “MYSTIQ - A system for finding more
answers by using probabilities,” in ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD), 2005.

[16] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom,
“ULDBs: databases with uncertainty and lineage,” in Int.

Conf. on Very Large Data Bases (VLDB), 2006.
[17] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S.

Hambrusch, J. Neville, and R. Cheng, “Database Support
for Probabilistic Attributes and Tuples,” in Int. Conf. on
Data Engineering (ICDE), 2008.

[18] Y. Zhang, W. Zhang, X. Lin, B. Jiang, and J. Pei,
“Ranking uncertain sky: The probabilistic top-k skyline
operator,” Information Systems Journal, vol. 36, no. 5,

pp. 898–915, 2011.
[19] C. Böhm, F. Fiedler, A. Oswald, C. Plant, and B.

Wackersreuther, “Probabilistic skyline queries,” in Int.
Conf. on Information and Knowledge Management
(CIKM), 2009.

[20] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic
skylines on uncertain data,” in Int. Conf. on Very Large
Data Bases (VLDB), 2007.

[21] M. J. Atallah and Y. Qi, “Computing all skyline

probabilities for uncertain data,” in ACM SIGMOD
Symp. On Principles Of Database Systems (PODS),
2009.

[22] K. L. Wagstaff and V. G. Laidler, “Making the Most of
Missing Values : Object Clustering with Partial Data in
Astronomy,” Analysis, vol. 347, pp. 1–5, 2005.

[23] M. Saar-tsechansky and F. Provost, “Handling Missing
Values when Applying Classification Models,” Journal
of Machine Learning Research, vol. 8, no. 1625–1657,
pp. 1625–1657, 2007.

[24] T. Hastie, R. Tibshirani, and J. H. Friedman, The

Elements of Statistical Learning. Springer, 2001, p. XVI,
533 N5 – Supervised learning (Machine learni.

[25] J. R. Quinlan, C4.5: Programs for Machine Learning,
vol. 240, no. 3. Morgan Kaufmann, 1993, p. 302.

[26] Z. Ghahramani and M. I. Jordan, “Supervised learning
from incomplete data via an EM approach,” in Advances
in Neural Information Processing Systems 6, 1994, vol.
6, pp. 120–127.

[27] E. Acu, “The treatment of missing values and its effect in
the classifier accuracy,” Classification clustering and
data mining applications, no. 1995, pp. 1–9, 2004.

[28] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T.
Hastie, R. Tibshirani, D. Botstein, and R. B. Altman,
“Missing value estimation methods for DNA
microarrays.,” Bioinformatics, vol. 17, no. 6, pp. 520–5,
2001.

[29] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone, Classification and Regression Trees. Wadsworth,
1984.

[30] M. Giavalisco, “Lyman-Break Galaxies,” Annual Review
of Astronomy and Astrophysics, vol. 40, no. 1, pp. 579–
641, 2002.

[31] J. L. Schafer, Analysis of Incomplete Multivariate Data,
vol. 11, no. 3. Chapman & Hall, 1997, pp. 164–165.

[32] R. J. A. Little and D. B. Rubin, Statistical Analysis with
Missing Data, vol. Second. Wiley, 1987, p. 408.

[33] C. Lofi, J. Selke, and W.-T. Balke, “Information
Extraction Meets Crowdsourcing: A Promising Couple,”
Datenbank-Spektrum, vol. 12, no. 1, 2012.

[34] D. M. W. Powers, “Evaluation: From Precision, Recall
and F-Factor to ROC, Informedness, Markedness &
Correlation,” Flinders University Adelaide SIE07001,
2007.

[35] J. Selke, C. Lofi, and W.-T. Balke, “Pushing the
Boundaries of Crowd-Enabled Databases with Query-
Driven Schema Expansion,” in 38th Int. Conf. on Very
Large Data Bases (VLDB), 2012, pp. 538–549.

476

