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ABSTRACT
Traditional bitmap indexes are utilized as a special type of primary
or clustered indexes where the queries are answered by perform-
ing fast logical operations supported by hardware. Answers are
mapped to the physical data by using the row id of each tuple.
Bitmaps represent the i-th tuple in the original table with the i-th
bit position of the index. Run-length compression is used to re-
duce the size of the bitmaps and it has been shown that ordered
data is significantly better compressed. However, for large-scale
and dynamic datasets it is infeasible to keep the data always sorted.
Partitioning can be used to keep the data in smaller and manageable
chunks, where a different bitmap index is built for each chunk. We
propose a novel bitmap index design with partitioning which serves
as basis for non-clustered bitmap indexes. Individual bitmaps are
not stored, only an Existence Bitmap (EB) for the existing ranks of
the full table is maintained. This approach improves update perfor-
mance of sorted bitmaps and does not require maintaining a heap
as the underlying table, nor the same ordering for all the partitions.
A one dimensional index is used over the ranks to map the bits
in the EB to the physical order of the data, which allows queries
to run even faster. The proposed approach, called ranked Non-
Clustered Bitmaps (rNCB), is compared against traditional bitmaps
using FastBit and shows significant performance gains.

1. INTRODUCTION
Bitmap indexes are widely used in data warehouses to speed up
the query execution time of selection and aggregate queries. The
efficiency gains are mostly due to the bitwise logical operations
supported by computer hardware. They have been successfully im-
plemented in commercial Database Management Systems such as
Oracle [3, 4], Informix [9, 16], and Sybase [8, 10], among others.
Traditional bitmap indexes are built using the row identifiers in the
physical order of the table to set the corresponding bit based on the

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

attribute values for the given row. For this reason, bitmap indexes
can be considered as a special case of primary or clustered indexes
that does not impose a physical order over the base table but rather
uses the physical order of the dataset to build the index. A typi-
cal primary or clustered index would physically order the data by
the index key. As opposed to primary indexes, secondary or non-
clustered indexes do not explicitly use the row ids in the table and
use a mapping mechanism to locate the data. Although uncom-
pressed or verbatim bitmap indexes built over relatively smaller
datasets can be managed efficiently, large scale data sets require
bitmap compression to reduce the index size. In addition, the com-
pression technique used needs to enable logical operations over the
compressed form of the bitmaps in order to minimize the overhead
during query execution [2, 3, 13, 22]. The general approach is
to utilize run-length encoding1 because it effectively compresses
columns and does not require explicit decompression during query
processing. The two popular run-length encoding based compres-
sion techniques are the Byte-aligned Bitmap Code (BBC) [3] and
the Word-Aligned Hybrid (WAH) code [22].

The performance of run-length encoders depends on the presence
of long runs of the same symbol. Reordering of the data have been
successfully applied as a preprocessing step to increase the per-
formance of run length encoding [11, 17]. The overall compres-
sion ratio of the bitmaps is considerably improved when data is
sorted. The improvements are especially significant for the first
few columns, since they contain longer and fewer runs after sort-
ing. However, the sorting has no effect on the later columns which
would only compress as if they were in random order. The number
of sorted runs grows exponentially with the ordinal position of the
column. An immediate implication of this unbalanced compression
is that the queries involving the first columns are gaining more sig-
nificant speed up compared to the others. We aim to achieve com-
parable performance improvement for all the attributes and there-
fore for all the queries over the dataset. The baseline approach
is a divide-and-conquer solution that distributes the attributes into
smaller subsets and sorts the bitmaps for each partition indepen-
dently. However, in this scenario the row ids can no longer be rep-
resented by the bit positions in the bitmaps because the bitmaps are
sorted independently of the physical ordering of the dataset. There-

1Run-length encoding is the process of replacing repeated occurrences of a symbol by
a single instance of the symbol and a count.
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fore, a mapping table is needed to translate bit positions into row
ids. With the use of mapping tables, one can generate as many
sorted secondary bitmap indexes as needed. With sorted secondary
bitmap (SSB) indexes, there is a clear improvement in the com-
pression performance of the bitmap columns. However, we cannot
claim the same for query execution performance. Even when the
queries execute faster for a set of attributes sorted together, execut-
ing queries involving several partitions would introduce significant
overhead. The reason is that one secondary bitmap needs to be
translated into a primary bitmap using a bit-by-bit mapping, i.e.
each bit set in the secondary bitmap needs to be set in the corre-
sponding position of the primary bitmap. Therefore, in addition
to the bitwise operations, we need to account for the mapping into
row identifiers of all the bits set to 1 in the partial answers.

In this paper, we investigate whether it is possible to have the best of
both worlds: improved compression and improved execution time
for all the bitmap columns of the attributes in a table. The key to
our answer is to remove all redundancy from the bitmaps. We pro-
pose a new non-clustered bitmap index organization utilizing ad-
vantages of horizontal and vertical partitioning with no significant
overhead. With horizontal partitioning, tuples are segmented to en-
sure that partitions fit into main memory. With vertical partitioning
the dataset is divided into sets of attributes and one logical index
is created for each set. As a result, each partition has its own sec-
ondary bitmap index. Instead of storing each bitmap column in the
partition we only store one bitmap column for the whole partition
and instead of having one bit per tuple in the bitmap we only have
one bit per distinct value or rank. The proposed approach is called
ranked Non-Clustered Bitmap (rNCB) as it indexes the rank of a
tuple in a sorted bitmap table. As opposed to clustered bitmaps, the
bitmap columns are not stored and there is only one bitmap column
per partition. The bitmap corresponds to an existence bitmap (EB)
of the distinct ranks of the tuples, i.e. the rows from the full bitmap
table present in the data, which after partitioning is considerably
smaller than the number of tuples in the dataset. By controlling
the number of attributes in each partition, we control the size of
the full bitmap table and therefore, guarantee faster query execu-
tion than primary bitmaps. We formalize and describe the query
execution logic over the proposed architecture to ensure correct re-
sults. Queries are executed against the full bitmap table which is
not stored but rather computed on the fly during query execution
time. The resulting bitmap for each partition is then translated into
a primary bitmap. The query result for each partition is exactly
the same as with traditional bitmaps. Primary bitmaps are ANDed
between partitions to obtain the final answer bitmap.

The rest of this paper is organized as follows. Related work and
background information is presented in Section 2. The proposed
approach is described in Section 3. Experimental results are pre-
sented in Section 4. Finally, conclusions are presented in Section 5.

2. BACKGROUND
Bitmap tables are a special type of bit matrices. Each binary row in
the bitmap table represents one tuple in the database. The bitmap
columns are produced by quantizing the attributes in the database
into categories or bins. Each tuple in the database is then encoded
based on which bin each attribute value falls into.

For the simple bitmap encoding (also called equality encoding) [16],
if a value falls into a bin, this bin is marked “1”, otherwise “0”.
Since a value can only fall into a single bin, only a single “1”

Figure 1: Simple bitmap example for a table with two attributes
and three bins per attribute.

can exist for each row of each attribute. After binning, the whole
database is converted into a 0-1 bitmap table, where rows corre-
spond to tuples and columns correspond to bins. Figure 1 shows an
example of the equality encoded bitmap using a table with two at-
tributes, each partitioned into three bins. The first tuple t1 falls into
the first bin in attribute 1, and the third bin in attribute 2. There are
several other encoding techniques for bitmaps, such as range [6],
interval [7], and workload and attribute distribution oriented [14]
encoding.

Bitmap indexes can provide very efficient performance for point
and range queries thanks to fast bit-wise operations over the bitmaps,
which are efficiently supported by hardware.

With equality encoded bitmaps a point query is executed by AND-
ing together the bit vectors corresponding to the values specified
in the search key. For example, finding the data points that corre-
spond to a query where Attribute 1 is equal to 3 and Attribute 2 is
equal to 5 is only a matter of ANDing the two bitmaps together.
Equality Encoded Bitmaps are optimal for point queries [7]. Range
queries are executed by first ORing together all bit vectors speci-
fied by each range in the search key and then ANDing the answers
together. If the query range for an attribute queried includes more
than half of the cardinality then the query is executed by taking the
complement of the ORed bitmaps that are not included in the range
queried.

No matter which bitmap encoding we use, the bitmap index table
is a 0-1 table. This table needs to be compressed to be effective on
a large database. General purpose text compression techniques are
clearly not suitable for this purpose since they significantly reduce
the efficiency of queries [12, 21]. Specialized bitmap compres-
sion schemes have been proposed to overcome this problem. These
schemes are based on run-length encoding, i.e., they replace runs
of 0’s or 1’s in the columns by a single instance of the symbol and
a run count. These methods not only compress the data but also
enable fast bitwise logical operations, which translates into faster
query processing.

Run length encoding [18] can therefore be used over every column
to compress the data when long runs of “0” or “1” blocks become
available. Pure run length encoding is not a good strategy because
of its accessing inefficiency. The two most popular compression
techniques for bitmaps are the Byte-aligned Bitmap Code (BBC)
[3] and the Word-Aligned Hybrid (WAH) code [22]. Unlike tradi-
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tional run length encoding, these schemes mix run length encoding
and direct storage. BBC stores the compressed data in Bytes while
WAH stores it in Words. WAH is more CPU efficient because it
only has two types of words, literal and fill words, and it only ac-
cesses the index by words. Let w denote the number of bits in a
word, the lower (w− 1) bits of a literal word contain the bit values
from the bitmap. If the word is a fill, then the second most sig-
nificant bit is the fill bit, and the remaining (w − 2) bits store the
fill length. WAH imposes the word-alignment requirement on the
fills. This requirement is key to ensure that logical operations only
access words.

FastBit [20] is an open source software tool that uses WAH com-
pressed and verbatim bitmaps to support SQL-like queries, such as
selection queries. The design choices of FastBit are proven to be
effective when compared to other bitmap indexing methods [15].

rNCB can be implemented within any relational database system
regardless of the approach taken to store the base tables. rNCB is
not restricted to traditional row stores, column store systems can
also adopt rNCB. For example consider C-Store [19]. C-Store is a
read-optimized relational DBMS such that the storage of data is by
columns rather than rows, and data is stored in an overlapping col-
lection of attribute-projections. C-Store already implements bitmap
indexes to speed up the query execution. NCB can improve query
performance of C-Store as a multidimensional index over each pro-
jection. Our mapping table can be implemented as a join index.
Join indexes are used to obtain results across projections and can
be easily adapted to our needs.

3. APPROACH
In this section, we present the proposed approach that combines the
advantages of the representation of the sorted data and the efficient
query execution of bitmap indexes. We first provide the technical
motivation for the proposed approach and then formally describe
the components of our system.

3.1 Technical motivation
Consider a relational table D with d attributes and n tuples. The
cardinality, i.e., number of distinct values in the range, of attribute
Ai is denoted by ci. Often, the domain of Ai is quantized into bins
before creating the bitmap index. In those cases ci refers to the
number of bins for attribute Ai.

For traditional bitmaps, a bitmap table B is created using one col-
umn for each attribute bin and one row for each tuple. The number
of rows in the bitmap table is denoted by n, and the number of
columns Bc is given by the sum of the cardinalities:

Bc =

d∑
i=1

ci

A bitmap table B is called a full bitmap table if the number of the
distinct tuplesBn is equal to the Cartesian product of all the values
of the attributes in the table. The number of distinct tuples in a full
bitmap table is given by the product of the cardinalities:

Bn =

d∏
i=1

ci

For example, consider the full bitmap table presented in Figure 2,
all possible distinct ranks for a table with 3 attributes each with

Figure 2: Full Sorted Bitmap Table with 3 attributes and 3 bins
per attribute. The white blocks represent 0s and black blocks
represent 1s.

cardinality of 3. The number of columns Bc = 3+3+3 = 9, and the
number of tuples (distinct ranks) Bn = 3·3·3 = 27.

A full bitmap table B is sorted if the tuples are in lexicographic
order of the columns, e.g. the table in Figure 2 is a sorted full
bitmap table. The sorting order of the columns refers to the order
in which the columns were evaluated in the ordering. Different
sorting orders of the columns produce different permutations of the
tuples under the same ordering criteria. Unless otherwise noted,
the sorting order of the columns used in this paper is the order in
which the attributes appear in the dataset.

In the full bitmap table B, a tuple t is identified by the set of
bin numbers of each attribute value, i.e. t = {bt1, bt2, ..., btd},
where bti refers to the bin number of the value of attribute Ai. For
instance, in Figure 2 the tuple with rank 20 can be identified as
t20 = {1, 3, 2}. The rank π(t) of tuple t refers to the position of t
in the full ordered bitmap table B and is given by:

π(t) = 1 +

d∑
i=1

((ci − bti) ·
d∏

j>i

cj)

For example, the rank of t20 can be computed as π(t20) = 1+(3−
1) · (3 · 3) + (3− 3) · (3) + (3− 2) · 1 = 20.

The main consideration is that given the attribute cardinalities and
their sorting order, the actual value of the attributes can be derived
from the rank of the tuple. In other words, the rank function is
one-to-one and this property, i.e. mapping from a given rank to an
attribute value, is used in our query execution algorithm which is
described later.
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Attribute Column PL StartRun1 EndRun1

1 1 27 19 27
1 2 27 10 18
1 3 27 1 9
2 1 9 7 9
2 2 9 4 6
2 3 9 1 3
3 1 3 3 3
3 2 3 2 2
3 3 3 1 1

Table 1: Summary for the Full Sorted Bitmap Table in Figure 2.

Summarizing the Sorted Full Bitmap Table. Few elements are
needed to summarize the sorted full bitmap table as there is a clear
pattern on the organization of the table when lexicographic order
is used. For simplicity of the analysis let us consider that all the
attributes have the same cardinality.

Columns can be considered to be periodic, i.e. the pattern repeats
itself after a certain number of bits. The number of periods in a
column depends on the number of attributes preceding this column.
For columns 1-3 (first attribute) in Figure 2, there is only one period
since the runs never repeat. For columns 4-6 (second attribute)
there are three periods (c1), and for columns 7-9 (third attribute)
there are 9 periods (c1 · c2). Note that the number of periods pi

for an attribute Ai is given by the product of the cardinalities of
the preceding attributes. The period length (number of tuples in a
period) can be computed as Bn/pi. For example, for the columns
of Attribute 2 in Figure 2, the period length is 27/3 = 9.

Notice that there is only a single run of 1s in each period. The total
number of runs in a period is either 2 (when the period starts or
ends with 1s) or 3 (when the run of 1s is somewhere in the middle
of the period). The length of the run of 1s in each period depends
on the cardinalities of the following attributes. For columns 7-9, the
run length is 1 (as this is the last attribute), for columns 4-6 the run
length is 3 (c3), and for columns 1-3 the run length is 9 (c2 · c3). So
far, the number of periods, the length of the periods, the length of
the runs of 1s are all the same for the columns of an attribute. The
only difference between the columns of one attribute is the position
of the runs of 1s.

For each bitmap column i of Attribute j, three values are stored that
enable efficient computation of the bit values of a rank:

• Period length (PL), which is the number of tuples before
the pattern of the runs repeats itself.

PL =

d∏
k=j

ck

• StartRun1, which is the start position of the run of 1s within
a period.

StartRun1 = 1 + (cj − i)
d∏

k=j+1

ck

• EndRun1, which is the end position of the run of 1s within
a period.

EndRun1 = (cj − i+ 1)

d∏
k=j+1

ck

The summary of the bitmap table consists of the cardinalities of
the attributes, the sorting order of columns, and the previously de-
scribed elements. Table 1 shows the summary of the sorted full
bitmap table of Figure 2. With this structure, finding the bit value
of a column for a given rank is actually no more complicated than
translating a number from decimal to binary format. The main dif-
ference is that the base used to translate the number changes as we
move between the attributes, i.e. the base used is derived from the
cardinalities of the following attributes.

Deriving the bit value b for column i of attributeAj for rank π(t) =
r reduces to testing whether the rank is within the run of 1s for the
corresponding period:

b =?( PL · p+ StartRun1 ≤ r ≤ PL · p+ EndRun1)

where the period p for rank r is computed as br/PLc. As an ex-
ample, let us consider the summary in Table 1. Given the rank of
a tuple, e.g. π(t) = 10 (t10 in Figure 2), the bit value of a bitmap
column, e.g. the first bin for the second attribute (fourth row in
Table 1), can be derived by computing p = b10/9c = 1 and evalu-
ating whether r falls into the run of 1s for that period. Since 10 is
not between 16 (9 + 7) and 18 (9 + 9), the bit value is 0.

As can be seen, it is possible to store the summary of the full sorted
bitmap table and answer queries about the values of a particular
tuple efficiently from the rank of the tuple. By storing the ranks of
the tuples and the mapping from the tuples to the original row ids,
we can answer selection queries by scanning the existing ranks in
only one pass.

Partitioning. Given a database D with d attributes, there are two
possible partitioning directions: vertical and horizontal partition-
ing.

Vertical partitioning, A = V (D), also called a projection, refers
to a subset of the attributes in D such that |A| ≤ d.

Horizontal partitioning, TA = H(D), refers to a condition to
distribute the tuples in D for the attributes in A. Horizontal parti-
tioning can be done, for example, on ranges of some attribute, the
row identifier, or hash values.

A Partition P = {A, TA} is a pair of a set of attributes A and a
horizontal partitioning criterion TA. Each set of tuples produced
by TA in partition P is called a segment.

For simplicity, we assume that each attribute is in exactly one parti-
tion and there is no overlap between partitions, therefore the union
of all partitions produces D.

3.2 System Overview
In this section, we describe the system components of the proposed
approach. Figure 3 shows the system overview that includes an
index and a query engine. The index has two parts: a mapping
table and an Existence Bitmap (EB). One index is built for each
partition. The mapping table translates ranks into row identifiers.
The EB indicates which ranks are present in the dataset. The query
engine has three functional units: the query planner, the query ex-
ecutor, and the bitmap translator. The query planner identifies the
bitmaps needed to answer the query and the partitions involved in
the query. The query executor computes the values queried in the
logical bitmap on-the-fly, as the individual bitmaps are not stored.
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Figure 3: System Overview of the proposed approach.

The translator converts the secondary (logical) bitmap into a pri-
mary bitmap, i.e. the bit positions in the bitmap refer to the row
identifiers in the physical order of the data. Each component is
described in detail below.

3.3 Index Structure
The ranked non-clustered bitmap index (rNCB) has two elements:
a mapping table and an Existence Bitmap.

The Mapping Table (MT) enables the translation from bit posi-
tions to row identifiers. This mapping mechanism is mandatory
for any secondary index as, for most queries, it is necessary to ac-
cess the actual data to answer the query. There are many possible
implementations for the mapping table. A simple and update effi-
cient way is to use a B+Tree [5]. The size of the mapping table is
O(N logN), where N is the number of rows in the table.

The Existence Bitmap (EB) indicates which tuples from the full
ordered bitmap exist in the partition. The EB can be stored in two
different formats: as a WAH compressed bitmap or as a sorted list
of ranks (rankList). The EB is stored as a rankList when it is sparse,
i.e. there is only one bit set in each literal word. Otherwise, the EB
is stored as a one-sided WAH compressed bitmap, i.e. only the
zeros are compressed. The reason for this kind of compression is
that the query is executed inplace over the EB for improved per-
formance. The criterion to decide how to store the EB is simple,
yet effective. The decision is made based on the comparison of the
number of words of the compressed EB and the number of distinct
ranks. If the number of words in the compressed EB is less than
the number of distinct ranks, then the EB is stored as a compressed
bitmap. The implication is that, when the EB is stored as WAH
compressed bitmap, on the average there are at least two bits set
in each literal word, as we can assume that for large datasets there
would be a fill word of zeros between every literal word.

No matter how the EB is stored, queries are answered with a simple
sequential scan of the EB. When the EB is stored as a rankList
one rank is processed at a time. However, when the EB is stored
as a WAH compressed bitmap, we operate at the word level and
potentially evaluate w − 1 existing ranks at a time.

The size of the EB for a partition with Ns distinct ranks when the
EB is stored as a rank list isO(Ns log2N) andO(Ns) when stored
as a WAH compressed bitmap.

To create the rNCB index, we generate the summary of the full

Figure 4: An example of (a) a table with 7 tuples, the corre-
sponding EB stored as (b) a rankList and as (c) a WAH com-
pressed bitmap, and (d) the mapping table.

sorted bitmap table using the order of the attributes and the attribute
cardinalities. Then, by scanning the dataset we compute the rank
of each tuple. The rank is set in the EB and the row id is inserted
into the mapping table using the rank as the key value.

As an illustration of the proposed index, consider the structures in
Figure 4. Figure 4(a) presents a table with 7 rows and 6 distinct
ranks out of the all possible 27 ranks in Figure 2. Figure 4(b) and
(c) depict the corresponding EB stored as a rankList and a WAH
compressed bitmap, respectively. Duplicates are not stored in the
rank list. For the EB stored as a WAH compressed bitmap, the bit
positions set correspond to the existing ranks. Finally, the mapping
table shown in Figure 4(d) enables the translation between the ranks
and the actual row ids in the table.

3.4 Query Engine
A selection query is a set of conditions of the form A op v, where
A is an attribute, op in {=, <,≤, >,≥} is the operator, and v is
the value queried. We refer to point queries as the queries that use
the equal operator (A = v) for all conditions and range queries to
the queries using a between condition (v1 ≤ A ≤ v2).

In a bitmap based system, queries can be thought as a set of bitmaps
for a subset of the attributes. The queried values, vi, are quantized
to identify the corresponding bitmap bins, bi. If the bitmaps cor-
respond to the same attribute then the resulting bitmaps are ORed
together, otherwise they are ANDed together.

The Query Planner quantizes the query and transforms it into an
execution plan by identifying the attribute bins that need to be ac-
cessed and determining the number of partitions and/or segments
involved in the query.

The Query Executor takes the parsed query and scans the corre-
sponding EB.

In contrast to traditional bitmaps, the query execution is done row
wise within a partition, not column wise. For simplicity of the fol-
lowing discussion, let us assume that the EB is stored as a rankList.
When a rank is read from the EB, the query executor decides whether
that rank satisfies all query conditions or not by evaluating each at-
tribute queried. If the rank satisfies all conditions, then the rank is
translated into row ids and the corresponding bit positions are set
in a primary bitmap. However, if the rank does not satisfy any one
of the query conditions, it is discarded and no further evaluation is
needed.

A powerful optimization comes from the fact that the ranks are
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Execute_RankList(P,Q)

1: B = All zeros primary bitmap
2: colValue = {0,−1}qDim

3: for each rank r in the EB
4: isAnswer = true
5: for each attribute Ai in Q
6: if r > colValue[i].validityRank
7: p = r/Ai.PL
8: start1s = Ai.PL * p + Ai.StartRun1

9: end1s = Ai.PL * p + Ai.EndRun1

10: if start1s ≤ r ≤ end1s
11: colValue[i]= {1,end1s}
12: else if r <start1s
13: colValue[i] = {0, start1s-1}
14: else
15: colValue[i] = {0,start1s + Ai.PL - 1}
16: if colValue[i].bit = 0
17: isAnswer = false
18: if isAnswer
19: C = translate(r)
20: B = B OR C
21: return B

Algorithm 1: Query execution algorithm for EB stored as rankList.
P is the partition and Q is the query representation.

processed in sorted order and the start and end positions of the run
of 1s are known. When a rank is evaluated for a given column,
the derived bit value is stored together with a validity rank. The
validity rank is nothing more than the rank at which the current
run ends for that column. For example, consider again the rNCB
in Figure 4 and a query asking for the first column of Attribute 1.
The first rank evaluated is 1. Rank 1 evaluates to 0 in that column
because the run of 1s start at position 19 (see Table 1). The value
0 is stored together with a validity rank of 18, i.e. the position at
which the run of 0s end. When the next rank (8) is evaluated, it is
first compared with the validity rank of the previous result. Since 8
is less than 18, it means that the result is still valid and can be used
as the answer.

To fully take advantage of this optimization, attributes in the query
are arranged in the same order as the sorting order during query
parsing. The reason is that the earlier columns would have larger
validity ranks. The worse case performance of rNCB is given when
the previous result is never reused and computation of the values is
needed for each rank, e.g. when the columns queried involve only
the last attribute in the sorting order.

Algorithms 1 and 2 present the pseudocode for query processing
when the EB is stored as a rankList and a WAH compressed bitmap,
respectively. Both algorithms are simplified for clarity of the pre-
sentation assuming only one segment in the partition.

In Algorithm 1, the primary bitmap B is initialized as an all zeros
bitmap (Line 1) and the column values (colValue) are initialized to
bit value 0 and validity rank -1 (Line 2). Then, the EB is scanned
(Line 3). For each rank r, the variable isAnswer is initialized to
true (Line 4) and is used to indicate whether the tuples with rank
r satisfy the query. Each attribute in the query is evaluated (Line
5). If the column value is not valid for rank r then a new value
is derived (Line 6). The start and end positions of the run of 1s
is computed for period p (Line 7) in which the rank r lies (Lines
8-9). Then, if r lies within the run of 1s (Line 10) the result for this
column is set to 1 and the validity of the result is set to end of the

Execute_WAH(P,Q)

1: B = EB
2: wordNumber = 0
3: colValue = {0,−1}qDim

4: for each word wi in the EB
5: decode (wi)
6: if wi.isF ill
7: wordNumber = wordNumber + wi.nWords
8: else
9: word = wi

10: for all attributes Aj ∈ Q
11: if wordNumber > colValue[j].validity
12: startRank = wordNumber*w+1
13: endRank = wordNumber*(w+1)
14: if startRank and endRank fall into the same period
15: colValue[j].word = getWord (Aj , startRank, endRank)
16: if (colValue[j].word==0)
17: if endRank mod A.PL < A.StartRun1
18: colValue[j].validity = word where

the run of 1s starts
19: else
20: colValue[j].validity = word where

the period ends
21: else if (colValue[j].word = 0x7FFFFFFF) //All 1s
22: colValue[j].validity = word where

the run of 1s ends
23: else //More than one period
24: colValue[j].word = 0
25: iterate over each period
26: compute startRank and endRank for the period
27: colValue[j].word = colValue[j].word OR

getWord(Aj , startRank, endRank)
28: word = word AND colValue[j].word
29: wordNumber++
30: if word = 0
31: break
32: B[i] = word
33: return translate(B)

Algorithm 2: Query execution algorithm for EB stored as WAH
compressed bitmap. P is the partition and Q is the query represen-
tation.

runs of 1s (Line 11). However, if r lies outside the run of 1s then
the answer is set to 0 and r is evaluated to decide whether it falls
within the first run of 0s (in which case the validity rank is set to
the start position of the runs of 1s) or it falls within the second run
of 0s (in which case the validity rank is set to the start of the run of
1s in the next period) (Lines 12-15). If a bit value is 0 for a given
attribute then the loop stops and r is not an answer to the query
(Lines 16-17). If after evaluating all the queried columns isAnswer
is still true, then the rank is translated into a primary bitmap C.

The Bitmap Translator (translate method in Line 19) is given a
rank and returns a primary bitmap, i.e. a bitmap with set bits corre-
sponding to the positions of the row ids of the tuples that map to the
given rank. The bitmap translator is the only process that accesses
the mapping table or B+Tree. For clarity of the presentation, we
made C a bitmap, but for efficiency we implemented it at the word
level, and the OR is only done between B and the non-zero words
of C. Finally, the primary bitmap B is returned as the answer. For
performance reasons, the row ids in the mapping table are stored as
two numbers, word number and bit offset, to facilitate the transla-
tion of the rank into the bit positions in the primary bitmap. The
word number is given by brow_id/word_sizec and the bit offset
is given by (row_id mod word_size).
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getWord(A,start,end)

1: word = 0
2: runs = {0x1, 0x3, 0x7, 0xF, 0x1F, ..., 0x7FFFFFFF }
3: period = start/A.PL
4: startRun = A.PL*(period)+A.StartRun1

5: endRun = A.PL*(period)+A.EndRun1

6: if (start <= endRun AND end >= startRun)
7: start = Max(start,startRun)
8: end = Min(end,endRun)
9: if (start mod w == 0)
10: word = runs[end mod w]
11: else
12: word = runs[end mod w] AND NOT(runs[(start mod w)-1])
13: return word

Algorithm 3: getWord algorithm returns an integer (word) with
the bit values for ranks between start and end.

As an example, consider the previous query asking for the first col-
umn of Attribute 1. The first four ranks, {1,8,13,18}, evaluate to
0. When rank 20 is evaluated the result is 1 with a validity rank
of 27. The query translator seeks rank 20 in the mapping table to
obtain row id = 2 (word 0, offset 2). Then the first word in the
bitmap B is ORed with a word with only the second bit set. Fi-
nally, rank 26 uses the result computed for rank 20 and it is trans-
lated into row id 5. The final answer (in hex) is the primary bitmap
B= {24000000}.

Algorithm 2 presents the pseudocode for the query execution when
the EB is stored as a WAH compressed bitmap. The bitmap B is
initialized as the EB (Line 1), wordNumber is initialized to 0 (Line
2), and the column values (colValue) are initialized to word value
0 and validity word -1 (Line 3). The EB is accessed by words
(Line 4). The key is to keep the word number (wordNumber) in
the verbatim bitmap of the current word, wi, in order to be able to
correctly derive the ranks included in this word. If the word is a
fill word then wordNumber is incremented by the number of words
encoded by the fill (Lines 5-7) and the next word is read from the
EB. If wi is a literal (Line 8), then the validity rank of the previous
result is compared against wordNumber (Line 11). If the result is
not valid, a new value needs to be computed. wordNumber is used
to compute the start and end ranks in the word (Lines 12-13). If
both ranks fall into the same period then the bit values for the ranks
between start and end can be derived in a single call to the getWord
method. The validity word is derived, similarly to the validity rank
when the EB is stored as a rankList, to be either the start or end of
the run of 1s or the end of the period (Lines 16-22). If the start and
end ranks fall into different periods (Line 23), then for each period
we compute start and end ranks and call the getWord method. These
partial results are ORed together to obtain the final word value. In
this case, the validity word for the result is only the current word.

Algorithm 3 presents the pseudocode of the getWord method. This
method compares the start and end positions with the start and end
positions of the run of 1s in this column. If the queried positions
have no overlap with the run of 1s, then we can return an all 0s
word. However, if they overlap, then we produce a word with bits
set for the positions that overlap with the run of 1s. To compute this
efficiently we have an array runs that stores integers with increasing
runs of 1s.

Let us consider again the query asking for the first column of At-
tribute 1. There is only one word in the EB, which means that

all 6 distinct ranks would be evaluated at the same time. Since
wordNumber=0 falls completely in the first period of column 1,
the getWord method needs to be called only once with start=1 and
end=27. The result (in hex) returned is word 00001FF0, which is
ANDed with the word 0 of the EB to obtain: 00000820. Since
the resulting word is not 0, translation into the primary bitmap is
needed. The position of each non-zero bit is computed and the rank
is translated just as in the case of the rankList, producing the same
answer.

The previous pseudocodes only consider a partition with one seg-
ment. Having several segments would increase the number of bitmaps
returned as no operations are done across segments. In the case that
there are more than one partition involved in the query, the trans-
lated bitmaps B from each partition are combined together, e.g.
ANDed together, before returning the final answer to the user.

3.5 Partitioning
For rNCB, the goal of horizontal partitioning is to ensure that each
segment fits into main memory and the goal of vertical partitioning
is to guarantee the performance of the ordering for all the attributes
in the partition.

The following is the criteria used to decide how many vertical parti-
tions to build for rNCB. The improved performance of rNCB relies
on processing smaller EBs than the traditional bitmaps. There are
two factors that can make the EB have less ranks/words than the
verbatim bitmaps. The first one is the number of duplicate ranks
in the partition and the second one is the number of all possible
distinct ranks in the full bitmap table.

In order to guarantee improved query execution time over the tra-
ditional bitmaps, we need to impose two conditions over the rNCB
partitions. The first one refers to the number of distinct ranks in the
EB and the second one, to the number of bits required to encode a
rank.

It is clear that rNCB query execution time depends on the size of
the EB as a sequential scan of the EB is performed for each query.
Therefore, by constraining the number of possible distinct ranks in
the EB we bound the time required to process the EB. Since our
baseline is traditional bitmaps, it is only intuitive to make the EB
always smaller than a corresponding verbatim bitmap. The size in
words of a verbatim bitmap is n

w
, where n is the number of rows

in the table and w is the word size, e.g. 32 bits2. For WAH com-
pressed bitmaps, the maximum size (when the column is incom-
pressible) is n

w−1
, as 1 bit is used in each word to indicate the type

of word.

Without considering any other factors, in the general case, if we
constrain the EB to have at most n

w
ranks, then each rank/word

in the EB would be evaluating w dataset tuples simultaneously on
the average. This is assuming that all the ranks in a partition are
distinct, which is not often the case. When duplicates occur, then
even more tuples are simultaneously processed.

In addition to this, since queries are often performed over a sub-
set of attributes and more than one bitmap column is involved in
answering a query, we could compare the EB size to the average
total size of the bitmaps columns involved in the query. For these

2For our implementation in Java, the word size is set to 31 bits since Java does not
have unsigned data types.
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Figure 5: Execution of point queries for datasets with 5 at-
tributes each with cardinality 5, different distributions, and
varying number of rows.

Cardinality UNI Zipf1 Zipf2
5 2,978 3,125 2,978
10 100,000 95,293 33,299
15 758,302 457,842 74,029
20 2,526,975 974,746 109,797
30 4,518,787 1,931,186 162,716
40 4,878,900 2,613,087 199,400
50 4,960,228 3,082,957 224,688

Table 2: Number of distinct ranks for different data distribu-
tions as attribute cardinality increases. The datasets have 5 at-
tributes and 5M rows.

reasons,w can be a smaller number and still produce improved per-
formance. In our experiments we set the constraint factor to 5. The
reason is that our datasets are relatively small and larger number
would produce more partitions. Within the constraints, less parti-
tions are always preferred because of the space requirement of the
mapping tables.

Another constraint imposed over rNCB partitions is that the num-
ber of bits required to encode a given rank in the full bitmap table
could not exceed w + dlog2 we bits. In our experiments w was set
to 31 because integers were used to represent the word number in
the bitmap.

For all real datasets our constraints were satisfied using 2 parti-
tions with equal number of attributes. Since in our case the query
patterns are unknown, we produced equi-sized partitions to balance
the performance of all queries and avoid worse case execution times
for some queries. In the case when the query patterns are known,
attributes that are often queried together can be placed in the same
partition to avoid the overhead of translating bitmaps and AND-
ing the partial results. Moreover, attributes could be replicated into
two or more partitions as long as the constraints are met. Another
consideration is to place attributes in their order of query frequency
within the partition as, for point queries, earlier columns have a
slight advantage over subsequent columns as it would become evi-
dent in the experimental results.

Figure 6: Execution of point queries for datasets with varying
number of attributes each with cardinality 5, different distri-
butions, and 1M rows.

Figure 7: Execution of point queries for datasets with 5M rows,
5 attributes, and different distributions with varying cardinal-
ity.

4. EXPERIMENTAL RESULTS
We performed experiments over both real and synthetic datasets.
For the real datasets we used HEP data, which comes from high
energy experiments with over 2 million rows and 12 attributes with
cardinality ranging from 2 to 12 bins, and three other datasets from
the UCI data repository [1]. Adult dataset is census data with
48,842 rows and 14 attributes with cardinality ranging from 2 to
42. For the Adult dataset, the 5 continuous attributes were quan-
tized using equi-populated partitions into 3 bins. Nursery is data
derived from a hierarchical decision model originally developed to
rank applications for nursery schools. Nursery has 12,960 rows
and 8 attributes with cardinality ranging from 3 to 6. In poker hand
(poker) each record is an example of a hand consisting of five
playing cards drawn from a standard deck of 52. Poker dataset
has 1,025,010 rows and 10 attributes half with cardinality 4 (suit)
and half with cardinality 13 (rank). For the synthetic datasets we
generated uniform (UNI) and Zipf distributions for datasets with
varying number of attributes (5 to 50) with varying cardinality from
5 to 50 and different number of rows starting from 1 million to 5
million. Zipf distributions were generated using s=1 (Zipf1) and
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Figure 10: Execution of point queries for real datasets as the query dimensionality increases. Query attributes are selected in the
same order of the dataset attributes.

Figure 11: Execution of point queries for real datasets as the query dimensionality increases. Query attributes are randomly selected.

Figure 8: Execution time of point queries for increasing num-
ber of distinct ranks in the EB.

2 (Zipf2) as the value of the exponent characterizing the distribu-
tion.

Point queries are generated by randomly sampling 100 tuples from
the dataset. Range queries are selected the same way but the at-
tribute value of the tuple is expanded into both directions (higher
and lower values) until the number of bitmaps queried is equal to
the percent of cardinality-selectivity specified. When not speci-
fied, point queries and range queries refer to queries over all the
attributes in the dataset.

The implementation of the ranked Non-Clustered Bitmaps (rNCB)
is done in Java. We compare query execution time with FastBit.
The queries for FastBit are specified as selects of the first attribute

Figure 9: Execution time of point queries for datasets with 5
attributes, each with cardinality 5, 1M rows, and different dis-
tributions. rNCBs are built with varying number of horizontal
partitions (segments).

in the dataset and the time reported corresponds to the CPU time
output by the program. This CPU time (as opposed to the elapsed
time) does not include I/O time.

The experiments are run in a computer with 3.00GHz CPU, 2GB
RAM, Linux Ubuntu 7.10 operating system. To measure query ex-
ecution time for rNCB and FasBit we run each set of 100 queries 5
times and drop the highest value to avoid outliers produced by pro-
cess preemption, or java virtual machine garbage collection. The
remaining 4 runs are averaged together and reported in this section.

Next, we present the experiments conducted over synthetic data
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Figure 12: Execution of range queries with varying percentage of attribute cardinalities queried.

Figure 13: Execution of point queries with varying dimensionality in sorting order for Sorted Secondary Bitmaps (SSB) and ranked
Non-Clustered Bitmaps (rNCB).

SSB rNCB
Dataset Part 1 Part 2 Tot (KB) Part 1 Part 2 Tot (KB)
Adult 64.49 15.51 80 3.95 26.56 30.51
Hep 37.03 118.06 155.09 21.14 3.06 24.2
Nursery 4.98 1.46 6.44 0.29 0.05 0.34
Poker 208.64 447.6 656.24 1.41 4.58 5.99

Table 4: Bitmap Size comparison of SSB and rNCB.

to analyze and evaluate the performance of rNCB (just NCB in
the figures). Then, we present the query execution times for real
datasets.

4.1 Number of Rows
Figure 5 shows the average query execution time as the number of
rows increases (from 1 to 5 million). Note that FastBit execution
time is linear with the number of rows in the dataset as the size of
each bitmap and the number of hits in the queries increases. How-
ever, rNCB execution time does not depend on the number of rows
but rather on the number of distinct ranks, which remains constant
since the number of attributes and their cardinality do not change.

4.2 Number of Attributes
Figure 6 shows the average query execution time as the number
of attributes increases. For this experiment, rNCB is built using
5 attributes per partition. As can be seen, both approaches grow
linearly but the slope of rNCB is smaller than FastBit.

4.3 Attribute Cardinality
Figure 7 shows the average query execution time as the cardinality
increases. rNCB performs considerably faster than FastBit for all
distributions. It is worth noting that depending on the cardinality
rNCB is using 1 or 2 partitions. For UNI and Zipf1, two partitions

are created after cardinality 20 and 30, respectively. For Zipf2, the
number of distinct ranks never violates the partition constraint and
therefore only one partition is used for Zipf2 for all cardinalities.
The number of distinct ranks in the dataset for the three distribu-
tions is presented in Table 2.

4.4 Number of Distinct Ranks
Figure 8 shows the average query execution time as the number
of distinct ranks in the EB increases. As can be seen, the execu-
tion time is linear to the number of distinct ranks when the EB is
stored as a rankList, however, when the EB is stored as a WAH
compressed bitmap the query execution increases until the EB is
not compressible and then stabilizes. Recall that we only compress
the zeros in the EB.

4.5 Number of Segments
Figure 9 shows the average query execution time as the number of
horizontal partitions (segments) used to create the rNCB increases.
Partitions are built with 1M, 500K, 250K, 200K, 125K, and 100K
rows, to produce 1, 2, 4, 5, 8, and 10 segments, respectively. As
can be seen, the execution time is linear with respect to the number
of segments.

4.6 rNCB Performance over Real Datasets
Figure 10 presents the average query execution time as the num-
ber of queried attributes increases for real datasets. For these ex-
periments, query attributes are selected in the same order of the
dataset attributes. For example, query dimensionality 2 means the
first two attributes of the dataset are queried. In general, the exe-
cution time of rNCB decreases as query dimensionality increases
because queries are executed row-wise and the answer is returned
as soon as one query condition is not satisfied. Since two parti-
tions are used for each dataset, when the query ask for the first 8
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Figure 14: Execution of range queries with varying percentage of attribute cardinalities queried for Sorted Secondary Bitmaps (SSB)
and ranked Non-Clustered Bitmaps (rNCB).

(a) (b) (c) (d)

Figure 15: Index Size Comparison for FastBit, Sorted FastBit and rNCB for real datasets.

attributes, for Adult data for example, there is a sudden increase
in query execution time. The reason is that partitions are built us-
ing 7 attributes for Adult data and therefore, when a query asks
for 8 attributes there is an extra cost of translating two bitmaps and
ANDing them together to produce the final answer.

Figure 11 presents the same set of experiments with the only dis-
tinction that the attributes are randomly selected from the dataset.
In this case a query with dimensionality of 2 can query any two
attributes in the data, including two attributes from different par-
titions. As can be seen, when comparing the two graphs, earlier
columns in the sorting order have a slight advantage in query exe-
cution time over latter columns. Nevertheless, the execution time
continues to be consistently faster than FastBit.

Figure 12 shows the query execution time of range queries when
the percentage of cardinality queried is increased from 10 to 50%.
rNCB execution time is faster than FastBit for all four datasets.

4.7 Index Size
Figures 15 shows a comparison between the random ordered com-
pressed bitmaps (FastBit), the sorted compressed bitmaps (FastBit
Sorted) and rNCB for the real datasets. The rNCB size is also pre-
sented for each component: the EBs and the MTs for each partition.
As can be seen, the rNCB size is completely dominated by the size
of the mapping tables and in most cases the rNCB size is worse than
the ordered WAH compressed bitmaps (FastBit Sorted) but better
than the total size of random ordered WAH compressed bitmaps.

Table 3, shows the effect of vertical partition on the size of the full
bitmap table. By creating 2 partitions, the size of the full bitmap
is not reduced by half, but rather by the product of the cardinali-
ties of the attributes involved. This is the reason why low number
of partitions satisfy the partition constraints that guarantee faster

query execution of rNCB when compared against random ordered
compressed bitmaps.

4.8 rNCB vs. Secondary Sorted Bitmaps (SSB)
With the following set of experiments we compare the performance
of rNCB against SSB, where the sorted bitmap columns are ex-
plicitly stored. To produce the effect of SSB, we partitioned each
dataset using the same partitions than rNCB. Then we sorted the
data physically and used FastBit to create WAH compressed bitmaps
over this dataset. For the experiments, we do not use queries involv-
ing attributes across partitions. We ran the same set of queries for
rNCB and SSB and compared execution time.

Figure 13 shows the query execution time of point queries with
varying dimensionality for SSB and rNCB. For this experiment we
ran point queries with dimensionality ranging from 1 to the number
of attributes in the partition. We ran queries over the two partitions
and averaged the running times. As can be seen, rNCB performs
better than SSB because there is no redundancy in the EB.

Figure 14 shows the query execution time of range queries with
varying percentage of cardinality queried. Again, both techniques
show the same trend but rNCB performs consistently faster than
SSB.

In Table 4 we compare the sizes (in KB) of the two approaches.
The reported sizes are only for the EB of rNCB and the bitmap
columns of SSB, mapping table sizes are omitted since it would
be the same for both approaches. As can be seen the EB compact
representation is more space efficient than the compressed bitmaps,
even when they are sorted.

Another advantage of rNCB over SSB is the update performance.
While SSB needs to update several bitmap columns, sometimes all
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Whole Dataset rNCB (P=2) (Aggregated)
Dataset Rows Bn log2Bn Distinct Ranks Possible Ranks Distinct Ranks EB Size (KB)
HEP 2,173,762 505,107,472,320 39 353,889 2,180,178 12,063 30.51
Adult 48,842 148,142,131,200 38 24,057 2,245,320 9,345 24.2
Nursery 12,960 115,200 17 12,960 792 294 0.35
Poker 1,025,010 380,204,032 29 1,022,771 45,968 45,084 5.99

Table 3: Size statistics for real datasets and rNCB with two partitions.

of the bitmap columns, rNCB only needs to update one bitmap, the
EB. Moreover, if the rank being inserted is already set in the EB,
then only the mapping table structure needs to be updated.

5. CONCLUSION
In this paper we propose a novel bitmap index design with vertical
and horizontal partitioning that serves as basis for non-clustered
bitmap indexes. As opposed to traditional bitmap indexes, where
one bitmap column is stored for each attribute value and each tu-
ple is represented by one bit in each bitmap, the proposed scheme
generates only one bitmap column for a set of attributes (partition)
to encode the rank of the tuples in the full sorted bitmap table. The
full sorted bitmap table is not stored, but rather logically queried
using the rank of the tuples. The proposed approach is compared
against Sorted Secondary Bitmap Indexes, Sorted Clustered Bitmap
Indexes, and FastBit, a recent bitmap index implementation. Ex-
periments show that query execution time is greatly reduced when
rNCB is used.

One positive side effect of having only one EB per partition as op-
posed to one bitmap per column in the partition is that the update
cost is greatly reduced. In sorted secondary bitmaps, in addition
to updating the mapping table, the bitmap indexes need to be re-
built with every update or batch update as the insertion of a new
bit in the middle of the bitmap would shift the bit positions and the
alignment of the words would no longer be valid. In rNCB, the EB
is stored as a WAH compressed bitmap on the ranks. In the case
when the rank of the new tuple is already in the partition only the
mapping table needs to be updated. And even in the case when the
rank of the tuple is new and the word for the rank is compressed in
the EB, we would break the run and increase the size of the EB at
most 3 words. Rebuilds can be avoided because the bit position for
the rank is already in the EB.
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