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ABSTRACT
Large language models (LLMs) have demonstrated remarkable
performance on several question-answering (QA) tasks because
of their superior capabilities in natural language understand-
ing and generation. On the other hand, due to poor reasoning
capacity, outdated or lack of domain knowledge, expensive re-
training costs, and limited context lengths of LLMs, LLM-based
QA methods struggle with complex QA tasks such as multi-hop
QAs and long-context QAs. Knowledge graphs (KGs) store graph-
based structured knowledge which are effective for reasoning
and interpretability since KGs accumulate and convey explicit
relationships-based factual and domain-specific knowledge from
the real world. To address the challenges and limitations of LLM-
based QA, several research works that unify LLMs+KGs for QA
have been proposed recently. This tutorial aims to furnish an
overview of the state-of-the-art advances in unifying LLMs with
KGs for QA, by categorizing them into three groups according
to the roles of KGs when unifying with LLMs: (1) KGs as back-
ground knowledge, (2) KGs as reasoning guidelines, (3) KGs as
refiners and validators. The metrics and benchmarking datasets
for evaluating the methods of LLMs+KGs for QA are presented,
and domain-specific industry applications and demonstrations
will be showcased. The open challenges are summarized and the
opportunities for data management are highlighted.

1 MOTIVATION AND RELEVANCE
Question answering (QA) is essential in natural language process-
ing, machine learning, information retrieval, and data manage-
ment areas with a wide range of applications such as web search,
open-domain QA, text and knowledge base querying, fact check-
ing, customer service assistants, and chatbots, among others.
The recent pre-trained language models (PLMs) and LLMs have
shown strong performance in QA tasks, but they are incapable
of handling complex QA due to their limited reasoning ability,
lack of up-to-date or domain knowledge, and hallucination of
LLMs. To address the challenges and limitations of LLM-based
QA methods in complex QA, the roadmap of unifying LLMs with
KGs for knowledge-intensive tasks is proposed [35]. Considering
the popularity and mainstream adoptions of both LLMs and KGs
and due to the wide applications of QA including query pro-
cessing over databases [38], our tutorial is timely and relevant.
This tutorial is intended for participants working in the broader
area of LLMs, KGs, graph learning, information retrieval, and
knowledge-augmented models from both academia and industry.
Why EDBT. The EDBT conference is an established and pres-
tigious forum for the exchange of the latest research results in
data management as well as for extending database technology.
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LLMs have emerged as a significant research topic within the
data management and data science community, as evident by
recent SIGMOD and VLDB keynotes, panels, tutorials, and work-
shops [6, 21, 24], Generative AI Day (KDD 24), LLM Day (WWW
24), etc. Our tutorial on unifying LLMs + KGs for QA emphasizes
advanced datamanagement techniques and integration strategies,
making it highly relevant and beneficial to the interdisciplinary
and broader data science research community.

2 TUTORIAL OUTLINE
This is a lecture-style tutorial, accompanied by discussions on
domain-specific applications and demonstrations from industry.
The outline of our tutorial is given below.
1. Introduction

1.1 Motivation of QA
1.2 Large Language Models for QA
1.3 Knowledge Graphs for QA
1.4 Overview of Unifying LLMs+KGs

2. Unifying LLMs with KGs for QA
2.1 KGs as Background Knowledge
2.2 KGs as Reasoning Guidelines
2.3 KGs as Refiners and Validators

3. Advanced Topics on LLM+KG for QA
3.1 Natural Language Questions to Structured Queries
3.2 Explainable QA
3.3 Optimization and Efficiency

4. Evaluations and Applications
4.1 Performance Metrics
4.2 Benchmark Datasets
4.3 Industry Applications and Demonstrations

5. Future Directions
5.1 Opportunities for Data Management
5.2 Future Directions

The materials including covered papers, pointers to open-
source codebase, datasets, and demonstrations are available on
GitHub1 for public access.

3 DESCRIPTION OF TOPICS
We categorize the methodology of unifying LLMs and KGs for
QA tasks into different paradigms based on the role of KGs. Due
to the lack of space, we only refer to the most relevant papers.
However, this is not an exhaustive list of papers that are related
and will be discussed during the tutorial.
3.1 KG as Background Knowledge
When KGs are used as background knowledge to enhance LLMs
for QA, the questions are parsed to identify the relevant sub-
graphs from KGs, then they are integrated with LLMs based on
knowledge fusion and retrieval-augmented generation (RAG).
Knowledge Integration and Fusion. Knowledge integration
and fusion aims to enhance LLMs by integrating unknown knowl-
edge into LLMs for knowledge-intensive tasks. In the phase of
pre-training, the KGs and text are aligned (via local subgraph

1https://github.com/machuangtao/LLM-KG4QA
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extraction and entity linking) and interacted to jointly train the
language models for complex QA tasks [50]. To address knowl-
edge forgetting during knowledge integration, InfuserKI [44]
introduces the adaptive selection of the new knowledge that is in-
tegrated with LLMs. Fine-tuning LLMswith input text and knowl-
edge graphs is another paradigm, as it can refine and improve
their performance on domain-specified tasks. KG-Adapter [43]
improves parameter-efficient fine-tuning of LLMs by introduc-
ing a knowledge adaptation layer to LLMs. GAIL [55] fine-tunes
LLMs for lightweight KGQA models based on retrieved SPARQL-
question pairs from KGs.
Retrieval Augmented Generation (RAG). RAG serves as a
retrieval mechanism to retrieve relevant knowledge from the
domain-specific knowledge organized in the form of text chunks,
and augments the capability of LLMs by integrating the retrieved
context with LLMs. However, the mainstream RAG methods
retrieve the relevant knowledge from the embeddings of tex-
tual chunks, which ignores the structured information and inter-
relations of these textual chunks. To mitigate this limitation,
Graph RAG [16, 26] is proposed. Instead of retrieving the knowl-
edge from textual chunks, Graph RAG directly retrieves the rele-
vant knowledge from graph data. Then it integrates the retrieved
and pruned textual subgraphs with query by aggregating and
aligning the graph embeddings with text vectors based on Graph
Neural Networks (GNNs).

3.2 KGs as Reasoning Guidelines
KGs can serve as guidelines to LLMs for QA by providing struc-
tured factual knowledge. By integrating KGs, LLMs can access
precise information and logical connections between concepts,
thereby enhancing their ability to provide accurate and contextu-
ally relevant answers. Recent methods for integrating KG guide-
lines into LLM reasoning can be classified into three categories.
Offline KG Guidelines. In this paradigm, KG supplies poten-
tial subgraphs before the reasoning process of LLM. Then LLM
selects the most relevant path for reasoning based on its existing
knowledge. EtD [27] uses a lightweight GNN to extract fine-
grained knowledge for creating knowledge-enhanced prompts,
guiding a frozen LLM to determine answers. Recent studies have
been exploring the application of novel formats of guidelines.
GCR [32] transforms a KG into a KG-Trie for efficient reason-
ing path search and employs graph-constrained decoding with a
specialized LLM to generate reasoning paths and answers.
Online KG Guidelines. This paradigm emphasizes that the
guidance of the KG is directly involved in the reasoning process
of LLMs. In each reasoning step, LLM needs to first retrieve the
necessary knowledge from the KG and then makes a decision for
the next step based on the retrieved knowledge. Oreo [17] uses
contextualized random walks on KGs for single-step reasoning.
LLM-ARK [19] treats reasoning as sequential decision-making
optimized via Proximal Policy Optimization (PPO). ToG [39] en-
ables LLMs to iteratively perform beam search on KGs to identify
optimal reasoning paths and outcomes.
Agent-based KG Guidelines. KGs can also be integrated into
the reasoning processes of LLMs as a component within an Agent.
This integration allows the Agent to leverage structured knowl-
edge for enhanced decision-making and problem-solving capabil-
ities. KG-Agent [22] integrates LLM as a multifunctional toolbox
with a KG-based executor and a knowledge memory system.
It develops an iterative mechanism that autonomously selects
tools and updates the memory to enhance reasoning over KGs.
ODA [40] incorporates KG reasoning capabilities through a global

observation approach, which improves reasoning abilities by em-
ploying a cyclical paradigm of observation, action, and reflection.

3.3 KGs as Refiners and Validators
KGs can enhance LLMs in QA tasks by serving as refiners and
validators, providing structured knowledge to verify answers
against factual knowledge. This integration helps filter and refine
responses to improve precision and contextual relevance.
KG-Driven Filtering and Validation. KGs enhance the ac-
curacy and reliability of LLM outputs by filtering and validat-
ing candidate answers through structured and verified informa-
tion. For instance, ACT-Selection [37] filters and re-ranks answer
candidates based on their types extracted from Wikidata. KGs
contribute to improving factual accuracy, as demonstrated by
KG-Rank [49], which integrates medical KGs with re-ranking
techniques to increase the credibility of generated responses.
Moreover, KGR [11] autonomously extracts and validates factual
statements in model outputs, significantly boosting performance
on factual QA benchmarks.
KG-Augmented Output Refinement. KGs are essential for
enhancing the outputs of LLMs by integrating structured knowl-
edge that enables LLMs to refine their responses for greater
clarity and accuracy. EFSUM [25] optimizes an open-source LLM
as a fact summarizer to generate relevant summaries from KGs,
thereby improving performance in zero-shot QA. InteractiveK-
BQA [47] facilitates iterative interactions with the knowledge
base, enabling LLMs to generate logical forms and refine outputs
based on user feedback. Additionally, LPKG [45] improves the
planning capabilities of LLMs by fine-tuning them with plan-
ning data derived from KGs, thus enabling more sophisticated
reasoning in complex QA.

3.4 Advanced Topics
Recent advancements in unifying LLMs and KGs for QA have
been applied to areas, e.g., explainable QA [9], visual QA [5], QA
over multiple documents [46], and conversational QA [28]. How-
ever, these approaches face bottlenecks such as low efficiency
and high computational costs due to large-scale graph reasoning
and the processing of heterogeneous multi-modal data. To tackle
these challenges, optimization techniques, e.g., index-based opti-
mization [52], prompting-based optimization [46], and cost-based
optimizations [4] have been introduced, significantly improving
performance and scalability.

3.5 Evaluations and Applications
Metrics and Dataset. We summarize the evaluation metrics in
unifying LLMs with KGs for QA: (1) the metrics measuring the
retrieval of RAG, context relevance, precision, context recall [51];
(2) the metrics measuring the relevance of the generated an-
swers, BERTScore and MRR (Mean Reciprocal Rank) [36], faith-
fulness, answer relevance, and context relevance [7]; (3) the met-
rics measuring the correctness of intermediate reasoning path for
multi-hop QA, Hop-Acc [10]. The recent benchmark datasets are:
(1) Complex QA – PATQA[33], MINTQA [14], MedQA [23]; (2)
KBQA and KGQA –WebQSP [42], CAQA[15], CR-LT KGQA [13];
(3) LLM and KGs for QA – KGs+LLMs for QA [38], XplainLLM[2],
LLM-KG-Bench [34].
Industrial Applications. We demonstrate domain-specified
applications from industry in unifying LLMs+KGs for QA: (1)
KAG (by Antgroup)2 is a newly released domain-knowledge aug-
mented generation framework that leverages KGs and vector re-
trieval to bi-directionally enhance LLMs for knowledge-intensive
tasks such as QA for e-government and e-health; (2) Graph RAG
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(by NebulaGraph)3 is an industrial demo of Graph RAG inte-
grating NLP2Cypher-based KG query engine, vector RAG query
engine, and Graph vector RAG query engine.

3.6 Opportunities for Data Management
The unification of LLMs and KGs provides exciting data manage-
ment research opportunities across multiple dimensions.
NLQ to Structured Query. Using KGs and ontology/schema,
LLMs can enable accurate conversion of natural language queries
(NLQ) into structured graph queries (e.g., SPARQL and Cypher)
by leveraging structured knowledge understanding [12, 31].
Efficient and Explainable RAG. KGs offer structured and re-
liable information, enabling efficient retrieval and accurate rea-
soning for LLMs [20]. They enhance explainability by linking
generated answers to explicit KG relationships, reduce hallucina-
tions, and support domain-specific or personalized use cases.
Knowledge Alignment and Dynamic Integration. Knowl-
edge alignment between KGs and LLMs is a critical challenge
since knowledge overlap and conflicts occur when integrating
new knowledge frommultimodal and multiple sources into LLMs
[3, 41]. In addition to knowledge conflicts, incremental updates
to KGs and dynamic integration with LLMs are essential for
ensuring up-to-date knowledge integration.
Automated Prompt Engineering. Structured knowledge can
be extracted from KGs, prompts can be generated using multi-
view templates, and they can be optimized through bias detection
and feedback loops. This workflow includes querying KGs, dy-
namically generating prompts [54], iteratively optimizing them,
and evaluating their fairness and quality.
Roles of Vector and Graph Databases. Leveraging vector DBs
for graph RAG creates new challenges and opportunities such as
combining graph DBs with vector DBs [30], optimizing the index
creation and similarity search over large-scale graph embeddings,
multi-vector search, and hardware acceleration.

3.7 Challenges and Future Directions
We conclude by discussing open challenges and future roadmap.
Effectiveness and Efficiency of Subgraph Retrieval. The
efficiency of relevant subgraphs extraction and retrieval is a
challenging task since the KGs cannot be integrated and fused
with LLMs directly. This is because knowledge graphs usually
are large-scale graphs and the context length of LLM is limited.
Security and Privacy. With the unification of domain-specific
KGs in QA, privacy and security concerns naturally arise. It is
important to integrate privacy-preserving techniques and access
control policies to ensure that the retrieved information is autho-
rized and to maintain the confidentiality of sensitive information.
Explainable and Fairness-Aware QA. The explainable answers
for QA are mainly based on the reasoning chains over the fac-
tual graph, while the low efficiency and high computing cost
of iterative reasoning over the large graph remain challenging.
The Graph RAG enhances the explainability of LLM responses
by tracing relevant subgraphs within KGs, while also having the
potential to rectify undesired biases.
Other Data Science Applications. The combination of LLMs
and KGs leverages LLMs’ natural language understanding and
KGs’ structured knowledge to enhance applications like person-
alized recommendations, customer service [48], accurate medical
diagnostics, and financial decision-making, which enables more
intelligent and knowledge-rich solutions across domains.
2https://github.com/OpenSPG/KAG
3https://github.com/wey-gu/demo-kg-build

4 RELATED TUTORIALS
The related tutorials are summarized below.

• QA, LLMs, and KGs. The relevant existing tutorials on QA [1],
LLMs [53], and KGs [29] are mainly focused on open-domain
question answering, KG reasoning, and LLMs for recommenda-
tions. Unlike these tutorials, our tutorial focuses on the state-
of-the-art in unifying LLMs+KGs for knowledge-intensive QA.

• LLMs+Graphs (KGs) and RAG. Several tutorials on LLMs
and graphs [18], LLMs and RAG [8] have been presented to
introduce the paradigms of integrating LLMs with RAG.

Our tutorial differs from the above tutorials since we discuss the
recent advances and directions in unifying LLMs+KGs for QA
and emphasize the opportunities for data management.
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