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ABSTRACT
OpenData authors often supplement their data sets with attribute
metadata described in CSV files. However, authors rarely adhere
to common metadata publishing standards. This makes consum-
ing such metadata more difficult, for example, when trying to
use them to integrate tables from different sources. In this work,
we highlight the novel problem of metadata unification. We first
formulate attribute metadata unification in Open Data, and show
that classic schema matching techniques meant for matching
data tables perform poorly in this setting. Next, we propose a uni-
fied model for Open Data attribute metadata. Finally, we describe
Gnomon, a strong baseline approach for metadata unification.
We manually annotate 218 files split for development and test,
and show that Gnomon is 31-32 percentage points more accu-
rate than standard schema matching approaches. We are making
available both Gnomon and the metadata unification data set as
open source.

1 INTRODUCTION
Data published in Open Data repositories are often accompanied
by supplementary author-curated documentationwith the goal of
providing data consumers with the information necessary to un-
derstand and use it. This carefully curated documentation often
describes what is known as tribal knowledge or business meta-
data, such as intended usage, context, collection methodologies,
semantics of attributes, as well as value formatting, domains, and
data types. Rich, standardized metadata has several benefits. Dig-
ital repositories rely on metadata for effective search [40]. Data
consumers rely on metadata for effective and efficient decision-
making, minimizing misinterpretation or data misuse [31].

Several community standards for Open Data metadata have
been proposed. DCAT [45] supports metadata at a data set gran-
ularity, while Schema.org [39] provides a basic set of limited
metadata properties that can be used to describe attributes of
data. The W3C has proposed annotations at attribute granular-
ity [10], The Data Documentation Initiative [43] is a metadata
standard developed for the description of data from social, be-
havioral, and economic sciences. Finally, Frictionless Data [20]
provides a lightweight specification for data packaging and meta-
data, primarily targeting data interoperability. In practice, how-
ever, authors of Open Data documentation often do not adhere
to common metadata publishing standards [22]. Instead, they
publish tabular documentation in ad-hoc, mutually-inconsistent
schemas.

This diversity forces consumers to explore data sets manually
on a case-by-case basis to benefit from metadata described in ta-
ble documentation files. Several approaches have been proposed
to avoid such tedious manual work. Schema matching approaches
have previously been used to unify disparate data sources, and
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could be used to convert documentation into unified metadata.
As we show in Figure 3, popular baseline approaches for general
schema matching perform poorly in this setting. Approaches like
Cupid [29] are designed to apply to hierarchical XML schemas,
rather than a single flat table. Distribution-based approaches like
Zhang et al. [47] and COMA[13, 14] were designed for tables con-
taining data as opposed to metadata. Data tables are often large
and follow a consistent form: multiple columns, each comprised
of a header followed by lots of data of the same type and seman-
tics. In addition, column semantics in data tables are typically
well distinguishable. Those implicit assumptions do not hold for
documentation tables, which aim to describe metadata. These are
much smaller and less consistent: authors take liberties with value
formatting within columns, and values are frequently free-form
text. In addition, documentation fields frequently describe se-
mantically similar concepts, making it challenging to distinguish
the correct mapping to a unifying metadata model for methods
like Similarity Flooding [30] or JaccardLevenshtein[23] (see Sec-
tion 5 for per-method analysis). Many approaches for search
and integration rely on metadata generation [1, 4–8, 11, 18, 23–
28, 33, 41, 42, 48, 49], ignoring the existing carefully curated
documentation. Finally, ontological alignment [3] works to align
large, formal ontologies to improve matching. Ontologies, how-
ever, tend to have complex hierarchical structures, are rigorously
defined, and are usually large. In contrast, the attribute metadata
schemas we have observed in Open Data repositories are not
formal ontologies. They are small, flat, and very loosely defined,
with fields that can have overlapping semantics.

In summary, existing approaches are a poor match for the
particular problem of using author-curated metadata from Open
Data repositories: metadata generation simply ignores it, onto-
logical alignment was not designed for it, and schema matching
performs poorly due to the metadata’s unique characteristics.
Our Contributions: In this paper, we identify the metadata
unification problem – unifying author-curated attribute metadata
in documentation files from Open Data portals, propose a strong
baseline method to address it, and provide a data set for future
researchers to expand on. Specifically, our contributions are:

(1) We formulate the problem of attributemetadata unification
in Open Data documentation as a variant of schemamatch-
ing, and show that classic schema matching approaches
perform poorly in this setting.

(2) We define a formal metadata model for unifying diverse
Open Data documentation curated by data authors.

(3) We proposeGnomon, a fast, simple, and easy-to-implement
baseline approach for metadata unification based on clas-
sification followed by bipartite graph optimization.

(4) We collect 218 Open Data documentation CSV files, and
annotate them with mappings to our metadata model. To
our knowledge, this is the first data set for metadata unifi-
cation.

(5) We show thatGnomon outperforms popular schemamatch-
ingmethods for the problem of unifying attributemetadata
from Open CSV documentation files.
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We have open sourced both Gnomon and the data set.1

2 THE METADATA UNIFICATION PROBLEM
Metadata refers to descriptive information about data, such as at-
tributes, properties, tags, labels, and other contextual details that
help describe and organize the data. We define metadata unifica-
tion as the process of standardizing and consolidating metadata
from different sources and formats into a single consistent model.
Metadata unification can be challenging due to the heterogeneity
of metadata schemas and conventions used in practice in author-
curated Open Data attribute documentation. We thus identify
the need for a standard metadata schema that adequately covers
documentation requirements. In addition, we propose methods
for unifying the documentation published under that common
model so that it can be accessed with standard set-oriented tools
and processes.

Throughout this work, we use the term field to refer to prop-
erties of the unifying metadata model, attribute to refer to the
vertical components of a data table, and column to refer to the
vertical components of a documentation table (which may be
associated with a metadata field). The main step in the meta-
data unification problem is the semantic mapping of columns in
author-curated documentation tables to the fields of a metadata
model. This step is necessary to collect documentation instances
from informally structured tables and persist them in a unified
metadata format.

Metadata unification can be considered an instance of schema
matching, with constraints. Schema matching [13, 29, 30, 36] is
the problem of finding the confidence in a semantic correspon-
dence between elements of different schemas. These techniques
provide a final mapping at the end of the schema matching pro-
cess, a specific assignment of elements from a source schema
to elements of a target schema. Unfortunately, as we show in
Section 5, existing schema matching approaches perform poorly
for metadata unification.

We thus identify two problems for metadata unification. First,
defining a suitable targetmodel𝑇 for unifyingmetadata described
in Open Data documentation tables (i.e., a standardized set of
fields for describing the content in such tables. We address this
problem in Section 3. Second, finding a “good” partial map from
columns of a source documentation table 𝑆 to 𝑇 , i.e., a partial
function that maps each column 𝑠𝑖 to the correct metadata field
𝑡 𝑗 (including the helper field UNMAPPED). We address this problem
in Section 4.

3 DATA SETS AND MODEL
To create a formal model for metadata unification, we first need
to know what metadata look like. In our research, we focus on
English documentation in CSV tables and limit the scope of this
work to Open Data documentation tables that describe data at-
tributes with no nesting (i.e., each row in a table describes a
data attribute), which are by far the most common. We isolated
documentation files by conducting a search on filenames for
the terms ‘documentation’, ‘metadata’, ‘dictionary’, and
‘guide’. We developed and used a user interface to annotate
mappings of columns to our proposed metadata model. We are
unaware of a previously annotated data set for the task of uni-
fying tabular metadata published in Open CSV. To develop and
evaluate our metadata unification approach, we annotated at-
tribute documentation tables in 218 English language Open CSV
1https://github.com/cchristodoulaki/gnomon

Table 1: Attribute metadata schema

Name Description

dataset The name of the file the described attribute exists in.
name [mandatory] The attribute name, as seen in the data table.
title A human-readable version of the attribute name.
definition A text description of the attribute, may include context.
datatype Specifies which type of value the attribute can have.
scale For numeric attributes, the multiplier (e.g., millions).
format A definition of the structure of data (e.g., ‘YYYY-MM-DD’).
unit The unit of the associated values (e.g., meters, KWh).
key An indication that the attribute is a primary key.
nullable An indication that an attribute value is or isn’t mandatory.
schema Name/URL of an existing schema the attribute belongs to.
examples Sampled values from the attribute domain.
notes Text with miscellaneous extra information.

files randomly sampled from 6 Open Data repositories in Canada,
Australia, and the UK.

3.1 Attribute Metadata Model
To design a unifying model for Open Data metadata, we assigned
50 files to a development data set OpenData-Dev (see details in
Section 3.2). Based on our analysis of the documentation tables in
OpenData-Dev, we define the metadata model seen in Table 1 to
unify the commonly seen attribute metadata. Our model reuses
and extends Frictionless Data fields [20] and extends the JSON
annotations for CSV tables introduced by Pytheas [9] inspired
by the W3C CSV on the Web Working Group [10]. Annotations
can be converted to RDF. We focus on fields that we believe
will be useful in downstream applications, such as search and
integration.

Not all fields are equally common. We always observe a col-
umn corresponding to the name attribute metadata field, which
is unsurprising as consumers need to know which data attribute
is described by the extracted metadata object. The columns cor-
responding to the metadata field definition are seen more
frequently than title, but we sometimes observe both fields
mapped to attributes in the same documentation table. We did
not observe isolated columns corresponding to scale, units,
and format in our development data set. However, we frequently
observed documentation on scale and units embedded in the
headers of the data table or the table context (this characteristic
was also identified by Yi et al. [46]). We also observed that format
information frequently occurs as a subset of information found
in columns that map to fields definition or examples. We have
added scale, unit, and format fields to our metadata model to
support future work similar to Yi et al.

3.2 Annotated Data Sets
As annotating mappings from source tables to the target meta-
data model can be subjective, our performance metrics account
for subjectivity in ground truth (Section 5.1). Moreover, we de-
veloped rules to ensure consistency: First, the name label must
be used once and only once per table. Second, if the annotator
judges that multiple columns could be mapped to a single tar-
get field, the most descriptive source column is selected for the
mapping (e.g., in a table with columns schema, schema rules,
and schema comments, only the schema column is mapped to
the target field schema; the remaining two are unmapped). Third,
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the column with text values containing the most descriptive at-
tribute semantics is assigned to the metadata field definition.
If a shorter description exists, it is assigned to the field title.
Finally, a column describing the domain values or formatting
instructions for the attribute is assigned to examples.

OpenData-Dev (Dev) contains 50 documentation files and
was used in the development of our approach. The data set con-
tains 681 attribute metadata instances and a total of 280 columns.
There are 2–12 columns per table (6 on average), 2 unique-value
columns per table on average, with 88% text and 12% numeric
columns. Ground Truth annotation produced 204 mappings be-
tween the columns of the documentation table and the fields of
the unified model (the remaining 76 were labeled UNMAPPED). The
top 3 most common fields are name, definition and datatype.
We observed 11 different variations of column names that were
assigned to the metadata field name, 6 for datatype and 4 for
definition – making them the most difficult to match. The re-
maining fields showed relatively little diversity in matches in our
development sample.

After we finished Gnomon’s development and finalized the
feature set (see Section 5.2) using Dev, we manually annotated
an additional set of 168 CSV documentation files, OpenData-
Test (Test), using the same procedure as in Dev to create our
test data set. As expected, this data set has a distribution similar
to that seen in Dev. The data set was annotated only after our
techniques were fully developed to avoid bias and was used to
report the accuracy of our methods. The tables contain 2034
attribute metadata instances and a total of 913 columns with
2–13 columns per table (5 on average), 2 unique-valued columns
per table on average, with 90% text, and 10% numeric columns. In
total, 664 columns were assigned to fields of the metadata model.
The top 3 fields continue to participate in most of the mappings
and show even greater diversity in the names of mapped source
columns. The Jaccard coefficient of column names in Dev and
Test is 0.49, showing significant overlap.

4 METADATA UNIFICATIONWITH
GNOMON

With a well-defined metadata model as the target schema, we
propose Gnomon, a two-phase schema-matching approach com-
prised of (1) a column classification step to discover <source
column, target field> matches and (2) a schema alignment step
for enforcing mapping constraints.

In detail, the process is as follows. We identify table elements
in Open Data files with Pytheas [9] and isolate documentation
tables. We process documentation tables by extracting features
from the table columns. We use column features to quantify
the match of the columns of each documentation table with
each field of the metadata model in a schema matching step
using classification. Finally, we use a bipartite graph matching
technique to enforce mapping constraints in an alignment step,
producing a final mapping.

We note that Gnomon is a combination of well-known tech-
niques. We envision it as a strong baseline for future researchers:
it is fast, accurate, easy to understand and implement, and pro-
vides a substantial improvement over popular prior work.

4.1 Column Features for Classification
For the classification step in the Gnomon pipeline, shown in
Figure 1, we must first extract features for each column, which

Table 2: Final feature set used in Gnomon.

Source Type Description Datatype

header

lexical TF-IDF vector float vector

structure

column index int
character count in value int
token count in value int
value is upper case text boolean
value is lower case text boolean

values lexical TF-IDF vector float vector

header

values
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Figure 1: Gnomon classification step. We extract features
from the header and values of a column, then use an en-
semble of classifiers to assign a probability for each target
field.

we source from both column headers and column values. From
each source, we consider two feature categories (see Table 2).

To produce lexical features we first normalize each column’s
header or text with a series of pre-processing steps: (1) Remove
punctuation and trailing white space; (2) Split camelCase text
and convert all text to lowercase; (3) Convert all text words to
lemmas using spaCy[19]; and (4) Replace consecutive digits with
‘__NUMBER__’. We then generate two vectors of term frequency-
inverse document frequency (TF-IDF) from the normalized text in
each column header and its concatenated values. TF-IDF [37, 38]
is a common term weighting scheme in information retrieval
that has also found good use in document classification. We also
considered a version of Gnomon with pre-trained GloVE [35]
word embeddings. Our evaluation (Section 5) suggest it does not
improve over TF-IDF.

To produce structural features (i.e., surface properties of text
structure that do not capture meaning), we process the header
and values of each column using the original text and compute
features such as the length of text, the presence of nulls, the
uniqueness of values, and the text case. Table 2 lists features
that were used in the final configuration, omitting 16 structural
features derived from column values that were not found to
improve performance. We first compute lexical and structural
features separately (normalizing text for lexical features with a
pre-processing step). For classifiers using both feature types, we
concatenate lexical features with scaled structural features (see
Figure 1).

4.2 Classification
We treat the assignment of edge weights 𝑤𝑖 as a multinomial
classification problem: given the target metadata field names as
distinct labels 𝑐1, ..., 𝑐𝑛 plus a label 𝑐𝑛+1 =UNMAPPED, we assign
each source column 𝑠 a probability 𝑝 (𝑠 = 𝑐𝑖 ) of being classified
with each available label. We train a classifier 𝐿 on a set of train-
ing examples (𝑥1, 𝑐𝑖,1), ..., (𝑥𝑚, 𝑐𝑖,𝑚), where 𝑥 𝑗 is the vector of
features extracted from column 𝑗 of a documentation table, and
𝑐𝑖, 𝑗 is the observed mapping of that column.
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S (Source) T (Target)

 p2,name   p2,definition  

 p2,datatype  

 p1,datatype  

 p3,name  
  
p3,definition   

p3,UNMAPPED

  

[1, 1]

[0, 2]

[0, 1]

[0, 1]

[1, 1]

[1, 1]

[1, 1]

name

definition

UNMAPPED

s1

s2

s3

 p1,definition 

 p1,name     

 p2,UNMAPPED   
 p1,UNMAPPED   p3,datatype  

datatype

Figure 2: Example mapping three columns 𝑆 = 𝑠1, 𝑠2, 𝑠3 to
|𝑇 | − 1 fields of a simplified metadata model, shown as a
weighted bipartite graph with weights per edge and vertex
capacities with lower and upper bounds per vertex.

We initially observed that different classifiers were better at
predicting specific classes. Inspired by previous work on schema
reconciliation [15], we designGnomon as a stacking classifier [44]:
an ensemble learning approach that combines multiple base clas-
sifiers (learners) to improve predictive performance. Stacking can
potentially capture patterns and relationships that may not be
obvious to individual base classifiers. Our evaluation (Section 5.2)
found that in practice the advantage of stacking is modest.

Gnomon uses Logistic Regression as a meta-estimator with
balanced class weights on the predictions made by base classifiers.
Since our classification problem is a multi-class problem, we use
a One-vs-Rest strategy with multiple binary classifiers, one for
each class, where each classifier distinguishes between one class
and the rest [32]. We use Naive Bayes (NB), k-Nearest Neighbors
(kNN), and Random Forest (RF) as base classifiers in Gnomon.
We use OpenData-Dev to tune parameters (Section 5.2).

We use the annotated (𝑠𝑖 , 𝑡 𝑗 ) pairs (Section 3.2) to train the
base estimators, whose predictions are in-turn used to train the
meta-estimator. During inference, each base classifier predicts the
probability of the data being labeled with each class respectively.

4.3 Alignment for Constraint Satisfaction
A straightforward way of producing a mapping given discovered
matches would be to select the class prediction with the highest
probability for each source column, effectively assigning the best
match. However, this does not take into account mapping con-
straints. For example, that every schema mapping must include
one and only one mapping of a column to the name field, or that
at most one source column can be mapped to the datatype target
field.

We observed that for many source schemas the ground truth
mapping will be one-to-one (1-1) between elements in the source
and target schemas, e.g., VARIABLE→ name, however, other source
schemas may have more complex mappings of many-to-one (N-
1), such as when multiple source columns do not correspond
to a target field. Additionally, we know that one and only one
source column must map to the name target field. The best match
approach does not enforce such constraints.

Becausemany documentation columnsmay remain unmapped
to the metadata model, our classifiers support this with the addi-
tional label UNMAPPED; for clarity, we assume the set 𝑇 includes
this label. The corresponding bipartite graph contains nodes cor-
responding to columns in the documentation table on the one
side and |𝑇 | − 1 nodes corresponding to metadata fields plus
an additional node corresponding to the UNMAPPED class on the
other. If more than one column of the documentation table is not
assigned to the model, this will result in multiple edges ending
at the UNMAPPED node. When nodes on one side of the bipartite

graph can be matched with more than one node on the other,
this is an instance of the weighted bipartite B-matching prob-
lem (WBbM) [21]. In a bipartite graph with weighted edges and
vertices with capacities of lower and upper bounds 𝑏𝑙 and 𝑏𝑢 ,
WBbM seeks alignment that maximizes total weight, allowing
any vertex 𝑖 to be matched at least 𝑏𝑙 (𝑖) and at most 𝑏𝑢 (𝑖) times
(see Figure 2). The edge weights 𝑤 : 𝐸 → 𝑅+ representing the
degree of similarity 𝑃 (𝑠, 𝑡) are computed for all possible edges in
the bipartite graph 𝐺 (𝑆,𝑇 , 𝐸). A valid mapping must not violate
cardinality constraints.

Based on our observations and model design, Gnomon en-
forces several mapping constraints in the second and final step
of schema matching, expressed as WBbM cardinality constraints.
First, attribute names must be unique in a table’s schema. At-
tribute documentation refers to the corresponding data attributes
by their name, making this field mandatory. Exactly one column
of an attribute documentation table (source) may be mapped
to the metadata name field (target). Second, there may exist up
to |𝑆 | − 1 columns in an attribute documentation table that do
not get matched to fields in the metadata model (only the name
field is a hard requirement in mapping). This is supported by the
UNMAPPED node and sets the upper bound of the incoming edges
to the node. Finally, there may exist up to |𝑇 | − 2 fields in the
metadata model for which no documentation column is mapped.
When mapping the columns 𝑆 of a source documentation table
to the |𝑇 | − 1 fields of the target unifying metadata model (or
designating them UNMAPPED), one and only one column of 𝑆 will
be mapped to the field ‘name’. The remaining |𝑆 | − 1 documen-
tation columns are not guaranteed to be assigned to a node in
the |𝑇 | − 1 metadata fields.

In summary, given the output of the classifier step, we define
a WBbM optimization problem, solve it, and use the resulting
mapping as the alignment solution.

5 EVALUATION
We design an experimental evaluation of methods for attribute
metadata unification, and compare Gnomon to popular schema
matching approaches. We implement Gnomon classifiers using
scikit-learn [34]. Our weighted bipartite b-matching (WBbM)
alignment solver is based on the implementation offered by Ah-
madi et al. [2]. We use the Valentine schema matching suite [23]
to measure the performance of popular matchers using default
values recommended by the API for method parameters.

We compare Gnomon to several baseline schema matching
methods implemented in the Valentine suite[23]. A baseline
matching approach with Jaccard-Levenshtein uses the column
values to discover mappings between columns of a source table to
a target table. The method outputs a ranked list of column pairs,
along with their respective similarity score. Other approaches
offered in the suite are Distribution-based matching [23, 47], Sim-
ilarity Flooding [23, 30], Cupid [23, 29], and COMA [13, 14, 23].
Such techniques were designed for schema matching of data ta-
bles, which tend to have more distinct semantics between source
columns compared to the application of metadata unification
observed in Open Data documentation. We also consider GloVe-
kNN , a baseline matcher which feeds pretrained GloVe word
embeddings [35] of headers and values into a kNN classifier, and
Gnomon-GloVe, a variant of Gnomon that replaces the TF-IDF
vectors (Section 4.1) with pretrained GloVe word embeddings.

With the exception of COMA, each approach can output multi-
ple potential matches from source columns to the target metadata
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model, each match with a corresponding match similarity. For
COMA, Valentine produces only the top match for each source
column. For columns for which no matches are returned (e.g., in
the case where no matches have a similarity above the similarity
threshold), we assign the mapping UNMAPPED.

5.1 Metrics
To evaluate the quality of the first step of metadata unification
(i.e., column classification), we use the F-measure [12, 16, 17].
Let 𝑃 be precision, the fraction of all classifier predictions that
turned out to be correct, and let 𝑅 be recall, the fraction of all
mappings in the dataset correctly labeled by the classifier. The
F-measure 𝐹 = 2 𝑃𝑅

𝑃+𝑅 measures how well a model predicts the
target field, balancing precision and recall. We use the macro F-
measure, which is the unweighted mean of per-class F-measures,
to aggregate F-measure over all classes without biasing towards
the more common ones.

F-measure, however, is ill-suited for describing the accuracy of
schema mapping: it focuses on each column in isolation, without
considering other columns of the same source table nor alignment
constraints. We thus propose two novel metrics for metadata
unification meant to describe the accuracy of an entire mapping.

First, 𝑎top3, which measures the mapping accuracy of the top
three target fields: 𝐹top3 = {name, definition, datatype}. We
focus on these fields because they are the most commonly used
fields in the data set and because the name field is critical for
correctly linking themetadata to relevant data attribute. Formally,
let 𝑅 = {𝑆1, 𝑆2, . . . } be a set of source schemas. We consider a
mapping of schema 𝑆 ∈ 𝑅 to be correct if it correctly finds all top
3 columns (meaning the mapping matches the ground truth for
these fields), and no other column is mapped to those target fields.
Note this definition ignores fields not in 𝐹top3, but that even a
single mistake in mapping to 𝐹top3 means that the mapping of
the schema 𝑆 is considered incorrect. On the rare cases where
the ground truth for 𝑆 indicates there is no mapping for one of
the fields in 𝐹top3, then a correct mapping should not have any
columnmapped to it. We can now define themetric: 𝑎top3 =

𝑁top3
|𝑅 | ,

where 𝑁top3 is the number of schemas in 𝑅 correctly matched
with 𝐹top3.

We also introduce a softer metric, 𝑎soft, that considers the
percentage of correct column mappings in a proposed mapping
on source schema 𝑆 across all target fields, while still reflecting
the importance of the accurate mapping to the top 3 fields. Unlike
𝑎top3 where a single error renders the entire mapping incorrect,
𝑎soft allows some error when mapping non-top fields. A less strict
metric is desirable since ground truth mappings can sometimes
be subjective, especially when going beyond the top 3 fields
(Section 3.2). Formally, let𝑀 (𝑆) be the set of proposed column
mappings to all fields of the metadata model in a mapping on
schema 𝑆 ; let 𝑀𝐶 (𝑆) be the set of correct column mappings in
𝑀 (𝑆) if all mappings to 𝐹𝑡𝑜𝑝3 are correct, otherwise𝑀𝐶 (𝑆) = ∅.
We define 𝑎soft = 1

|𝑅 |
∑
𝑆∈𝑅

|𝑀𝐶 (𝑆 ) |
|𝑀 (𝑆 ) | . Note 𝑎soft is continuous in

the range [0, 1], and that 𝑎soft ≤ 𝑎top3.

5.2 Configuring Gnomon
We tuned Gnomon on Dev using 5-fold group cross-validation.
To account for class imbalance, we performed stratified group
sampling, partitioning annotated documentation tables into folds
such that each fold contains roughly the same distribution of tar-
get metadata fields. Each table acts as a logical unit, and columns

of the same table may not be split into different folds. We used
the macro F-measure to select the best configuration. We omit
detailed exploration of these results due to space constraints.

When configuring base classifiers we considered different
combinations of three cases of feature source (header, values, or
both), and three cases of feature type (structure, lexical, or both).
For k-Nearest Neighbors we considered 𝑘 ∈ {3, 5, 7, 9, 11, 13}. For
Random Forest, we considered 𝑛trees ∈ {10, 50, 100, 150, 200}.
Naive Bayes (NB) : We account for class imbalance in the NB
classifier by computing class weights, giving more importance
to minority classes during training to balance their impact on
the model’s learning process. The best NB classifier used lexical
features sourced from both column headers and values, achieving
an average macro F-measure of 84.85% (6.23 std).
k-Nearest Neighbors (kNN): To account for class imbalance,
we weight the 𝑘 neighbors by the inverse of their distance to
the query point, meaning a close neighbor from a rare class can
still have more influence than distant neighbors from a common
class. The highest performing configuration had 𝑘 = 3 neighbors
and with lexical features sourced from both column headers and
column values, achieved an average F-measure of 94.19% (5.8
std).
Random Forest (RF): The best performance is achieved using
both lexical and structural features from column headers using
𝑛trees = 100 with a macro F-measure of 95.56% (6.22 std).
Stacking (SC): The stacking classifier performs marginally bet-
ter than the RF classifier alone, with an average macro F-measure
of 95.72% (5.95 std). In the few examples for which both stacking
and RF are incorrect (i.e., the class with the highest probability is
the wrong class), SC was less confident than RF, suggesting that
stacking may do a better job of producing match weights.

When evaluated on Test, classifiers maintained their relative
performance, with a macro F-measure of 78% for NB, 79% for
kNN, 82% for RF, and 82% for Stacking of all three. NB struggled
particularly with correctly classifying name, title, and notes
fields (recording class F-measures of 87%, 26% and 72%). kNN
improved the class F-measure significantly for class name (93%),
however maintained poor performance for notes and title
classes (80% and 26% respectively). Surprisingly, RF recorded a
drop in F-measure for dataset, significantly improving for name
(98%) and title (42%).

5.3 Schema Mapping Accuracy
We used Dev to train Gnomon, and Test to compare metadata
unification performance to baseline schema matchers using the
𝑎top3 and 𝑎soft mapping accuracy metrics. Since compared ap-
proaches are not designed for metadata matching with domain
constraints, we augment them with our WBbM alignment step
when possible. We include augmented versions of the baseline
approaches (JL𝑎 , DB𝑎 , SF𝑎 , Cpd𝑎 , Coma𝑎 , GVkNN𝑎). With the
exception of COMA, each approach can output multiple potential
matches from source columns to the target metadata model. We
apply Gnomon’s WBbM postprocessing alignment step to these
matches. For COMA, Valentine produces only the top match
for each source column, so Coma𝑎 is the same as COMA. For
completeness, we also evaluate SC: a classifier-only version of
Gnomon without WBbM alignment.

Figure 3 shows that Gnomon (Gnm) outperforms compared
baselines. Moreover, by comparing top3 WBbM performance
with the best-match performance, we observe that WBbM align-
ment improves mapping performance for all approaches; top3
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Figure 3: Accuracy of schema mapping methods trained
on Dev and applied on Test (top row showing best-match,
bottom row including WbBM post-processing alignment
step).

accuracy for SC is 78% compared to Gnm’s 82%. Analysis of Gnm
mapping errors indicates that definition columns were misclas-
sified as title in 16% of the cases, explained by the significantly
more variations of source column names mapped to definition
in Test compared to the much smaller Dev. Despite the novel
data points in Test, Gnm maintains a high mapping accuracy
(likely due to the use of TF-IDF vectors).

For this problem, JaccardLevenshtein (JL) performs poorly
when evaluated columns have non-string data types, which is
rare in our data. More importantly, this method also fails if the
columns require understanding of semantic similarity beyond
simple string edits and value overlaps, which is often the case in
documentation data, as much of it is free-form text.

Distribution-based approaches like DistributionBased (DB)
and COMAmayworkwell for matching columnswith numeric or
limited categorical values (e.g., datatype, scale, and unit), but
do not work well on columns with long, indistinct text values and
therefore are likely unsuitable for this task. SimilarityFlooding
(SF) uses the Levenshtein string distance to indicate columns
with similar headers [23, 30], which does not work well in simple
table-to-table matches when headers are quite dissimilar and the
relational structure is flat, as seen in this problem setting.

Cupid (Cpd) performs poorly in this setting, as it is a schema-
based approach initially developed for XML, and relies heavily on
the tree structure seen in XML. Although the linguistic matching
used in Cupid should intuitively be helpful, the semantic differ-
ences between some fields in the metadata model are nuanced
and are difficult to differentiate with WordNet. Given the simplic-
ity of the source and target relational tables, Cupid’s structural
matching (i.e., calculating similarity of columns based on context)
is not effective.

While GloVe-kNN (GVkNN) is more accurate than classic
schemamatching approaches, without including theWBbMalign-
ment step (GVkNN𝑎) it performs poorly compared to Gnm (with
a soft accuracy of 73% VS Gnm’s 79%). GVkNN𝑎 benefits from
alignment postprocessing with WBbM (soft=77%), with perfor-
mance rising close toGnm andGnmGV. We find that replacing TF-
IDF with pre-trained GloVe word embeddings in Gnomon-GloVe
(GnmGV) does not improve performance, and in fact slightly
harms it. We attribute this to the fact that some metadata fields
and values have subtle semantic differences that embeddings
struggle to differentiate, and column headers often contain terms

or abbreviations not found in natural English language. Fine-
tuning a large language model may improve accuracy but re-
quires overcoming the issues above and acquiring significantly
larger amounts of diverse training data.

6 DISCUSSION
In this work, we identify metadata unification, a distinct variant
of schema matching, as an important step for effective use of
Open Data. We show that popular baseline schema matching
approaches perform poorly on this task, and provide a unified
model for metadata unification and a strong baseline approach,
Gnomon, for tackling it. Our goal in this work was to high-
light the problem and provide tools for future research. Such
research could focus on multi-language documentation, meth-
ods to incorporate metadata embedded in data tables, fine-tuning
large-language models for metadata unification, and normalizing
metadata values.
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