
PRISMA: A Privacy-Preserving Schema Matcher
using Functional Dependencies

Jan-Eric Hellenberg∗
jan-eric.hellenberg@student.hpi.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Fabian Mahling∗
fabian.mahling@student.hpi.de

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Lukas Laskowski
lukas.laskowski@hpi.de
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Felix Naumann
felix.naumann@hpi.de
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Matteo Paganelli
matteo.paganelli@unimore.it

University of Modena
and Reggio Emilia
Modena, Italy

Fabian Panse
fabian.panse@hpi.de

Hasso Plattner Institute
Potsdam, Germany

ABSTRACT
Schema matching aims to find semantic correspondences be-
tween the columns of two schemas. Due to its high relevance in
the field of data integration, it has been extensively studied in the
literature. However, most matching approaches assume similarity
of column names or instance data of the schemas to be matched
and struggle when these are encoded differently, e.g., if they have
been encrypted due to privacy requirements. We present Prisma,
a novel encoding-independent schema matcher that utilizes func-
tional dependencies to construct graph embeddings that exploit
the encoding-independent structure of the schemas to be com-
pared. We compare Prisma against multiple baseline matchers
as well as state-of-the-art competitors. The experiments demon-
strate that Prisma outperforms these approaches on databases
that have large differences in their encodings, especially if these
databases consist of multiple tables.

1 CONSTRAINT-BASED SCHEMA
MATCHING

Schema matching [38] is an essential step in many data integra-
tion processes. The goal of schema matching is to find semantic
correspondences between the columns of two or more databases,
which is a difficult and tedious task. To solve this problem, various
(semi-)automated approaches have been developed that leverage
different kinds of data and metadata present in the databases.
Most state-of-the-art schema matchers [1, 7, 13, 18, 44, 46] base
their matching decision on the similarity of the column names
and/or the instance data. However, these are often not available
at all (e.g., missing column names in CSV files) or only in different
encodings (e.g., cryptic column names), so that the aforemen-
tioned matchers do not work well and encoding-independent
schema matchers [20, 22] need to be used instead.

Encoding-independent schema matching is useful in many
scenarios, such as: (i) the two databases to be compared are writ-
ten in different natural languages that have hardly any syntactic
similarities (e.g., birth_day vs. 出生日期), (ii) the instance data
are in different formats, units of measurement, or encodings (e.g.,
numeric grades 1 to 6 vs. letter grades A to F), (iii) syntactically
∗Both authors contributed equally to this research.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Assets

SID Name

S1 Helen Keller

S2 Ben Moore

S3 Jane McFly

Assets

B1 B2

41828 9a391

e2d95 c2a96

6d28c 9b953

En
ro
llm

en
t

St
ud

en
ts

T1 T2
UCC

Assets

A1 A2 A3 A4

95fef 747c9 9c3ef 9b953

e7ef6 b1696 8d709 9a391

95fef c376b 902f9 c2a96

Assets

ID Class Teacher Student

1 AP Calculus Jaime Escalante S3

2 Literature and Writing Anne Sullivan S1

3 AP Calculus Jaime Escalante S2

INDFD UCCUCC

FD IND UCC

Figure 1: Schemamatching scenario showing that integrity
constraints, such as functional dependencies (FD), unique
column combinations (UCC) and inclusion dependencies
(IND), can support the matching task in the presence of
differently encoded databases. The arrows between the two
schemas represent the detected correspondences.

similar encodings are used for semantically different columns
(e.g., numbers for gender and ethnicity), or (iv) one of the two
databases is encrypted for privacy reasons.

Existing encoding-independent schema matchers [20, 22] use
one-column (e.g., entropy or frequency distributions) and/or two-
column features (e.g., mutual information). However, relational
databases usually containmore complex patterns that can provide
valuable information for schema matching. Examples of this are
integrity constraints such as functional dependencies (FDs), unique
column combinations (UCCs), or inclusion dependencies (INDs).

Example 1.1 (Traditional schema matching). Consider the sce-
nario described in Figure 1. Here we want to match the schemas
of two databases, both of which contain information about stu-
dents and the courses they attend. Since the second database has
been encrypted for privacy reasons, the two databases do not
share column names or values. Thus, applying schema matching
based on the similarities of those column names or values fails.
Matching columns based on their data types is also not helpful

Series ISSN: 2367-2005 297 10.48786/edbt.2025.24

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.24

in this case, as all columns of the encrypted database contain
alphanumeric values of the same length.

In such scenarios, integrity constraints represent valuable
and additional knowledge that can support the matching task.
They model the structure of a schema by identifying encoding-
independent properties of individual columns and dependencies
among columns. UCCs for example, can be used to discover
potential candidate key matches in the two schemas. FDs and
INDs, instead, can be used to match sets of columns in the two
schemas that have respectively similar value dependencies and
inclusion patterns with other columns of the same schema.

Example 1.2 (Constraint-based schema matching). Consider
again the example depicted in Figure 1. By profiling the two
databases, we can discover (even under encryption) that each
database contains exactly one FD whose determinant (left-hand
side) is not a UCC: Class → Teacher in the first database and A1
→ A2 in the second database. This provides evidence that those
columns model the same information in the two schemas, i.e.,
Class↔ A1 and Teacher ↔ A2. Similar conclusions can be drawn
when considering the given UCCs and INDs. Keep in mind that
for more realistic, complex schemas we can usually draw on a
wealth of such dependencies.

As illustrated in this example, integrity constraints can provide
important insights for the matching process if the columns are
encoded using a deterministic encoding scheme, which always
produces the same ciphertext for a given plain-text. However,
as our experiments show, selecting meaningful integrity con-
straints is a challenging task. This is especially true for UCCs
and INDs. The presence of UCCs is quite sensitive to the level
of normalization of the schemas to be matched. In highly de-
normalized schemas it is, in fact, much rarer to identify UCCs
compared to normalized ones. This evidently makes the match-
ing task more complicated, as there can be several mismatches
in the UCCs of different schemas. Regarding INDs, it is rather
rare to find these types of dependencies in addition to standard
primary key/foreign key constraints. Furthermore, they can exist
between columns containing Boolean or numeric values, which
often carry little semantic meaning and, therefore, are not very
reliable for matching. Applying approaches for IND filtering,
such as [21, 40], might alleviate this problem.

Based on these insights, we propose our novel schemamatcher
Prisma that uses functional dependencies for encoding-independent
schema matching. Although FDs already have well-established
use cases in other research areas, such as query optimization [25,
36], data cleaning [39], or automated schema normalization [34],
their application to the schema matching task has been over-
looked in the literature. Prisma fills this gap by combining FDs
with encoding-independent column features, such as frequency
distributions.

More specifically, Prisma’s approach consists of four main
steps. (i) It determines FDs and single column features from the
input databases. (ii) These dependencies and metadata are then
modeled for each schema in a hypergraph, where each node cor-
responds to a column and a hyperedge represents a dependency
between two sets of columns. (iii) An unsupervised sub-graph
matching algorithm is then applied to the two hypergraphs to
learn meaningful embeddings for the columns of both schemas.
(iv) Finally, Prisma detects column correspondences based on
the similarities of the previously computed column embeddings
by calculating the maximum weighted matching between the
column sets of both schemas.

In introducing Prisma, we make the following contributions:
• Wepresent a novel encoding-independent schemamatcher,
which exploits functional dependencies to manage match-
ing scenarios where the column names and values are
encoded differently in both databases.

• We conduct an extensive experimental evaluation to eval-
uate the effectiveness and efficiency of our approach, com-
paring it with multiple state-of-the-art and baseline match-
ers in diverse matching scenarios.

Despite its abilities, Prisma also has a few limitations. As
almost all existing schema matchers1, Prisma is limited to the
discovery of one-to-one correspondences (i.e., every correspon-
dence aligns one column of the source schema to one column
of the target schema) and is best suited for bijective mappings
where each column in the source schema has a unique corre-
spondence in the target schema and vice versa. In addition, its
efficiency depends heavily on the efficiency of the FD discovery
algorithm used. For tables with a high number of columns, this
discovery can therefore be a bottleneck.

In Section 2, we summarize related work on schema match-
ing. Section 3 provides important background information on
functional dependencies. In Section 4, we describe the Prisma ap-
proach in detail, and we evaluate it in Section 5. Finally, Section 6
concludes the paper and gives an outlook on future work.

2 RELATEDWORK
The topic of schema matching has been studied extensively in
the past. Individual schema matchers can be broadly divided into
instance-based and schema-based matchers [38, 42].

Instance-based matchers analyze the data entries of a schema
to determine column properties, such as word frequencies, key
terms, or value patterns. Matchers then suggest correspondences
among columns with similar properties [7, 32]. On the other hand,
matchers that do not make use of instance data are considered
schema-based. Many of these matchers rely on linguistic or se-
mantic similarities of column names and descriptions [13, 44, 46].
Additional metadata, such as data types or foreign key constraints
enforced by the schema, may be used [29]. Structure-basedmatch-
ers, such as similarity flooding, usually require initial similarities,
e.g., linguistic similarities between column names or even initial
matches. These are combined with structural information to iden-
tify new similar columns [30]. Finally, some methods combine
multiple existing approaches. This combination can happen by
running multiple stand-alone matchers and mixing their results
(composite matcher) [11] or by considering multiple types of in-
formation directly during the matching (hybrid matcher) [1, 18].
For such combining matchers to work well, they require the
approaches they depend on to already produce somewhat mean-
ingful matching results. For a detailed summary of other schema
matchingworks, we refer to existing discussions [3], books [2, 12],
and surveys [38, 42].

Unfortunately, most existing matchers rely on metadata, such
as column names or specific instance data information, which
lose meaning when databases use different encodings, e.g., when
both schema and data are fully encrypted. In such cases, only
matchers relying on encoding-independent information are suit-
able [20, 22]. For example, Kang et al. [22] match columns with
similar entropies and pairs of columns with similar mutual infor-
mation. Jaiswal et al. [20] in turn match columns by comparing
1To the best of our knowledge, iMAP [10] is the only matcher that addresses many-
to-many correspondences.

298

the frequency distributions of their distinct column values. The
main intuition of their approach is that semantically different
columns are less likely to have similar probability mass functions
on their value support than to have similar entropy values or
mutual information. Both approaches are used as competitors in
our experimental evaluation.

Scannapieco et al. [41] propose a protocol for privacy preserv-
ing matching of two source schemas. According to this protocol,
the sources (i) match their local schemas to a global schema pro-
vided by a third party, (ii) express their local schemas in the global
schema language, (iii) encrypt the translated schemas using a
secret key negotiated between both sources, and (iv) send them
to the third party which (v) simply compares the encrypted col-
umn names for equivalence. In this protocol, the actual schema
matching is performed by the sources when mapping their local
schemas to the global one. At this point, however, the data are
yet not encrypted so that we have an ordinary schema match-
ing scenario. For this reason, this approach is not a competitor
for Prisma. On the contrary: If a local schema has a different
encoding than the global one, an encoding-independent matcher,
such as Prisma, would be very helpful to produce the required
mapping between both schemas.

A current research direction focuses on dataset discovery and
table union search (e.g., [5, 13, 31]), which has some similarities
with schema matching, as they attempt to find pairs of (union-
able) tables within a large table corpus, such as a data lake. One
of these approaches [23], called SANTOS, combines a knowl-
edge base (either externally provided or extracted from the given
data lake) with functional dependencies to discover the seman-
tic relationships between pairs of columns of tables within this
lake. However, unlike Prisma, SANTOS is restricted to unary
functional dependencies where the determinant consists of a
single column. Additionally, Prisma does not require the use of
a knowledge base.

3 FUNCTIONAL DEPENDENCIES FOR
SCHEMA MATCHING

In this section, we provide the necessary background to under-
stand (approximate) functional dependencies as they form the
foundation of Prisma. Furthermore, we provide an overview of
the main challenges related to their use in schema matching.

3.1 (Approximate) Functional Dependencies
Functional Dependency (FD). A functional dependency de-
scribes a relationship between a set of columns 𝑋 and a single
column 𝐴 [25]. Intuitively, 𝐴 functionally depends on 𝑋 (writ-
ten 𝑋 → 𝐴) when the value of 𝐴 can be determined solely by
knowing the values of 𝑋 . Formally, given a table with schema
𝑆 , the column set 𝑋 ⊆ 𝑆 , and the column 𝐴 ∈ 𝑆 , 𝑋 → 𝐴 is an
FD with determinant 𝑋 and dependent 𝐴 if for any pair of tuples
𝑡1, 𝑡2 of the table, 𝑡1 [𝑋] = 𝑡2 [𝑋] ⇒ 𝑡1 [𝐴] = 𝑡2 [𝐴]. Whether an
FD holds is independent of column names and also data encoding
(if there are no encoding collisions). Generally, the smaller the
determinant of an FD, the more powerful it becomes in iden-
tifying columns. For example, if we find that one column is a
determinant of FDs to all other columns of a table, we know
that it is a key candidate. An FD 𝑋 → 𝐴 is called non-trivial if
𝐴 ∉ 𝑋 and is called minimal, if no attribute 𝐵 ∈ 𝑋 exists such
that 𝑋 \ 𝐵 → 𝐴 is still a valid FD. In Prisma, we only consider
non-trivial, minimal FDs.

Approximate Functional Dependency (aFD). Traditional FDs
enforce a strict constraint on the data: a single violating tuple pair
invalidates an FD. However, in real-world scenarios, we often
encounter cases of FDs that appear to hold from a semantic point
of view, but suffer some violations, for instance due to data errors,
encoding collisions, or some data ambiguities [27]. To resolve this
issue, approximate FDs allow some, typically small, percentage
of violating tuple pairs [8]. From a schema-matching standpoint,
these are at least as valuable as traditional FDs, because they still
capture semantic meaning and are less prone to noise.

Since these aFDs were obtained by analyzing a single (maybe
very small) instance of the schema and not determined by a
domain expert, it is possible that many of them are (purely) ran-
dom. In addition, aFDs whose determinant is a UCC tend to
carry less meaning, especially if this UCC is an artificial id or
the data instance only consists of a few tuples so that almost
all columns are unique. To take possible coincidences into ac-
count when considering aFDs, literature distinguishes between
genuine and non-genuine FDs [4]. To rate the genuineness of
aFDs, we use a measure2 called 𝑔𝑝𝑑𝑒𝑝 that corresponds to the
difference 𝑝𝑑𝑒𝑝 (𝑋,𝐴) − 𝐸 [𝑝𝑑𝑒𝑝 (𝑋,𝐴)] proposed in [35, 37]. We
apply a threshold to the 𝑔𝑝𝑑𝑒𝑝-scores to filter out accidental
(non-genuine) functional dependencies while maintaining the
most semantically meaningful ones.

3.2 Schema Matching Challenges
We faced two main challenges when solving schema matching
tasks using functional dependencies:
High number and high dimensionality of FDs.Given the high
number and high dimensionality (i.e., the size of the determinant)
of the approximate FDs that can be discovered starting even from
relatively small schemas, it is a priority to adopt techniques to
identify the most significant ones. This identification can be
based on some probabilistic statistics such as the 𝑔𝑝𝑑𝑒𝑝-measure
discussed above.
Diverse schema normalization levels. Even schemas that share
the same data can be modeled differently. Depending on the use
case, data may be held in a few wide tables or split into multi-
ple smaller ones to reduce redundancy. Often, modeling is done
such that the schema satisfies a certain normal form, such as the
third normal form (3NF) or the Boyce-Codd normal form (BCNF).
However, by normalizing tables to reach a desired normal form,
aFDs representing violations of the normal form disappear and
the determinant of many aFDs becomes a UCC. This makes the
matching task more complex, as the sets of aFDs of the schemas
to be matched can look vastly different when these schemas are
in different normal forms. In our current approach, we address
this problem by always using the same number of aFDs for both
schemas (for more details see Section 4.1). Other possible solu-
tions are: (i) transforming the schemas to a common normal form,
or (ii) completely denormalizing the schemas. However, since
both approaches can be algorithmically difficult, we consider
them future research.

4 STRUCTURAL SCHEMA MATCHING
WITH PRISMA

In this section, we present our Prisma approach that combines
functional dependencies with single column features to perform
encoding-independent schema matching. The matcher does not

2We use the implementation provided by https://github.com/philipp-jung/pdep.

299

1. Data Profiling & aFD Filtering

T2

D

G

FD

4. Match Generation
part (T1)
p_id (A)
p_brand (B)
p_type (C)

orders (T2)
o_id (D)
o_custkey (E)
o_qty (F)
p_id (G)

FD

FD

Jonker-
Volgenant

2. Graph Representation

XNetMF

 Graph Embeddings

A' B' C' D' E' F' G'
A .4 .2 .3 .1 .9 .6 .5
B .2 .4 2 .3 .6 .9 .3
C .4 .2 .5 .2 .5 .3 .8
D .9 .3 .4. .4 .2 .1 .5
E .3 .8 .5 .2 .2 .4 .1
F .4 .5 .9 .1 .3 .5 .4
G .4 .2 .1 .8 .3 .2 .1

FD

item (T2)
i_id (D')
i_mark (E')
i_category (F')

FD

sales (T1)
s_id (A')
s_client (B')
s_qty (C')
i_id (D')

RT1

A

CFD

FB

E

T2

E'

RT1

A'

C'

D' FD

FD

G'

B'

F'

3. Graph Embedding

Graph Structure Value Distribution

A'

F' B
C

E'
A

G'

D
E

B'C'

F
G

D'

source
target

A - E'
B - F'
C - G'

D - A'
E - B'
F - C'
G - D'

Figure 2: Overview of the 4-step Prisma pipeline. In the first step, the input databases (schema and instance) are profiled to
detect genuine aFDs and calculate a frequency distribution per column. In the second step, these profiling results are used
to built a graph representation for each of the two databases, which are then used to calculate node embeddings in the
third step. In the final step, similarities between these embeddings are filled into a matrix which is input to an alignment
algorithm for determining one-to-one column correspondences.

require data overlap, user-supplied descriptions, or meaningful
column names. Furthermore, the matching scenario that we an-
alyze follows typical conventions by considering exactly two
databases (each consisting of one schema and one instance) and
referring to them as source and target. Prisma follows four se-
quential steps (also shown in Figure 2):

(1) Data Profiling & aFD Filtering: Both databases are pro-
filed to discover aFDs and calculate the frequency distri-
butions of column values. The sets of discovered aFDs are
then reduced to the most meaningful ones based on their
genuineness.

(2) Graph Representation: We build graph representations
of both the source and the target database based on the
discovered genuine dependencies.

(3) Graph Embedding: Using XNetMF [19], we create node
embeddings on the built graphs by combining similarity of
the graph structure with similarity of the nodes’ frequency
distributions.

(4) MatchGeneration:We calculate a similaritymatrix based
on the node embeddings. This is then post-processed using
a modified version of the Jonker-Volgenant algorithm [9]
to obtain a set of column correspondences. A final filter
removes questionable correspondences.

4.1 Data Profiling & aFD Filtering
Prisma starts with discovering two forms of column constraints
in each input schema: single-column and multi-column metadata.

For individual columns, we refrain from using typically used
and generally valuable information, such as column names, data
types, average instance data length, and similarities between
instance data because those are not particularly meaningful on
databases that adopt different schema or data encodings. Prisma,
in contrast, leverages the frequency distribution of column values
as an indicator for column matching. As discussed in [20], this
metric is more robust than column entropy ormutual information
between pairs of columns because it is less likely that semantically
different columns have similar distributions values. We denote
the frequency distribution of the values of the column 𝐴 as 𝑃𝐴 =
{𝑝1, 𝑝2, . . . , 𝑝𝑚}, where𝑚 is the number of distinct values in 𝐴
and 𝑝 𝑗 is the probability of the 𝑗-th most frequent value in 𝐴.

This feature is then integrated with the non-trivial, mini-
mal approximate functional dependencies, which we automat-
ically discover using the Pyro [27] algorithm included within
the Metanome [33] data profiling ecosystem. Among the dis-
covered aFDs, we retain only those with a maximum determi-
nant size of 3, as aFDs with a large determinant often occur
simply by chance and carry little semantic meaning. A struc-
tural matching of semantically similar databases based on aFDs
can only provide good results if the same number of aFDs is
available for both databases. Therefore, we (i) select for both
databases all aFDs whose 𝑔𝑝𝑑𝑒𝑝-scores are larger than a given
𝑔𝑝𝑑𝑒𝑝-threshold 𝜏 and (ii) then fill up the smaller of the two re-
sulting sets with the next most genuine aFDs until both databases
have the same number of aFDs selected. For example, if data-
base 𝑑1 has five aFDs with a 𝑔𝑝𝑑𝑒𝑝-score larger than 0.5 but the
database 𝑑2 only has two, we use the five most genuine aFDs
for each of the two databases. More formally, let D(𝑑𝑖) = {𝑋 →
𝐴 | |𝑋 | ≤ 3} be the given set of aFDs for database 𝑑𝑖 . More-
over, let 𝜋𝜏 (D(𝑑𝑖)) = {𝑋 → 𝐴 ∈ D(𝑑𝑖) | 𝑔𝑝𝑑𝑒𝑝 (𝑋,𝐴) ≥ 𝜏}
be the set of all aFDs in D(𝑑𝑖) whose 𝑔𝑝𝑑𝑒𝑝-scores are at least
𝜏 and 𝑡𝑜𝑝 (D(𝑑𝑖), 𝑘) be the 𝑘 aFDs in D(𝑑𝑖) with the highest
𝑔𝑝𝑑𝑒𝑝-scores. The final set of aFDs of database 𝑑𝑖 then results in
D∗ (𝑑𝑖) = 𝑡𝑜𝑝 (D(𝑑𝑖),𝑚𝑎𝑥 (|𝜋𝜏 (D(𝑑1)) |, |𝜋𝜏 (D(𝑑2)) |)) if 𝑑1 and
𝑑2 are the two databases to be compared.

4.2 Graph Representation
Once the two databases have been profiled, Prisma creates a
graph-based representation for each of them by exploiting the
discovered metadata. Conceptually we convert a database into a
hypergraph [6], where each node corresponds to a column of one
of its constituent tables and a hyperedge models the relationships
between sets of columns involved in the same aFD. To avoid
having disconnected components in the graph and to capture
the full hierarchical structure of the database, we add additional
nodes, namely table nodes and a single root node. The former
represent the database tables and appropriate connections with
the related column nodes are used to model the membership of
a column to a table. The root node instead represents the entire
database and connections with the related table nodes are used
to manage the membership of a table to the database.

300

In practical terms, we simplify this structure by converting
the hypergraph into a normal graph. For each hyperedge repre-
senting an aFD, we insert a new artificial node, called FD-node,
such that:

• the nodes of all columns of the determinant have an out-
going edge ending at the FD-node;

• the node representing the column of the dependent has
an incoming edge originating from the FD-node.

This operation also allows us to simplify the subsequent graph-
matching phase to identify correspondences between columns
(i.e., the graph nodes).

More formally, we define our graph representation of a data-
base as follows.

Definition 4.1 (Database graph). Given a database𝑑 with schema
S on which is defined the set of aFDs3 D∗ (𝑑), we define its graph
representation as the triple G = (V, E, 𝛿). V is the set of nodes
of the graph and includes column nodesVC ⊂ V , table nodes,
FD-nodes, and a single root node. E is the set of edges and in-
cludes both edges referring to the aFDs inD∗ (𝑑) (i.e., column-FD
node connections), and edges related to the hierarchical database
structure, (i.e., column-table and table-root node connections).
The mapping 𝛿 : 𝑉𝐶 → R𝑛 associates every column node 𝑣 with
its frequency distribution 𝑃𝑣 .

4.3 Graph Embedding Generation
Once the graphs G1 and G2, representing the input schemas S1
and S2, are generated, Prisma applies a joint graph embedding
process on both graphs [15, 45]. The goal of this operation is
to learn a joint embedding space between the two graphs that
encodes both their structural knowledge (i.e., the relationships
between nodes as defined mainly by functional dependencies)
and the similarity of their constituent column nodes based on
their frequency distributions. To achieve this, Prisma relies on
xNetMF [19], a deterministic node embedding technique for mul-
tiple graph alignment. This approach consists of three main steps:
node identity extraction, landmark node similarity, and node em-
bedding generation.

Node identity extraction. The first step defines the identity
of a node 𝑣 by analyzing the degree distribution of the 𝑘-hop
neighborhood nodes. This information defines the structural
knowledge of the node and is stored in a vector 𝑑𝑣 , where its
𝑤-th entry reports the number of nodes in the 𝑘-hop neighbor-
hood with degree equal to𝑤 . Optionally, this knowledge can be
supplemented by an external feature vector. In our case, we use
the frequency distribution as a source for this additional knowl-
edge. The identity of a column node 𝑣 ∈ VC is therefore defined
by the pair (𝑑𝑣, 𝑃𝑣).

Landmark node similarity. The second step analyzes the
similarity between node identities. Given the impracticality of
computing the similarity between every pair of nodes in the
graphs, 𝜌 “landmark" nodes are randomly selected across both
graphs and used to compute only node-to-landmark and landmark-
to-landmark similarities. We include all column nodes in the land-
marks to ensure all column features are considered without loss.
Since the node identities consist of pairs, the similarity between
two nodes 𝑣,𝑢 ∈ V is defined as follows:

sim(𝑣,𝑢) = exp
[−𝛾 · ∥𝑑𝑣 − 𝑑𝑢 ∥2 − (1 − 𝛾) · 𝑑𝑖𝑠𝑡𝑓 (𝑣,𝑢)

]
(1)

3With abuse of notation we consider the schema of the database S as the union of
the columns of its constituent tables, and the approximate functional dependencies
D(𝑑) defined over S as the union of the aFDs defined over the single table schemas.

where

𝑑𝑖𝑠𝑡𝑓 (𝑣,𝑢) =
{
∥𝑃𝑣 − 𝑃𝑢 ∥2 if 𝑣,𝑢 ∈ VC
0 else

(2)

is the distance between the features of two nodes, ∥ · ∥2 is the
Euclidean distance (𝐿2 norm), and 𝛾 controls the effect of the
structural and the external feature-based identity on the calcu-
lated similarity. The impact of this parameter on the performance
of Prisma is evaluated in Section 5.4.

Node embedding generation. Node embeddings are finally
obtained through a factorization of landmark-to-landmark and
node-to-landmark similaritymatrices.We refer interested readers
to [19] for further details.

4.3.1 Discarded graph embedding approaches. While popu-
lar node2vec-style graph embedding approaches [17] can also
be applied in our context, they are not particularly suitable for
several reasons. First, since these methods encode each graph
independently the resulting embeddings are not aligned, making
it difficult to effectively match graph nodes. A partial solution to
this issue is the application of the Wasserstein Procrustes align-
ment method [16]. However, adding this additional step increases
runtime. Moreover, thesemethods rely onmultiple randomwalks,
making them not fully deterministic.

An alternative approach is to apply seeded graphmatching [14],
which uses known matches between graphs to infer new, likely
matches. However, for this approach to work in our case, we
would need a different matcher that can find some preliminary
matches with high confidence to use as initial seeds. Additionally,
most seeded graph matching methods cannot differentiate be-
tween various node types (such as table-, column-, or FD-nodes),
resulting in sub-optimal performance even when initial matches
are available.

4.4 Match Generation
After computing the embeddings of the two graphs, Prisma de-
termines similarities between columns by computing the cosine
similarity between their corresponding node embeddings. These
similarity scores are stored in a similarity matrix𝑀 , where𝑀𝑖 𝑗

is the similarity between the (embedding of) 𝑖-th column in the
source, and the (embedding of) 𝑗-th column in the target schema
(see Figure 2, “3. Match Generation”). To determine actual corre-
spondences (e.g., A ↔ A’) from these similarities, Prisma uses a
modified version4 of the Jonker-Volgenant algorithm [9] which is
an efficient variant of the well-known Hungarian algorithm [28].
This algorithm finds an optimal one-to-one matching between
two sets of elements by maximizing the total matching similarity
(i.e., the maximum weighted matching within a bipartite graph)
where the similarities between the elements from both sets are
provided by a similarity matrix. The resulting set of correspon-
dences is finally filtered by removing all correspondences whose
similarity is below 0.5 to reduce the number of false positives in
cases where not every column has a corresponding column in the
other schema (i.e., the matching scenario is not fully bijective).

5 EVALUATION
Our experimental evaluation analyzes the effectiveness and ef-
ficiency of Prisma compared to several competing methods
(Section 5.2) in diversified sets of schema matching scenarios

4We use the implementation provided by the Scipy Python library https://docs.scipy.
org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

301

(Section 5.1). We evaluate the matchers’ effectiveness using mi-
cro/macro average precision (P), recall (R), and F1 score (F1)
across the given sets of matching scenarios. Efficiency is mea-
sured in terms of runtime.

We use the results of these experiments to answer the follow-
ing four research questions:

• Encoding Independence: How well does Prisma per-
form on differently encoded databases compared to other
encoding-independent matchers?

• Sensitivity Analyses: How well does the knowledge of
schema structure support the schema matching task com-
pared to single column features for different settings of
Prisma’s hyperparameters?

• Effectiveness: What is the effectiveness of Prisma com-
pared to competing methods, and how does its perfor-
mance vary in different encrypted and non-encrypted
matching scenarios?

• Efficiency: How efficient is Prisma compared to compet-
ing approaches and which step of Prisma requires how
much computing time?

We ran all experiments on a dual-socket server with two AMD
EPYC 7742 (64 cores, 128 threads), and 512 GiB RAM running
Ubuntu 24.04 and Linux 5.15. We limited RAM to 256 GiB and
the number of threads to 128 for a more realistic setup.

The datasets and the code for all experiments are available
at https://github.com/HPI-Information-Systems/prisma.

5.1 Data
To extensively evaluate Prisma, we use matching scenarios with
different characteristics that differ both in their schema complex-
ity (single tables vs. multiple tables) as well as the heterogeneity
of their instance data (equal vs. non-equal sets of records).

For the single-tablematching scenarios, we use popular datasets
from the Valentine benchmark [26]. Since both Prisma and our
competitors on encoding-independent schema matching focus
on bijective matching of one-to-one correspondences (i.e., each
column of the source schema has exactly one correspondence
to exactly one column of the target schema and vice versa), we
use Valentine’s unionable matching scenarios5. In addition, we
use the Sakila database to generate several multi-table matching
scenarios. The details of the individual scenarios are described
below. Their key features are listed in Table 1.

5.1.1 Valentine Benchmark Datasets. The Valentine bench-
mark was created for schema matching in the context of dataset
discovery and contains several matching scenarios generated
based on data collected from different external data sources.
These scenarios either correspond to real-world scenarios or
were artificially fabricated by Valentine (i.e., an original table
was modified on schema and instance level). In the case of real-
world data, the ground truths originate from the associated data
sources. The ground truths of the fabricated matching scenar-
ios are produced by Valentine’s fabricator module based on the
original table and the applied modifications.
TPC-DI. Valentine’s TPC-DI dataset is a single table containing
customer data. The unionable category of TPC-DI contains 36
fabricated matching scenarios where in each scenario the source
and target tables have both 22 columns. The tables’ instance data
varies between 7,491 and 14,982 tuples.

5https://delftdata.github.io/valentine/

ChEMBL. Valentine’s ChEMBL dataset is a single table contain-
ing chemical molecule data. Its unionable category contains 36
fabricated matching scenarios where in each scenario the source
and target tables have both 23 columns and 7,500 to 15,000 tuples.
WikiData. Valentine’s WikiData dataset contains real-world
data about musicians. In its unionable matching scenario, both
the source and the target table contain 20 columns and 10,845
tuples.
Magellan. Valentine’s Magellan dataset contains seven real-
world single-table matching scenarios from the Magellan Data
Repository [24], a collection of well-established datasets for en-
tity matching from different domains. They all correspond to the
unionable category and their respective tables vary from 4 to 9
columns and 331 to 64,263 tuples.

As we can see in Table 1, all four datasets contain a consider-
able number of aFDs, with Magellan having the fewest due to
the smallest number of columns.

The ground truths of the Valentine scenarios each correspond
to an identity matrix (i.e., all matches are on the diagonal). As
we observed in our experiments, some algorithms (including
JMM and Prisma) benefit from this structure, i.e., their system-
atic approach favors matches on the diagonal over other matrix
positions, e.g., when multiple equivalent values are available
for selection. To remove this bias, we followed the approach of
Jaiswal et al. [20] and reshuffled both the schemas and the matri-
ces for our evaluation. The modified Valentine data can be found
in our GitHub repository. It should be noted that the shuffling
has led to a decrease in the results of these algorithms and they
can therefore no longer be compared with the results reported
in other papers that used the unshuffled Valentine data.

5.1.2 Sakila Datasets. Sakila is a test database created by
MySQL developers that stores movie rental data in more than
20 tables6. We used this database as a starting point to create
multiple matching scenarios. To obtain this result, we first pro-
duced three schemas, namely 𝑠1, 𝑠2 and 𝑠3, by applying different
sets of joins on the tables of the original database. Secondly, we
translated their column names from English to Italian to obtain
schemas with dissimilar column names. This preprocessing re-
sulted in three new schemas, namely 𝑠1-it, 𝑠2-it, and 𝑠3-it.

Based on these six schemas, we then generated 18 matching
scenarios, which can be distinguish along two dimensions:

• whether the schemas of the two databases to be matched
are in the same (SN) or different (DN) levels of normaliza-
tion, and

• whether the two databases include the same (SR) or differ-
ent (DR) subsets of original records.

Scenarios where both databases have the same normalization
level were created by pairing 𝑠1 vs. 𝑠1-it, 𝑠2 vs. 𝑠2-it and 𝑠3 vs. 𝑠3-it.
In contrast, scenarios with different normalization levels were
created by pairing 𝑠1 vs. 𝑠2, 𝑠1 vs. 𝑠3, 𝑠1-it vs. 𝑠2, 𝑠1 vs. 𝑠2-it, 𝑠1-it vs.
𝑠3, 𝑠1 vs. 𝑠3-it. In the case of different record sets, we populated
the databases by randomly selecting tuples from the original
Sakila database. To ensure that no join partners were lost during
sampling, we performed this sampling on a manually denormal-
ized database and then normalized the sampled databases back to
their original levels. The ground truths of these matching scenar-
ios result directly from the queries (joining tables and translating
column names into Italian) we used to create the different schema
versions, ensuring there is no room for interpretation or bias.
6See https://dev.mysql.com/doc/sakila/en/.

302

Table 1: Number of scenarios per category and dataset. #tables refers to the minimum, maximum, and average number of
tables in source and target schema, aggregated over all scenarios. #cols/t refers to the minimum, maximum, and average
number of columns per table, #tuples/t refers to the minimum, maximum, and average number of tuples per table, and
#aFDs refers to the average number of discovered aFDs per database across all scenarios.

Dataset min-max (avg.) #tables #scenarios min-max (avg.) #cols/t min-max (avg.) #tuples/t avg. #aFDs

Va
le
nt
in
e TPC-DI 1 36 22 7,491 - 14,982 (9,363.7) 1,684.7

ChEMBL 1 36 23 7,500 - 15,000 (9,375) 492.8
WikiData 1 1 20 10,845 703.0
Magellan 1 7 4-9 (5.86) 331 - 64,263 (12,289.2) 50.1

Sa
ki
la

SNSR 12-13 (12.3) 3 2-18 (5.9) 2-16,049 (3,133.5) 685.3
SNDR 12-13 (12.3) 3 2-18 (5.9) 1-4,011 (1,029.6) 698.7
DNSR 12-13 (12.5) 6 2-18 (6) 2-16,049 (3,217.7) 737.2
DNDR 12-13 (12.5) 6 2-18 (6) 1-4,011 (1,059.3) 760.5

As shown in Table 1, the databases in the Sakila matching
scenarios contain 12-13 tables each having 2-18 columns. The
maximum number of tuples in the tables of the SR scenarios is
four times as large as in those of the DR scenarios. The number
of aFDs is on average around 700.

5.1.3 Encoding of scenarios. A primary goal of our experimen-
tal evaluation is to test how sensitively the individual matchers
react to encoding differences. However, the original matching
scenarios described above contain only a few cases where differ-
ent encodings have been used in the source and target databases.
Therefore, we also considered these scenarios in an encryption
setting in which the two databases to be compared are encrypted
differently. We have chosen an encryption setting, as we think it
is the most challenging of the use cases described in Section 1.
For encryption, we used MD5, an algorithm that encrypts de-
terministically, i.e. identical input values are always mapped to
the same ciphertext. To generate different encodings in the two
databases, both column names and instance data were encrypted
in a salted fashion (either _source or _target is appended to each
value before hashing). Thus, identical column names in source
and target tables are no longer equal in their encrypted versions,
while two equal column names within either source or target
stay identical. MD5 produces 128-bit hashes that we internally
represent using Hexadecimal Strings (32 characters).

5.2 Competitors
We consider multiple competing approaches, ranging from sim-
ple baselines to more advanced state-of-the-art matchers. Among
the latter, we consider LEAPME [1], EmbDI [7], and the meth-
ods proposed by Kang and Naughton [22] and Jaiswal et al. [20],
which we identify as K&N and JMM respectively. This selection
is representative of different categories of schema-matching ap-
proaches. LEAPME is a hybrid schema matcher that exploits both
column names and instance data. EmbDI is an instance-based ap-
proach. Finally, JMM and K&N are schema matchers that exploit
single (JMM, K&N) and/or two column features (K&N) respec-
tively. Since JMM and K&N ignore concrete instance values and
column names, they are also encoding-independent. Therefore,
we consider them to be our main competitors. Since no code
was available for these two matchers, we re-implemented them
and included them in our GitHub repository for reproducibility
reasons. More details on these competitors are provided below.
LEAPME identifies correspondences between columns by ex-
ploiting both information related to their values and analyzing

the similarity of their names. To achieve this, it exploits several
hand-crafted features that range from simple descriptive statis-
tics, such as the occurrence of certain patterns or data types in
values, to features based on word embeddings that are used both
to encode the column names and their values. These features
are then provided as input to a binary classifier, which is trained
to predict whether a pair of columns represents a match or a
non-match based on the similarity of the input features.

In practice a limited or no ground truth at all is available, and
therefore it is not feasible to train a model from scratch. Thus, in
our experiments, we use the transfer-learning mode of LEAPME,
where the model is trained on the datasets provided by the orig-
inal paper, and is then applied as-is to our scenarios. LEAPME
has multiple configurations regarding which information to feed
to the model. We evaluated all nine configurations suggested in
the paper and found the configuration that works best on our
datasets is the one that considers only the similarity of the word
embeddings associated with the column names.
EmbDI is an unsupervised approach that calculates local em-
beddings of table elements, such as rows or columns, and can
be used to solve various data integration tasks including schema
matching. The approach first creates an intermediate representa-
tion of a table in the form of a tripartite graph, and then applies a
node2vec-style approach to learn meaningful node embeddings
to compare via similarity measures. The tripartite graph includes
three types of nodes, i.e., token nodes (corresponding to table
cells or single tokens in multi-valued table cells), column nodes
and record nodes, whose connections reflect the structure of
these elements in the table.

By performing multiple random walks, this graph structure is
then converted into a series of sentences, which are further pro-
cessed byword2vec to output node embeddings. In schemamatch-
ing tasks, this random-walk approach is used to generate column
embeddings for each column of the two input schemas, which
are then compared using cosine similarity to identify column
correspondences. Note that EmbDI corresponds to an instance-
based schemamatcher that exploits the sharing of values between
columns to create similar column representations that will result
in potential matches. On the contrary, EmbDI does not exploit
any information about the similarity of the column names.
K&N is a metadata-based schema matcher that, like Prisma,
does not depend on meaningful column names or any overlap in
the instance data. Instead, it uses encoding-independent features
based on column entropy and mutual information between pairs

303

of columns. Differently from Prisma, which leverages high-order
dependencies between sets of columns as defined by functional
dependencies, this approach only captures dependencies between
pairs of columns. Specifically, the approach creates a dependency
graph for each schema, where each node represents a column,
and each edge connects pairs of columns. Each node is associated
with the entropy of its column, and each edge is weighted by the
mutual information between the two connected columns. After
generating the two dependency graphs, the column correspon-
dences are identified using an alignment algorithm. Kang and
Naughton provide several of those alignment algorithms. We re-
implemented the Hill Climbing algorithm since it performed best
in their experiments. To find the optimal alignment, we used their
normal distance metric. We used 100 seeded runs per scenario.

The original method is designed for single-table scenarios.
To apply it to our multi-table scenarios, we extended it by inde-
pendently matching each table in the source schema with each
table in the target schema, and then combining all identified
correspondences into a single result.
JMM is an encoding-independent schema matcher. Jaiswal et
al. evaluated the suitability of several first-order (single column
features such as entropy) as well as second-order (two column
features such as mutual information) statistics and distance mod-
els for schema matching. Their best solution uses frequency
distributions of column values as first-order statistics and the
Euclidean distance to measure the distance between the sorted
distributions of two columns. Based on these distances, they build
a Value Mapping Minimization (VMM) cost matrix as input to a
two-opt switching. This heuristics starts from an initial one-to-
one column alignment and explores the search space of potential
alignments by sequentially swapping two column matches. It
aims to minimize the total cost of all columns aligned. Since
Jaiswal et al. found that different initialization algorithms for
the alignment matrix had virtually no effect on the final match-
ing accuracy, we could initialize the matrix randomly. However,
since we want to avoid non-determinism for reasons of repro-
ducibility, we initialize it by setting the diagonal from bottom left
to top right. In the two-opt switching, we iterate over all pairs
of columns from the source table and swap the matches of two
columns if it decreases the total cost. To reduce the risk of ending
up in a local optimum, we repeat this procedure until the align-
ment converges (no change to the result of the previous iteration)
or until a maximum of 1000 iterations have been executed.

Similar to K&N, the original approach is designed for match-
ing individual tables. However, since it uses only single column
features, it can be easily extended to multiple tables. To do this,
we consider the columns of all tables of a schema as a single
large set of columns, each of which has a (mutually independent)
frequency distribution, and create a VMM matrix of the size of
these sets of both schemas.
Baseline matchers. In addition to these state-of-the-art match-
ers, we use two simple baselinematchers. The first is a label-based
matcher (called Cosine-Similarity, or 𝐶𝑆 in short) that matches
two columns if the cosine similarity between the letter distri-
butions of their names exceeds a threshold of 0.5. The second
is an instance-based matcher (called Instance4GramOverlap, or
𝐼4𝑂 in short) that computes the set of 4-Gram tokenizations of
all column values and considers a correspondence between two
columns if at least 50% of their tokensets overlap. We evaluated
multiple other baseline matchers, but these two performed best
(on average) in our initial experiments.

Table 2: Results of encoding-independent matchers on en-
crypted single-table and multi-table matching scenarios.
For Prisma, we used the best configuration (𝛾 = 0.35, 𝜏 = 0.3).
The last column represents the percentage improvement
/ impairment of Prisma compared to the better of K&N
and JMM. The scores for the individual datasets are micro
average F1 scores (and standard deviation) over all scenar-
ios of the respective dataset. The presented AVG scores are
macro averages over the corresponding four/eight micro
averages. The best results are marked in bold. The second
best results are underlined.

Dataset K&N [22] JMM [20] Prisma 𝚫(%)

Si
ng

le
Ta

bl
e TPC-DI 0.604 ± 0.14 0.525 ± 0.11 0.667 ± 0.07 +10

ChEMBL 0.232 ± 0.09 0.256 ± 0.09 0.352 ± 0.08 +38
WikiData 1.000 0.700 0.850 -15
Magellan 0.592 ± 0.43 0.557 ± 0.34 0.694 ± 0.16 +17
AVG 0.607 0.510 0.641 +6

M
ul
ti
Ta

bl
e SNSR 0.127 ± 0.02 0.306 ± 0.10 0.555 ± 0.11 +81

SNDR 0.128 ± 0.04 0.263 ± 0.08 0.589 ± 0.09 +124
DNSR 0.095 ± 0.01 0.314 ± 0.09 0.348 ± 0.09 +11
DNDR 0.100 ± 0.01 0.259 ± 0.07 0.341 ± 0.05 +32
AVG 0.113 0.286 0.458 +60
AVG 0.360 0.398 0.549 +38

5.3 Encoding Independence
In our first experiment, we compare the best configuration of
Prisma against the two other encoding-independent schema
matchers K&N and JMM on the encrypted matching scenarios of
the eight different datasets. While the first four datasets represent
single-table scenarios (Valentine datasets), the latter four datasets
represent multi-table scenarios (Sakila datasets).
Implementation. As we show in our detailed analysis in Sec-
tion 5.4, Prisma achieves its best average performance on all
matching scenarios with the parameter setting 𝛾 = 0.35 and
𝜏 = 0.3. Therefore, we use this configuration in this experiment.
The results are presented in Table 2 in terms of a micro average
F1 score and standard deviation per dataset. The three additional
average F1 scores are macro averages over the four/eight micro
averages of the corresponding column. Note that the WikiData
dataset consists of a single matching scenario; therefore, its result
is not an average and thus has no standard deviation. The last
column (Δ) shows the percentage improvement/impairment of
Prisma compared to the better result of K&N and JMM.
Discussion. Prisma consistently produces the best result in all
multi-table matching scenarios, followed by JMM. Specifically,
Prisma improves the performance of JMM by 60% on average.
In the single-table matching scenarios, Prisma has the highest
average performance (with an F1 of 0.641) and produces the best
result in three out of four cases. Surprisingly, K&N outperforms
JMM in three datasets and even surpasses Prisma in theWikiData
scenario (Prisma is 15% worse here).

Interestingly Prisma has by far the lowest standard deviation
for the single-table scenarios, indicating consistent performance.
However, together with JMM, it has the highest standard devia-
tion in the multi-table scenarios, likely because K&N performs
poorly in these cases, leading to inherently low variability. The
highest standard deviation can be observed for the Magellan

304

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 Parameter

0.46

0.48

0.5

0.52

0.54

F1
 S

co
re

gpdep Threshold
0.1 0.2 0.3 0.4 0.5

Figure 3: Impact of structural and single column informa-
tion (adjusted via the 𝛾 parameter) and the number of used
aFDs (adjusted via the 𝜏 parameter) on the performance of
Prisma across all matching scenarios.

dataset. This derives from the diversity of its scenarios, as each
is based on data from a different domain.

It is also evident that multi-table scenarios with different levels
of normalization (DNSR and DNDR) are significantly more chal-
lenging than those with the same level of normalization (SNSR
and SNDR). In contrast, the overlap of instance data has only a
limited impact on performance and shows no clear trend.
Summary. Prisma outperforms the existing encoding-independent
matchers in both single-table and multi-table matching scenarios.
However, this superiority is clearly more evident in the multi-
table scenarios than in the single-table scenarios, where Prisma
does not always produce the best result.

5.4 Sensitivity Analysis
In our second experiment, we evaluate how Prisma performs
for different configurations of its two most important hyperpa-
rameters: (i) the 𝛾 parameter that weights the importance of the
single-column features and the graph structure (see Equation 1)
and (ii) the 𝑔𝑝𝑑𝑒𝑝-threshold 𝜏 that determines which aFDs are
integrated into the database graphs.
Implementation.We evaluate the performance of Prisma for sev-
eral settings of 𝛾 and 𝜏 . We progressively varied the parameter
𝛾 in the range [0, 1], where 𝛾 = 0 means that only single col-
umn features (i.e., the frequency distributions of the individual
columns) are retained and 𝛾 = 1 leads to only the graph struc-
ture (resulting from aFDs and columns belonging to the same
tables) playing a role in the embedding generation. For 𝜏 we only
increased the setting from 0.1 up to 0.5 because otherwise there
would be almost no aFD remaining left, which would imply that
evaluating 𝛾 values greater than 0 would not be meaningful.

The results of this experiment are reported in Figure 3 asmacro
average F1 scores across all matching scenarios where every
curve corresponds to a different setting of the 𝑔𝑝𝑑𝑒𝑝-threshold 𝜏 .
The results for 𝛾 = 1 are removed from this figure because they
are significantly lower than the rest (most often lower than 0.2).
Discussion. Removing the values for 𝛾 = 1 already shows that
using the structural information alone does not lead to good
results. In contrast, the best performances are obtained with
a mix between structural and feature knowledge (0.05 ≤ 𝛾 ≤
0.45). For 𝛾 ≥ 0.5, the F1 scores begin to decrease. This happens
significantly faster for 𝜏 = 0.1 than for the higher threshold
values. The strong drop for 𝜏 = 0.1 suggests that the graphs
include too many non-genuine aFDs, leading to different graph

structures. However, even in this case, it is worth considering
the structural similarities to some extent and not just relying
on the single-column features. Prisma performs worst when
𝛾 is 0 or close to 1. For 𝛾 = 0 this occurs because high-order
column interactions (as they are provided by the aFDs), that
can provide signals supporting the matching, are ignored. For
𝛾 → 1, performances drop because aFDs can also carry noise and
therefore relying only on these can be counterproductive.

A similar consideration can be made for the 𝑔𝑝𝑑𝑒𝑝-threshold
𝜏 as choosing too many or too few aFDs can diminish the value
of the structural information. High values of 𝜏 drastically reduce
the number of aFDs, while low values select more non-genuine
aFDs with consequent greater noise. The fact that 𝜏 = 0.3 and
𝜏 = 0.4 achieve the best results shows that it is better to choose an
intermediate value. Especially for 𝜏 = 0.3 Prisma’s performance
remains robust across varying 𝛾 values, outperforming all other
𝜏 settings except when 𝛾 is between 0.55 and 0.75 (here 𝜏 = 0.5
is slightly better).
Summary. Prisma achieves its best performance with the param-
eter setting 𝛾 = 0.35 and 𝜏 = 0.3 (F1 of 0.549). For this reason, we
use this setting in our other experiments. However, this analysis
also shows that Prisma’s performance remains stable even with
small adjustments to this optimal setting, whether in the 𝛾 or 𝜏
parameter.

5.5 Effectiveness on Different Matching
Scenarios

In this experiment, we evaluate the effectiveness of Prisma in
every matching scenario defined in Section 5.1 (encrypted and
non-encrypted) and compare these results with all the competi-
tors and baselines introduced in Section 5.2. This allows us to
understand how the performance of these matchers varies by
changing the characteristics of the data being processed.
Implementation. The experimental setting is identical in all the
scenarios analyzed. For Prisma, we have selected the configura-
tion that works best on average for all matching scenarios (i.e.,
𝛾 = 0.35 and 𝜏 = 0.3). The analyzed matchers are applied to each
matching scenario: both on the original, non-encrypted data, and
in its encrypted version. The results of this set of experiments
are reported in Table 3 (single-table scenarios) and Table 4 (multi-
table scenarios). In the case of the single-table datasets, there are
major differences in the results. We therefore show the results
per dataset. For the multi-table datasets, the main difference is
whether the source and target schemas are at the same level
of normalization. The selection of the tuples only led to minor
differences. For this reason, we aggregated these scenarios based
on their normalization differences resulting in only two tables.
Discussion (Single Table).We find that Prisma produces competi-
tive results in the non-encrypted (original) scenarios of three of
the four datasets. It achieves even the second best results for the
TPC-DI (F1 of 0.667), WikiData (F1 of 0.85), and ChEMBL (F1 of
0.352) datasets. Despite the second best result, Prisma struggles
with the ChEMBL dataset, where only EmbDI performs really
well (F1 of 0.836). One reason why Prisma does not perform so
well in the ChEMBL dataset is that the number of aFDs discovered
in the two databases of each of these matching scenarios is so dif-
ferent that even our approach from Section 4.1 cannot guarantee
that both graphs have a similar number of hyperedges (i.e., it is
not possible to fill the smaller of the two aFD sets as there are too

305

Table 3: Performance of the different matchers on the original (ORIG) and the encrypted (ENC) single-table scenarios. The
best results are printed in bold. The second best results are underlined.

(a) TPC-DI

Prisma LEAPME EmbDI CS I4O K&N JMM

O
RI
G P 0.667 0.106 0.725 0.303 0.287 0.604 0.525

R 0.667 0.384 0.626 0.902 0.842 0.604 0.525
F1 0.667 0.163 0.668 0.440 0.427 0.604 0.525

EN
C P 0.667 0.045 0.075 0.046 0.030 0.604 0.525

R 0.667 1.000 0.060 0.977 0.455 0.604 0.525
F1 0.667 0.087 0.066 0.088 0.057 0.604 0.525

(b) ChEMBL

Prisma LEAPME EmbDI CS I4O K&N JMM

O
RI
G P 0.523 0.050 0.908 0.078 0.180 0.232 0.256

R 0.272 0.377 0.775 0.729 0.928 0.232 0.256
F1 0.352 0.085 0.836 0.125 0.302 0.232 0.256

EN
C P 0.523 0.043 0.026 0.044 0.030 0.232 0.256

R 0.272 1.000 0.022 0.975 0.227 0.232 0.256
F1 0.352 0.083 0.024 0.085 0.052 0.232 0.256

(c) Magellan

Prisma LEAPME EmbDI CS I4O K&N JMM

O
RI
G P 0.694 0.850 0.799 0.840 0.499 0.592 0.557

R 0.694 1.000 0.790 1.000 0.907 0.592 0.557
F1 0.694 0.909 0.794 0.900 0.626 0.592 0.557

EN
C P 0.694 0.182 0.249 0.172 0.137 0.592 0.557

R 0.694 1.000 0.239 0.936 0.571 0.592 0.557
F1 0.694 0.305 0.244 0.289 0.216 0.592 0.557

(d) WikiData

Prisma LEAPME EmbDI CS I4O K&N JMM

O
RI
G P 0.850 0.058 1.000 0.099 0.432 1.000 0.700

R 0.850 0.450 1.000 0.850 0.950 1.000 0.700
F1 0.850 0.103 1.000 0.177 0.594 1.000 0.700

EN
C P 0.850 0.050 0.059 0.049 0.032 1.000 0.700

R 0.850 1.000 0.050 0.950 0.450 1.000 0.700
F1 0.850 0.095 0.054 0.093 0.060 1.000 0.700

Table 4: Performance of the different matchers on the original (ORIG) and the encrypted (ENC) multi-table scenarios. The
scenarios are divided into two groups: Source and target schemas with the same normalization level and with different
normalization levels. The best results are printed in bold. The second best results are underlined.

(a) Same normalization level

Prisma LEAPME EmbDI CS I4O K&N JMM

O
RI
G P 0.573 0.055 0.671 0.025 0.062 0.072 0.371

R 0.573 0.157 0.605 0.767 0.975 0.576 0.371
F1 0.573 0.081 0.636 0.048 0.116 0.128 0.371

EN
C P 0.572 0.014 0.031 0.014 0.007 0.072 0.285

R 0.572 1.000 0.014 1.000 0.101 0.576 0.285
F1 0.572 0.027 0.019 0.028 0.013 0.128 0.285

(b) Different normalization levels

Prisma LEAPME EmbDI CS I4O K&N JMM

O
RI
G P 0.320 0.052 0.439 0.020 0.048 0.054 0.278

R 0.367 0.406 0.484 0.833 0.978 0.540 0.326
F1 0.340 0.083 0.459 0.038 0.092 0.098 0.299

EN
C P 0.323 0.010 0.008 0.010 0.007 0.054 0.268

R 0.371 1.000 0.006 0.972 0.139 0.540 0.311
F1 0.344 0.021 0.007 0.020 0.014 0.098 0.287

few dependencies available), which is essential for a similar struc-
ture. In general, EmbDI outperforms the other approaches across
most datasets, but surprisingly underperforms with the Magellan
dataset, where LEAPME and CS achieve their best performance.
LEAPME’s generally poor performance in most scenarios is likely
due to the fact that it was trained on a different corpus of tables
and transfer learning does not work well in our scenarios.

Although they already perform quite well on the original
data, Prisma, K&N, and JMM become superior on encrypted
data. While their performance remain stable even in this chal-
lenging scenario, the performance of LEAPME, EmbDI, CS, and
I4O decreases significantly. We observe percentage differences
in F1 which can reach 70% and even more than 95% for EmbDI.
Interestingly, while EmbDI struggles with precision and recall,
other matchers, such as LEAPME and CS, tend to match almost
everything, producing high recall, but rather low precision. We
think this behavior derives from all MD5 hashes looking sim-
ilar to some string similarity measures. Differently from such
approaches, Prisma, K&N, and JMM are the only methods that
are not affected by such changes in the data. They produce ex-
actly the same results as in the non-encrpyted scenarios, proving
that they are actually encoding-independent. This also shows
that in the absence of significant overlap between column val-
ues and similarity between column names, the most convenient
approaches are structure- and metadata-based matchers.

What is also noticeable in the results is that the recall, preci-
sion, and F1 score of Prisma, K&N, and JMM are identical in most
cases. This can be attributed to the fact that they strive to create

bijective mappings (which is actually true in these unionable
scenarios) so that each false positive automatically implies a false
negative.
Discussion (Multi-Table). Analyzing the multi-table scenarios in
Table 4, we observe that Prisma outperforms its competitors in
the encrypted scenarios (F1 of 0.572 and 0.344) and produces the
second best results (F1 of 0.573 and 0.340) in the non-encrypted
(original) scenarios – only EmbDI achieves better results. Once
again, Prisma, K&N, and JMM demonstrate their encoding inde-
pendence by not experiencing any significant performance losses
even when the databases are encrypted.

The reason for the slight differences in Prisma’s performance
for the original and the encrypted version of the multi-table
matching scenarios is due to the fact that, in the case of random
selections (e.g., among several aFDs with the same𝑔𝑝𝑑𝑒𝑝-score or
landmark nodes when generating the embeddings), intermediate
results depend on the order in which the data are processed.
This, in turn, can be determined by textual properties, such as
column or table names. Strictly speaking, Prisma is therefore not
100% encoding-independent, but as our experiments show, the
differences are so small that they are hardly worth mentioning.

A similar effect can be observed with JMM, where the order
in which the columns are processed influences the produced set
of column correspondences. Compared to Prisma, however, this
effect has a much greater impact on the results (see Table 4).

A possible justification for the poor performance of some com-
peting methods is related to the dissimilarity of column names.

306

We recall that the columns of the target schema are obtained
in this scenario by translating their original names from Eng-
lish to Italian. In the single-table scenarios, many matchers (e.g.,
LEAPME and CS) tend to declare too many correspondences, so
that they achieve a high recall but very low precision.

A comparison of the results from Table 4a and Table 4b shows
once again that dealing with different levels of normalization is
not trivial and can lead to considerable performance losses.

It should also be noted that in the case of schemas with dif-
ferent levels of normalization, the ground truth no longer cor-
responds to a bijective mapping and some columns have a cor-
respondence to columns of different tables. As a result, recall
precision, and F1 score are no longer identical for Prisma and
JMM. The differences between precision and recall for K&N in
all the multi-table scenarios are due to the fact that each pair of
tables is matched individually and there is no bijective mapping
between every two of these tables. Therefore, there are many
more column pairs that are classified as matches than there are
actual matches, resulting in low precision.
Summary.The results demonstrate that while Prisma is encoding-
independent, many state-of-the-art matchers cannot handle dif-
ferently encoded databases. In three out of four single-table sce-
narios, Prisma achieves competitive results even for the original
data. For more complex schemas with multiple tables, this applies
to all scenarios (encrypted and non-encrypted). However, there
is room for improvement when dealing with schemas that are
normalized differently. Nevertheless, Prisma’s good performance
in many different matching scenarios shows its generalizability.

5.6 Efficiency
In our last experiment, we evaluate the efficiency of Prisma and
the competing methods in terms of runtime.
Implementation.We separately measure the runtime of Prisma
and other methods in single-table and multi-table matching sce-
narios, since they have quite different sizes. The results of this
experiment are shown in Figure 4.

In addition, we have broken down the runtime of Prisma into
its individual steps to identify which components contribute most
to the overall runtime. The results are presented in Figure 5. Note
that Step 3 (Graph Embedding) and Step 4 (Match Generation)
are measured together due to their short runtimes. In addition,
for historical reasons, the filtering of the aFDs is part of the graph
building, so that its runtime is included in that of the second step.
Discussion. First, we note that the fastest method is CS which
runs under 0.1 seconds for all evaluated scenarios, as it does only
basic column name similarity calculations. The second-fastest
and third-fastest approaches are JMM and K&N which execute in
less than 0.6 and 1.5 seconds in the single-table scenarios and less
than 3.5 and 5 seconds in the multi-table scenarios respectively.
A little slower is I4O, which takes 2.5 seconds in the single-table
and 10 seconds in the multi-table scenarios. Differently from CS,
which operates only at the schema level, I4O, K&N, and JMM
require iterating over all table instances (e.g., to identify overlap
in values), which explains the increased execution time.

LEAPME’s execution times are more than an order of mag-
nitude higher than those of I4O. This mainly derives from the
computation of column embeddings obtained by aggregating
their constituent values’ word embeddings. These computations
are done independently of LEAPME’s configuration. Thus the
runtimes are high, even if we run LEAPME only in the label-based
version. Finally, EmbDI is the slowest approach: it runs on both

1

10

100

1000

R
un

tim
es

 (s
)

Single Table Multiple Tables

PRISMA LEAPME EmbDI CS I40 K&N JMM

Figure 4: Runtime of the different matchers in seconds,
averaged over all single-table scenarios and all multi-table
scenarios, respectively.

TPC ChEMBL Wikidata Magellan
Single Table

0

10

20

30

40

50

60

70

R
un

tim
es

 (s
)

SNSR SNDR DNSR DNDR
Multiple Tables

Profiling Graph Build Embedding + Matching

Figure 5: Runtime of the different Prisma steps in seconds.
In this figure, graph building includes the aFD filtering,
and Step 3 (Embedding Generation) and Step 4 (Match Gen-
eration) are combined into one measurement (green).

single-table and multi-table scenarios in the order of minutes.
This mainly comes from the execution of multiple random walks
and the application of the subsequent word2vec component. Al-
though these times can theoretically be reduced by generating
fewer walks or enabling sampling, we executed EmbDI using the
default configuration to ensure best matching results.

Although Prisma is the third-slowest method, it is significantly
faster than LEAPME and EmbDI in all matching scenarios. As we
can see in Figure 5, in the single-table scenarios the data profiling
and the graph building take the most time. The long runtime
for the graph building is explained by the expensive calculation
of the 𝑔𝑝𝑑𝑒𝑝-scores. In comparison, the time required to create
and match the node embeddings is negligible. In contrast, in
the multi-table scenarios data profiling is by far the most time
consuming step. In these scenarios, the graph building and the
embedding matching can be calculated almost equally quickly.
The total runtime of Prisma is significantly longer for scenarios
with the same set of records than for scenarios with different
record sets. This can be explained by the fact that the former
contain four times as many tuples as the latter (see Table 1).
Summary. Even though Prisma is not the fastest approach, and
the discovery of the aFDs by the Pyro algorithm is particularly
time-consuming, it still achieves acceptable runtimes compared to
other complexmatching approaches such as LEAPME and EmbDI.
This is largely because Pyro, unlike EmbDI, is parallelizable and
can take advantage of our multi-core setting.

307

6 CONCLUSION & FUTUREWORK
In this paper, we introduced Prisma, a novel approach for encoding-
independent schema matching that exploits functional depen-
dencies (FDs) to capture rich relationships between columns
even when column names are cryptic and the instance data are
encoded differently, as is the case with encrypted data.

The Prisma approach is divided into four steps. In the first step,
the input databases are profiled to discover approximate FDs and
single column features (i.e., frequency distributions of column
values). After filtering the discovered FDs to the most genuine
ones using the 𝑔𝑝𝑑𝑒𝑝-measure, this information is inserted into
a graph-based representation, one for each database, from which
column embeddings are extracted. In the last step, these column
embeddings are compared and their similarities are converted
into column correspondences via amodified version of the Jonker-
Volgenant algorithm.

We compared Prisma with multiple baseline and state-of-the-
art schema matchers and showed that it produces competitive
performance in general and outperforms the other matchers in
most encrypted scenarios, especially in those where the schemas
to be matched consist of multiple tables. We also derived some
further interesting insights: (i) FDs represent a valuable form
of knowledge supporting the matching task, especially in en-
crypted scenarios where strong matching indicators, such as
explanatory column names and sufficient instance data overlap,
do not exist. (ii) Schema matching based on exact FDs is par-
ticularly sensitive to scenarios where spurious data invalidate
commonsense and semantically obvious data dependencies. The
use of approximate FDs significantly reduces the problem, even
if it cannot solve it completely. (iii) Although Prisma can handle
complex schemas consisting of multiple tables better than other
encoding-independent matchers [20, 22], its FD-based approach
is particularly sensitive to scenarios where the schemas to be
matched follow different normalization levels, as this can lead to
very different sets of FDs.

We plan to extend this work by incorporating other types
of integrity constraints, such as order dependencies [43], and
investigating new methods to filter non-meaningful FDs. We
also plan to analyze alternative and more advanced methods
of graph embeddings that are less sensitive to small changes
in graph structures. We expect that such an embedding could
yield significantly improved matching performance, especially
on challenging multi-table matching scenarios. Finally, we aim to
address the problem of matching schemas being in different levels
of normalization. To this end, we plan to develop an automatic
denormalization procedure that works even when foreign keys
are not provided by the input data.

ACKNOWLEDGMENTS
This research was partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – 495170629
and SAP SE. Furthermore, we would like to thank Alexander Viel-
hauer, Marcian Seeger, Thorsten Papenbrock and the participants
of the StructureMatch seminar at the University of Marburg for
providing us with a code framework for executing the match-
ers and evaluating the results, and for valuable discussions. We
also thank Philipp Jung for providing us his implementation of
the 𝑔𝑝𝑑𝑒𝑝-measure and Jonte Johnsen for re-implementing the
schema matcher of [20].

REFERENCES
[1] Daniel Ayala, Inma Hernández, David Ruiz, and Erhard Rahm. 2022. Leapme:

Learning-based property matching with embeddings. Data and Knowledge
Engineering (DKE) 137 (2022).

[2] Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis.
2011. On evaluating schema matching and mapping. Springer Verlag, Berlin,
Heidelberg.

[3] Philip A Bernstein, Jayant Madhavan, and Erhard Rahm. 2011. Generic schema
matching, ten years later. Proceedings of the VLDB Endowment (PVLDB) 4, 11
(2011), 695–701.

[4] Laure Berti-Équille, Hazar Harmouch, Felix Naumann, Noël Novelli, and Sara-
vanan Thirumuruganathan. 2018. Discovery of Genuine Functional Dependen-
cies from Relational Data with Missing Values. Proceedings of the VLDB Endow-
ment (PVLDB) 11, 8 (2018), 880–892. https://doi.org/10.14778/3204028.3204032

[5] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-
stantinou. 2020. Dataset Discovery in Data Lakes. In Proceedings of the In-
ternational Conference on Data Engineering (ICDE). IEEE, 709–720. https:
//doi.org/10.1109/ICDE48307.2020.00067

[6] Alain Bretto. 2013. Hypergraph Theory: An Introduction. Springer Verlag,
Heidelberg. https://doi.org/10.1007/978-3-319-00080-0

[7] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating embeddings of heterogeneous relational datasets for data integration
tasks. Proceedings of the International Conference on Management of Data
(SIGMOD) (2020), 1335–1349.

[8] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016. Relaxed
Functional Dependencies - A Survey of Approaches. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 28, 1 (2016), 147–165. https://doi.
org/10.1109/TKDE.2015.2472010

[9] David Frederic Crouse. 2016. On implementing 2D rectangular assignment
algorithms. IEEE Trans. Aerosp. Electron. Syst. 52, 4 (2016), 1679–1696. https:
//doi.org/10.1109/TAES.2016.140952

[10] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy, and Pedro M.
Domingos. 2004. iMAP: Discovering Complex Mappings between Database
Schemas. In Proceedings of the International Conference on Management of Data
(SIGMOD). ACM, 383–394. https://doi.org/10.1145/1007568.1007612

[11] Hong Hai Do and Erhard Rahm. 2002. COMA - A System for Flexible Combi-
nation of Schema Matching Approaches. In Proceedings of the International
Conference on Very Large Databases (VLDB). Morgan Kaufmann, 610–621.
https://doi.org/10.1016/B978-155860869-6/50060-3

[12] Jérôme Euzenat and Pavel Shvaiko. 2013. Ontology Matching, Second Edition.
Springer.

[13] Raul Castro Fernandez, Essam Mansour, Abdulhakim Ali Qahtan, Ahmed K.
Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stone-
braker, and Nan Tang. 2018. Seeping Semantics: Linking Datasets Using
Word Embeddings for Data Discovery. In Proceedings of the International
Conference on Data Engineering (ICDE). IEEE Computer Society, 989–1000.
https://doi.org/10.1109/ICDE.2018.00093

[14] Donniell E. Fishkind, Sancar Adali, Heather G. Patsolic, Lingyao Meng, Digvi-
jay Singh, Vince Lyzinski, and Carey E. Priebe. 2019. Seeded graph matching.
Pattern Recognition 87 (2019), 203–215. https://doi.org/10.1016/j.patcog.2018.
09.014

[15] Palash Goyal and Emilio Ferrara. 2018. Graph Embedding Techniques, Appli-
cations, and Performance: A Survey. Knowledge-Based Systems - Journal 151
(2018), 78–94. https://doi.org/10.1016/j.knosys.2018.03.022

[16] Edouard Grave, Armand Joulin, and Quentin Berthet. 2019. Unsupervised
Alignment of Embeddings with Wasserstein Procrustes. In The International
Conference on Artificial Intelligence and Statistics (AISTATS) (Proceedings of
Machine Learning Research), Vol. 89. PMLR, 1880–1890. http://proceedings.
mlr.press/v89/grave19a.html

[17] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. Proceedings of the International Conference on Knowledge discovery
and data mining (SIGKDD) (2016), 855–864.

[18] Benjamin Hättasch, Michael Truong-Ngoc, Andreas Schmidt, and Carsten
Binnig. 2020. It’s AI Match: A Two-Step Approach for Schema Matching
Using Embeddings. In 2nd International Workshop on Applied AI for Database
Systems and Applications (AIDB@VLDB). https://drive.google.com/file/d/
1xCGhHfghJR3DLuA-9o-XQXBS8M1_8a4P/view?usp=sharing

[19] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. REGAL:
Representation Learning-based Graph Alignment. Proceedings of the Interna-
tional Conference on Information and Knowledge Management (CIKM) (2018),
117–126. https://doi.org/10.1145/3269206.3271788

[20] Anuj Jaiswal, David J Miller, and Prasenjit Mitra. 2010. Uninterpreted schema
matching with embedded value mapping under opaque column names and
data values. IEEE Transactions on Knowledge and Data Engineering (TKDE) 22,
2 (2010), 291–304.

[21] Lan Jiang and Felix Naumann. 2020. Holistic primary key and foreign key
detection. Journal of Intelligent Information Systems 54 (2020), 439–461.

[22] Jaewoo Kang and Jeffrey F Naughton. 2008. Schema matching using interat-
tribute dependencies. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 20, 10 (2008), 1393–1407.

[23] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-
based Semantic Table Union Search. Proceedings of the International Con-
ference on Management of Data (SIGMOD) 1, 1 (2023), 9:1–9:25. https:
//doi.org/10.1145/3588689

308

[24] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton,
Shishir Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. 2016.
Magellan: toward building entity matching management systems. Proceedings
of the VLDB Endowment (PVLDB) (2016), 12. https://doi.org/10.14778/2994509.
2994535

[25] Jan Kossmann, Thorsten Papenbrock, and Felix Naumann. 2022. Data depen-
dencies for query optimization: a survey. VLDB Journal 31, 1 (2022), 1–22.
https://doi.org/10.1007/S00778-021-00676-3

[26] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Kat-
sifodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset
Discovery. In Proceedings of the International Conference on Data Engineering
(ICDE). IEEE, 468–479. https://doi.org/10.1109/ICDE51399.2021.00047

[27] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Approximate
Dependencies. Proceedings of the VLDB Endowment (PVLDB) 11, 7 (2018), 759–
772. https://doi.org/10.14778/3192965.3192968

[28] Harold W Kuhn. 1955. The Hungarian method for the assignment problem.
Naval research logistics quarterly 2, 1-2 (1955), 83–97.

[29] Wen-Syan Li and Chris Clifton. 2000. SEMINT: A tool for identifying attribute
correspondences in heterogeneous databases using neural networks. Data
and Knowledge Engineering (DKE) 33, 1 (2000), 49–84.

[30] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similar-
ity Flooding: A Versatile Graph Matching Algorithm and Its Application
to Schema Matching. In Proceedings of the International Conference on Data
Engineering (ICDE). IEEE Computer Society, 117–128. https://doi.org/10.1109/
ICDE.2002.994702

[31] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proceedings of the VLDB Endowment (PVLDB) 11,
7 (2018), 813–825. https://doi.org/10.14778/3192965.3192973

[32] Felix Naumann, Ching-Tien Ho, Xuqing Tian, Laura M. Haas, and Nimrod
Megiddo. 2002. Attribute Classification Using Feature Analysis. In Proceedings
of the International Conference on Data Engineering (ICDE). IEEE Computer
Society, 271. https://doi.org/10.1109/ICDE.2002.994725

[33] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and
Felix Naumann. 2015. Data profiling with Metanome. Proceedings of the
VLDB Endowment (PVLDB) 8, 12 (2015), 1860–1863. https://doi.org/10.14778/
2824032.2824086

[34] Thorsten Papenbrock and Felix Naumann. 2017. Data-driven Schema Normal-
ization. In Proceedings of the International Conference on Extending Database
Technology (EDBT). OpenProceedings.org, 342–353. https://doi.org/10.5441/

002/EDBT.2017.31
[35] Marcel Parciak, Sebastiaan Weytjens, Niel Hens, Frank Neven, Liesbet M.

Peeters, and Stijn Vansummeren. 2024. Measuring Approximate Functional
Dependencies: A Comparative Study. In Proceedings of the International Con-
ference on Data Engineering (ICDE). IEEE, 3505–3518. https://doi.org/10.1109/
ICDE60146.2024.00270

[36] Glenn Norman Paulley. 2001. Exploiting functional dependence in query opti-
mization. University of Waterloo, Waterloo.

[37] Gregory Piatetsky-Shapiro and Christopher J. Matheus. 1993. Measuring
data dependencies in large databases. In Proceedings of the AAAI Knowledge
Discovery in Databases Workshop. AAAI Press, 162–173.

[38] Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to
automatic schema matching. VLDB Journal 10, 4 (2001), 334–350. https:
//doi.org/10.1007/s007780100057

[39] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017.
HoloClean: Holistic Data Repairs with Probabilistic Inference. Proceed-
ings of the VLDB Endowment (PVLDB) 10, 11 (2017), 1190–1201. https:
//doi.org/10.14778/3137628.3137631

[40] Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, and Ulf
Leser. 2009. Amachine learning approach to foreign key discovery. Proceedings
of the ACM SIGMOD Workshop on the Web and Databases (WebDB) (2009).

[41] Monica Scannapieco, Ilya Figotin, Elisa Bertino, and Ahmed K Elmagarmid.
2007. Privacy preserving schema and data matching. In Proceedings of the
International Conference on Management of Data (SIGMOD). 653–664.

[42] Pavel Shvaiko and Jérôme Euzenat. 2005. A survey of schema-based matching
approaches. Journal on Data Semantics (2005), 146–171.

[43] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. 2012. Fundamentals of
Order Dependencies. Proceedings of the VLDB Endowment (PVLDB) 5, 11
(2012), 1220–1231. https://doi.org/10.14778/2350229.2350241

[44] Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang Li, Xiaoyong Du, Xi-
aofeng Jia, and Song Gao. 2023. Unicorn: A Unified Multi-tasking Model for
Supporting Matching Tasks in Data Integration. Proc. ACM Manag. Data 1, 1
(2023), 84:1–84:26. https://doi.org/10.1145/3588938

[45] Mengjia Xu. 2021. Understanding Graph Embedding Methods and Their Appli-
cations. SIAM Rev. 63, 4 (2021), 825–853. https://doi.org/10.1137/20M1386062

[46] Yunjia Zhang, Avrilia Floratou, Joyce Cahoon, Subru Krishnan, Andreas C.
Müller, Dalitso Banda, Fotis Psallidas, and Jignesh M. Patel. 2023. Schema
Matching using Pre-Trained Language Models. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE). IEEE, 1558–1571. https:
//doi.org/10.1109/ICDE55515.2023.00123

309

