
Synopses for Summarizing Spatial Data Streams
Jacco Kiezebrink

Eindhoven University of Technology
Eindhoven, The Netherlands

Wieger R. Punter∗

Eindhoven University of Technology
Eindhoven, The Netherlands

w.r.punter@tue.nl

Odysseas Papapetrou
Eindhoven University of Technology

Eindhoven, The Netherlands
o.papapetrou@tue.nl

Kevin Verbeek
Eindhoven University of Technology

Eindhoven, The Netherlands
k.a.b.verbeek@tue.nl

ABSTRACT
In today’s data-driven landscape, geospatial streams are pivotal
in diverse fields, ranging from sociology to network engineering
and to meteorology. A key challenge in utilizing these streams
is to efficiently compute aggregates over ad-hoc spatial ranges,
possibly with additional predicates on the stream items. For each
application scenario, different aggregates become relevant, such
as the number of distinct items, the frequency of each item, or
even the variance of the frequencies of the items that fall within
a spatial range.

Storing the entire stream for computing these aggregates is
impractical in scenarios that involve fast-paced and unbounded
streams, due to prohibitive storage costs and query execution
delays. To address this, we propose two sketches, SpatialSketch
and DynSketch, that support aggregate queries with different
types of aggregates. Both sketches require small space, and they
can summarize fast-paced streams and estimate the aggregates,
with accuracy guarantees. Importantly, they support new diverse
functionalities, in a plug-and-play manner, without requiring novel
theoretical analysis. In addition to the theoretical contribution,
we evaluate SpatialSketch and DynSketch experimentally. Our
experiments demonstrate that the two sketches outperform the
state of the art, and that they can be used for addressing novel
functionalities for which there exist no small-space solutions to
date.

1 INTRODUCTION
A vast amount of geospatial data is generated on a daily basis from
various sources, such as satellites, weather sensors, traffic sensors,
smart farming devices [4], and IoT devices [25]. Much of these
data comes from streaming sources, with high-frequency updates.
Indicatively, the National Oceanic & Atmospheric Administration
collects around 20 terabytes of environmental data on a daily
basis [15].

The prototypical analytical requirement on such data is for
computing aggregate statistics, like sums and averages, on ar-
eas1 that the user chooses at query time, e.g., by drawing a
polygon around them on a map. For example, in network
monitoring, aggregate network usage statistics of different areas
(e.g., a campus, or a few adjacent city blocks) aid in a comprehen-
sive understanding of the flow through the network topology,
1We will be using the terms areas and query regions – or simply regions – inter-
changeably. These correspond to areas chosen ad-hoc by the user, and should not
be confused with administrative regions, e.g., cities and provinces.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

whereas in IoT, exploratory statistics on alarms and events on
sensors active in a region at any given moment can be used for
testing and auditing procedures [25]. Meteorologists and climate
scientists also rely on aggregate area statistics, for building and
using weather-dependent models [2]. Similarly, a real estate in-
vestor may be interested in different streaming statistics (such as
traffic, air quality, noise pollution statistics over the last hours or
months) within a range of 1km around a potential investment.
In traffic monitoring, aggregate statistics can be used to ana-
lyze unique vehicles through arbitrarily chosen road segments,
possibly with additional predicates for more comprehensive anal-
ysis [37]. In the mentioned cases, the query regions are not known
a priori – they are decided at query time, potentially as part of a
multi-step analytical pipeline.

Two key challenges arise in the above scenarios. The first
involves ingesting the stream. In order to enable answering all
future – yet unseen – queries, the whole stream needs to be
stored (potentially together with indices). However, the mere
data volume generated by fast-paced streams leads to high stor-
age requirements, which come with a prohibitively high price tag.
Furthermore, the storage medium (typically secondary storage,
for storing terabytes of data) may not be able to store the data
at line rate, leading to throttling. The second challenge involves
efficient querying. Efficiency is key for fast-paced streams, where
the answer changes rapidly. It is imperative in time-critical con-
texts to minimize query latency, in order to act fast, e.g., in traffic
monitoring for analyzing traffic flow in a city for an emergency
response team [34].

The go-to approach for handling fast-paced streams is to use
sketches: small-space stream summaries that can be constructed
at line rate (typically with constant or polylogarithmic complex-
ity per update), and can be later used for estimating a variety of
queries. Widely used sketches include the Count [8] and Count-
min sketch [11] that approximate count queries (how many items
with the queried value have been observed in the stream?), the
Bloom filter [5] that supports membership queries (has an item
been observed in the stream up to now?), and the exponential
histogram [13] that summarizes temporal data and allows sliding
window aggregate queries (how many items have been observed
within a given timeframe). Many other sketches have been pro-
posed in the last years, typically by advancing one of the above
works to support novel requirements.

Our contributions: We describe SpatialSketch, a novel sketch
for estimating aggregates over spatial data streams. SpatialSketch
can also be perceived as a meta-sketch, since it is always used in
conjunction with existing non-spatial sketches, for converting
them to sketches that offer the same functionality on spatial data,
with spatial predicates. For example, it can incorporate Count-min

Series ISSN: 2367-2005 284 10.48786/edbt.2025.23

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.23

sketches to support frequency estimates and detection of heavy
hitters over spatial ranges, or Bloom filters to enable membership
queries, again over spatial ranges. We test SpatialSketch by inte-
grating it with 5 existing, non-spatial sketches (see Table 3, we
will refer to these as the nested sketches), that offer different func-
tionalities. New sketches, beyond these 5, can be integrated in a
plug-and-play manner, by changing only a couple of lines of code,
i.e., for calling the corresponding update and query methods of
the sketch.

Importantly, SpatialSketch provides accuracy guarantees out-
of-the-box, even when it is instantiated with a new – unforeseen
– nested sketch, offering novel functionality. The user of SpatialS-
ketch is not required to derive new theoretical guarantees. To
the best of our knowledge, this is the first sketch that supports
this functionality.

SpatialSketch dictates the following choices: (a) how the nested
sketches can be incorporated for allowing novel aggregates on
spatial queries, and (b) how queries can be executed efficiently,
with accuracy guarantees. We also describe an extension of Spa-
tialSketch, called DynSketch, that allows a better utilization of the
available memory for summarizing streams of unknown length
and distributions, by dynamically fine-tuning the trade-off be-
tween space and computational efficiency. SpatialSketch (hence
also DynSketch) has the following properties.

• Compared to exact solutions, it drastically reduces the
memory requirements and improves performance, in terms
of both data ingestion (between 4.5-7×) and query execu-
tion (between 28-2500×).

• Compared to the state of the art approximate algorithms,
it is more efficient (up to 400×) and more accurate (up to
several order of magnitudes, with the difference growing
for larger query regions). It also supports queries of any
shape – not only rectangular queries.

• Unlike previous works, it can be integrated with a large
variety of existing sketches – not necessarily mergeable,
or the ones considered in this paper – to enable novel
estimators in spatial streams, with formal probabilistic
guarantees.

• The required theory for probabilistic guarantees with these
new sketches is provided by SpatialSketch, eliminating the
need for new analysis.

• Integration of a new sketch in the code is a plug-and-play
exercise, requiring changes only in a few lines of code.

• DynSketch also offers the capability to dynamically fine-
tune the space:computational efficiency trade-off, which
becomes crucial for summarizing streams of unpredictable
lengths and distributions.

Running example: A large company wants to be able to
analyse the incoming traffic on its networks, i.e., the network
packets that enter its networks from outside. Such analysis is key
for identifying network issues and attacks, and optimizing the
connectivity, e.g., by installing additional data centers in busy
areas. The input is a stream including the IP address of the desti-
nation of the network packet (i.e., the one inside the company)
and the timestamp of the packet. The stream is augmented with
the geographical coordinates of the packet origin, which can be
found with the use of any IP geolocation database (Fig. 1). Typical
analyses on this stream include finding the number of packets
arriving from an area chosen by the network administrator on a
map, or the number of packets that arrive from an area and are
also sent to a particular server in the company. The same queries

may also be executed on a sliding window basis. Other indica-
tors for detecting DoS attacks include the number of distinct IP
addresses from one region that send packets to any one of the
company’s machines, or even the number of distinct messages
originating from a region that communicate with a subset of the
company’s network.

It is important to note that the spatial ranges are not known a
priori in this use case, and that the regions are not necessarily
whole cities, provinces, or countries, or even rectangular regions.
For example, the spatial region may be a city block, a neigh-
borhood, or an arbitrary area selected by the user on a map by
drawing a polygon around it. These spatial predicates are de-
cided as part of a multi-step data exploration process. Therefore,
it is not possible to collect statistics for all possible queries while
looking at the stream.

Roadmap: The paper is organized as follows. We will first
describe the preliminaries and related work, and explain where
the state of the art falls short. In Section 3 we will describe Spa-
tialSketch, and explain how it can be instantiated. We will show
how the sketch is updated and queried, and derive general error
guarantees for different classes of sketches. In Section 4 we will
discuss an extension of SpatialSketch, called DynSketch, that
works under strict memory quota and is therefore more suitable
for use in hardware with limited RAM, such as network routers.
Finally, in Section 5 we will evaluate SpatialSketch with both
real-world and synthetic geospatial data, and compare it with
the state of the art. Our comparisons will focus on evaluating
the efficiency, scalability, and accuracy of each method. We will
conclude in Section 6.

2 PRELIMINARIES AND RELATED WORK
Problem definition: This work enables spatial queries on data
streams. Consider a (potentially unbounded) data stream 𝐴 =
{𝑎1, 𝑎2, . . .} of items with structure: < 𝑡𝑠, 𝑖𝑑, [𝑥,𝑦], 𝑣𝑎𝑙𝑢𝑒 >. Here,
𝑡𝑠 represents the timestamp, 𝑖𝑑 corresponds to the id of the update,
and [𝑥,𝑦] corresponds to the 2-dimensional spatial coordinates of
the update. 𝑣𝑎𝑙𝑢𝑒 represents the value of the update (in most cases,
value is set to 1). We use D and F to denote the 2-dimensional
spatial domain and the domain of 𝑖𝑑 respectively.

Spatial queries focus on computing aggregates over spatial
ranges, with potentially additional predicates on 𝑖𝑑 . In SQL syn-
tax, the query looks as follows
(Query 1) SELECT Agg FROM Stream WHERE [x,y] in Range

AND (additional predicates)

Typical aggregate functions are COUNT, COUNT DISTINCT, SUM,
AVG, EXISTS, and VAR, whereas the additional predicates could
be, e.g., an equality condition on 𝑖𝑑 . The spatial range can be
described either as a polygon (e.g., when using spatial SQL ex-
tensions), or as a disjunction of conjunctive predicates of 𝑥 and
𝑦.

As an example, consider the network monitoring example
of Section 1. A query for estimating the number of observed
network packets sent by the (almost rectangular) state of Utah is
as follows:
(Query 2) SELECT COUNT(*) FROM Stream WHERE -114.05296

< x < -109.04105 AND 36.99796 < y < 42.00156

Additional predicates may be interesting, e.g., for counting the
packets that are within a specific IP range and originate from
Utah:

285

(Query 3) SELECT COUNT(*) FROM Stream WHERE -114.05296
< x < -109.041058 AND 36.99796 < y < 42.00156
AND int(142.3.1.1) < int(id) < int(142.7.1.1)

with function 𝑖𝑛𝑡 (·) denoting the integer representation of the
IP address, i.e., reading the IP address as a 4-bytes integer. Alter-
native predicates may include, e.g., equality predicates on the id
or on the value, and predicates on arrival time (sliding window
queries).

It is important to note here that the predicates and the spatial
ranges of the query are not known a priori. In the typical use case,
users choose, and possibly progressively revise these predicates,
at query time, after part of the stream has been observed.

Dyadic ranges and other techniques for range queries:
SpatialSketch relies on dyadic ranges to speed up query execution.
Dyadic ranges are all ranges that can be written as [(𝑥 − 1) ∗ 2𝑘 +
1, 𝑥 ∗ 2𝑘], with 𝑥 ∈ Z+, 𝑘 ∈ Z. These ranges form a hierarchy, e.g.,
the dyadic range [1 − 32] contains two dyadic ranges [1 − 16]
and [17 − 32], and each of them can be recursively partitioned
to smaller dyadic ranges of sizes 8, 4, 2, and 1. Furthermore, any
point 𝑝 from domain P belongs to exactly ⌈log2 (|P|)⌉ dyadic
ranges.

A key observation is that any interval [𝑎, 𝑏], with 𝑎, 𝑏 ∈ P,
is partitioned to at most 2 log2 (|P|) dyadic ranges. Past works,
e.g., [11, 12, 23, 35] exploit this observation to support fast one-
dimensional range counts over data streams, as follows. During
the monitoring phase, the algorithm maintains a map that keeps
the count of items falling in each dyadic range. In particular,
for each stream item 𝑝 , the algorithm uses the map to find all
log2 (|P|) ranges where 𝑝 belongs to, and increases their respec-
tive counts by 1. At query time, the query range is partitioned
to the smallest set of dyadic ranges – at most 2 log2 (|P|) – and
the corresponding counts of these ranges are retrieved from the
map and summed up to produce the estimate. Alternative im-
plementations that replace the map with arrays, or with a tree,
are also possible. The above technique can also be extended to
work with two or more dimensions (see [10], Chapter 5.3 for
a detailed discussion). Each additional dimension increases the
maintenance and querying complexity by a multiplicative factor
of log(|P|).

In the remainder of this section we will describe the key ap-
proaches for addressing spatial queries, and explain their key
limitations. The approaches will be classified in two groups: (a)
exact approaches that store all the data, and, (b) approximate
approaches.

2.1 Related work
Exact algorithms for spatial ranges: Exact algorithms rely
on storing the whole stream, e.g., in a relational database or in
another binary representation. The stream can then be parsed
on demand for answering arbitrary queries. To further speed up
query execution, different types of indices can be used – general
purpose indices, such as B-tree [9], but also spatial indices, such
as generalized search tree [24], kd-tree [14], and range tree [14].
Most of these indices are implemented in state of the art relational
databases, and can be stored both in memory and on secondary
storage. However, as we will demonstrate in Section 5, these
approaches fail in two aspects. First, their space complexity is –
at best – linear in the length of the stream, since they need to store
and index all data. Second, even though indices are necessary for
fast query execution, they slow down the updates, potentially
causing load shedding or back-pressure on fast-paced streams.

Approximate algorithms: Approximate algorithms over-
come the limitations of exact algorithms by storing summaries/-
compact representations of the data, albeit with an introduction
of an error in the query answers. Since this work is focused on
streams, in the following we will only discuss approximate al-
gorithms that require a single pass over the data. We will not
focus on works that require multiple passes, like equi-depth his-
tograms [10] and SliceHist [36], as this is a limiting requirement
for streams.

Count-min sketch [11] enables range queries by exploiting
dyadic ranges: each arrival is added in the sketch using both
its key, and the keys of all dyadic ranges the arrival belongs to.
This idea can also be extended to two-dimensional ranges, for
summarizing the spatial domain [10]. In this case, the coordinates
of each stream item become the key. However, this technique can
only support count queries; other aggregates like the L2 norm,
COUNT DISTINCT, EXISTS, and COUNT with additional predicates,
cannot be supported, since the information about the arrival –
the id in the described representation – is not depicted in the
sketch. Furthermore, the approach can only answer rectangular
queries. In the spatial domain, most queries have more complex
shapes, e.g., a circle, the shape of a country, a lake, or even a plot
of land. The spatial sketch proposed by Das et al. [12] similarly
exploits dyadic ranges to index and query the coordinates, but
now by using the celebrated AMS sketch [3] for summarizing
the input data. This sketch comes with limitations similar to the
extended Count-min sketch, i.e., it supports only a few aggregate
functions (the functionality supported by the underlying AMS
sketch), and it can only answer rectangular queries. Our work
addresses both constraints.

The work of Tao et al. [37] partially lifts the first constraint, by
supporting aggregate functions for multiple mergeable sketches.
The proposed method draws its performance by a compact R-tree
structure, and even though the focus lies on incorporating FM
sketches [18], the authors argue that other mergeable sketches
can also be exploited. Lai et al. [27] proposes a similar approach,
using a balanced binary search tree instead. Our contribution
goes beyond these two works in several aspects: (a) it supports
(two classes of) non-mergeable sketches, (b) it supports non-
rectangular queries, and, (c) we describe an adaptive variant that
is able to adjust its efficiency and/or accuracy on-the-fly, in order
to satisfy the memory quota.

The state-of-the-art sketch that focuses on higher-dimensional
range queries is C-DARQ [19, 20], which separates the spatial
domain in cold (sparse) and hot (dense) regions, based on the
number of arrivals of the region cells. The cold regions are sum-
marized by a single Count-min sketch that uses the coordinate
of the cell as key. The cells in the hot regions are hierarchically
organized in a range tree, where the leaves are single cells. Each
node in the tree has a unique identifier. The hot region also
maintains a Count-min sketch that hashes for each arrival the
identifier of the leaf and all ancestors. For querying, the query
range is again partitioned into hot and cold regions. The parts of
the query that fall on a cold region are estimated by querying the
Count-min sketch for all cold regions directly, whereas the hot
regions queries are executed by accessing the range trees of these
regions top-down and querying the respective Count-min sketch.
The sketch also supports queries with predicates on attributes
(e.g., Query 3 above), by considering the attributes as additional
dimensions. The authors also discuss two extensions of C-DARQ,
called MARQ and DARQ.

286

All three sketches come with key limitations. First, as we
will show in the experiments, their estimates have very high
errors for realistically large spatial ranges. In fact, for large spa-
tial ranges that extend beyond one hot region, these sketches
need to query the range tree (and the cold region) multiple times,
invalidating the theoretical guarantees. Second, similar to the
multi-dimensional Count-min sketch [10] and [27, 37], these
sketches only support rectangular queries. As we will show in
Section 3, support for non-rectangular queries is not straightfor-
ward. Third, even though DARQ is described as being capable
of offering different functionalities via the Universal sketch (re-
ferred to as different functions 𝑓 in [20]), no supporting analysis
is provided. In fact, frequently-used functionalities such as dis-
tinct count, do not seem to work with DARQ. In our work, we
show that the required analysis is not straightforward, and also
different analysis is needed for different types of nested sketches.
In Section 3 we provide this analysis and formalize the constraints
that the sketches need to satisfy.

3 SPATIAL SKETCH
We will now describe SpatialSketch, a generic sketch that allows
summarization of geospatial streams, and execution of arbitrary-
shaped spatial queries. We will first describe the data structure,
explain the process of ingesting spatial streams, and discuss its
complexity. Then, we will present the process of query execution.
We will explain how the query range is decomposed into rectan-
gular queries that can be answered efficiently by SpatialSketch,
and how SpatialSketch aggregates the individual results of these
rectangular queries to produce the final estimate, with error guar-
antees. Finally, we will present a few examples of SpatialSketch,
for answering different query types. The text follows the notation
and the generic stream model introduced in Section 2.

The data structure: SpatialSketch consists of multiple layers
of grids, with each layer summarizing the input stream at a set of
different spatial resolutions (cf. Fig. 2). The resolution of each grid
corresponds to the number of cells of the grid at each dimension.
Each cell in the grid contains a nested sketch (e.g., a Count-Min
sketch in Fig. 2). Layer 1 contains a single grid (see Fig. 2, bottom
left), which summarizes the input stream at the basic resolution
– the maximum supported resolution 𝑥max × 𝑦max such that the
total space required by SpatialSketch does not exceed the memory
quota. We will explain later how 𝑥max and 𝑦max are chosen, but
these are always powers of two. Layer 2 contains two grids, of
resolution 𝑥max

2 × 𝑦max and 𝑥max × 𝑦max

2 . In the general case, for
each grid of resolution 𝑥𝑖 × 𝑦𝑖 contained at layer 𝑖 , layer 𝑖 + 1
contains two grids of resolution 𝑥𝑖

2 ×𝑦𝑖 and 𝑥𝑖 × 𝑦𝑖
2 . This halving

process per dimension is interrupted when the number of cells
at the dimension reaches 1. Therefore, the top layer contains a
single grid of resolution 1 × 1.

Each cell in each grid contains a nested sketch for compactly
summarizing all updates falling in the region covered by the
cell. The nested sketch is chosen based on the required querying
functionalities. For example, a Count-min or a Count sketch can
facilitate frequency queries, whereas exponential histograms can
be used for sliding window counts.

In the following we will be referring to the individual grids
based on their resolution, as: 𝑔(𝑟𝑒𝑠𝑥 , 𝑟𝑒𝑠𝑦), with 𝑟𝑒𝑠𝑥 and 𝑟𝑒𝑠𝑦
representing the number of grid cells in each dimension. For
example, the highest-resolution grid at layer 1 will be labeled
as 𝑔(𝑥max, 𝑦max) whereas the lowest-resolution grid at the top
layer will be labeled as 𝑔(1, 1). All grids are stored in a hash

map 𝐺 using these labels as keys. Also notice that each grid
can be reached by following different halving sequences. For
example, grid 𝑔(𝑥max/2, 𝑦max/2) can be reached by first halving
dimension 𝑥 and then halving dimension 𝑦, or vice versa. In
both cases, the two grids have the same labels, and will end up
being identical copies. We avoid creating a grid multiple times
by looking whether a grid already exists in the hash map with
the same label/resolution.

Space complexity: For computing the number of grids across
all layers, notice that the number of cells at dimension 𝑥 can be
1, 2, 4, 8, . . . , 𝑥max – a total of log2 (𝑥max) + 1 values. Similarly, we
have a total of log2 (𝑦max) + 1 values for the 𝑦 dimension. There-
fore, the total number of grids is 𝑂 (log2 (𝑥max) ∗ log2 (𝑦max)).

The total number of cells, across all grids, can be computed
by summing up the number of cells per grid:

#cells =
log2 (𝑥max)∑︂

𝑖=0

log2 (𝑦max)∑︂
𝑗=0

2𝑖 ∗ 2𝑗

< 2log2 (𝑥max)+1 ∗ 2log2 (𝑦max)+1 = 4𝑥max𝑦max

Since each cell contains a nested sketch, the total space com-
plexity of SpatialSketch is: 𝑂 (𝑥max𝑦max ∗ 𝐵), where 𝐵 denotes
the size of the nested sketch. In other words, storing a complete
SpatialSketch requires only a multiplicative factor 𝑂 (𝐵) more
than storing a single grid of dimensions 𝑥max × 𝑦max.

Initialization: SpatialSketch is initialized in a lazy manner.
At construction time, all grids are created and populate the hash
map. The grid cells remain empty, and are initialized with the
nested sketch only when an update needs to be stored in the
cell (line 2-3, Alg. 1). Even though lazy initialization adds up a
small overhead at the first stream updates – for initializing the
nested sketches – it offers a significant reduction of the memory
requirements when summarizing streams with skewed spatial
distributions.

Updating: Arrivals are tuples of the format: < 𝑡𝑠, 𝑖𝑑, [𝑥,𝑦] >,
where 𝑡𝑠 denotes the timestamp of the arrival, 𝑖𝑑 denotes its
id (e.g., the IP address), and [𝑥,𝑦] the coordinates (the location
of the IP address).2 For simplicity, hereafter we assume that all
stream arrivals (similarly, all query ranges) have coordinates
within the range of the highest-resolution grid, 𝑔(𝑥max, 𝑦max):
1 ≤ 𝑥 ≤ 𝑥max and 1 ≤ 𝑦 ≤ 𝑦max. This presumes a mapping
function that maps the stream’s spatial domain D to the co-
ordinates of 𝑔(𝑥max, 𝑦max). For example, for the standard geo-
graphic coordinate system, the 2-dimensional vector function
[𝑥,𝑦] = [⌈(𝑥 ′ + 90) ∗ 𝑥max/180⌉, ⌈(𝑦′ + 180) ∗ 𝑦max/360⌉] can
be used to map any [𝑥 ′, 𝑦′] geographical coordinate to the grid
coordinates [𝑥,𝑦]. Notice that SpatialSketch is oblivious to the
spatial domain, coordinate space, and mapping function – in fact,
it is often the case that the geographical coordinates domain
differs from the grid domain, e.g., (𝑥 ′, 𝑦′) ∈ R2.

A new arrival < 𝑡𝑠, 𝑖𝑑, [𝑥,𝑦] > is added to SpatialSketch by
executing Algorithm 1. For each grid𝑔(𝑖, 𝑗) of resolution 𝑖× 𝑗 con-
tained in the hash map 𝐺 , we add < 𝑡𝑠, 𝑖𝑑 > to the nested sketch
stored at position [⌈𝑥 ∗ 𝑖

𝑥max ⌉, ⌈𝑦 ∗ 𝑗
𝑦max ⌉] (line 4). For example,

an arrival at coordinate [2,1] will be added in all shaded cells in
Fig. 2. The addition method of the chosen nested sketch is inte-
grated without modifications. Each insertion requires updating
𝑂 (log2 (𝑥max) ∗ log2 (𝑦max)) nested sketches – one nested sketch

2Additional attributes, such as 𝑣𝑎𝑙𝑢𝑒 , can also be contained, and summarized with
SpatialSketch, either in place of the 𝑖𝑑 , or as an additional sketch.

287

𝟏

ሾ𝒙,𝒚ሿ𝒊𝒅𝒕𝒔
5, 710.1.0.21697643

2, 11193.2.5.11697645

5, 710.1.0.11697648

8, 280.6.1.11697649

⋮⋮⋮
5, 610.2.1.51729438

𝒙𝒎𝒂𝒙

𝒚𝒎𝒂𝒙

Figure 1: Example of input stream format with its items
mapped to Greece, overlaid by a 16 × 16 grid.

Table 1: Frequently used notation

Notation Description

D The spatial domain of the stream.
All coordinates [𝑥,𝑦] belong in D.

F The domain of the stream.
All ids belong in F .

𝑥max × 𝑦max Basic resolution, i.e.,
resolution of the maximum-resolution grid.

g(x, y) Grid of resolution 𝑥 × 𝑦
R Arbitrarily shaped range query
𝑟𝑖 Rectangular sub-range 𝑟𝑖 ∈ 𝑅

𝑟𝑥𝑖
Set of dyadic ranges {𝑟 (𝑖,1) , 𝑟 (𝑖,2) , . . . }
for the 𝑥 dimension of rectangular sub-range 𝑟𝑖 .

C(𝑅) Set of dyadic ranges covering range query 𝑅.

𝒙𝒎𝒂𝒙 𝒙𝒎𝒂𝒙/𝟐 𝒙𝒎𝒂𝒙/𝟒

𝒍𝟓
𝒍𝟒
𝒍𝟑
𝒍𝟐
𝒍𝟏

After phase 1SpatialSketch

Phase 2 resolution decrease

Figure 2: (Left) SpatialSketch of 𝑥max = 𝑦max = 4 containing
9 grids spread over 5 layers. (Right) Top-right shows DynS-
ketch after progressively dropping the grids of layers 𝑙2
and 𝑙4 (phase 1 reduction). Bottom-right illustrates a phase
2 reduction, which leads to a reduced resolution. A stream
arriving at coordinate [2, 1] will be placed in the shaded
cells.

Algorithm 1: Adding a record 𝑟 to the sketch
input : record 𝑟 (𝑡𝑠, 𝑖𝑑, [𝑥,𝑦]), hashmap 𝐺

1 for 𝑔(𝑖, 𝑗) ∈ 𝐺} do
2 if 𝑔(𝑖, 𝑗) [⌈𝑥 ∗ 𝑖

𝑥𝑚𝑎𝑥 ⌉, ⌈𝑦 ∗ 𝑖
𝑦𝑚𝑎𝑥 ⌉] is 𝑛𝑢𝑙𝑙 then

3 Initialize sketch
4 Add < 𝑡𝑠, 𝑖𝑑 > to sketch

𝑔(𝑖, 𝑗) [⌈𝑥 ∗ 𝑖
𝑥𝑚𝑎𝑥 ⌉, ⌈𝑦 ∗ 𝑖

𝑦𝑚𝑎𝑥 ⌉]

per grid. Therefore, the computational complexity of an insertion
grows polylogarithmically with SpatialSketch’s resolution.

3.1 Query execution
Queries follow the template of Query 1 (Section 2), with Range
expressed in the coordinates of grid 𝑔(𝑥max, 𝑦max).3 The query
range can be of arbitrary shape, e.g., the shape of a campus,
or a neighborhood. SpatialSketch also handles queries that have
partial overlap with cells by detecting these cells and scaling their
estimates proportionally to the overlap, but we cannot provide

3The same function used for the insertion process can be used for mapping the
query range to the grid’s coordinates.

error guarantees for such queries. Finally, the query can include
additional predicates, e.g., predicates on the arrival time.

Query execution process involves two challenges: (a) breaking
the arbitrarily-shaped query range to rectangular queries that
can be queried efficiently using the constructed grids (line 2-4,
Alg. 2), and (b) executing the rectangular queries, combining the
results, and computing the estimate, according to the properties
of the nested sketch (line 5, Alg. 2).

Breaking the query range to rectangular sub-ranges: The
naive way to estimate the answer is to query the contained
nested sketches at each of the 𝑔(𝑥max, 𝑦max) cells that overlap
with the query range, and merge their results. For example, for a
count aggregate with Count sketches, all sketches in the query
range will be queried and their answers will be summed up. This
approach, however, comes with a potentially high computational
complexity – linear in the area of the query range.

Instead, SpatialSketch exploits the stored grids of different
resolutions to cover the query range efficiently. Each query range
𝑅 is broken into rectangular sub-ranges 𝑟1, 𝑟2, . . ., which can be
further decomposed to range queries for one or more of the stored
grids. The decomposition process follows a greedy algorithm,
which guarantees near-optimal results [16]. The algorithm starts
with a plane sweep [14] for detecting all concave angles within
the query range (see transition a. in Fig. 3 – the dots denote the
concave angles). From each concave angle, we draw one chord
(one line) parallel to the X axis. This partitions the query region
into a number of smaller, rectangular partitions (transition b.).
The same process is repeated once more, but now by drawing a
chord parallel to the Y axis (transition c.). Out of the two sets of
partitions, we use the one with the smallest number of partitions
– in the example, this is the one with the vertical chords. The
number of partitions in the chosen partitioning is guaranteed
to be at most twice the optimal (minimal) number of partitions
for the given query range [16]. The described algorithm takes
𝑂 (𝑉 log𝑉) time and space, where 𝑉 corresponds to the number
of angles in the query region.4

Querying the rectangular sub-ranges: Up until now (line 2,
Alg. 2), the query has been decomposed into a set of rectangular
sub-ranges 𝑟1, 𝑟2, However, these sub-ranges can be of any
size, and there is not necessarily a nested sketch that stores
statistics for each sub-range 𝑟𝑖 . Therefore, the next step (line 3-4)
involves breaking each sub-range 𝑟𝑖 to dyadic ranges, for which
SpatialSketch already contains statistics (Fig. 3d.).

4The additional logarithmic factor is caused by the plane-sweep algorithm.

288

𝒂.

𝒃. 𝒄.

𝟏 𝒙𝟎𝒎𝒂𝒙

𝒅.

Figure 3: The process of decomposing a query to dyadic
intervals: (a) detect all concave angles, (b) draw the hori-
zontal chords, which leads to 7 rectangular sub-ranges in
this example, (c) draw the vertical chords, which leads to
6 rectangular sub-ranges, (d) decomposing sub-ranges to
dyadic intervals. Dots indicate concave angles, blue cells
indicate query region. The dyadic intervals in (d) are de-
picted in different colours.

Algorithm 2: Querying SpatialSketch
input :query 𝑓 (𝑞, 𝑅), sketch category 𝑠𝑐 , hashmap 𝐺

1 𝐶 (𝑅) = {};
2 sub-ranges = 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑅);
3 for sub-range 𝑟𝑖 ∈sub-ranges do
4 𝐶 (𝑅) .𝑎𝑑𝑑 (𝑔𝑒𝑡𝐷𝑦𝑎𝑑𝑖𝑐𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 (𝑟𝑖))
5 𝑓 (𝑞, 𝑅) = estimate(𝑞,𝐶 (𝑅), 𝑠𝑐)

Algorithm 3: getDyadicIntervals(𝑟𝑖)
input : sub-range 𝑟𝑖 (𝑥1, 𝑦1, 𝑥2, 𝑦2)

1 𝑟𝑥𝑖 = 𝑟
𝑦
𝑖 = {};

2 𝑟𝑥𝑖 = getCanonicalCover(𝑥1, 𝑥2, 𝑟𝑥𝑖);
3 𝑟

𝑦
𝑖 = getCanonicalCover(𝑦1, 𝑦2, 𝑟𝑦𝑖);

4 return 𝑟𝑥𝑖 × 𝑟
𝑦
𝑖 ;

Algorithm 4: getCanonicalCover(𝑥1, 𝑥2, 𝑟𝑥)
input :coordinates (𝑥1, 𝑥2), set of dyadic ranges 𝑟𝑥

1 𝑘 = ⌈log2 (𝑥2 − 𝑥1)⌉;
2 𝑟𝑎𝑛𝑔𝑒 = [(𝑐 − 1) ∗ 2𝑘 + 1, 𝑐 ∗ 2𝑘];
3 while 𝑟𝑎𝑛𝑔𝑒 not fully contained in [𝑥1, 𝑥2] do
4 𝑘 − −;
5 𝑟𝑎𝑛𝑔𝑒 = [(𝑐 − 1) ∗ 2𝑘 + 1, 𝑐 ∗ 2𝑘];
6 𝑟𝑥 .add(𝑟𝑎𝑛𝑔𝑒);
7 if 𝑘 > 0 then
8 getCanonicalCover(𝑥1, (𝑐 − 1) ∗ 2𝑘 , 𝑟𝑥);
9 getCanonicalCover(𝑐 ∗ 2𝑘1 , 𝑥2, 𝑟𝑥);

10 return 𝑟𝑥 ;

Consider a rectangular sub-range 𝑟𝑖 with coordinates [𝑥1, 𝑦1, 𝑥2, 𝑦2].
We begin by breaking down dimension 𝑥 into its canonical cover
(line 2, Alg. 3). The canonical cover of a range (in this case, the
range [𝑥1, 𝑥2]) is the smallest set of dyadic ranges of the form
[(𝑐 − 1) ∗ 2𝑘 + 1, 𝑐 ∗ 2𝑘] fully contained within the range, and cov-
ering the entire range [12]. Here, 𝑐 ranges from 1 to 𝑥max, and 𝑘
ranges from 0 to log2 (𝑥max). To find these dyadic ranges, we start
from 𝑘 = ⌈log2 (𝑥2 −𝑥1)⌉, and find whether there exists a suitable
value of 𝑐 for which [(𝑐 − 1) ∗ 2𝑘 + 1, 𝑐 ∗ 2𝑘] is fully contained in
[𝑥1, 𝑥2]. If this is the case, we add [(𝑐 − 1) ∗ 2𝑘 + 1, 𝑐 ∗ 2𝑘] at the

canonical cover (line 6, Alg. 4), and resume the process for cov-
ering the remaining ranges [𝑥1, (𝑐 − 1) ∗ 2𝑘] and [𝑐 ∗ 2𝑘 + 1, 𝑥2]
(line 7-9, Alg. 4). If this is not the case, we reduce 𝑘 by one,
and try again line 3-5, Alg. 4). The algorithm guarantees that it
will take at most 𝑂 (log2 (𝑥max)) rounds, and generate at most
𝑂 (log2 (𝑥max)) dyadic ranges that fully cover range [𝑥1, 𝑥2]. Let
𝑟𝑥𝑖 = {𝑟𝑥(𝑖,1) , 𝑟𝑥(𝑖,2) , . . .} denote the set of dyadic ranges for the 𝑥
dimension of rectangular sub-range 𝑟𝑖 (line 2, Alg. 3). The same
process is repeated for the 𝑦 dimension (line 3, Alg. 3), yielding
𝑟
𝑦
𝑖 = {𝑟𝑦(𝑖,1) , 𝑟

𝑦
(𝑖,2) , . . .}.

Following, we compute the Cartesian product 𝑟𝑥𝑖 × 𝑟
𝑦
𝑖 , i.e., we

combine each dyadic range for 𝑥 with all dyadic ranges for𝑦. This
leads to𝑂 (log2

2 (𝑥max)) 2-dimensional ranges that are guaranteed
to be a partitioning of 𝑟𝑖 .

Lemma 1. For any rectangular range 𝑟𝑖 , the area covered by the
union of the ranges contained in the Cartesian product 𝑟𝑥𝑖 × 𝑟

𝑦
𝑖 is a

partitioning of 𝑟𝑖 , i.e., it contains each cell of 𝑟𝑖 exactly once, and it
does not contain any other cells.

Let C(𝑅) denote the set of 2d-dyadic ranges corresponding to
a query region 𝑅. By construction, the starting and ending coordi-
nates of all ranges contained in C(𝑅) correspond to dyadic ranges
in each dimension. Since the grids in𝐺 cover all combinations of
2d-dyadic ranges, for each 2d-dyadic range [𝑥1, 𝑦1, 𝑥2, 𝑦2] ∈ C(𝑅)
there exists a grid in 𝐺 with a cell that summarizes exactly the
region [𝑥1, 𝑦1, 𝑥2, 𝑦2], i.e., each cell in this grid covers a space of
size (𝑥2−𝑥1+1) × (𝑦2−𝑦1+1). This grid has resolution 𝑥max

𝑥2−𝑥1+1 ×
𝑦max

𝑦2−𝑦1+1 , and is stored in 𝐺 with label 𝑔(𝑥max
𝑥2−𝑥1+1 ,

𝑦max

𝑦2−𝑦1+1).

Lemma 2. For any 2d-dyadic range [𝑥1, 𝑦1, 𝑥2, 𝑦2] derived by
the described algorithm, there exists a grid 𝑔 ∈ 𝐺 with resolution
𝑥max

𝑥2−𝑥1+1 × 𝑦max

𝑦2−𝑦1+1 whose cell [𝑥2
𝑥2−𝑥1+1 ,

𝑦2
𝑦2−𝑦1+1] corresponds to

range [𝑥1, 𝑦1, 𝑥2, 𝑦2].

Our results up to now guarantee that any arbitrarily-shaped
query can be decomposed to set C(𝑅) of 2-dimensional dyadic
ranges, and for each of these dyadic ranges there exists a cell
in SpatialSketch covering exactly the same space. The final step
involves retrieving the nested sketches stored in these cells, and
querying the stored sketches in them to estimate the answer (line
5, Alg. 2).

To allow for tighter error bounds, we adapt this last step based
on the properties/characteristics of the nested sketch. We identify
the following key categories of nested sketches:

• Mergeable sketches: a new sketch can be created that sum-
marizes the union of data summarized by the individual
sketches, by merging the individual sketches. The merging
operation is sketch-dependent.

• Sketches that provide (𝜖, 𝛿) guarantees for distributive
queries, with the success probability derived with Markov
inequality.

• Sketches that provide (𝜖, 𝛿) guarantees for distributive
queries, with the success probability derived with Cheby-
shev bound.

To the best of our knowledge, these categories cover the majority
of available sketches. In the following we discuss each category
separately. We will use 𝑅 to denote the query region and C(𝑅) =
{𝑐1, 𝑐2, . . .} to denote the cells that comprise the query region
(not necessarily of the same size). With 𝑓 (𝑞, 𝑐𝑖) (resp. 𝑓 (𝑞, 𝑅)) we
will denote the answer of the query 𝑞 within cell 𝑐𝑖 /query region

289

𝑅, and with 𝑓 (𝑞, 𝑐𝑖) (resp. 𝑓 (𝑞, 𝑅)) the estimate for query 𝑞 in the
cell/query region.

3.1.1 Mergeable sketches. Let
⨁︁

denote the merging opera-
tion5 on the nested sketches, and 𝑠𝑘𝑖 denote the sketch in cell 𝑐𝑖 .
The algorithm first computes 𝑠𝑘𝑅 = 𝑠𝑘1

⨁︁
𝑠𝑘2

⨁︁
𝑠𝑘3 The es-

timate is then given by executing the query on the merged sketch.
A sketch on range 𝑅 is mergeable if 𝑠𝑘𝑅 offers identical error guar-
antees to a sketch constructed on the union of streams in 𝐶 (𝑅).
Many existing sketches fall in this category, e.g., the Count-min
sketch (

⨁︁
is addition), the Bloom filter (

⨁︁
is bitwise or).

3.1.2 Sketches that provide (𝜖, 𝛿) guarantees for distributive
queries, with Markov inequality. Queries answered by these sketches
satisfy the distributive property, i.e., 𝑓 (𝑞, 𝑅) = 𝑓 (𝑞,⋃︁𝑐𝑖 ∈C(𝑅) 𝑐𝑖) =∑︁
𝑐𝑖 ∈C(𝑅) 𝑓 (𝑞, 𝑐𝑖). An example of a non-mergeable sketch that

belongs in this category is the ECM sketch. Although a custom
merging operation is presented for the ECM sketch in [33], this
leads to weaker error guarantees on the merged sketch compared
to the sketch constructed on the union of the substreams. Many
mergeable sketches also belong in this category. This result is
then also interesting for these sketches, since it allows avoiding
the merging operation, which is, in some cases, time-consuming.
In the following we will present a generic proof that works for
all sketches in this category (mergeable or not). We will also
elaborate on the case of Count-min sketch, to provide a complete,
yet accessible, example.

Each individual sketch 𝑠𝑘𝑖 that summarizes the contents of
cell 𝑐𝑖 offers guarantees of the form 𝑃𝑟 [|𝑓 (𝑞, 𝑐𝑖) − 𝑓 (𝑞, 𝑐𝑖) | ≤
𝜖𝜙 (𝑞, 𝑐𝑖)] ≥ 1−𝛿 , where 𝜙 (𝑞, 𝑐𝑖) denotes the estimation function
of 𝑠𝑘𝑖 . The sketch estimation procedure involves executing 𝑑 ≥
1 experiments, and taking the result that minimizes the error.
The process on finding the estimate that minimizes the error is
specific to the sketch. If each of the experiments provides an𝑂 (𝜖)
estimate with constant probability, then, by Markov inequality,
the estimate that minimizes the error across all repetitions will
guarantee an (𝜖, 𝛿) estimate, as desired.

We adapt the querying process as follows. Let 𝑓 𝑗 (𝑞, 𝑐𝑖) denote
the estimate of the 𝑗-th repetition of sketch 𝑠𝑘𝑖 , which summa-
rizes cell 𝑐𝑖 . We compute 𝑓 𝑗 (𝑞, 𝑅) =

∑︁
𝑐𝑖 ∈C(𝑅) 𝑓 𝑗 (𝑞, 𝑐𝑖) per repe-

tition 𝑗 = {1, 2, . . . , 𝑑}, and return the estimate of the repetition
that minimizes the error, similar to the original sketch.

As an example, consider a SpatialSketch configured with Count-
min as the nested sketch. Each Count-min sketch includes 𝑑 =
𝑂 (log(1/𝛿)) repetitions - rows, and the estimation error at each
sketch is bounded by 𝜖 times the L1 norm, i.e., 𝜙 (𝑞, 𝑐𝑖) equals
to the L1 norm of 𝑐𝑖 . A query is executed by: (a) retrieving the
sketches that correspond to the 2d-dyadic ranges covering the
query range, (b) getting one estimate per sketch, per row, (c)
summing up the estimates across all sketches per row, and, (d)
returning the minimum sum as a final estimate.

Lemma 3. The estimate of SpatialSketch for a query region𝑅 will
satisfy 𝑃𝑟 [|𝑓 (𝑞, 𝑅)−𝑓 (𝑞, 𝑅) | ≤ 𝜖

∑︁
𝑐𝑖 ∈C(R) 𝜙 (𝑞, 𝑐𝑖)] ≥ 1−𝛿 , when

SpatialSketch is instantiated with a nested sketch that provides the
following error guarantees 𝑃𝑟 [|ˆ︁𝑓 (𝑞, 𝑐𝑖) − 𝑓 (𝑞, 𝑐𝑖) | ≤ 𝜖𝜙 (𝑞, 𝑐𝑖)] ≥
1 − 𝛿 for each individual cell 𝑐𝑖 .

Proof: The proof is included in the technical report [26].

5Mergeability requires that all sketches are configured with the same parameters –
identical hash functions and dimensions. For example, all Bloom filters should be
configured with the same 𝑘 hash functions, and the same length𝑚.

Corollary 1. For all functions𝜙 satisfying
∑︁
𝑐𝑖 ∈C(R) 𝜙 (𝑞, 𝑐𝑖) ≤

𝜙 (𝑞, 𝑅), the estimate of SpatialSketch for any query region 𝑅 will
satisfy 𝑃𝑟 [|𝑓 (𝑞, 𝑅) − 𝑓 (𝑞, 𝑅) | ≤ 𝜖𝜙 (𝑞, 𝑅)] ≥ 1 − 𝛿 .

3.1.3 Sketches that provide (𝜖, 𝛿) guarantees for distributive
queries, with Chebyshev bound. We will present the necessary
adaptation and the proof for the Count sketch [8], which is the
most widely used sketch in this category. The AMS sketch [3]
has similar properties and the proof is similar. The Count sketch
is used for estimating frequencies (among with other function-
alities). Similar to the Count-min sketch [11], the Count sketch
is also a 2-dimensional array, of size 𝑤 ∗ 𝑑 . It is accompanied
by 𝑑 hash functions ℎ 𝑗 (𝑥) that map each input item to [1 . . .𝑤],
and by 𝑑 sign functions 𝑠 𝑗 (𝑥), which map the input items to
{−1, 1}, with E[𝑠 𝑗 (𝑥)] = 0. Frequency estimation with the Count
sketch is similar to the Count-min sketch, but now including
the sign function. In particular, 𝑓 (𝑞) = median𝑗∈[1...𝑑]𝑠 𝑗 (𝑞) ∗
count(𝑗, ℎ 𝑗 (𝑞)). To use the count sketch as nested sketch in
SpatialSketch we only need to alter the last step of the pro-
cess described in Section 3.1.2, such that it returns the median
sum per repetition – per row – instead of the minimum sum.
So, 𝑓 (𝑞, 𝑅) = median𝑗∈[1...𝑑]

∑︁
𝑐𝑖 ∈𝐶 (𝑅) [𝑠𝑖, 𝑗 (𝑞) count(𝑗, ℎ𝑖, 𝑗 (𝑞))],

where ℎ𝑖, 𝑗 and 𝑠𝑖, 𝑗 correspond to the hash function and the sign
function of the Count sketch contained at cell 𝑐𝑖 , for row 𝑗 . The
following lemma bounds the error of SpatialSketch configured
with the Count sketch. The lemma considers the case that all
sketches are constructed with different mutually independent
hash and sign functions.

Lemma 4. The estimate of SpatialSketch for a query region 𝑅

will satisfy 𝑃𝑟 [|𝑓 (𝑞, 𝑅) − 𝑓 (𝑞, 𝑅) | ≤ 𝜖 | |𝑅 | |2] ≥ 1 − 𝛿 , when Spa-
tialSketch is instantiated with Count sketches that provide (𝜖, 𝛿)
guarantees.

Proof sketch: There are two key steps in the proof. First, we
derive an upper bound on the variance of the estimator:

𝑉𝑎𝑟

(︃
𝑓 𝑗 (𝑞, 𝑅)

)︃
≤ 1/𝑤

∑︂
𝑥∈F\𝑞, 𝑐𝑖 ∈C(𝑅)

𝑓 (𝑥, 𝑐𝑖)2

≤ 1/𝑤
∑︂

𝑥∈F\𝑞
𝑓 (𝑥, 𝑅)2 ≤ ||𝑅 | |22/𝑤 (1)

Then, we apply Chebyshev’s inequality with the median trick to
show that with 𝑑 = 8 log(1/𝛿) and𝑤 = 4/𝜖2 we get 𝑃𝑟 [|𝑓 (𝑞, 𝑅) −
𝑓 (𝑞, 𝑅) | ≥ 𝜖 | |𝑅 | |2] ≤ 𝛿 Formal proof is included in [26]. □

Practical consideration: The astute reader may notice that
Inequality 1 is derived by upper bounding

∑︁
𝑐𝑖 ∈C(𝑅) 𝑓 (𝑥, 𝑐𝑖)2

with 𝑓 (𝑥, 𝑅)2, to get a clearer theoretical result. The resulting
bound matches the bound one would get by merging the Count
sketch, as described in Section 3.1.1. If we avoid this simplification
we can get a much tighter, but less usable bound for variance.
This hints that, by configuring the Count-sketches at each cell
with different hash functions and sign functions, we will get
smaller errors in practice.

The AMS sketch proof is similar. To the best of our knowledge,
these two are the only main sketches in this category.

3.1.4 Examples of SpatialSketch with different sketches. The
above three classes of sketches cover the majority of sketches
from the literature. Table 2 includes a few frequently used sketches,
and explains how these are handled in SpatialSketch. The exam-
ples in Table 2 cover various query types, such as membership,
Top-K, aggregates over sliding windows (SW), and many more.
Note that some of the sketches, e.g., exponential histograms, are

290

Table 2: Examples of nested sketches and how SpatialS-
ketch offers error bounds. Mergeable sketches inherit all
query types from the nested sketch.

Nested Sketch Sketch Case (Query Type)
Count-min [11] Mergeable, Markov (Frequency)

Count-sketch [8] Mergeable, Chebyshev (Frequency)
Elastic Sketch [39] Mergeable, Markov (Frequency)

AMS [3] Mergeable, Chebyshev (Frequency)
Bloom filter [5] Mergeable

Flajolet-Martin [18] Mergeable
HyperLogLog [17] Mergeable

Distinct Sampling [21] Mergeable
K-minwise hashing [31] Mergeable

Universal Sketch [28] Mergeable
Misra-Gries [30] Mergeable – see [1]

ECM [33] Markov (SW Frequency)
Expon. Hist. [13] Markov (SW Count)
Det. Waves [22] Markov (SW Count)

Rand. Waves [22] Mergeable

deterministic. These fall as a special case of the second class of
sketches, and the error bounds for these sketches can be derived
by setting 𝛿 = 0 to Lemma 3 and Corollary 1.

Also notice that some sketches belong to two classes. In these
cases, the user may choose the most convenient approach to
produce the estimate. For example, ECM-sketch can be handled
as both a mergeable sketch (with the caveat that the error guar-
antees are weakened after merging [33]), or as a sketch offering
guarantees using Markov inequality – which, as we show in
Section 5.4 is also more computationally efficient. In this case,
the second approach is preferred. A similar example is with the
Chebyshev bound sketches, where construction of sketches with
different hash functions (hence, not mergeable) may lead to better
estimates (see our discussion at the end of Section 3.1.3).

4 DYNAMIC SPATIALSKETCH
The space requirements of SpatialSketch depend partly on the
density and distribution of the input stream. For instance, con-
sider a SpatialSketch configured with a nested Count-min sketch,
for summarizing the number of packets sent over a corporate
network per source IP address.(Fig. 1). Many areas of the sketch
are sparsely inhabited, being water or tiny islands. Owing to lazy
initialization, SpatialSketch will not initialize the nested sketches
on the empty cells, drastically reducing memory complexity. This
however implies that the memory requirements of SpatialSketch
may be significantly overestimated, in the absence of knowledge
about the yet-unseen input stream. Another scenario that may
lead to inaccurate estimation of the memory requirements of
SpatialSketch is when the space complexity of the nested sketch
depends on the frequency of updates in the stream, e.g., with
ECM-sketches [33].

A way to anticipate such cases is to initialize the sketch with
a lower basic resolution, leaving plenty of room for the sketch
to grow. This, however, may also lead to under-utilization of the
available memory, and to larger estimation errors. To avoid this
issue, we propose an extension of SpatialSketch that dynamically
adapts to the incoming data, and trades-off query efficiency with
memory requirements. Dynamic SpatialSketch (DynSketch for
short), relies on two key observations: (a) any query that can be

answered by a single cell of a grid at layer 𝑖 > 1 can also be an-
swered by two cells of a grid at layer 𝑖−1, and, (b) a SpatialSketch
of basic resolution 𝑥max ×𝑦max can be reduced to a SpatialSketch
of basic resolution 𝑥max

2 × 𝑦max

2 on-the-fly, without reiterating
over the input stream.

DynSketch is initialized with the maximum desired basic res-
olution and a memory quota, and starts summarizing the input
stream. Whenever the sketch needs to grow beyond the mem-
ory quota, it enters a two-phase compaction process. In the first
phase, some of the stored grids are deleted (layer by layer), with-
out affecting the basic resolution of the sketch. In the second
phase, the sketch progressively reduces its basic resolution. The
second phase is entered only when the first phase fails to release
sufficient memory, i.e., all the grids that could be deleted are
already deleted. We will now explain the two phases in more
detail.

Phase 1. Let ℓ represent the total number of layers. For example,
in the sketch of Fig. 2, which we will be using as a running
example, ℓ = 5 (starting to count from layer 1). When DynSketch
runs out of memory, it initially deletes the grids at layer ℓ −
(ℓ%2), one by one, until it releases sufficient memory. In the
example, DynSketch will first delete grid 𝑔(𝑥max

2 ,
𝑦max

4), and, if
necessary, grid 𝑔(𝑥max

4 ,
𝑦max

2). 6 The layer ids do not change in
this process. When more memory is needed, DynSketch will
continue by progressively deleting grids at layer ℓ − 2 − (ℓ%2),
ℓ −4− (ℓ%2), and so on, until it reaches to layer 1. In the example,
after deleting the two grids at layer 4, the sketch will delete the
two grids at layer 2.

Phase 2. If after phase 1 is completed, DynSketch still needs
memory, the compaction process enters phase 2. In this phase,
the sketch will delete all grids of resolution 𝑥 ×𝑦, where 𝑥 = 𝑥max

or 𝑦 = 𝑦max, and set its basic resolution to 𝑥max
2 × 𝑦max

2 . In the
example of Figure 2, execution of phase 2 will delete the grids
forming the faded ∟-shape. Phase 2 can be repeated every time
the sketch outgrows the memory quota. Notice that phase 2 also
reduces the available resolution for selecting the query range,
i.e., end-users will be able to choose more coarse-grained query
ranges.

Query execution. The first phase of the compaction process
requires a small modification at the query execution algorithm
of Section 3.1. Recall (Lemma 2) that for any 2d-dyadic range
[𝑥1, 𝑦1, 𝑥2, 𝑦2], the querying algorithm expects that there exists a
grid 𝑔 with resolution 𝑥max

𝑥2−𝑥1+1 × 𝑦max

𝑦2−𝑦1+1 , which is then used to
estimate an answer for the dyadic range. If this grid has already
been deleted at phase 1, the dyadic range needs to be further
broken down to smaller dyadic ranges, that can be answered by
existing (non-deleted) grids.

Observe that phase 1 will only delete grids at alternate layers
(in the example, layer 4, and then layer 2, leaving layers 5, 3, and
1 intact). Therefore, if a grid at layer 𝑙 has been deleted at phase
1, the algorithm breaks the dyadic range [𝑥1, 𝑦1, 𝑥2, 𝑦2] to two
sub-ranges: [𝑥1, 𝑦1, 𝑥1 + (𝑥2 − 𝑥1 + 1)/2 − 1, 𝑦2] and [𝑥1 + (𝑥2 −
𝑥1 + 1)/2, 𝑦1, 𝑥2, 𝑦2], which can both be answered by an existing
grid at layer 𝑙 − 1. This modification increases the query time by
a factor of two, but does not affect the estimation accuracy, or
the theoretical guarantees.

If DynSketch also enters phase 2, the maximum resolution of
the sketch is reduced, i.e., the user can now describe the query in

6The order of deletion within a layer is not important. We achieve deterministic
behavior by deleting the candidate grid with the highest 𝑥 resolution in the layer.

291

a coarser resolution. However, the theoretical guarantees for the
chosen query range, as well as the query answering algorithm
remain the same.

5 EXPERIMENTAL EVALUATION
The purpose of our experiments was twofold: (a) to compare the
space complexity, efficiency and accuracy of existing methods
to SpatialSketch and DynSketch, and, (b) to evaluate the per-
formance of our sketches in different configurations, and with
different stream and query types. Since DynSketch without mem-
ory quota is reduced to SpatialSketch, in the following we will
use DynSketch for all experiments with memory quota, and Spa-
tialSketch for the rest.

5.1 Experimental Setup
Hardware and implementation: Unless otherwise mentioned,
the experiments were executed on a Linux machine, equipped
with 512 GB RAM and an Intel Xeon(R) CPU E5-2697 v2, clocked
at 2.7GHz. All experiments were single-threaded, i.e., only one
of the 48 cores was used, and the machine was otherwise idle.

Baselines: SpatialSketch and DynSketch were compared with
different exact methods (relational database indices from Post-
greSQL 16, and spatial indices included in the PostGIS extension),
with a sampling approach [38], as well as with the state of the art
approximation method, MARQ [19, 20]. C-DARQ [19] was not
included in our experiments since it only supports queries that
are co-aligned with the grid boundaries, and for such queries,
MARQ is reduced to C-DARQ. We also do not consider DARQ
(also from [19]), since DARQ does not offer accuracy guarantees
for arbitrary sketches (see our discussion in Section 2).

Unless otherwise mentioned, SpatialSketch and DynSketch
were configured with Count-min nested sketches (𝜖 = 0.1, 𝛿 =
0.05), and a basic resolution of 4096×4096. Furthermore, for a fair
comparison, all methods (including the PostgreSQL methods) were
configured to store all data and auxiliary data structures/indices
in RAM, which resulted to a substantial performance boost for
most methods. All methods were implemented in C++. For the
MARQ baseline, we started from the GitHub code linked in [19],
and implemented the missing functions. All code and data are in
GitHub.7

Datasets: We used one real-world dataset from network mon-
itoring – our running example – and a set of synthetic datasets.
The main dataset was the CAIDA Anonymized Internet Traces
dataset [6], which contains passive network traffic traces from
the equinix-nyc high-speed monitor. Notice that the anonymizing
process followed by CAIDA led to invalid (made-up) IP addresses,
which could not be mapped to geographical coordinates using an
IP Geolocation database. To address this, we randomly mapped
CAIDA’s IP addresses to valid IP addresses from the free GeoLite2
dataset [29]. To evaluate the proposed algorithms on different
conditions, we also generated a set of synthetic datasets, varying
the geographical distribution of the updates, and the distribution
of the attributes. For consistency, all generated datasets follow
the same schema with the CAIDA dataset: <ip, x, y>, with
ip denoting the target IP address, and x, y denoting the geo-
graphical coordinates (latitude and longitude) of the origin of the
network packet.

Queries: We considered two query types: (a) rectangular
queries, and, (b) polygon queries, with the polygons matching
the shapes of US states. The polygon queries were derived by
7https://github.com/SynLib/SpatialSketch

using as query templates the borders of Utah, Nebraska, and
Kentucky. The borders of these three states have varying degrees
of complexity; Utah has almost rectangular borders, and is there-
fore decomposed to a few dyadic ranges, whereas Nebraska and
Kentucky require more dyadic range queries. The exact query
ranges were generated as follows: (a) the query template was
scaled to the desired scale for the experiment, and, (b) the tem-
plate was randomly placed at a land-covered area in the globe.
The reported results correspond to average numbers, after 100
different random query placements. Finally, unless otherwise
mentioned, all generated queries had an equality predicate on
the IP address, i.e, they followed the template:

(Query 4) SELECT COUNT(*) FROM Stream
WHERE [x,y] in Range AND ip=?

Since the query template was randomly placed on the map, the
query range did not co-align with the grid boundaries of SpatialS-
ketch and MARQ. MARQ natively handles this issue by utilizing
the samples maintained on each cell (see Section 2). SpatialSketch
was configured to compute the ratio of the cell that is contained
in the query, and use this ratio to scale the statistics coming out of
the cell. Finally, since the Count aggregate is the only aggregate
supported by all baselines, our comparison with baselines focuses
on this aggregate (similar to Query 3 in Section 2). Evaluation of
our methods with different aggregates is shown in Section 5.4.

Evaluation metrics: For each experiment, we measured: (a)
time for ingesting the stream, (b) required RAM, (c) time spent
on answering the queries, and (d) approximation error. Unless
otherwise noted, approximation error was computed as the abso-
lute difference of the estimate with the exact answer, normalized
by the number of updates in the region.

5.2 Comparison of SpatialSketch to indices
that provide exact answers

The goal of the first set of experiments was to compare SpatialS-
ketch to widely-used indices that provide exact answers. The
following indices (all available in Postgres) were considered: (a)
a B-tree on ip, x, y, (b) a B-tree on x, y, (c) a GiST index on
x, y, (d) an SP-GiST index on x, y, (e) no index, i.e., parsing the
whole table for each query. For each run, we ensured that the
correct index was exploited by looking at the query plan.

Rectangular queries: For the B-tree indices and the no-index
case, the query range was expressed as a set of 4 inequality pred-
icates on the coordinates, i.e., 𝑥 > 𝑥min AND 𝑥 < 𝑥max AND 𝑦 >
𝑦min AND 𝑦 < 𝑦max, with 𝑥min, 𝑥max, 𝑦min, 𝑦max denoting the
spatial range. The GiST and SP-GiST indices provide a dedicated
querying syntax for defining the query range. Fig. 4(a)-(b) plot
the ingestion time and memory required by each method, for
different stream sizes, whereas Fig. 4(c) plots the query execution
time for queries of different spatial ranges. We see that SpatialS-
ketch is at least 4 times faster and more compact than all exact
solutions, including the approach that simply stores all input and
does not build an index. Importantly, the memory requirements
of SpatialSketch increases in the first few thousand arrivals (not
visible in the figure) but then remains constant, whereas all other
solutions have linear space complexity. This makes the exact so-
lutions unsuitable for large streams that run for months, or even
years. Focusing on the querying time for each method (Fig. 4(c)),
SpatialSketch again outperforms all exact solutions. The B-Tree
on ip, x, y is the most efficient of the baseline approaches, but
it still requires two orders of magnitude more time compared to

292

20 30 40 50 60 70 80 90 100
Stream Size (Millions)

0

2000

4000

6000

8000

10000

12000

14000

In
ge

st
io

n
Ti

m
e

(s
ec

on
ds

) SpatialSketch
No Index
B-tree [x, y]
B-tree [ip, x, y]
GiST
SP-GiST

20 30 40 50 60 70 80 90 100
Stream Size (Millions)

0

2

4

6

8

10

M
em

or
y

Us
ag

e
(G

B)

B-tree [ip, x, y]
B-tree [x, y]
GiST
No Index
SP-GiST
SpatialSketch 0

1000

2000

3000

Qu
er

y
Ti

m
e

(m
s)

0% 5% 10% 15% 20% 25%
Query Area

0

10

20

30

Qu
er

y
Ti

m
e

(m
s)

Low
(Utah)

Medium
(Nebraska)

High
(Kentucky)

Shape Complexity

101

102

103

104

105

106

107

108

Qu
er

y
Ti

m
e

(m
s)

SpatialSketch
SP-GiST (Polygon operator)
B-tree [ip, x, y]
B-tree [x, y]
No Index

0.00

0.02

0.04

0.06

0.08

0.10

Ob
se

rv
ed

 E
rro

r

SpatialSketch error

Figure 4: Comparison with exact solutions: (a) Ingestion time, (b) Memory consumption, (c) Query time for query areas
covering between 1% and 25% of the spatial domain (legend identical to plot (b)), and, (d) Query time for non-rectangular
queries, covering 10% of the spatial domain, and approximation error of SpatialSketch.

SpatialSketch, for large query areas. Since the GiST index is very
slow for large query areas, we will not consider it further.

Polygon queries: The spatial indices offer native support
for polygon queries. For the B-Tree indices, polygon queries
cannot be handled out-of-the-box. Even though each polygon
can be accurately described as a disjunction of conjunctions of
functions (e.g., (3 ≤ 𝑥 < 4 AND 𝑦 − 4𝑥 > 0) OR (7 ≤ 𝑥 <
9 AND 𝑦 − 6𝑥 > 0) OR . . .), such representation effectively con-
stitutes the B-Trees useless. To enable the use of indices, we
applied a grid of 4096x4096 over the whole spatial domain, and
then approximated the spatial ranges of all queries by using the
cell coordinates. Finally we used the decomposition strategy de-
scribed in Section 3.1 to break down the query range to rectangles,
which could then be described as SQL predicates. The baseline
with no index was handled similarly.

Fig. 4(d) depicts the time required by all methods, as well as the
approximation error for SpatialSketch on each querying polygon.
The results correspond to queries scaled to cover 10% of the
whole space. We see that SpatialSketch consistently outperforms
all other methods, and its approximation error is at most 2% – well
below the error guarantees of the individual Count-min sketches.
We also notice that the only index suitable for polygon queries
is the B-tree on ip, x, y. Interestingly, even the spatial indices
(GiST and SP-GiST) take two to three orders of magnitude more
time compared to SpatialSketch, whereas the B-tree on x, y is not
used at all in the query plan, and therefore makes no difference.

In conclusion, the first round of experiments revealed that
indices and exact approaches come with memory requirements
that scale linearly to the stream length, and are very slow for
polygon queries. In contrast, SpatialSketch requires constant
space, and estimates even the most complex queries in a few tens
of milliseconds.

5.3 Comparison to approximate methods
The goal for the next set of experiments was to compare DynS-
ketch to the state of the art, MARQ [20], and to reservoir sam-
pling [38]. Our preliminary investigation showed that MARQ
has a huge error when one of the predicates is an equality, e.g.,
ip = 135.6.2.7. In this case, MARQ is effectively reduced to ran-
dom sampling, with an insufficient number of samples. Therefore,
for this experiment, all predicates (including the IP address pred-
icate) are range predicates. The queries follow the template:
(Query 5) SELECT COUNT(*) FROM Stream

WHERE [x,y] in Range AND ?<ip<?

with randomly chosen spatial ranges and IP address ranges. In
order to support range predicates on the IP address, DynSketch
was configured with Count-min sketches that support dyadic
ranges (see [11] for a description). Since MARQ does not support

a memory quota, it was executed first with different 𝜖 configura-
tions. We then measured its memory consumption and used it as
a memory quota for DynSketch and the sampling method.

Fig. 5(a) shows the time spent by each method on ingesting a
stream of 100 Million updates, for different memory quotas. We
see that DynSketch is slower than the two approximate baselines
in terms of ingestion, achieving between 20 and 60 thousand
inserts per second. This discrepancy, compared to the previous
results of Section 5.2 where SpatialSketch was achieving much
higher insertion rates, is attributed to the nested sketch used by
DynSketch: to enable range queries on the IP address, in this
experiment DynSketch uses a Count-min sketch with support
for dyadic ranges. Updating this sketch takes 𝑂 (log2 (|F |)) more
time compared to a simple Count-min – a factor of 32×. Reservoir
sampling is the fastest approach in terms of stream ingestion,
since it requires only 𝑂 (1) time per update. However, sampling
requires between two to three orders of magnitude more time
for query execution since it needs to go over the whole sam-
ple (Fig. 5(c)). Figure 5(b) plots the approximation error of all
methods. Since MARQ is configured for error relative to the total
stream length (as opposed to the much smaller number of updates
falling in the query region for DynSketch), for this experiment
we normalize the approximation error by the total stream length.
We see that MARQ fails to provide reasonably accurate answers.
Interestingly, increasing the spatial range of the query leads to a
stark increase on the error of MARQ, constituting its estimates
unusable. Comparing our experimental results with the theo-
retical analysis of MARQ [20], we noticed that the theoretical
guarantees of C-DARQ, DARQ, and MARQ, assume that only
one hot range tree and only one cold cell needs to be queried
per query. In practice, large spatial ranges require querying mul-
tiple hot range trees and cold cells, leading to a stark increase
of the error. Furthermore, the discussed sampling configuration
of MARQ does not maintain a representative sample over the
joined coordinates condition.

Summarizing, DynSketch offers a good balance of accuracy
and efficiency, whereas MARQ suffers from high approxima-
tion errors, and sampling is slow on query execution. Compared
to sampling, for queries with range predicates on the attribute,
DynSketch trades off some efficiency on updating for a much
faster query execution. For queries with a count aggregate, sam-
pling is also a competitive approach when querying efficiency is
not important.

5.4 DynSketch with different nested sketches
Up to now, DynSketch was configured with a Count-min nested
sketch to support spatial queries with a count aggregate. How-
ever, DynSketch can easily incorporate other nested sketches,

293

0 200 400 600 800 1000
Memory Usage (MB)

0

1000

2000

3000

4000

5000

In
ge

st
io

n
Ti

m
e

(s
ec

on
ds

)

DynSketch
MARQ
Reservoir sampling

0 200 400 600 800 1000
Memory Usage (MB)

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 E
rro

r

Reservoir sampling small query
Reservoir sampling large query
MARQ small query
MARQ large query
DynSketch small query
DynSketch large query

0 200 400 600 800 1000
Memory Usage (MB)

0

50

100

150

200

250

300

350

400

Qu
er

y
Ti

m
e

(m
s)

Reservoir sampling small query
Reservoir sampling large query
MARQ small query
MARQ large query
DynSketch small query
DynSketch large query

Figure 5: Comparison with MARQ and reservoir sampling (a) Ingestion time (b) Approximation error (normalized over the
stream length) (c) Query time

Table 3: DynSketch integrating different nested sketches to
enable other functionalities. The type of error, e.g. relative
error, is the same as with the nested sketch.

Function Nested
Sketch

Mem. Ingestion Querying
Time
(msec)

Error

(a) Count Elastic [39] 37 MB 382 sec 0.009 1E-5
(a) Count Count-

min [11]
37 MB 165 sec 0.013 5E-4

(b) Self-
join size

Count-
min [11]

37 MB 175 sec 0.013 0.037

(c) Set
contain-
ment

Bloom fil-
ters [5]

710 MB 257 sec 0.007 3.8%

(d) Count
distinct

FM [18] 37 MB 499 sec 0.181 0.037

(e) SW
count

ECM [32] 65 MB 386 sec 0.284 3E-4

(e) SW
count

ECM [32]
(merge)

65 MB 386 sec 10.9 7E-4

inherit their functionality, and extend it in the spatial domain,
relying on the theoretical analysis described in Section 3.1. In
this series of experiments we used DynSketch to support the
following functionalities: (a) estimate count aggregates of target
IP addresses, (b) estimate the self-join size (i.e., the second fre-
quency moment) of the number of network packets sent to each
target IP address from within a spatial range, (c) find whether an
IP address received a packet from a spatial range, (d) estimate the
number of distinct IP addresses that were sent a network packet
from a spatial range, and (e) estimate the frequency of target IP
addresses over a sliding-window. The last functionality is tested
using both the mergeability functionality of ECM-sketches pro-
posed in [33] and their Markov-based guarantees, as discussed
in Section 3.1.2. The following experiments were executed on a
machine with 32GB RAM and an 11th Gen Intel Core i7-11800H
CPU, clocked at 2.30 GHz.

Table 3 summarizes the nested sketch used for each function-
ality, the configured memory, the time required for stream inges-
tion and querying, and the observed error for small rectangular
queries.8 We see that DynSketch supports all five functionalities

8Since there exist hundreds of sketches, this investigation could not be exhaustive.
These nested sketches were chosen such that we can demonstrate how distinct
functionalities can be supported by DynSketch. Any sketch that fits in a category
described in Section 3.1 could also be used.

Table 4: Observed error on different synthetic distributions
for small (1%) and large (25%) queries.

Distr. ip Distr. x, y Error (small) Error (large)
Uniform Uniform 0.036 0.036
Uniform Zipf (𝛼 = 1.3) 0.085 0.076

Zipf (𝛼 = 1.3) Uniform 0.012 0.012
Zipf (𝛼 = 1.3) Zipf (𝛼 = 1.3) 0.028 0.023

with low errors. The memory requirements, as well as the in-
gestion and querying time are determined by the nested sketch.
For example, Bloom filters require space linear to the number
of distinct stream items for a low false positive error, which is
also close to the theoretically optimal space complexity for set
containment queries [7]. This inevitably leads to large space re-
quirements of DynSketch, as the stream contains more than 1
Million distinct IP addresses. Elastic, Count-min, and FM sketch
instead require much less memory, enabling errors less than 0.05
with less than 37 MB RAM. Similarly, FM sketches are slow, as
they require a computation of more than 300 hash functions to
theoretically guarantee a 10% relative error. Comparing DynS-
ketch with Elastic and Count-min, we see that DynSketch again
inherits the performance properties of the nested sketches – Elas-
tic (which has a complex insertion code compared to Count-min)
supports a lower throughput than Count-min, but offers a factor
of 50 improvement in error.

Focusing on the two ECM-sketch alternatives (with merging
and with Markov-based guarantees) we see that merging (before
every query) significantly slows down querying by two orders
of magnitude, compared to using the Markov-based guarantees
of Section 3.1.2. Also note that the Markov-based guarantees
lead to higher accuracy – as predicted by theory. Therefore, the
alternative of Markov-based guarantees does provide a signifi-
cant advantage in some use cases. For these functionalities, the
sampling method (reservoir) (not included in the table) provides
estimates with very high errors for the same memory quota (for
example, 22% false negatives for the set containment queries, and
a relative error of 0.58 for distinct counting).

In conclusion, this series of experiments confirms the ability
of DynSketch to exploit different types of sketches for enabling
different functionalities with error guarantees. The compactness
of the sketch, as well as the efficiency and error guarantees stem
directly from the underlying sketch.

294

5.5 Varying the stream properties
At the last set of experiments, we investigated the suitability of
DynSketch for summarizing streams of different distributions.
We created four synthetic datasets of 100M updates each. For each
attribute x, y, ip, we chose a characteristic distribution out of
uniform, or Zipfian with 𝛼 = 1.3. Then, we generated the stream
by randomly drawing values of the chosen distributions. Finally,
we generated rectangular queries with equality predicates on the
IP address (see Query 4), covering 1% (small) & 25% (large) of the
spatial domain. Table 4 demonstrates the accuracy of DynSketch
with a memory limit of 37MB on the created synthetic streams.
We see that DynSketch performed well on all streams, having
a maximum error 0.085, which is below the defined 𝜖 = 0.1 of
the corresponding nested Count-min sketch. We highlight that a
skewed x, y distribution consistently leads to higher errors. On
a closer inspection, this error is attributed to cells that are very
densely populated, thereby causing a higher overestimation error
at the nested sketch (a Count-min, in this case). Still, the error
was well below the theoretical maximum of the nested sketches
(𝜖 = 0.1). The effect of the stream distribution on the ingestion
and query time was negligible.

6 CONCLUSIONS
In this work we considered the challenge of computing aggregate
statistics for spatial ranges over data streams. We introduced two
novel sketches, SpatialSketch and DynSketch, which can support
different types of aggregates (e.g., frequency estimation, L2 norm,
membership queries) by incorporating the functionality of other
nested sketches like Count-min sketches and Bloom filters. Both
sketches are backed by a formal analysis that provides accuracy
guarantees for diverse aggregates, and for different classes of
nested sketches. Through an extensive experimental evaluation
with both real and synthetic data streams, we demonstrated that
the proposed sketches outperform the competitors (both exact
and approximate) in terms of functionality, efficiency, and accu-
racy, within identical memory constraints.

ACKNOWLEDGMENTS
This work was partially funded by the European Commission
under the STELAR (HORIZON-EUROPE - Grant No. 101070122)
project.

REFERENCES
[1] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips,

Zhewei Wei, and Ke Yi. 2013. Mergeable summaries. ACM Trans. Database
Syst. 38, 4 (2013), 26. https://doi.org/10.1145/2500128

[2] Siti Aisyah, Arionmaro Asi Simaremare, Didit Adytia, Indra A. Aditya, and
Andry Alamsyah. 2022. Exploratory Weather Data Analysis for Electric-
ity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia.
Energies 15, 10 (2022). https://doi.org/10.3390/en15103566

[3] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The Space Complexity
of Approximating the Frequency Moments. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996. ACM, 20–29. https://doi.org/10.1145/
237814.237823

[4] Heike Bach and Wolfram Mauser. 2018. Sustainable Agriculture and Smart
Farming. Springer International Publishing, 261–269. https://doi.org/10.1007/
978-3-319-65633-5_12

[5] Andrei Z. Broder and Michael Mitzenmacher. 2003. Survey: Network Ap-
plications of Bloom Filters: A Survey. Internet Math. 1, 4 (2003), 485–509.
https://doi.org/10.1080/15427951.2004.10129096

[6] CAIDA. 2019. The CAIDA UCSD Anonymized Internet Traces Dataset (ac-
cessed October 2023). https://www.caida.org/catalog/datasets/passive_
dataset/

[7] Larry Carter, Robert W. Floyd, John Gill, George Markowsky, and Mark N.
Wegman. 1978. Exact and Approximate Membership Testers. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San
Diego, California, USA. ACM, 59–65. https://doi.org/10.1145/800133.804332

[8] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. 2004. Finding
frequent items in data streams. Theor. Comput. Sci. 312, 1 (2004), 3–15. https:
//doi.org/10.1016/S0304-3975(03)00400-6

[9] Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (1979),
121–137. https://doi.org/10.1145/356770.356776

[10] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine.
2012. Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches.
Found. Trends Databases 4, 1-3 (2012), 1–294. https://doi.org/10.1561/
1900000004

[11] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. J. Algorithms 55, 1 (2005),
58–75. https://doi.org/10.1016/J.JALGOR.2003.12.001

[12] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. 2004. Approx-
imation Techniques for Spatial Data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Paris, France, June 13-18,
2004. ACM, 695–706. https://doi.org/10.1145/1007568.1007646

[13] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 2002. Main-
taining Stream Statistics over Sliding Windows. SIAM J. Comput. 31, 6 (2002),
1794–1813. https://doi.org/10.1137/S0097539701398363

[14] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Over-
mars. 2008. Computational geometry: algorithms and applications, 3rd Edition.
Springer. https://www.worldcat.org/oclc/227584184

[15] Timothy Gallaudet et al. 2020. NOAA Data Strategy: Maximizing the Value of
NOAA Data. Technical Report. National Oceanic and Atmospheric Adminis-
tration.

[16] Leonard A. Ferrari, P. V. Sankar, and Jack Sklansky. 1984. Minimal rectangular
partitions of digitized blobs. Comput. Vis. Graph. Image Process. 28, 1 (1984),
58–71. https://doi.org/10.1016/0734-189X(84)90139-7

[17] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007.
HyperLogLog: The analysis of a near-optimal cardinality estimation algorithm.
Discrete Mathematics & Theoretical Computer Science (03 2007), 137–156. https:
//doi.org/10.46298/dmtcs.3545

[18] Philippe Flajolet and G. Nigel Martin. 1985. Probabilistic Counting Algorithms
for Data Base Applications. J. Comput. Syst. Sci. 31, 2 (1985), 182–209. https:
//doi.org/10.1016/0022-0000(85)90041-8

[19] Roy Friedman and Rana Shahout. 2021. Box queries over multi-dimensional
streams. In 15th ACM International Conference on Distributed and Event-based
Systems, DEBS 2021, Virtual Event, Italy, June 28 - July 2, 2021. ACM, 90–101.
https://doi.org/10.1145/3465480.3466925

[20] Roy Friedman and Rana Shahout. 2022. Box queries over multi-dimensional
streams. Inf. Syst. 109 (2022), 102086. https://doi.org/10.1016/J.IS.2022.102086

[21] Phillip B. Gibbons. 2001. Distinct Sampling for Highly-Accurate Answers to
Distinct Values Queries and Event Reports. In VLDB 2001, Proceedings of 27th
International Conference on Very Large Data Bases, September 11-14, 2001, Roma,
Italy. Morgan Kaufmann, 541–550. http://www.vldb.org/conf/2001/P541.pdf

[22] Phillip B. Gibbons and Srikanta Tirthapura. 2002. Distributed streams algo-
rithms for sliding windows. In Proceedings of the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA 2002, Winnipeg,
Manitoba, Canada, August 11-13, 2002. ACM, 63–72. https://doi.org/10.1145/
564870.564880

[23] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. 2002.
How to Summarize the Universe: Dynamic Maintenance of Quantiles. In
VLDB 2002, Proceedings of 28th International Conference on Very Large Data
Bases, August 20-23, 2002, Hong Kong. Morgan Kaufmann, 454–465. https:
//doi.org/10.1016/B978-155860869-6/50047-0

[24] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. 1995. Generalized
Search Trees for Database Systems. In VLDB’95, Proceedings of 21th Inter-
national Conference on Very Large Data Bases, September 11-15, 1995, Zurich,
Switzerland. Morgan Kaufmann, 562–573. http://www.vldb.org/conf/1995/
P562.PDF

[25] Andreas Kamilaris and Frank O. Ostermann. 2018. Geospatial Analysis and
the Internet of Things. ISPRS Int. J. Geo Inf. 7, 7 (2018), 269. https://doi.org/10.
3390/IJGI7070269

[26] Jacco Kiezebrink, Wieger R. Punter, Odysseas Papapetrou, and Kevin Verbeek.
2023. Synopses for Aggregating Arbitrary Regions in Spatial Data. Technical
Report. Eindhoven University of Technology. https://github.com/SynLib/
SpatialSketch

[27] Ying Kit Lai, Chung Keung Poon, and Benyun Shi. 2005. Approximate Colored
Range Queries. In Algorithms and Computation, 16th International Symposium,
ISAAC 2005, Sanya, Hainan, China, December 19-21, 2005, Proceedings (Lecture
Notes in Computer Science), Vol. 3827. Springer, 360–369. https://doi.org/10.
1007/11602613_37

[28] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with UnivMon. In Proceedings of the ACM SIGCOMM 2016 Con-
ference, Florianopolis, Brazil, August 22-26, 2016. ACM, 101–114. https:
//doi.org/10.1145/2934872.2934906

[29] MaxMind. 2023. GeoLite2 Free Geolocation Data - (accessed October 2023).
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

[30] Jayadev Misra and David Gries. 1982. Finding Repeated Elements. Sci. Comput.
Program. 2, 2 (1982), 143–152. https://doi.org/10.1016/0167-6423(82)90012-0

[31] Rasmus Pagh, Morten Stöckel, and David P. Woodruff. 2014. Is min-wise
hashing optimal for summarizing set intersection?. In Proceedings of the 33rd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

295

PODS’14, Snowbird, UT, USA, June 22-27, 2014. ACM, 109–120. https://doi.org/
10.1145/2594538.2594554

[32] Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. 2012.
Sketch-based Querying of Distributed Sliding-Window Data Streams. Proc.
VLDB Endow. 5, 10 (2012), 992–1003. https://doi.org/10.14778/2336664.2336672

[33] Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis.
2015. Sketching distributed sliding-window data streams. VLDB J. 24, 3 (2015),
345–368. https://doi.org/10.1007/S00778-015-0380-7

[34] João Paulo Just Peixoto, Daniel G. Costa, Washington de J.S. da Franca Rocha,
Paulo Portugal, and Francisco Vasques. 2023. On the positioning of emer-
gencies detection units based on geospatial data of urban response centres.
Sustainable Cities and Society 97 (2023), 104713. https://doi.org/10.1016/j.scs.
2023.104713

[35] Wieger R. Punter, Odysseas Papapetrou, and Minos N. Garofalakis. 2023.
OmniSketch: Efficient Multi-Dimensional High-Velocity Stream Analytics
with Arbitrary Predicates. Proc. VLDB Endow. 17, 3 (2023), 319–331. https:
//doi.org/10.14778/3632093.3632098

[36] Michael Shekelyan, Anton Dignös, Johann Gamper, and Minos N. Garofalakis.
2021. Approximating Multidimensional Range Counts with Maximum Error
Guarantees. In 37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021. IEEE, 1595–1606. https://doi.org/10.
1109/ICDE51399.2021.00141

[37] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias.
2004. Spatio-Temporal Aggregation Using Sketches. In Proceedings of the 20th
International Conference on Data Engineering, ICDE 2004, 30 March - 2 April
2004, Boston, MA, USA. IEEE Computer Society, 214–225. https://doi.org/10.
1109/ICDE.2004.1319998

[38] Jeffrey Scott Vitter. 1985. Random Sampling with a Reservoir. ACM Trans.
Math. Softw. 11, 1 (1985), 37–57. https://doi.org/10.1145/3147.3165

[39] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: adaptive and fast network-
wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary,
August 20-25, 2018. ACM, 561–575. https://doi.org/10.1145/3230543.3230544

296

