
LINX: A Language Driven Generative System for Goal-Oriented
Automated Data Exploration

Tavor Lipman
Tel Aviv University

tavorlipman@mail.tau.ac.il

Tova Milo
Tel Aviv University
milo@cs.tau.ac.il

Amit Somech
Bar-Ilan University

somecha@cs.biu.ac.il

Tomer Wolfson
Tel Aviv University

tomerwol@mail.tau.ac.il

Oz Zafar
Tel Aviv University

ozzafar@mail.tau.ac.il

ABSTRACT
Data exploration is a challenging and time-consuming process in
which users examine a dataset by iteratively employing a series
of queries. While in some cases the user explores a new dataset
to become familiar with it, more often, the exploration process is
conducted with a speci!c analysis goal or question in mind. To
assist users in exploring a new dataset, Automated Data Explo-
ration (ADE) systems have been devised in previous work. These
systems aim to auto-generate a full exploration session, contain-
ing a sequence of queries that showcase interesting elements of
the data. However, existing ADE systems are often constrained
by a prede!ned objective function, thus always generating the
same session for a given dataset. Therefore, their e"ectiveness in
goal-oriented exploration, in which users need to answer speci!c
questions about the data, are extremely limited.

To this end, this paper presents LINX, a generative system aug-
mented with a natural language interface for goal-oriented ADE.
Given an input dataset and an analytical goal described in natu-
ral language, LINX generates a personalized exploratory session
that is relevant to the user’s goal. LINX utilizes a Large Language
Model (LLM) to interpret the input analysis goal, and then derive
a set of speci!cations for the desired output exploration session.
These speci!cations are then transferred to a novel, modular
ADE engine based on Constrained Deep Reinforcement Learning
(CDRL), which can adapt its output according to the speci!ed
instructions.

To validate LINX’s e"ectiveness, we introduce a new bench-
mark dataset for goal-oriented exploration and conduct an ex-
tensive user study. Our analysis underscores LINX’s superior
capability in producing exploratory notebooks that are signif-
icantly more relevant and bene!cial than those generated by
existing solutions, including ChatGPT, goal-agnostic ADE, and
commercial systems.

1 INTRODUCTION
Data exploration is the process of examining a dataset by apply-
ing a sequence of queries, allowing the user to inspect di"erent
aspects of the data. Data exploration can be performed in one
of two scenarios. The !rst, examining an unfamiliar dataset in
order to understand its main characteristics. The second, which
we refer to as Goal-oriented Data Exploration (GDE), is the pro-
cess of exploring an already familiar dataset in light of a speci!c
analytical goal or question, in order to derive speci!c, relevant
insights.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Numerous tools have been devised over the last decade for the
purpose of assisting users in the manual, interactive process of
data exploration [15, 20, 35, 38, 65, 67]. Most prominently, query
recommendation systems and simpli!ed analysis interfaces like
Tableau [62] and Power BI [6]. Recently, a new line of work called
Automated Data Exploration (ADE), considers data exploration
as a multi-step, AI control problem [4, 5, 9, 10, 50, 51]. Unlike
interactive tools that assist users step-by-step, Automated Data
Exploration (ADE) systems take an input dataset and automat-
ically generate a complete session of multiple, interconnected
queries. Each query in the session builds on the results of one of
the previous queries. The !nal output session is often displayed
in a scienti!c notebook interface [49], allowing users to quickly
gain substantial knowledge on the data before investigating it
further.

Importantly, while existing ADE systems have been proven
useful in assisting users in examining and familiarizing them-
selves with a new dataset, they are ine"ective for the process of
GDE. This is because existing ADE systems solve a prede!ned op-
timization problem, with a !xed objective function, thus always
generating the same, or similar session for a given dataset. In the
case of GDE, users need to answer a speci!c question, and seek
insights that are relevant to their analytical goal. For illustration,
consider the following example:

Example 1.1. Data Scientist Clarice, working at a media com-
pany, is assigned to analyze the Net#ix Movies and TV Shows
dataset [31], which contains information about more than 8.8K
di"erent titles. Her current assignment is !nding a country with
atypical viewing habits, compared to the rest of the world (to dis-
cover new insights that can be utilized to broaden the company’s
viewership audience). While Clarice is familiar with this dataset,
she is tasked with a challenging analytical goal that cannot be
answered via a single query. To meet the goal, Clarice needs to
examine countries in a trial-and-error manner, comparing them
to the rest of the world with di"erent attributes and aggregation
functions.

Using the existing ADE system [5], Clarice receives an output
exploration notebook, containing query results that imply generic
insights such as “Most Net"ix titles originated in the US”. However,
these o"er no help in respect to Clarice’s analytical goal - a
speci!c question about countries with atypical viewing habits.

To this end, we introduce LINX, a Language-driven generative
system for goal-oriented exploration. LINX is a novel ADE system
that receives as input not only the user’s dataset, but additionally,
a description of the user’s analytical goal in natural language.
LINX then generates a personalized, exploratory session, contain-
ing queries that are tailored speci!cally to the dataset and the

Series ISSN: 2367-2005 270 10.48786/edbt.2025.22

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.22

Netflix Dataset

GROUP-BY
Rating,CNT(Show)

FILTER
country,!=,India

FILTER
country,=,India

GROUP-BY
Type,CNT(Show)

FILTER
country,!=,India

FILTER
country,=,India

1 4

2 3 5 6

(a) Input: Dataset and Analysis Goal

NL2Pandas

(c) LDX Exploration Specifications

Pandas2Ldx

(b) Nonexecutable Exploration Code Template

(d) Executable Exploration Tree (e) Final Exploration Notebook (snippet)

Spec. aware NN

Exploration Reward

Specifications
Compliance Reward

Query
results

Selected query operation

Dataset+LDX
Specifications

Environment

LLM-Based Derivation of Exploration Specifications

Constrained Deep Reinforcement Learning (CDRL) ADE Engine

Autogenerated Notebook by ATENA-PRO:

Figure 1: An Example LINX Work!ow for Auto-Generating Goal-Oriented Exploration Sessions

given goal at hand. LINX follows two steps: First, it uses an LLM-
based solution to interpret the input analysis goal and derives
from it a set of speci!cations for the desired output exploration
session. Second, the dataset along with the speci!cations are
transferred to a novel, modular ADE engine which can adapt its
output accordingly.

Example 1.2. As depicted in Figure 1, Clarice uploads the Net-
#ix dataset to LINX and types a description of her goal: “Find a
country with di#erent viewing habits than the rest of the world”.
LINX then decides that the output exploration session should con-
tain two comparisons of the same group-and-aggregate queries,
one when !ltering in on a country, and the second when that
country is !ltered out. These speci!cations are then inserted into
LINX’s modular ADE engine. The engine executes a multitude
of exploration sessions until converging to an optimal one: Two
group-by operations comparing the rating and show-type (using
a count aggregation), where each is employed on the results of
two !lter queries – one by Country=India, and the second by
Country!=India. Observing the output session notebook (See
Fig. 1e for a snippet) she quickly derives insights that are rele-
vant to her goal, illustrating how India di"ers from the rest of
the world: (1) “While the majority of titles in the rest of the world
are rated TV-MA (17+), in India, most titles are rated TV-14 (14+)”
and (2) “In India, the majority of titles are movies (93%), whereas
in the rest of the world, movies comprise only 66% of the titles (with
the rest being TV shows)”.

LINX is able to generate goal-oriented sessions for various
goals described in natural language using two main components:
A modular ADE framework that takes into consideration cus-
tom speci!cations, and an LLM-based solution for deriving such
speci!cations from a natural language prompt.
1. Modular ADE framework with a dedicated speci"cation
language. Building an ADE framework for goal-oriented explo-
ration requires two signi!cant components lacking in existing
ADE systems. First, a means to articulate custom exploration spec-
i!cations, and second, the ability to integrate these speci!cations
in the ADE optimization process. To this end, we !rst introduce
LDX, a formal, intermediate language for data exploration. LDX
allows to de!ne the space of desired, relevant exploration ses-
sions with useful constructs for setting the structure, syntax, and
the contextual relations between the query operations. Impor-
tantly, we devise an e$cient veri!cation engine for LDX, which

quickly determines if an output session is compliant with the
speci!cations or not.

Second, we develop a modular ADE engine that takes into
account the input speci!cations when generating an output ex-
ploration session. We base our framework on ATNEA [5], an
existing, goal-agnostic ADE system using Deep Reinforcement
Learning (DRL). Our modular ADE engine contains two compo-
nents necessary to support custom speci!cations: (1) A graduate
LDX-compliance reward signal, based on multiple variations of
the LDX veri!cation engine, used for providing a !ne-grained
numeric score which increases as the session is closer to satisfy-
ing all speci!cations. (2) A speci!cation-aware neural network
architecture that derives its !nal structure from the LDX speci-
!cations. Our adaptive architecture is inspired by Constrained
Deep Reinforcement Learning (CDRL) solutions [13, 57] where
the neural network agent is speci!cally designed to handle addi-
tional requirements, such as safety constraints in autonomous
driving frameworks [24]. In such systems, an external mechanism
is used to override the agent’s actions if they are violating the
constraints. In our case, rather than overriding actions externally,
we encourage the agent to perform compliant queries by dynami-
cally shifting the action distribution probabilities toward queries
that are more likely to be included in a speci!cations-compliant
exploration session.
2. LLM-Based solution for deriving exploration speci"ca-
tions from an analytical goal. As previously mentioned, LINX
users specify their goal in natural language, meaning that they
do not need to compose LDX speci!cations, but rather, these are
derived directly from the analysis goal description. Our solution
receives as input the user’s goal as well as a short description
of the dataset, and derives from it a syntactically correct LDX
speci!cation (This part is crucial as our modular ADE engine
utilizes the LDX veri!cation engine). Unlike more common tasks
such as Text-to-SQL, for which LLMs demonstrate superior per-
formance, for our task there is hardly any available resources in
the LLMs’ training data (see discussion in Section 2). To overcome
the absence of NL-LDX information in the LLM training data, we
use a few-shot setting [46, 71], coupled with intermediate code
representation [11, 43, 73]: Instead of directly instructing the LLM
to generate LDX speci!cations, we adopt a two-stage prompting
approach. In the !rst prompt, the LLM is tasked with express-
ing the speci!cations as a non-executable Python Pandas [72]
code. Then, an additional prompt instructs the LLM to translate

271

the resulting code into formal LDX speci!cations. As LLMs are
trained on vast amounts of Python code, this intermediary step
signi!cantly improves their !nal performance.

Experimental Evaluation & Benchmark Dataset. To evaluate
LINX, we constructed the !rst benchmark dataset, to our knowl-
edge, for goal-oriented data exploration. Our benchmark contains
182 pairs of analytical goals and corresponding exploratory spec-
i!cations, over three di"erent datasets. We then conducted a
thorough user study involving 30 participants to evaluate the
relevance and overall quality of LINX exploration sessions. We
compared LINX sessions to ones generated by ATENA [5], to
sessions generated directly by ChatGPT [48], as well as to ones
generated by the Google Sheets ML-Exploration tool [65]. The
results are highly positive: Sessions generated by LINX were
considered 1.5-2X more useful and allowed users to derive 3-5X
more goal-relevant insights than the other automatic baselines.

A recent demo paper [40] brie#y introduces LDX and an earlier
prototype of its engine, with a main focus on a web interface
for manual speci!cation composition. In our current paper we
present an end-to-end, tested solution that only requires the user
to describe their analytical goal in natural language.

Paper Outline. We begin by surveying related work (§2), then
formally de!ne our problem and provide an example work#ow
of LINX (§3). Next, we describe the LDX language (§4), our CDRL-
based modular ADE framework (§5) and the LLM-based solution
for speci!cations derivation (§6). Finally, we present our experi-
mental evaluation (§7) and provide concluding remarks (§8).

2 RELATED WORK

Assistive Tools for Interactive Exploration (Single Step).
Assisting users in data exploration has been the focus of nu-
merous previous works. Examples include simpli!ed analysis
interfaces for non-programmers [35, 65], explanation systems
for exploratory steps, [14, 15, 38], insights extraction [67], and
recommender systems for single exploratory steps [16, 17, 19, 20,
28, 45, 56, 78]. While these works facilitate the interactive aspects
of data exploration, LINX focuses on a complementary dimension
– generating full exploratory sessions, joining the more recent
line of research on ADE, as described below.

Automated Data Exploration (ADE). Rather than assisting
users in formulating a single query, more recent systems such
as [4, 9, 10, 50, 51] aim to generate an end-to-end exploratory
process, given an input dataset, with the purpose of highlighting
interesting aspects of the data, and providing thorough prelim-
inary insights. When presented in a notebook interface, such
exemplar exploration sessions are highly useful for analysts and
data scientists [33, 49, 55].

Due to the vast domain of possible exploration sessions, sys-
tems such as [4, 5, 50, 51] use powerful optimization tools, such
as dedicated deep reinforcement learning (DRL) architectures and
mathematical solvers. However, as previously mentioned, these
systems are agnostic to the user’s goal, due to their prede!ned
objective function, which makes them generate the same session
per dataset. LINX is the !rst ADE framework, to our knowledge,
designed for goal-oriented exploration.

Visualization recommendations & insights discovery.
Adjacent research !elds have concentrated on discovering valu-
able data visualizations [36, 61, 68, 75] and pattern-based in-
sights [18, 41]. Typically, these approaches de!ne notions of
utility or importance then scan the data to identify top-k visu-
alizations or insights with the highest scores [18, 68, 75]. More
recent work [41, 60, 63] has focused on organizing these mined
patterns to highlight compound patterns within the data and
build data narratives [12, 59]. In particular, [42] demonstrates
a system that utilize LLMs for generating a sequence of inter-
connected insights.

Although communicating mined insights and knowledge from
data is critically important, it is complementary to our work,
which is centered on generating a sequence of interconnected
queries that slice and dice the data to answer a speci!c question
or an analytical goals.

Text-to-SQL. As previously mentioned, LINX uses an LLM-
based solution that derives exploratory speci!cations from a
textual description of the user’s analytical goal. This task draws
some similarities with the well-studied task of text-to-SQL, where
a structured query is translated from a natural language (NL)
request [1, 34]. Recently, Text-to-SQL via LLMs [39, 52] has
shown promising results, nearly comparable to dedicated archi-
tectures [84]. This is mainly due to the existing resources used for
this task, such as supervised datasets like [39, 80, 84], a plethora
of academic papers and books, as well as practical tips in pro-
gramming internet forums. Di"erently, solving our new task of
NL-to-LDX requires overcoming additional challenges: (1) LLMs
are not explicitly trained on vast amounts of exploratory sessions,
(2) Our task requires specifying a sequence of interconnected
queries, rather than a single SQL query, and therefore more di$-
cult to derive solely based on a description of the task and dataset,
and (3) rather than generating the full session, the LLM is tasked
with partially specifying it, thus leaving some of the query pa-
rameters to be discovered by the ADE engine. In Text-to-SQL,
the NL request is instantly translated to an executable query. We
show in Section 7 that exploratory sessions generated directly
by ChatGPT are signi!cantly inferior to sessions generated by
LINX.

3 PROBLEM SETTING, EXAMPLE
WORKFLOW

We !rst de!ne the problem of goal-oriented, automated data
exploration, then present an example work#ow of LINX.

The goal-oriented ADE problem. Given an input dataset 𝐿 , and
an analytical goal description 𝑀, we de!ne the task of automat-
ically generating an exploration “session” – A sequence of 𝑁
consecutive queries: 𝑂1, 𝑂2, . . . 𝑂𝐿 conducted in light of the goal 𝑀.
Collectively, the results of the queries build upon one another, al-
lowing for the derivation of compound insights that are relevant
and aligned with the goal 𝑀.

As in standard ADE settings, we assume a prede!ned set of
query operation types. Following [5] we focus on the following
parametric !lter, and group-by query operations: A !lter opera-
tion is de!ned by [F,attr,op,term], where attr is an attribute
in the dataset, op is a comparison operator (e.g. =, →, 𝑃𝑄𝑅𝑆𝑇𝑈𝑅𝑉)
and term is a numerical/textual term to !lter by. A Group-and Ag-
gregate operation is de!ned by [G,g_attr,agg_func,agg_attr],

272

i.e., grouping on attribute g_attr, aggregating on agg_attr us-
ing an aggregation function agg_func (we discuss the support
of additional operations below).

We further assume a tree-based exploration model, following [5,
45], in which each query operation 𝑂𝑀 is represented by a node,
and is applied on the results of its parent operation. The “root”
node of the exploration tree is the original dataset before any
operation is applied, and the query execution order corresponds
with the tree pre-order traversal (see Figure 1d for an example
exploration tree). For dataset 𝐿 , we denote an exploration tree
by 𝑊𝑁 .

Now, given a utility score function for an exploratory session,
denoted 𝑋 , a goal-agnostic ADE system is tasked to generate a
session 𝑊𝑁 such that 𝑋 (𝑊𝑁) is maximal. Multiple such notions
are de!ned in previous work [5, 9, 51]. In LINX, given a dataset
𝐿 and the goal 𝑀, our objective is to generate a session 𝑊𝑁 such
that 𝑋 (𝑊𝑁) is maximal and relevant, w.r.t. analysis goal 𝑀. In
LINX, the relevance of a session is determined according to a
set of exploration speci!cations 𝑌𝑂 , derived w.r.t. the goal 𝑀. If
𝑌𝑂 (𝑊𝑁) = 𝑊𝑍𝑎𝑏 , i.e., the session is compliant with the speci!ca-
tions, then we say it is relevant w.r.t. goal 𝑀.

Example work"ow. Figure 1 illustrates the detailed architec-
ture and an example work#ow of LINX, extending Example 1.2.
The user uploads a dataset and a description of an analytical goal
(Fig. 1a), then LINX works using a two step process: (1) It !rst de-
rives a set of exploration speci!cations𝑌𝑂 that form a “skeleton”
for the output session. This skeleton accommodates a variety of
compatible instances. In the second step (2), our Modular ADE
engine generates the full session 𝑊𝑁 , which maximizes the ex-
ploration score 𝑋 (𝑊𝑁) (we use the notion from [5], as explained
below) and is also compliant with the derived speci!cations 𝑌𝑂 .
Step 1: Deriving Exploration speci"cations w.r.t. the goal.
We use an LLM-based solution to derive exploration speci!ca-
tions from 𝐿 and 𝑀, expressed in LDX (described in Section 4).

As mentioned above, we use a two-stage prompting approach,
to overcome the absence of relevant explicit knowledge in the
LLM training data. First, we prompt the LLM to generate non-
executable Python Code, as depicted in Figure 1b. Note that this is
merely an intermediate gateway for expressing the speci!cations,
as this code cannot be executed. In particular, it contains special
placeholders (marked with <>) for query parameters that will
be later instantiated by the ADE engine, in a manner that maxi-
mizes the general exploration score. As described in Example 1.2,
LINX takes the goal of !nding an atypical country in the Net-
#ix dataset, and derives that the output session should contain
!lter operations on the ‘Country’ column – one for a speci!c
country, and the other for the complement data (i.e., the rest
of the world), each followed by the same group-and-aggregate
operation. See that the speci!c country and the group-by pa-
rameters are not speci!ed. These will be instantiated later by
the modular ADE engine, which will discover the instances that
maximize the exploration utility. Last, the non-executable code
is then translated to LDX via a subsequent prompt, as illustrated
in Fig. 1c. Returning syntactically correct LDX is crucial, as the
LDX veri!cation engine (Section 4.2) is embedded in the ADE
optimization process, as explained in Section 5.
Step 2: Generating a maximal-utility exploratory session,
in accordance with the goal-driven speci"cations. In the
second step our modular ADE framework performs a CDRL pro-
cess, as illustrated in Figure 1 (bottom left): optimizing a generic
exploration reward (de!ned in [5]) while ensuring that the output

session is compliant with the input speci!cations. This is enabled
due to our compliance reward scheme (Section 5.2) that employs
multiple instances of the LDX veri!cation engine, and a novel
speci!cation-aware neural network which adjusts its structure
based on the input speci!cations (Section 5.3).

After the CDRL process converges, LINX produces an exe-
cutable exploration tree (Fig.1d), consisting of executable query
operations that adhere to the input speci!cations while maximiz-
ing the generic exploration score. The query parameters marked
in red are the ones discovered by the CDRL engine: the country
!lter value <X> is ‘India’, and the comparison involves a count
aggregation over the attributes rating and show type. This ex-
ploratory session is then presented to the user as a scienti!c note-
book, as depicted in Fig.1e. The notebook snippet demonstrates
that the output exploratory session indeed reveals interesting
and relevant insights, illustrating how India di"ers from the rest
of the world in terms of the title ratings and types, as explained
in Example 1.2.

In Section 7 we examine the performance and the quality of
notebooks generated by LINX for various di"erent goals (see
Table 1 for example instances).

Limitations and Scope. We conclude with three remarks on the
scope and limitations of LINX:
1. ADE Vs. interactive exploration. Recall that LINX is an ADE
system designed to generate comprehensive exploratory ses-
sions, similar to the approaches in [9, 10, 50, 51]. As discussed in
Section 2, ADE systems are not intended to replace interactive
exploration tools [20, 45, 78]. Instead, their primary role is to be
used before users engage in interactive data exploration, o"ering
valuable, thorough preliminary insights. This preparatory step is
akin to reviewing human-generated exploration notebooks found
on platforms like Kaggle and Github [33], providing a solid foun-
dation for subsequent analysis. Naturally, due to the vast search
space, the output of ADE systems [5, 9] may take several min-
utes to generate (see the discussion in Section 7.4). However, this
longer running time is acceptable, given that ADE systems are
not intended for real-time interaction but for providing thorough,
preparatory insights.
2. Supported Query Operations. LINX currently supports !lter
and group-by-and-aggregate queries, with plans to extend these
capabilities in future work. While these represent only two types
of operations, it is important to note that there are often over
10,000 unique con!gurations available (e.g., by varying the !lter
attribute, comparison operator, token, group-by columns, ag-
gregation functions, etc.). As demonstrated in our experimental
evaluations in Section 7.3, when these operations are chosen
appropriately by LINX, users are able to identify the insights
conveyed in the generated views, and accordingly, they rated
LINX notebooks as informative, coherent, and relevant to the
analytical goal.
3. Future Extension: Spelled-out Insights and Visualizations. LINX
currently outputs a sequence of query operations along with their
corresponding result views. To obtain more compelling outputs
that may expedite insight discovery, one could apply an insights-
mining tool [41, 67] or an auto-visualization tool [36] to the
views generated by LINX. We plan to integrate such systems into
LINX in the future, as well as explore the use LLMs for providing
natural language summaries of the resulting exploratory sessions.

273

4 EXPLORATION SPECIFICATION
LANGUAGE

We !rst describe LDX, our intermediate language designed for
explicitly de!ning a sub-space of exploration sessions that can
be relevant for the input analysis goal. Importantly, we further
introduce an e$cient veri!cation algorithm for LDX, which is
embedded in our ADE engine (Section 5.2).

4.1 LDX Language Overview
Recall that an exploration session tree𝑊𝑁 comprises a sequence of
query operations, where each query 𝑂𝑀 is employed on the results
of one of the previous queries 𝑂 𝑃 , 𝑐 < 𝑈 . LDX therefore allows
posing speci!cations for (1) the session structure, i.e., the shape
of the tree which re#ects the execution order and the input data
for each query, (2) the parameters and type of the queries, and
(3) continuity variables for controlling how queries are intercon-
nected. The latter aspect is particularly important for exploration
sessions examined by users, as the semantic connection between
the queries allows building an exploration narrative [33, 49] that
gradually leads the viewer to nontrivial insights on the data.

Our speci!cation language LDX extends Tregex [37], a query
language for tree-structured data. The basic unit in LDX is a
single node speci!cation, which addresses a particular node (query
operation, in our context). A full LDX speci!cations query is then
composed by conjuncting multiple single-node speci!cations,
interconnected using the continuity variables. We begin with a
simple “hello world” example, then describe LDX constructs in
more detail.

Example 4.1. The following LDX query describes a simple ex-
ploration session “skeleton” with two query operations: a group-
by, followed by a !lter operation, both employed on the full
dataset (the root node in 𝑊). It also speci!es that the !lter is to
be performed on the same attribute as the group-by. The rest of
the parameters are left unspeci!ed.

ROOT CHILDREN <A,B>
A LIKE [G,(?<X>.*),.*]
B LIKE [F,(?<X>.*),.*]

The query contains three named-nodes – ROOT, A and B, each is
di"erently speci!ed. The ROOT node represents the raw dataset,
has two immediate children A and B – the group-by and !lter
operations (both use it as input data). A is a group-by with “free”
parameters: unspeci!ed group attribute, aggregation function,
and aggregation attribute, and B is a !lter operation with un-
speci!ed operator and term (Recall the parametric de!nition of
queries in Section 3). Unspeci!ed parameters are marked with *,
but see that the attribute parameter in both query operations is
marked with (?<X>.*). This means that X is a continuity variable
that ensures that both operations need to use the same column
parameter.

We next brie#y describe the constructs of LDX (Full descrip-
tion and more examples are provided in [53]).
Specifying exploration tree structure. The session structure
is speci!ed via tree-structure primitives such as CHILDREN and
DESCENDANTS. For instance, 'A CHILDREN <B,+>' states that
Operation A has a subsequent operation named B, and at least
one more (unnamed) operation, as indicated by the + sign. Im-
portantly, recall that the fact that B is a child of A not only means
that Operation B was executed after Operation A, but also that

B is employed on the results of Operation A (i.e., rather than on
the original dataset).
Specifying query operation parameters. LDX allows for par-
tially specifying the operations using regular expressions (regex),
as they de!ne match patterns that can cover multiple instances.
For example, the expression 'A LIKE [G,'country',SUM|AVG, *]'
speci!es that Operation A is a group-by on the attribute country,
showing either sum or average of some attribute (marked with ↑).
Continuity Variables. We next introduce the continuity vari-
ables in LDX, which allow constructing more complex speci!ca-
tions that contextually connect between operations’ free parame-
ters once instantiated. LDX allows this using named-groups [2]
syntax. Yet di"erently than standard regular expressions, which
only allow “capturing” a speci!c part of the string, in LDX these
variables are used to constrain the operations in subsequent
nodes. For instance, the statement ‘B1 LIKE [F,'country',eq,
.*]’ (taken from the LDX query in Figure 1c) speci!es that Op-
eration B1 is an equality !lter on the attribute ‘country’, where the
!lter term is free. To capture the !lter term in a continuity vari-
able we use named-groups syntax: ‘B1 LIKE [F,'country',eq,
(?<X>.*)]’ – in which the free !lter term (.*) is captured into
the variable X. Using this variable in subsequent operation speci-
!cations will restrict them to the same !lter term (even though
the term is not explicitly speci!ed). For instance, as shown in Fig-
ure 1c, the subsequent speci!cation is ‘B2 LIKE [F,'country',
neq,(?<X>.*)]’, indicating that the next !lter should focus on all
countries other than the one speci!ed in the previous operation.

In [53] we provide an LDX technical guide, containing full
details, as well as additional LDX query examples for various
di"erent goals.

4.2 LDX Veri"cation Engine
We next describe our LDX veri!cation engine, which takes an
exploration session tree 𝑊𝑁 and a LDX speci!cations query 𝑌𝑂 ,
and veri!es whether 𝑊𝑁 is compliant with 𝑌𝑂 . The veri!ca-
tion engine, as described in Section 5.2, is integrated into the
modular ADE engine of LINX (in several variations) where it
provides real-time compliance reward on the generated sessions.
By optimizing on both the compliance reward and the generic
exploration reward, the ADE agent is able to produce useful ses-
sions that are also compliant with the LDX speci!cations derived
from the user’s analytical goal.

For an input LDX query 𝑌𝑂 , we denote the set of its named
nodes (e.g., nodes ROOT, A and B in Example 4.1) by 𝑁𝑄𝑑𝑏𝑉 (𝑌𝑂),
and the set of its continuity variables by 𝑒𝑄𝑅𝑆 (𝑌𝑂). We !rst de-
!ne an LDX assignment, then describe our veri!cation procedure
that searches for valid assignments.

De!nition 4.2 (LDX Assignment). Given an LDX query 𝑌𝑂

and an exploration session tree 𝑊𝑁 , an assignment 𝑓(𝑌𝑂 ,𝑊𝑁) =
↓𝑔𝑄 , 𝑔𝑅 ↔, s.t., (1) 𝑔𝑄 is a node mapping function, assigning each
named node 𝑅 ↗ 𝑁𝑄𝑑𝑏𝑉 (𝑌𝑂) an operation node 𝑕 ↗ 𝑖 (𝑊𝑁) in
the exploratory session𝑊 . (2) 𝑔𝑅 is a continuity mapping function,
assigning each continuity variable 𝑃 ↗ 𝑒𝑄𝑅𝑆 (𝑌𝑂) a possible value.
The initial node mapping is 𝑔𝑄 (ROOT) = 0, i.e., mapping the root
node in the LDX query to the root node of 𝑊𝑁 .

LDX Veri!cation Algorithm. Recall that an LDX query 𝑌𝑂

comprises a set of single node speci!cations, s.t. each speci!cation
𝑉 ↗ 𝑌𝑂 refers to a single named node in𝑌𝑂 . We denote the named
node of 𝑉 by 𝑁𝑄𝑑𝑏 (𝑉), and the (possibly empty) set of continuity
variables in 𝑉 by 𝑒𝑄𝑅𝑆 (𝑉). The LDX veri!cation algorithm, as

274

depicted in Algorithm 1, takes as input an LDX speci!cations
query 𝑌𝑂 , an exploration tree 𝑊𝑁 , and the initial assignment 𝑓,
in which 𝑔𝑄 contains the initial root mapping (De!nition 4.2)
and an empty continuity mapping 𝑔𝑅 , and returns true if there
exists at least one valid assignment 𝑓(𝑌𝑂 ,𝑊𝑁). Note that since
Tregex does not support continuity variables, we can only use
its node matching function GetTregexNodeMatch [66] in our
algorithm. This function, as described in [66], takes as input a
single speci!cation 𝑉 , a tree 𝑊 , and the current node mapping
𝑔𝑄 and returns all valid node matches for 𝑁𝑄𝑑𝑏 (𝑉), denoted 𝑖 𝑆

𝑇 ,
given the current state of the node mapping 𝑔𝑄 .

Our veri!cation procedure, as described in Algorithm 1 works
as follows. In each recursive call, a single speci!cation 𝑉 is popped
from 𝑌𝑂 (Line 2). Then, 𝑉 is updated with the continuity values
according to 𝑔𝑅 (Lines 2-4): if a continuity variable 𝑃 is already
assigned a value in 𝑔𝑅 , we update the instance of 𝑃 in 𝑉 , denoted
𝑉 .𝑃 , with the corresponding value 𝑔𝑅 (𝑃). Next (Line 5), when all
available continuity variables are updated in 𝑉 , we use the Tregex
GetTregexNodeMatch function, to obtain a set 𝑖 𝑆

𝑇 of possible
valid assignments for 𝑁𝑄𝑑𝑏 (𝑉). Then, for each node 𝑕 ↗ 𝑖 𝑆

𝑇 , we
!rst update the node mapping 𝑔𝑄 (Line 7) and the continuity
mapping 𝑔𝑅 (Lines 7-9): we assign each continuity variable 𝑃 the
concrete value of 𝑃 from 𝑕 , denoted 𝑕 .𝑃 . (Recall that 𝑕 already
satis!es 𝑉 also w.r.t. 𝑔𝑅 , therefore only unassigned variables in
𝑒𝑄𝑅𝑆 (𝑉) are updated.) Once both mappings are updated (denoted
𝑔𝑆𝑄 and 𝑔𝑆𝑅), we make a recursive call to VerifyLDX (Line 10),
now with the shorter 𝑌𝑂 (after popping out 𝑉) and the new
mappings (𝑔𝑆𝑄 , 𝑔𝑆𝑅). Finally, the recursion stops in case there is no
valid assignment (Line 12) or when 𝑌𝑂 is !nally empty (Line 1).
In Section 5 we describe how multiple variations of the LDX
veri!cation algorithm are used within the optimization process
of our modular ADE engine.

5 CDRL FRAMEWORK FOR MODULAR ADE
Recall that ADE systems optimize over the domain of all possi-
ble exploration sessions, thus requiring powerful optimization
tools [5, 10, 50]. We base our modular ADE engine on the goal-
agnostic Deep Reinforcement Learning (DRL) framework for data
exploration presented in [5]. In the DRL setting, a neural-network
agent produces a maximal-scoring session (using a prede!ned
exploration reward function) by employing a multitude of inter-
mediate sessions, then updating its internal policy according to
their obtained scores until converging to an optimal one.

Di"erent than [5], our modular ADE framework takes a given
dataset 𝐿 , as well as LDX speci!cations 𝑌𝑂 , and generates a
high-scoring exploration session𝑊𝑁 which is in compliance with
𝑌𝑂 . The main challenge which arises here is to e"ectively em-
bed the speci!cations as a part of the optimization process. A
naive integration would have been to incorporate, in addition to
the generic exploration score, a binary score derived from the
result of the veri!cation engine for each generated session (i.e.,
compliant/non-compliant). However, this naive solution intro-
duces a reward sparsity problem [44], a prominent challenge in
reinforcement learning arising when the agent scarcely obtains
a positive feedback, thus failing to converge. Our experimental
evaluation in Section 7.4 indeed shows that such a solution fails
to converge on all tested LDX queries. We next overview our
solution, based on Constrained Deep Reinforcement Learning
(CDRL) [13, 57].

CDRL Framework Overview. To e"ectively embed the speci!ca-
tions in the optimization process we use a twofold solution: First,

Algorithm 1: LDX Query Compliance Veri!cation
VerifyLDX (𝑇𝐿 ,𝑈𝑀 , 𝑉 = ↓𝑊𝑁 = {ROOT:0}, 𝑊𝑂 = ↘) ↔

// Inputs: Exploration tree𝑇𝐿 , LDX Speci!cations 𝑈𝑀 ,
assignment 𝑉

1 if 𝑈𝑀 = ↘ then return True
2 𝑆 ≃ 𝑈𝑀 .𝑋𝑌𝑋 () // pop a single node speci!cation from

𝑈𝑀

3 for 𝑍 ↗ 𝑅𝑌𝑎𝑏 (𝑆) do // Assign continuity vars in 𝑆
4 if 𝑍 ↗ 𝑊𝑂 then 𝑆.𝑍 ≃ 𝑊𝑂 (𝑍)
5 𝑄 𝑃

𝑄 ≃ GetTregexNodeMatches(𝑆,𝑇 , 𝑊𝑁)
6 for 𝑐 ↗ V𝑃

𝑄 do
7 𝑊𝑃

𝑁 ≃ 𝑊𝑁 ⇐ {𝐿𝑌𝑑𝑒 (𝑆) : 𝑐}, 𝑊𝑃
𝑂 ≃ 𝑊𝑂

8 for 𝑍 ↗ 𝑅𝑌𝑎𝑏 (𝑆) do // Update continuity mapping
9 𝑊𝑃

𝑂 (𝑍) ≃ 𝑐.𝑍

10 if VerifyLDX(𝑇𝐿 ,𝑈𝑀 , ↓𝑊𝑃
𝑁 , 𝑊𝑃

𝑂 ↔) then
11 return True
12 return False

we introduce a #exible compliance reward scheme that gradually
guides the DRL agent towards fully compliant sessions by encour-
aging it to !rst generate structurally compliant sessions (learning
the queries type and order of execution), and only then re!ne
individual query parameters. Then, we devise a novel neural net-
work architecture, inspired by intervention-based CDRL [13, 57].
In these CDRL systems an external mechanism is used to over-
ride the agent’s actions if they are violating the constraints. In
our case, we cannot always detect a violation immediately, and
verify the compliance only at the end of a session. Thus, rather
than overriding actions externally, we internally encourage the
agent to perform compliant operations via a novel speci!cation-
aware network architecture, pushing query parameters that are
likely to comply with the speci!cations with a higher probability.
We show in Section 7.4 that only the combination of these two
solutions allow LINX to successfully and consistently converge.

We next de!ne the Markov Decision Process (MDP) model
used in our CDRL framework, then delve into the LDX-compliance
reward scheme and speci!cation-aware network.

5.1 MDP Model
Following [5] we use an episodic MDP model in our CDRL engine,
de!ned as M := (S,A,ω𝑓, 𝑗𝑓), where S is a state space; A is
an action space; ω𝑓 : S ⇒ A ⇑ S is a transition function that
returns the outcome state 𝑘 ⇓ obtained from employing an action
𝑇 in state 𝑘 ; and 𝑗𝑓 (𝑘, 𝑇) is the reward received for action 𝑇 in
state 𝑘 .

Our MDP model is de!ned as follows: Given a dataset 𝐿 and
speci!cations 𝑌𝑂 , the agent produces an exploration session 𝑊𝑁
on𝐿 in each episode. At each step 𝑈 , the agent employs a paramet-
ric query operation 𝑂𝑀 , as de!ned in Section 3. After executing an
operation, the agent transitions to state 𝑘𝑀 = ω𝑓 (𝑘𝑀⇔1, 𝑇), where
𝑘𝑀 represents the resulting view of 𝑂𝑀 . In addition to query opera-
tions, the agent can use a back operation to return to a previous
state and start a new action from there. For each action, the agent
receives a bi-objective reward:

𝑗𝑓 (𝑘𝑀 , 𝑇) ω 𝑙 · 𝑗𝑔𝑒𝑎 (𝑘𝑀 , 𝑇) + 𝑚 · 𝑗𝑍𝑌𝑕𝑋 (𝑘𝑀 , 𝑇,𝑌𝑂)

The !rst reward component 𝑗𝑔𝑒𝑎 is based on the generic explo-
ration reward de!ned in [5]. It is a weighted sum of the interest-
ingness scores of the session’s individual queries and their diver-
sity: 𝑗𝑔𝑒𝑎 (𝑘𝑀 , 𝑇) = 𝑛 ·∑𝑃↖𝑀 Interestingness(𝑂 𝑃) +𝑜 ·Diversity(𝑘𝑀).
As described in [5], interestingness scores are calculated using

275

KL-divergence for !lter operations and conciseness [25] for group-
by-and-aggregate operations. The diversity of the session 𝑘𝑀 is
measured by computing the minimal distance between 𝑂𝑀 and
a previous query 𝑂 𝑃 , 𝑐 ↖ 𝑈 (using the query results distance pro-
vided in [5]). The second component, 𝑗𝑍𝑌𝑕𝑋 (𝑘𝑀 , 𝑇,𝑌𝑂), is a com-
pliance reward unique to LINX. This reward is based on the input
LDX speci!cations 𝑌𝑂 and is described in more detail below.

5.2 LDX-Compliance Reward Scheme
Given LDX speci!cations 𝑌𝑂 , and an exploratory session𝑊𝑁 , we
de!ne our compliance reward signal, received at each step 𝑈:

𝑗𝑍𝑌𝑕𝑋 (𝑘𝑀 , 𝑇,𝑌𝑂) ω 𝑝 ·𝑞𝑟𝑘 (𝑘𝑀 , 𝑇,𝑊 ,𝑌𝑂) +𝑠 · 𝑡𝑢𝑢 (𝑘𝑀 , 𝑇,𝑊 𝑀
𝑁 , 𝑌𝑂)

Here 𝑞𝑟𝑘 is an end-of-session feedback, equally divided across
all query operations; and 𝑡𝑢𝑢 is received immediately, per oper-
ation. These signals provide a !ne-grained feedback, allowing our
CDRL engine to overcome the reward sparsity problem described
above.

End-of-Session Compliance Reward. The EOS reward compo-
nent 𝑞𝑟𝑘 (𝑘𝑀 , 𝑇,𝑊 ,𝑌𝑂) is received at the end of an episode (once
the exploration session 𝑊𝑁 is fully generated), then equally dis-
tributed across all states 𝑘𝑀 . We utilize the LDX veri!cation engine
(Algorithm 1), but in light of the observation that structural spec-
i!cations should be learned !rst. Intuitively, if the agent learns to
generate correct query operations in an incorrect order/structure,
the learning process becomes largely futile as reordering requires
the agent to relearn the session from scratch. We therefore parti-
tion the set of individual node speci!cations in 𝑌𝑂 to structural
and operational subsets, denoted by 𝑉𝑆𝑍𝑎𝑃𝑆 (𝑌𝑂) and 𝑄𝑣𝑍 (𝑌𝑂), s.t.
𝑉𝑆𝑍𝑎𝑃𝑆 (𝑌𝑂) ⇐𝑄𝑣𝑍 (𝑌𝑂) = 𝑌𝑂 . 𝑉𝑆𝑍𝑎𝑃𝑆 (𝑌𝑂) refer to the de!nitions
of the session tree structure and 𝑄𝑣𝑍 (𝑌𝑂) to the de!nition of
query operation parameters, as described in Section 4.

Brie#y, our end-of-session rewards works as follows (see our
technical report in [53] for full details). First, we use Algorithm 1
to check if 𝑊𝑁 complies with 𝑌𝑂 . Then, a conditional reward is
granted, according to the following three cases: (1) If fully compli-
ant, a high positive reward is given. (2) If𝑊𝑁 is not compliant with
𝑌𝑂 , we check its compliance only with 𝑉𝑆𝑍𝑎𝑃𝑆 (𝑌𝑂), the struc-
tural speci!cations in 𝑌𝑂 . If no valid assignments are found, a
!xed negative penalty is applied. (3) If𝑊𝑁 satis!es 𝑉𝑆𝑍𝑎𝑃𝑆 (𝑌𝑂) but
not 𝑄𝑣𝑍 (𝑌𝑂), i.e., the operational speci!cations, a non-negative
reward is assigned based on the number of satis!ed query param-
eters (The larger the number of satis!ed parameters, the higher
the reward). Intuitively, this reward enforces the learning of cor-
rect structure by imposing a high penalty for non-compliant
sessions. Once the correct structure is learned, the agent receives
gradually increasing rewards to encourage satisfaction of opera-
tional speci!cations. Upon generating a fully compliant session,
the agent receives a high positive reward.
Immediate (per-operation) Compliance Reward. To reinforce adher-
ence to structural constraints, we introduce an immediate reward
signal 𝑡𝑢𝑢 (𝑘𝑀 , 𝑇,𝑊 𝑀

𝑁 , 𝑌𝑂) granted individually for each step 𝑈 .
This real-time signal negatively rewards speci!c operations that
violate the structural speci!cations 𝑉𝑆𝑍𝑎𝑃𝑆 (𝑌𝑂). To do so, we use
a modi!cation of the LDX veri!cation engine (Algorithm 1), that
can operate on an ongoing session 𝑊 𝑀

𝑁 (in step 𝑈) rather than a
full session 𝑊𝑁 . Intuitively, we assess the possibility of a future
assignment satisfying 𝑉𝑆𝑍𝑎𝑃𝑆 (𝑌𝑂) in up to 𝑁 ⇔1 more steps. This
is done by attempting to extend the exploration tree with 𝑁 ⇔ 𝑈
additional “blank” nodes, respecting the order of query opera-
tions execution. In case no valid assignment is found to any of the

Input & Hidden
Layers

Filter Attr.

Filter Op.

Filter
Term

A1

A2
…

…

σ1
σ2

σ3

…

… …
… …

India 0.16
UK 0.12
… …
… …

Pre Output Layers Multi Softmax
Layer

Output
Probabilities

OPR
Type

Back
Filter
Group

Snippet

σops

Pa
ra

m
et

er
 V

al
ue

s

σsnp

F,country,
eq,.* 0.6

F,country,
ne,.* 0.4Sn

ip
pe

t

Snippet
ID

0

1

Back 0.2
Filter 0.2
Group 0.1

Snippet 0.5

Figure 2: Speci"cation-Aware Network Architecture

new trees, a negative reward is granted. The number of possible
tree completions throughout an 𝑁 -size session is bounded by
𝑒𝐿 , the Catalan number (see [53] for full details). We show in
Section 7.4 that this reward poses a negligible overhead on the
optimization process.

Balancing the reward components. LINX employs multiple re-
ward components, which may exhibit di"erent convergence rates
due to variations in value domains and sparsity levels. To address
this, as is common in multi-objective reinforcement learning [26],
one can increase the weight of a reward signal that converges
poorly. However, in our experiments, we used equal weights and
observed balanced convergence across all signals.

5.3 Speci"cation-Aware Neural Network
We next describe our speci!cation-aware architecture used to
increase the probability of choosing compliant operations. Our
neural network modi!es its structure according to the input
LDX speci!cations, by creating special segments for operation
“snippets” likely to be compatible with LDX. The agent can uses
these snippets more frequently, thus advance faster toward a
fully compliant session.

Figure 2 depicts the network architecture (Speci!cations-aware
functionality is highlighted in pink). First, rhe input layer receives
an observation of the current state 𝑘𝑀 in the MDP model, and
passes it to the dense hidden layers. Then, the agent composes a
query operation via the pre-output layers, where it !rst chooses
an operation type and subsequently its corresponding parame-
ters. As depicted in Figure 2, Softmax Segment 𝑤𝑌𝑋𝑆 is connected
to the operation types, and Segments 𝑤1, 𝑤2, . . . are connected to
the value domain of each parameter. In our architecture, we add
a new high-level action, called “snippet” (𝑤𝑆𝑎𝑋). When choosing
this action, the agent is directed to select a particular snippet
that is derived from the operational speci!cations 𝑄𝑣𝑍 (𝑌𝑂). The
snippets function as operation “shortcuts”, which eliminate the
need for composing full, compliant operations from scratch. For
example, using a snippet of ‘F, Country, eq‘ (see Fig. 2), only
requires the agent to choose a !lter term, rather than composing
the full query operation.

Given an LDX qery 𝑌𝑂 , the network architecture is derived
as follows. First, we generate an individual snippet neuron for
each operational speci!cation 𝑉 ↗ 𝑄𝑣𝑍 (𝑌𝑂) (In case the regular
expression in 𝑉 contains a disjunction, we generate an individ-
ual snippet for each option) All snippet neurons, as depicted
in Figure 2, are connected to 𝑤𝑆𝑎𝑋 , the snippet multi-softmax
segment. Now, to choose the “free” parameter, unspeci!ed in 𝑉 ,
the snippet neuron is wired to the corresponding parameters
in the multi-softmax segments. For instance, the snippet of ‘F,

276

Country, eq‘ is wired to 𝑤3 for choosing a !lter term parameter,
as depicted in Fig. 2.

In combination with the reward scheme presented earlier,
our network architecture allows LINX to consistently generate
compliant exploration sessions in 100% of the datasets and LDX
queries in our experiments, as detailed in Section 7.4.

6 LLM-BASED SOLUTION FOR DERIVING
EXPLORATION SPECIFICATIONS

Our LLM-based solution uses a few-shot setting [46, 71], in combi-
nation with intermediate code representation [11, 23, 43, 83], where
instead of directly instructing the LLM to generate LDX speci!ca-
tions, we adopt a two-stage chained prompt: In the !rst prompt,
the LLM is tasked with expressing the speci!cations as a non-
executable, template Python Pandas [72] code, restricted to the
operations supported by LINX. The template code (see Figure 1a)
contains special placeholders representing the query operations
(or speci!c parameters) to be discovered in a data-driven manner.
In the second stage, an additional prompt instructs the LLM to
translate the intermediate Pandas code into formal LDX speci!ca-
tions. We coin our approach NL2PD2LDX. We further considered
a solution based on an intermediate SQL representation instead
of Python; however, it yielded subpar results (see our full version
in [53] for more details).

Recall again that the last conversion to LDX is required in
LINX, due to its e$cient veri!cation engine embedded in the
CDRL process. As we empirically show in Section 7.2, our two-
stage approach exhibits superior generalization compared to a
direct NL-to-LDX approach, and when combined with the CDRL
engine described above, it produces exploratory sessions that are
deemed more useful and insightful than other baselines such as
ChatGPT and ATENA [5].

Prompt Engineering. Figure 3 depicts a snippet of our chained
prompts: NL-to-Pandas and Pandas-to-LDX.
NL-to-Pandas. The prompt is structured into three main compo-
nents: (1) NL-to-Pandas task description; (2) a series of few-shot
examples; (3) the test analysis goal alongside a small dataset sam-
ple. Each few-shot example in (2) comprises several steps: (a)
example analytical goal; (b) dataset and schema description (e.g.,
epic_games in Fig. 3) ; (c) the correct Pandas code template for
the task; (d) an NL explanation of the output. Including dataset
information is motivated by past work in text-to-SQL [7, 69].

Step (d) is in#uenced by the Chain-of-Thought (CoT) prompt-
ing paradigm, which has demonstrated enhanced performance in
multi-step tasks [64, 70, 71, 79]. Following the CoT methodology,
we incorporate an explanation for each few-shot example. We use
least-to-most prompting [85], in which we provide the examples
at an increasing level of di$culty. Hence, we gradually “teach”
the LLM fundamental concepts before progressing to more intri-
cate examples. Finally, in part (3), we describe the analytical goal
along with a sample of the !rst !ve rows of the input dataset.
Pandas-to-LDX. For the Pandas-to-LDX prompt, its structure mir-
rors the previous prompt, i.e., !rst presenting the Pandas-to-LDX
translation task, few-shots examples, etc. This time, we omit the
dataset information (2.b) as it is redundant for this simpler task.

LDX Syntax Correction Prompt. Finally, since the CDRL engine
cannot operate if the LLM returns a syntactically incorrect query,
we designed a syntax-correction prompt for such cases. This

prompt includes a more detailed description of LDX along with
a few examples of common syntax errors and their corrections.

The full versions of all prompts are provided in [53].

7 EXPERIMENTS
We implemented LINX in Python 3: The LDX veri!cation engine
utilizes the Tregex Python implementation in [66], and our CDRL
engine is built in ChainerRL [22], based on the DRL framework
for data exploration, publicly available in [27]. All our experi-
ments were run on an Intel Xeon CPU-based Linux server with
24 cores and 96 GB of RAM. The full experiments code and data
are provided in our Github repository [53].

To evaluate LINX, we !rst developed a benchmark dataset for
goal-oriented ADE, containing 182 analytical goals and corre-
sponding LDX queries (see §7.1). We then conducted three exper-
iments sets, evaluating LINX’s success in deriving correct LDX
speci!cations (§7.2); relevance and usefulness of auto-generated
exploratory sessions (§7.3); and performance and ablation study
of our CDRL-based modular ADE engine (§7.4).

7.1 Benchmark Dataset for Goal-oriented ADE

We constructed, to our knowledge, the !rst benchmark dataset
for goal-oriented exploration speci!cations. Our dataset com-
prises 182 instances of the form ↓𝐿,𝑀,𝑌𝑂 ↔ , i.e., a dataset, analyt-
ical goal, and corresponding exploration speci!cations in LDX.
Our benchmark dataset was created by analyzing and extrapo-
lating from real-life exploration notebooks across three di"erent
tabular datasets: (1) Net"ix Titles Dataset [31], (2) Flight-Delays
Dataset [29], and (3) Google Play Store Apps [30].

To build the benchmark dataset, we !rst examined publicly
available exploration notebooks for the Net#ix, Flights, and Play-
store datasets (see [29–31]). We speci!cally focused on identify-
ing notebooks that are goal-oriented, rather than those perform-
ing generic exploratory data analysis (EDA) aimed at showcas-
ing general characteristics of the dataset. The notebooks were
then manually !ltered to select complete, high-quality notebooks
(with at least 10 votes), resulting in a set of 36 di"erent notebooks.
Inspired by the data exploration surveys in [74] and [3], which
identify common analytical tasks, including several open-ended
exploration goals, we clustered the 36 notebooks into 8 distinct
“meta-goals”. For example, a notebook with the speci!c goal of
“discover an unusual country in the Net"ix dataset” was associated
with the meta-goal of “discover an unusual subset of the data”.
Table 1 lists the meta-goals we identi!ed, along with a represen-
tative concrete goal used in a real-life Kaggle notebook. While
the meta-goals are not strictly orthogonal, they were chosen to
provide a broad range of real-life use cases.

We then composed LDX queries for the goals 𝑀1 ⇔ 𝑀8 (see
Table 1), based on their associated notebooks. This was done
manually by refactoring the notebook code to use !lter and
group-and-aggregate queries, and by abstracting “discovery”-
related parameters that cannot be determined solely based on
the goal itself (e.g., the speci!c “country” value to !lter on, and
the attributes to group by in our running example; see Figure 1c
and the description in Section 3). This process resulted in 8 in-
stances of analytical goals and their corresponding exploration
speci!cations.

Then, to extend our dataset from 8 instances to 182, we adopted
the scheme outlined in Figure 4. First, for each instance ↓𝐿,𝑀,
𝑌𝑂 ↔, we !rst stripped𝑀 and𝑌𝑂 from any trait stemming from the

277

PyLDX is an extension to Python pandas... PyLDX supports the
operations: filter, groupby, agg.

Here are examples for generating PyLDX code, given dataset and goal:

Analysis Goal: find one game platform with one different property
compared to all other platforms
Dataset: epic_games
Scheme: id, name, game_slug, price, release_date, platform,
description, developer, publisher, genres

PyLDX Code:
 df = pd.read_csv("epic_games.tsv", delimiter="\t")
 some_platform = df[df['platform'] == <VALUE>]
 other_platforms = df[df['platform'] != <VALUE>]
 some_platform_agg = some_platform.groupby(<COL>).agg(<AGG>)
 other_platforms_agg =
other_platforms.groupby(<COL>).agg(<AGG>)
Explanation: Split the games to two sets - one with some platform and
one with the other platforms.
Then apply the same aggregation on both of them in order to compare
them.
 …
Use this sample of first 5 tuples from the dataset as a reference:
app_id name, category, rating, reviews, app_size_kb…
1, Photo Editor, ART_AND_DESIGN, 4.1, 159, …
5, Paper flowers, ART_AND_DESIGN, 4.4, 167, …

3. Test task

1. Description

2. Few-Shots
Examples

1. NL-to-Pandas Prompt

LDX is a specification language that extends Tregex, a
query language for tree-structured data… LDX
supported operators are filter (F) and group by with
aggregation (G).
Here are examples for converting Pandas code to LDX:

Pandas:
 df = pd.read_csv("github.tsv", delimiter="\t")
 3_stars = df[df['Stars'] == 3]
 4_stars = df[df['Stars'] == 4]
 3_stars_agg = 3_stars.groupby(<COL>).agg(<AGG>)
 4_stars_agg = 4_stars.groupby(<COL>).agg(<AGG>)
 # compare the two aggregations
 comparison = pd.concat([3_stars_agg, 4_stars_agg],
axis=1)
LDX:
 BEGIN CHILDREN {A1,A2}
 A1 LIKE [F,Stars,eq,3] and CHILDREN {B1}
 B1 LIKE [G,<COL>,<AGG_FUNC>,<AGG_COL>]
 A2 LIKE [F,Stars,eq,4] and CHILDREN {B2}
 B2 LIKE [G,<COL>,<AGG_FUNC>,<AGG_COL>]
Explanation: the root has two filter operations, one for
filtering 3 stars and the another one for filtering 4 stars.
Each filter has groupby according to some continuity
variables with aggregation according to some continuity
variables. Concat isn't supported than the last line of
code is ignored.

…

2. Pandas-to-LDX Prompt

Figure 3: Examples of the chained prompts: (1) NL to non-executable Pandas code, and (2) Pandas code to LDX

Exploration Meta Goal Example (concrete) Goal # Ex.
1 Identify an uncommon entity 𝑔1: “Find an atypical country” (NETFLIX) 18
2 Examine a phenomenon (subset) 𝑔2: “Examine characteristics of successful TV shows” (NETFLIX) 16
3 Discover contrasting subsets 𝑔3: "Find three actors with contrasting traits” (NETFLIX) 22
4 Survey an attribute 𝑔4: "Survey apps’ price” (PLAY STORE) 21
5 Describe an unusual subset 𝑔5: "Highlight distinctive characteristics of summer-month #ights” (FIGHTS) 27
6 Investigate various aspects of an attribute 𝑔6: "Investigate reasons for delay” (FLIGHTS) 22
7 Explore through a subset 𝑔7: "Analyze the dataset, with a focus on #ights a"ected by weather-related

delays” (FLIGHTS)
28

8 Highlight interesting sub-groups 𝑔8: "Highlight interesting sub-groups of apps with at least 1M installs” (PLAY
STORE)

28

Table 1: Overview of the Goal-Oriented ADE Benchmark (182 Instances)

dataset 𝐿 such as attribute names, aggregative operations, and
predicates de!ning data subsets, thus creating “template” goal
descriptions and LDX queries. Next, we populated the goal and
LDX templates by randomly incorporating values from our three
datasets. For instance, the templates in Figure 4, associated with
Meta-Goal 7 (see Table 1) are populated using the Flights [29]
data domain, the origin_airport attribute, operator ε, and the
term ‘BOS’ (the populated LDX template is omitted for brevity).
Next, since the populated goal description templates may sound
unnatural, we utilized an LLM-based paraphrasing approach (im-
plemented with ChatGPT), to obtain goals that are more naturally
phrased. Finally, out of 200 generated analytical goals, we dis-
carded 18 nonsensical goals, that did not re#ect a realistic user
intent. Table 1 lists total number of instances for each meta goal
(see [53] for full details).

7.2 Speci"cations Derivation Performance
We analyze the LDX derivation performance in four experimental
scenarios, varying whether the dataset or meta-goals are seen
or unseen in the few-shot examples. We compare the two-stage
solution to a single prompt that generates LDX directly.

Experimental Se!ings. We now detail the evaluation measures
and provide an overview of the di"erent scenarios and baselines.

Evaluation Metrics. Evaluating text generation quality is a
known challenge with various approaches [32, 77, 81]. For exam-
ple, Text-to-SQL performance assessments often rely on query
execution results [54, 58, 77], but this is unsuitable for LDX spec-
i!cations as they span a multitude of compliant output sessions.
Alternative measures include exact string match [21, 81], and
graph edit distance, commonly used for graph semantic parsing
tasks [8, 32]. Drawing inspiration from these approaches, we in-
troduce two measures for comparing the generated LDX queries
against the ground-truth queries. Both measures are designed to
be #exible enough to accommodate equivalent queries (i.e., meet
the analysis goal but not identical to the ground-truth) without
imposing a heavy penalty.

(1) Two-way Levenshtein distance (𝑥𝑏𝑕2). Levenshtein distance
is commonly used to measure the character overlap between
two strings. However, its standard implementation falls short in
the context of LDX, as two queries may be conceptually similar
but di"er, for instance, in the order of operations. To address
this limitation, we computed the string distance separately for
structural and operational speci!cations, and then aggregated the
two scores. The structure score, denoted as 𝑥𝑏𝑕 (𝑌𝑆𝑏𝑖𝑗𝑍𝑏 , 𝑌

⇓
𝑆𝑏𝑖𝑗𝑍𝑏),

represents the normalized Levenshtein score when omitting op-
erational speci!cations. The operational distance is de!ned by

1
|𝑈𝑅𝑆𝑇 | ↑

∑
𝑌↗𝑈𝑅𝑆𝑇

𝑦𝑈𝑅𝑌 ⇓ ↗𝑈 ⇓𝑅𝑆𝑇 𝑥𝑏𝑕 (𝑄, 𝑄⇓). In this expression, 𝑌𝑌𝑋𝑖

278

Meta Goal (template #7)

Explore the data, make sure
to address interesting
aspects
of <domain> with <attr> <o
p> <term>.

(2) Paraphrase the resulting concrete goal

Investigate the data, ensuring to focus on two
intriguing aspects of flights that do not originate
from Boston airport.

(1) Populate the goal and LDX templates

Explore the data, make sure to address interesting
aspects of flights with origin_airport != BOS.

LDX Query (template #7)

BEGIN DESCENDANTS {A1}
 A1 LIKE [F, domain.attr, op, term]

and CHILDREN {B1, B2}
 B1 LIKE [G,.*]
 B2 LIKE [G,.*]

Figure 4: Benchmark Dataset Generation

and 𝑌 ⇓𝑌𝑋𝑖 are sets of operational speci!cations in the two com-
pared LDX queries. We sum the distance scores, for each oper-
ation 𝑄 in 𝑌𝑌𝑋𝑖 of the most similar operation in the compared
LDX query 𝑌 ⇓𝑌𝑋𝑖 , and then divide the result by the size of 𝑌𝑌𝑋𝑖 .
The !nal 𝑥𝑏𝑕2 is computed as the harmonic mean of the inverses
of each score.

(2) Exploration Tree Edit Distance (𝑧𝑊𝑞𝐿). We employ the ex-
ploration tree edit distance, proposed in [45]. This measure aug-
ments the tree edit distance [82] function with a dedicated label
distance notion to assess the distinction between two query oper-
ations (see [45] for full detail). To apply this metric, we construct
a minimal tree for each compared LDX query while masking the
continuity variables (see our technical report in [53] for exact
detail).

Since both 𝑥𝑏𝑕2 and 𝑧𝑊𝑞𝐿 scores represent normalized dis-
tance functions, we consider their complements (i.e., 1 ⇔ score),
where a higher value is indicative of better performance. If a
generated query has incorrect syntax, it receives a score of 0 in
both measures.
Scenarios and Baselines. We conducted four distinct experi-
mental scenarios involving the presence or absence of dataset and
meta-goals in the few-shot prompts. In each scenario, the model
receives a test analytical goal and dataset (selected from the 182
instances in Table 1) and asked to generate appropriate LDX spec-
i!cations. In the simplest scenario (1) seen dataset and meta-goal,
the prompts, as described in Section 6, include few-shot exam-
ples over the same test dataset and meta-goal associated with
the test goal (excluding the test goal itself). In the subsequent
scenarios (2) seen dataset, unseen meta-goal and (3) unseen dataset,
seen meta-goal, prompts include examples from the same dataset,
excluding the associated meta-goal, and vice versa. In the most
challenging scenario (4) unseen dataset and meta-goal, few-shot
examples are provided from di"erent datasets and di"erent meta-
goal compared to the test goal. Importantly, in no scenario the
model obtains an example of the exact same analysis goal used
in the test.

To evaluate the e$cacy of our NL2PD2LDX solution, we con-
trasted it with a direct NL2LDX prompt, where the LLM di-
rectly generates LDX speci!cations (see our technical report
in [53]). We assessed the performance for both ChatGPT (gpt-
3.5-turbo)[48] and GPT-4 [47] (we used 0 temperature to obtain
consistent results).

Results. Table 2 presents the results for both ChatGPT and
GPT-4, with and without our chained prompt solution (denoted

Model\Settings Seen Meta-Goal Unseen Meta-Goal
𝜴𝜶𝜷2 𝜸𝜹𝜶𝝐 𝜴𝜶𝜷2 𝜸𝜹𝜶𝝐

Seen Dataset
ChatGPT 0.87 0.87 0.64 0.62
ChatGPT + PD 0.89 0.89 0.72 0.7
GPT-4 0.97 0.97 0.71 0.71
GPT-4 + PD 0.97 0.96 0.77 0.75

Unseen Dataset
ChatGPT 0.79 0.79 0.65 0.65
ChatGPT + PD 0.86 0.84 0.72 0.69
GPT-4 0.95 0.95 0.71 0.7
GPT-4 + PD 0.94 0.93 0.73 0.72

Table 2: Speci"cation Derivation (NL-to-LDX) Results

+PD in the table), across all four scenarios. First, in the easiest Sce-
nario 1 ((1) seen dataset and meta-goal), both LLMs perform well,
with GPT-4 achieving optimal results as expected. See that the
chained prompt solution exhibits negligible impact, suggesting
that the presence of the meta-goal within the prompt allows for
easy over!tting, reducing the need for an intermediary solution.
In Scenario 2 (seen dataset, unseen meta-goal), the performance of
both LLMs decreases as the few-shot examples diverge from the
test task. Here, a signi!cant improvement (more than 5 points)
is achieved by employing our NL2PD2LDX solution for both
models, with GPT-4+PD yielding the best results. In Scenario 3
(unseen dataset, seen meta-goal) the overall performance is better
than in Scenario 2, as both LLMs tend to generalize better to
unseen datasets than to unseen meta-goals. Lastly, in the most
challenging scenario 4 ((unseen dataset, unseen meta-goal), the
chained solution yields higher scores for both LLMs, with GPT-
4+PD slightly outperforming ChatGPT+PD.
Summary. Our experimental results demonstrate the e"ectiveness
of our solution for both ChatGPT and GPT-4. Moreover, when
using NL2PD2LDX, the performance gap between the two LLMs
narrows. Therefore, if cost reduction is a priority, ChatGPT can
be a viable option with only a minor compromise on accuracy.

7.3 Relevance and Quality (User Study)
We next evaluate the quality and relevance of exploration sessions
generated by LINX, compared to ones generated by alternative
baselines. We conducted both a subjective study, were users are
asked to rate the output sessions according to numerous criteria,
and an objective study, where we measured users’ performance
in inferring relevant insights w.r.t. the analytical goal.

Experiment Setup. We recruited a total of 30 participants, by
publishing a call for CS students or graduates that are familiar
with data analysis yet are not subject matter experts. We then
selected 12 analysis goals and LDX speci!cations from our bench-
mark dataset. We used 𝑀1-𝑀 ⇔ 8, as depicted in Table 1, and four
additional pairs (deferred to [53] for space constraints), to obtain
a total of four di"erent goals for each of our three datasets.

We used LINX to generate an exploration notebook for each
goal and dataset, and presented the output session in a Jupyter
notebook (see Figure 1e for a snippet, and the full notebooks
in [53]). We evaluated LINX compared to the the following base-
lines: (1) ATENA [5]. We ran ATENA on each of the datasets.
As it automatically generates an exploration session but does
not accommodate user speci!cations, it produces the same explo-
ration notebook for all four tasks of each dataset. (2) ChatGPT
(gpt-3.5-turbo) [48]. In this baseline we generated notebooks by
asking the LLM to directly build an entire exploration notebook,

279

Figure 5: User Study – Relevance Rating of Exploration Notebooks to the Given Goal Figure 6: Avg. Num. Insights

Figure 7: Informativeness & Comprehensibility Rating

containing real Pandas code, for a given description of the dataset
and an analytical task. We executed the code provided by the
LLM and presented the results in a Jupyter notebook. (3) Google
Sheets Explorer [65]. A commercial ML-based exploration tool
that accommodates limited user speci!cations, allowing to spec-
ify columns and data subsets of interest. The speci!cations were
composed w.r.t. to the LDX queries for each goal. For exam-
ple, for goal 𝑀5 (“characteristics of summer #ights”), we selected
the columns ‘month’, ‘airline’, ‘delay-reason’ and ‘scheduled ar-
rival’/‘departure’, and the data subset containing #ights from July
and August. (4) Human Expert. Last, we used exploration note-
books generated manually by experts data scientists, to provide
an “upper bound” for the output quality of the automatic ap-
proaches. We asked three experienced data scientists to manually
compose a notebook (without any assistive tool) of interesting
query, w.r.t. the given goal.

The instructions and output of all baselines are provided in [53].

Subjective Study (User Rating). In this study, the participants
were asked to review notebooks, generated by either LINX or
the baselines, w.r.t. each notebook’s corresponding analytical
task. Each participant reviewed one notebook per dataset to
neutralize the e"ect of experience. We then asked the participants
to rate each notebook on a scale from 1 (lowest) to 7 (highest)
according to the following criteria: (1) Relevance - To what degree
is the exploration notebook relevant for the given analysis goal?
(2) Informativeness — To what extent does the notebook provide
useful information about the data? (3) Comprehensibility - To what
degree is the notebook comprehensible and easy to follow?

Figure 5 presents the relevance score of LINX and the baselines
for each of the three datasets. The results are averaged across all
participants and goals for each dataset (The vertical line depicts
the .95 con!dence interval.) As expected, manually composed
notebooks from human experts obtained the highest rating - 6.71,
6.92, 6.53 for the Net#ix, Flights, and Play Store datasets (resp).
However, note that LINX achieves very close scores – 6.32, 6.39,
and 6.30 (respectively), surpassing ChatGPT, ATENA, and Google
Sheets, which all have ratings below 4.

User Insight (for goal 𝑔𝑈)
“The ratio of movies-series in India is higher than the movies-series
ratio anywhere else.” (𝑔1)
“Most multi-season US TV shows are dramas or comedies” (𝑔2)
“About one-third of #ights occur in summer, yet the monthly rate of
delays remains consistent throughout the year.” (𝑔5)
“While long #ights are not delayed often, if they are, this is mainly for
a security reason.” (𝑔6)
“Apps with 1M installs are typically free, highly rated, and compatible
with Android 4.” (𝑔8)

Table 3: Examples of Insights Derived by Users Using LINX

Next, we inspected the informativeness and comprehensiveness
scores. Figure 7 depicts the average scores, over all three datasets.
(The black vertical lines represent the .95 con!dence interval.)

The human-expert notebooks once again achieve the high-
est scores. Additionally, both ATENA and Google Sheets now
attain higher scores: ATENA scores 4.86 and 5.07, while Google
Sheets follows with 3.40 and 3.67 for informativeness and com-
prehensiveness, respectively. ChatGPT achieves a high compre-
hensiveness score of 6.21. However, it falls behind in terms of
informativeness, scoring an average of 4/7 (we further explore
this gap in our analysis of the objective user study, below). LINX
outperforms ATENA, ChatGPT, and Google Sheets (scoring 6.24
and 6.28 for informativeness and coherency), demonstrating it
maintains both informativeness and comprehensibility in gener-
ating goal-oriented exploratory sessions.

Finally, we examine whether the ratings of LINX vary across
di"erent analytical goals. As shown in Figures 5 and 7, the small
vertical error bars for LINX represent lower variance per dataset.
The standard deviations, with respect to the goal 𝑀𝑀 (in each
notebook), are ±0.28 for relevance, ±0.43 for informativeness,
and ±0.48 for comprehensibility. These deviations are second
only to the human expert baseline, which demonstrates slightly
lower variation. These results indicate that LINX’s quality scores
are relatively stable across di"erent analytical goals and datasets.

Objective Study (Task Completion Success). We also compared
LINX with the baselines in an objective manner – by asking
users to examine notebook and then extract a list of insights
that are relevant w.r.t. the given analytical goal. The correctness
and relevance of insights were evaluated by the same experts
who constructed the human-expert notebook (Baseline 4), and
are therefore familiar with the datasets and respective goals.

Figure 6 shows the average number of goal-relevant insights
derived using each baseline. Using LINX, users derived an av-
erage of 2.7 relevant insights per goal, which is second only to
the human-expert notebooks (3.2 insights). ATENA and Google
Sheets are again far behind with an average of 0.8 and 0.4 rele-
vant insights per goal (resp). Interestingly, ChatGPT obtains the
lowest score of 0.3 insights. To better understand the unexpect-
edly low scores of ChatGPT notebooks, we further analyzed the

280

feedback provided by users alongside their descriptions of the
mined insights. The LLM-generated notebooks were perceived
as well-documented and easy to follow; however, they primarily
consisted of a collection of generic, descriptive statistics rather
than the more “investigative” sessions produced by LINX. Users
also noted negatively that the LLM tended to focus on arbitrary
attributes or patterns.

Last, to further examine the quality of the insights derived
from LINX-generated notebooks, we provide example insights de-
rived by the participants, depicted in Table 3. See that users were
able to extract compound, non-trivial insights that are indeed
relevant to the corresponding analytical goals.

Summary. An extensive user study shows that users not only rate
the exploration notebooks generated by LINX as highly relevant,
informative, and comprehensible, but were also able to derive
more relevant insights compared to the non-human baselines.

7.4 CDRL Performance & Ablation Study
Last, we examine the performance of our CDRL Engine, by con-
ducting !rst an ablation study to examine the necessity of each
component, then a convergence speed comparison with the goal-
invariant ATENA [5] ADE system.

Ablation Study. To gauge the necessity in the components of
LINX we compared it to the following system versions, each
missing one or more components: (1) Binary Reward Only
uses a binary end-of-session reward, based solely on the output
of the LDX veri!cation engine, without using our full reward
scheme (§5.2) and speci!cation-aware network (§5.3). Instead, it
uses the basic neural network of [5]. (2) Binary+Imm. Reward
uses the reward scheme, as described in Section 5.2, without
the immediate reward and the speci!cation-aware network. (3)
W/O Spec.Aware NN uses the full reward scheme (including
the immediate reward), but with the basic neural network of [5].

To gauge the components necessity, We employed each base-
line on the same 12 LDX queries used in the user study, and
examined in how many cases each baseline is able to generate a
compliant session, in up to 10M training steps. The results are
depicted in Table 4, reporting the baselines’ success in: (1) struc-
tural compliance, where a generated notebook complies with the
structural speci!cations but not the operational ones, and (2) full
compliance, where all speci!cations are met.

First, see that Binary Reward Only, which only receives the
binary, end-of-session reward, fails to generate compliant ses-
sions for any of the queries. As mentioned above, this is expected
due to the sparsity of the reward and the vast size of the action
space. Binary+Imm. Reward, which uses the more #exible com-
pliance reward at the end of each session. obtains better results –
fully complying with 3 queries, and structure-compliant with 7
additional ones. Next, W/O Spec.Aware NN obtains a signi!cant
improvement – it is able to comply with the structural speci!ca-
tions of all 12 LDX queries. However, it was fully compliant only
for 5/12 queries.

Finally, see that only the full version of LINX-CDRL, which
uses both the full reward-scheme and the speci!cation-aware
neural network, is able to generate compliant sessions for 100% of
the LDX queries. This shows that our adaptive network design, as
described in Section 5.3, is particularly useful in encouraging the
agent to perform speci!cation-compliant operations – despite
the inherently large size of the action-space.

LINX Version Structure Compliance Full Compliance
Binary Reward Only 0/12 (0%) 0/12 (0%)
Binary+Imm. Reward 10/12 (84%) 3/12 (25%)
W/O Spec. Aware NN 12/12 (100%) 5/12 (42%)
LINX-CDRL (Full) 12/12 (100%) 12/12 (100%)

Table 4: Ablation Study Results

Figure 8: Convergence Comparison to ATENA

Convergence Speed. Lastly, we examine the convergence speed
of our CDRL engine and compare it with the DRL engine of
ATENA [5] in order to examine whether its more complex struc-
ture causes slower convergence, i.e., more steps are required to
reach the output with the maximal reward. Figure 8 shows the
convergence plots for the 12 LDX queries. The convergence for
each LDX query 𝑈 (corresponding to goal 𝑀𝑀) is depicted using a
line labeled ‘LINX #𝑈’, with the black line in each !gure represent-
ing the convergence process of ATENA [5], serving as a baseline.
(Recall that ATENA can only produce one generic exploration
session per dataset.) Since the maximal reward varies depending
on the LDX query and dataset, we normalize the rewards so that
the maximum is 100%. Observe that the convergence processes
of both ATENA and LINX-CDRL are roughly similar. Notably,
LINX-CDRL sometimes converges even faster than ATENA (e.g.,
for the Play Store dataset, where ATENA takes 0.85M steps and
LINX only 0.4M steps on average). In general, the average con-
vergence to 100% reward is 0.36M steps, which takes about 20
minutes on our simple CPU hardware.
Summary. This study shows that (1) all components of LINX-
CDRL are essential for generating compliant notebooks consis-
tently, and (2) despite a more complex reward system and neural
network, LINX’s convergence performance matches ATENA.

8 CONCLUSION & FUTURE WORK
This paper introduces LINX, a generative system for automated,
goal-oriented exploration. It uses an LLM-based solution to de-
rive exploratory speci!cations from the goal, and a modular
ADE engine to create personalized exploratory sessions based
on the derived speci!cations. In future work, we will explore
ways in which LLMs can further enhance the analytical process.
A promising direction is to utilize LLMs for augmenting LINX
notebooks with natural language summaries and explanations,
as well as auto-visualization and insights-mining solutions such
as [36, 41, 67, 76]. Another direction is the adaptation of LINX to
interactive analysis and data manipulation code generation. In
addition, we will examine more analytical goals and correspond-
ing exploration speci!cations, in order to extend and improve
our benchmark dataset.

ACKNOWLEDGEMENT
The research was partly supported by ISF - the Israel Science
foundation - grant 2707/22 of the Breakthrough Research Grant
(BRG) Program.

281

REFERENCES
[1] Katrin A"olter, Kurt Stockinger, and Abraham Bernstein. 2019. A comparative

survey of recent natural language interfaces for databases. The VLDB Journal
28 (2019), 793 – 819. https://api.semanticscholar.org/CorpusID:195316636

[2] Alfred V Aho. 1991. Algorithms for !nding patterns in strings, Handbook of
theoretical computer science (vol. A): algorithms and complexity.

[3] Sara Alspaugh, Nava Zokaei, Andrea Liu, Cindy Jin, and Marti A Hearst.
2018. Futzing and moseying: Interviews with professional data analysts on
exploration practices. IEEE transactions on visualization and computer graphics
25, 1 (2018), 22–31.

[4] Ori Bar El, Tova Milo, and Amit Somech. 2019. Atena: An autonomous system
for data exploration based on deep reinforcement learning. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management.
2873–2876.

[5] Ori Bar El, Tova Milo, and Amit Somech. 2020. Automatically generating data
exploration sessions using deep reinforcement learning. In SIGMOD.

[6] Microsoft Power BI. 2024. https://www.microsoft.com/en-us/power-platform/
products/power-bi.

[7] Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing Schema
Structure with Graph Neural Networks for Text-to-SQL Parsing. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics,
Anna Korhonen, David Traum, and Lluís Màrquez (Eds.). Association for
Computational Linguistics, Florence, Italy, 4560–4565. https://doi.org/10.
18653/v1/P19-1448

[8] Shu Cai and Kevin Knight. 2013. Smatch: an Evaluation Metric for Semantic
Feature Structures. In Annual Meeting of the Association for Computational
Linguistics. https://api.semanticscholar.org/CorpusID:11345321

[9] Alexandre Chanson, Ben Crulis, Nicolas Labroche, Patrick Marcel, Verónika
Peralta, Stefano Rizzi, and Panos Vassiliadis. 2020. The traveling analyst
problem: de!nition and preliminary study. In Design, Optimization, Languages
and Analytical Processing of Big Data.

[10] Alexandre Chanson, Nicolas Labroche, Patrick Marcel, Stefano Rizzi, and
Vincent t’Kindt. 2022. Automatic generation of comparison notebooks for
interactive data exploration.. In EDBT. 2–274.

[11] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. 2023. Pro-
gram of Thoughts Prompting: Disentangling Computation from Reasoning
for Numerical Reasoning Tasks. Transactions on Machine Learning Research
(2023).

[12] Raphaël da Silva, Marie Chagnoux, and Panos Vassiliadis. [n.d.]. Data Narrative
Crafting via a Comprehensive and Well-Founded Process. In Advances in
Databases and Information Systems. Springer, 347.

[13] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin
Paduraru, and Yuval Tassa. 2018. Safe exploration in continuous action spaces.
arXiv preprint arXiv:1801.08757 (2018).

[14] Daniel Deutch, Amir Gilad, Tova Milo, Amit Mualem, and Amit Somech. 2022.
FEDEX: An Explainability Framework for Data Exploration Steps. Proceedings
of the VLDB Endowment 15, 13 (2022), 3854–3868.

[15] Daniel Deutch, Amir Gilad, Tova Milo, and Amit Somech. 2020. ExplainED:
explanations for EDA notebooks. Proceedings of the VLDB Endowment 13, 12
(2020), 2917–2920.

[16] Luciano Di Palma, Yanlei Diao, and Anna Liu. 2019. A Factorized Version
Space Algorithm for" Human-In-the-Loop" Data Exploration. In 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 1018–1023.

[17] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2016. AIDE:
An Active Learning-based Approach for Interactive Data Exploration. TKDE
(2016).

[18] Rui Ding, Shi Han, Yong Xu, Haidong Zhang, and Dongmei Zhang. 2019. Quick-
insights: Quick and automatic discovery of insights from multi-dimensional
data. In SIGMOD.

[19] Marina Drosou and Evaggelia Pitoura. 2013. YmalDB: exploring relational
databases via result-driven recommendations. VLDBJ 22, 6 (2013).

[20] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, and Naushin Shaikh.
2014. Querie: Collaborative database exploration. TKDE (2014).

[21] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improving
Text-to-SQL Evaluation Methodology. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers).
Melbourne, Victoria, Australia, 351–360. https://doi.org/10.18653/v1/P18-1033

[22] Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa.
2019. Chainerrl: A deep reinforcement learning library. arXiv preprint
arXiv:1912.03905 (2019).

[23] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. Pal: Program-aided language models.
In International Conference on Machine Learning. PMLR, 10764–10799.

[24] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research 16, 1 (2015),
1437–1480.

[25] Liqiang Geng and Howard J Hamilton. 2006. Interestingness measures for
data mining: A survey. ACM Computing Surveys (CSUR) 38, 3 (2006), 9–es.

[26] Conor F Hayes, Roxana R%dulescu, Eugenio Bargiacchi, Johan Källström,
Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zint-
graf, Richard Dazeley, Fredrik Heintz, et al. 2022. A practical guide to multi-
objective reinforcement learning and planning. Autonomous Agents and Multi-
Agent Systems 36, 1 (2022), 26.

[27] ATENA Basic Implementation. 2024. https://github.com/TAU-DB/ATENA-A-
EDA/tree/master/atena-basic.

[28] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. 2014. Smart
Drill-Down. Target 6000 (2014), 0.

[29] Flights Dataset (Kaggle). 2023. https://www.kaggle.com/usdot/#ight-delays.
[30] Google Play Store Dataset (Kaggle). 2023. https://www.kaggle.com/lava18/

google-play-store-apps.
[31] Net#ix Dataset (Kaggle). 2023. https://www.kaggle.com/shivamb/

net#ix-shows.
[32] Pavan Kapanipathi, I. Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexan-

der G. Gray, Ramón Fernández Astudillo, Maria Chang, Cristina Cornelio,
Saswati Dana, Achille Fokoue, Dinesh Garg, A. Gliozzo, Sairam Gurajada,
Hima P. Karanam, Naweed Khan, Dinesh Khandelwal, Young suk Lee, Yunyao
Li, Francois P. S. Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya,
Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy Gangi Reddy,
Ryan Riegel, Gaetano Rossiello, Udit Sharma, G. P. Shrivatsa Bhargav, and Mo
Yu. 2020. Leveraging Abstract Meaning Representation for Knowledge Base
Question Answering. In Findings. https://api.semanticscholar.org/CorpusID:
235303644

[33] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a
literate programming tool. In CHI.

[34] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020.
Natural language to SQL: Where are we today? Proc. VLDB Endow. 13 (2020),
1737–1750. https://api.semanticscholar.org/CorpusID:220528413

[35] Tim Kraska. 2018. Northstar: An interactive data science system. PVLDB 11,
12 (2018).

[36] Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn
Chen, Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A
Hearst, et al. 2021. Lux: always-on visualization recommendations for ex-
ploratory dataframe work#ows. PVLDB 15, 3 (2021), 727–738.

[37] Roger Levy and Galen Andrew. 2006. Tregex and Tsurgeon: Tools for querying
and manipulating tree data structures.. In LREC. Citeseer, 2231–2234.

[38] Chenjie Li, Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy. 2021.
Putting things into context: Rich explanations for query answers using join
graphs. In Proceedings of the 2021 International Conference on Management of
Data. 1051–1063.

[39] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, et al. 2024. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
Advances in Neural Information Processing Systems 36 (2024).

[40] Tavor Lipman, Tova Milo, and Amit Somech. 2023. ATENA-PRO: Generating
Personalized Exploration Notebooks with Constrained Reinforcement Learn-
ing. In Companion of the 2023 International Conference on Management of Data.
167–170.

[41] Pingchuan Ma, Rui Ding, Shi Han, and Dongmei Zhang. 2021. Metainsight:
Automatic discovery of structured knowledge for exploratory data analysis.
In Proceedings of the 2021 International Conference on Management of Data.
1262–1274.

[42] Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. 2023.
InsightPilot: An LLM-empowered automated data exploration system. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. 346–352.

[43] Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig.
2022. Language Models of Code are Few-Shot Commonsense Learners. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing. 1384–1403.

[44] Maja J Mataric. 1994. Reward functions for accelerated learning. In Machine
learning proceedings 1994. Elsevier, 181–189.

[45] Tova Milo and Amit Somech. 2018. Next-Step Suggestions for Modern Inter-
active Data Analysis Platforms. In KDD.

[46] Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang,
Arman Cohan, and Dragomir Radev. 2023. Enhancing Few-shot Text-to-SQL
Capabilities of Large Language Models: A Study on Prompt Design Strategies.
arXiv:cs.CL/2305.12586

[47] OpenAI. 2023. GPT-4 Technical Report. arXiv:cs.CL/2303.08774
[48] GPT 3.5 (OpenAI). 2023. https://platform.openai.com/docs/models/gpt-3-5.
[49] Je"rey M Perkel. 2018. Why Jupyter is data scientists’ computational notebook

of choice. Nature 563, 7732 (2018), 145–147.
[50] Aurélien Personnaz, Sihem Amer-Yahia, Laure Berti-Equille, Maximilian Fabri-

cius, and Srividya Subramanian. 2021. Balancing Familiarity and Curiosity in
Data Exploration with Deep Reinforcement Learning. In Fourth Workshop in
Exploiting AI Techniques for Data Management. 16–23.

[51] Aurélien Personnaz, Sihem Amer-Yahia, Laure Berti-Equille, Maximilian Fabri-
cius, and Srividya Subramanian. 2021. DORA THE EXPLORER: Exploring
Very Large Data With Interactive Deep Reinforcement Learning. In Proceed-
ings of the 30th ACM International Conference on Information & Knowledge
Management. 4769–4773.

[52] Mohammadreza Pourreza and Davood Ra!ei. 2024. Din-sql: Decomposed
in-context learning of text-to-sql with self-correction. Advances in Neural
Information Processing Systems 36 (2024).

[53] LINX Github Repository. 2022. https://github.com/analysis-bots/LINX.

282

[54] Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-autoregressive Bottom-
up Semantic Parsing. In Proceedings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (Eds.). Association for Computational Linguistics, Online,
311–324. https://doi.org/10.18653/v1/2021.naacl-main.29

[55] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and
explanation in computational notebooks. In CHI.

[56] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. 1998. Discovery-
driven exploration of OLAP data cubes. In EDBT.

[57] William Saunders, Girish Sastry, Andreas Stuhlmüller, and Owain Evans.
2018. Trial without Error: Towards Safe Reinforcement Learning via Human
Intervention. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems. 2067–2069.

[58] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Lan-
guage Models. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 9895–9901. https:
//doi.org/10.18653/v1/2021.emnlp-main.779

[59] Edward Segel and Je!rey Heer. 2010. Narrative visualization: Telling stories
with data. IEEE transactions on visualization and computer graphics 16, 6 (2010),
1139–1148.

[60] Danqing Shi, Xinyue Xu, Fuling Sun, Yang Shi, and Nan Cao. 2020. Calliope:
Automatic visual data story generation from a spreadsheet. IEEE Transactions
on Visualization and Computer Graphics 27, 2 (2020), 453–463.

[61] Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. E!ortless Data Exploration with Zenvisage: An Ex-
pressive and Interactive Visual Analytics System. Proc. VLDB Endow. 10, 4
(nov 2016), 457–468.

[62] Tableau Software. 2024. https://www.tableau.com/.
[63] Mengdi Sun, Ligan Cai, Weiwei Cui, Yanqiu Wu, Yang Shi, and Nan Cao. 2022.

Erato: Cooperative data story editing via fact interpolation. IEEE Transactions
on Visualization and Computer Graphics 29, 1 (2022), 983–993.

[64] Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi
Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin
Chi, Denny Zhou, and Jason Wei. 2022. Challenging BIG-Bench Tasks and
Whether Chain-of-Thought Can Solve Them. In Annual Meeting of the Associa-
tion for Computational Linguistics. https://api.semanticscholar.org/CorpusID:
252917648

[65] Google Sheets Explore. 2022. https://www.blog.google/products/g-suite/
visualize-data-instantly-machine-learning-google-sheets/.

[66] Tregex implementation. 2022. https://github.com/yandex/dep_tregex.
[67] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei Zhang. 2017. Ex-

tracting top-k insights from multi-dimensional data. In Proceedings of the 2017
ACM International Conference on Management of Data. 1509–1524.

[68] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and
Neoklis Polyzotis. 2015. SeeDB: e"cient data-driven visualization recommen-
dations to support visual analytics. PVLDB 8, 13 (2015).

[69] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking
for Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics,
Online, 7567–7578. https://doi.org/10.18653/v1/2020.acl-main.677

[70] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan
Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency
Improves Chain of Thought Reasoning in Language Models. In The Eleventh
International Conference on Learning Representations.

[71] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in neural information processing
systems 35 (2022), 24824–24837.

[72] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
SciPy, Stéfan van der Walt and Jarrod Millman (Eds.).

[73] Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel
Deutch, and Jonathan Berant. 2020. Break It Down: A Question Understanding
Benchmark. Transactions of the Association for Computational Linguistics 8
(2020), 183–198. https://doi.org/10.1162/tacl_a_00309

[74] Kanit Wongsuphasawat, Yang Liu, and Je!rey Heer. 2019. Goals, Process, and
Challenges of Exploratory Data Analysis: An Interview Study. arXiv preprint
arXiv:1911.00568 (2019).

[75] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay,
Bill Howe, and Je!rey Heer. 2016. Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. TVCG (2016).

[76] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Je!rey Heer. 2017. Voyager
2: Augmenting visual analysis with partial view speci#cations. In Proceedings
of the 2017 chi conference on human factors in computing systems. 2648–2659.

[77] Navid Yaghmazadeh, Yuepeng Wang, I$ıl Dillig, and Thomas Dillig. 2017.
SQLizer: query synthesis from natural language. Proceedings of the ACM on
Programming Languages 1 (2017), 1 – 26. https://api.semanticscholar.org/

CorpusID:8210357
[78] Cong Yan and Yeye He. 2020. Auto-suggest: Learning-to-recommend data

preparation steps using data science notebooks. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 1539–1554.

[79] Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel Deutch, and Jonathan
Berant. 2023. Answering Questions by Meta-Reasoning over Multiple Chains
of Thought. In The 2023 Conference on Empirical Methods in Natural Language
Processing.

[80] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A
Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Seman-
tic Parsing and Text-to-SQL Task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. 3911–3921.

[81] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A
Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Seman-
tic Parsing and Text-to-SQL Task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics.

[82] Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the edit-
ing distance between trees and related problems. SIAM journal on computing
18, 6 (1989), 1245–1262.

[83] Li Zhang, Liam Dugan, Hainiu Xu, and Chris Callison-burch. 2023. Exploring
the Curious Case of Code Prompts. In Proceedings of the 1st Workshop on
Natural Language Reasoning and Structured Explanations (NLRSE).

[84] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generat-
ing Structured Queries from Natural Language using Reinforcement Learn-
ing. ArXiv abs/1709.00103 (2017). https://api.semanticscholar.org/CorpusID:
25156106

[85] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi
Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-Most Prompting Enables Complex Reasoning in Large
Language Models. In The Eleventh International Conference on Learning Repre-
sentations.

283

