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ABSTRACT
Sorting in databases can exploit an existing sort order if it is
related to the desired sort order. In some cases, an external merge
sort can become multiple internal sorts; in other cases, sorting
can become merging, i.e., merge sort without run generation, e.g.,
without an initial quicksort phase. If the input includes offset-
value codes, they readily map to offset-value codes for the output,
enabling efficient comparisons in merge steps and in subsequent
query operations, e.g., a merge join.

There are many cases in which the existing sort order and
existing offset-value codes can help creating a desired sort order.
While today’s database systems implement only the simplest
cases, i.e., changing the sort order from𝐴, 𝐵 to𝐴 or from𝐴 to𝐴, 𝐵,
interesting orderings and offset-value codes permit substantial
savings in more complex cases such as changing an existing
sort order of 𝐴, 𝐵,𝐶, 𝐷 to 𝐴,𝐶, 𝐵, 𝐷 . Our research introduces the
required techniques and measures achievable savings.

1 INTRODUCTION
Interesting orderings have been central in database query op-
timization for decades [26]. We believe, based on our product
experience and experiments reported below, that the concept and
industrial use of interesting orderings deserve more generality
than is usually considered or implemented.

If sort order is important yet expensive to create, then caching
and reusing prior sort effort is very worthwhile, e.g., effort spent
on comparing strings. Offset-value coding [3] is a caching tech-
nique that is about as old as interesting orderings [26] but until
recently has been used only for sorting and merging. In fact,
offset-value coding is useful not only in external merge sort for
unsorted inputs [16] but also in merge join and in all other sort-
based query execution algorithms [13]; it now turns out that it
is useful even for modifying an existing sort order. Table 1 lists
cases of going from one sort order to another; the discussion
below considers the required data movement (e.g., merging), the
required data comparisons (of rows and of columns), and the
savings enabled by novel use of offset-value codes present in the
input. The proposed techniques eliminate about half of the row
comparisons and often all column value comparisons.

The ability to modify a sort order very efficiently has substan-
tial practical implications, even beyond query plan execution and
query optimization. Take, for example, any many-to-many rela-
tionship such as enrollments of students in courses. In order to
enable efficient access to student transcripts, i.e., a merge join of
students and enrollments, one copy of the enrollment table must
be sorted and indexed on student identifier. In order to enable
efficient access to class rosters, i.e., a merge join of courses and
enrollments, another copy of the enrollment table must be sorted
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Table 1: Sort keys for which an existing sort order and exist-
ing offset-value codes can help creating a desired sort order
and new offset-value codes. Each letter can be a column, a
list of columns, i.e., a database row, a list of characters, i.e.,
a text string, or a list of bytes, e.g., a normalized key.

Case Existing Desired
0 𝐴, 𝐵 𝐴
1 𝐴 𝐴, 𝐵
2 𝐴, 𝐵 𝐵
3 𝐴, 𝐵 𝐵,𝐴
4 𝐴, 𝐵,𝐶 𝐴,𝐶
5 𝐴, 𝐵,𝐶 𝐴,𝐶, 𝐵
6 𝐴, 𝐵,𝐶 𝐵,𝐴,𝐶
7 𝐴, 𝐵,𝐶, 𝐷 𝐴,𝐶, 𝐵, 𝐷

and indexed on course number. Thus, two copies of the enroll-
ment table must be created and maintained in the database. If,
however, an index ordered on (course number, student identifier)
can be scanned efficiently ordered on (student identifier, course
number), then a single copy of the enrollment table suffices and
can serve both transcripts and rosters, i.e., merge joins with either
students or courses.

Of course, this alone does not solve the problem of joining
all three tables, but the techniques below also enable efficiently
sorting an initial join result sorted on (course number, student
identifier) into an input for the second join, i.e., sorted on (student
identifier, course number). In terms of Table 1, both the scan for
a two-table join and the intermediate sort for the three-table join
are examples of case 3. In fact, any many-to-many relationship
induces an example of cases 3 or 6. The reader may apply any
discussion of case 3 to enrollments of students in courses. 1

The following sections review related prior work including
required background information, then introduce techniques for
modifying a pre-existing sort order in ways that exploit old offset-
value codes and create new ones, list hypotheses or claims about
performance and scalability, report on experiments testing these
hypotheses, and finally sum up and conclude.

2 RELATED PRIORWORK
Any work on advanced sorting techniques owes much to pio-
neering work on internal and external merge sort, quicksort,
and priority queues [5, 6, 14, 19]. Segmented sorting, merging
pre-existing runs, and their combination are well known [10].
Friend credits that the “von Neumann approach (named after
its originator, John von Neumann) takes advantage of existing
sequences in the data” [5, 7, 18].
1For small joins, i.e., a lookup join from a student to her enrollment or a lookup
join from a course to its enrollment, a traditional design requires the same two
indexes on the enrollment table. In contrast, the MDAM design [20] can search
fairly efficiently even with only a single index. While the MDAM design focuses on
search techniques, our new techniques focus on merge techniques.
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offset domain
− value OVC arity −

offset value OVC

0 95 95 4 5 405
3 98 398 1 2 102
1 94 194 3 6 306
4 - 500 0 - 0
2 97 297 2 3 203
1 92 192 3 8 308
2 96 296 2 4 204

Figure 1: Derivation of prefix truncation and descending/ascending offset-value codes for a table sorted on 4 keys.

2.1 Offset-value codes
Within a sorted table in columnar format, run-length encoding
suppresses column values that equal the same column in the pre-
ceding row. In row format, prefix truncation suppresses leading
sort columns that equal the same column in the preceding row.
Transposing between column format with run-length encoding
and row format with prefix truncation is fast as it requires no
column value comparisons.

For text strings and string sorting, prefix truncation is dis-
cussed as longest common prefix (LCP) [21] and works well with
tournament trees [1], discussed in Section 2.2. Offset-value cod-
ing is a refinement of prefix truncation: it combines the prefix size
and the following column value into a single fixed-size integer
and surrogate key. Prefix truncation and offset-value coding work
with lists of column values, i.e., database rows, lists of characters,
i.e., text strings, and lists of bytes, e.g., normalized keys.

Importantly, offset-value codes are order-preserving. If two
rows are encoded relative to the same base row, comparing the
two rows’ offset-value codes can quickly decide a comparison.
If two rows’ offset-value codes are equal, column-by-column
comparisons can resume after the shared prefix. The new com-
parison effort is cached in a new offset-value code in the loser.
Within text strings, the logic is like 𝑠𝑡𝑟𝑐𝑚𝑝 () with starting and
ending offsets; within binary strings and normalized keys, it is
like𝑚𝑒𝑚𝑐𝑚𝑝 () with starting and ending offsets. In run gener-
ation and merging using tournament trees, offset-value codes
decide most row comparisons.

Figure 1 shows, on the left, rows in ascending order on all
four columns. The second block shows the same table in colum-
nar format compressed with run-length encoding of leading sort
columns. The third block shows rows compressed with prefix
truncation – note that precisely the same values are suppressed.
The remainder of Figure 1 illustrates the derivation of both de-
scending and ascending offset-value codes. In the calculation
of offset-value codes, the arity of the sort key is 4 due to four
sort columns; and the example assumes that the domain size of
each column is 100. Descending offset-value codes take the offset
and the negative of the column value. In a comparison of two
rows with offset-value codes relative to the same base key, the
higher offset-value code is the winner, e.g., a duplicate of the
base key with code value 500. Ascending offset-value codes take
the negative offset but the actual column value. In a comparison,
the lower offset-value code is the winner, e.g., a duplicate row
with code value 0.

Recent research [13] has extended offset-value coding from
merge sort to merge join, duplicate removal, and in fact most

sort-based query execution. Offset-value codes can speed up
the in-sort logic for “distinct”, “group by”, “pivot”, “limit”, and
“top” queries, the in-stream logic for the same operations over
sorted data, as well as merge join and other binary operations.
For operators in pipelines with interesting orderings, simple yet
fast computations map offset-value codes for a sorted input to
offset-value codes for a sorted output.

In many ways, offset-value codes serve in sorting and in sort-
based query execution the role of hash values in hash-based
query execution [11]. Both offset-value codes and hash values
are fixed-size fixed-type surrogate keys, e.g., 8-byte unsigned
integers. Their comparisons are compiled into query execution
algorithms and thus very fast. However, whereas hash values can
assert only that two rows (or their keys) are different, offset-value
codes can also assert their equality or their sort order.

2.2 Tournament trees
Tournament trees, also known as tree-of-losers priority queues
and related to elimination rounds in sports competitions, have
been used for decades for internal sorting, for run generation
by replacement selection, and for merging sorted runs [6]. They
reduce the count of row comparisons to nearly the provable
lower bound, i.e., log2 (𝑁 !) ≈ 𝑁 × log2 (𝑁 /𝑒) for 𝑁 rows and
𝑒 = 2.718... ≈ 19/7. Among all algorithms and data structures
for sorting and priority queues, tournament trees seem the best
match for offset-value codes.

Figure 2 shows a tournament tree immediately after initial-
ization with the lowest key value in each of 12 merge inputs.
Dashed boxes along the bottom represent the current keys from
the runs to be merged; solid boxes are nodes in the tournament
tree. The example node in the top-right corner explains what all
the numbers mean. An index is here the run identifier within
the merge logic, values 0-11. The root of this tournament tree is
in array slot 0. It holds the overall smallest key value, 61, which
came from merge input 9. The next key value in merge input 9 is
also shown; this key value will start the next leaf-to-root pass.
Key value 157 is above key value 87 because 157 emerged as the
winner from the left subtree and 87 is only the runner-up in the
right subtree. The overall runner-up key always is somewhere
along the overall winner’s leaf-to-root path, because it would
have “won” all comparisons and reached the root node if it had
not “met” the overall winner, necessarily along the overall win-
ner’s leaf-to-root path. The runner-up can be anywhere along
the winner’s leaf-to-root path, even in a leaf node if that is where
the runner-up met the overall winner.
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Figure 2: A tournament tree with 12 merge inputs.

Together, tournament trees and offset-value codes reduce col-
umn value comparisons (or character comparisons when sorting
strings) to a linear count, i.e., ≤ 𝑁 × 𝐾 for 𝑁 rows with 𝐾 key
columns. The count of required column value comparisons equals
the sum 𝑥 + 𝑦 where 𝑥 is the count of “=” comparisons in verify-
ing a claimed (and correct) sort order and 𝑦 is the count of rows
minus one, which is also the count of “<” comparisons in verify-
ing a sort order. In a sorted table, 𝑥 also equals the compression
opportunity by prefix truncation (within rows), by run-length
encoding (within leading sort columns), and by tries [2, 25]. The
core algorithms of tournament trees and offset-value coding are
so simple and concise that they are captured in the mainframe
instructions UPT “update tree” and CFC “compare and form code-
word” [15, 16].

2.3 Other related prior work
Less directly connected to the new work, even if they have in-
spired some of our thinking, are MDAM [20], which interprets
compound (multi-column) b-trees as multi-dimensional indexes
and supports a large variety of query boxes, sorting from UB-
trees [29], which produces output sorted in one dimension from
a multi-dimensional index based on a b-tree and a space-filling
curve, and further related work such as [23, 24, 28]. An earlier
survey [8] ignores the problems and opportunities in modifying
an existing sort order. 2

3 MODIFYING A SORT ORDER
Table 1 lists prototypical cases. Among those, case 0 is trivial and
often the only case implemented in database query optimization
and query execution. What appears as column names in the table
could be a list of columns or expressions, presumably with such
lists reduced based on functional dependencies [27]. Those may
originate from database integrity constraints or from prior oper-
ations within a query, e.g., a “group by” creating an intermediate
result with a new primary key.

The following techniques – segmented execution, merging
pre-existing runs, and their combination – have been known in
the past. The new contributions here are integration of offset-
value coding, modification of pre-existing offset-value codes,
and conclusions about new or expanded techniques in query
execution, in query optimization, and in physical database design.
Importantly, modifying a pre-existing offset-value code means
reusing previously cached comparison effort in order to avoid
repeating this effort.

2There might be further related prior work on changing the representation of sparse
multi-dimensional matrices, specifically modifying the order of dimensions.

Figure 3: Segmented sorting from key 𝐴 to key 𝐴, 𝐵.

3.1 Segmented sorting
Case 1 in Table 1 turns the sort key in the input into a prefix of
the sort key in the output. In terms of sorting, this prefix permits
segmenting the input by distinct values of this prefix and then
sorting each segment on the remaining desired sort keys, treating
the rows within each input segment as unsorted. In other words,
for each distinct value of 𝐴, sort on 𝐵. Based on the terms major
sort key and minor sort key, this is called a minor sort. The minor
sort is invoked as many times as there are distinct value of𝐴; the
cost of each minor sort depends on the count of 𝐵 values.

Figure 3 illustrates the technique. On the left, pairs of numbers
are sorted only on the first column. A scan and sort per segment
produces a final output sorted on both columns, shown on the
right. Using solid arrows for completed work and dashed arrows
for pending work, the diagram attempts to capture the state after
the first segment has been read, sorted, and written; the second
segment has been read but not yet written; and the third segment
has yet to be read.

In terms of efficiency, the count of row comparisons that can
be saved depends on the count and size distribution of segments.
It is possible to save half of the comparisons, e.g., if the count of
distinct values in𝐴 is a square root of the count of rows. Detection
of segment boundaries can use extrapolation search rather than
comparing each row with its predecessor. More importantly,
segmented sorting can save merge levels. It achieves the greatest
advantage when each segment requires only an internal sort
whereas sorting the entire input requires an external sort.

Offset-value coding can help in two ways in case 1 of Table 1.
First, it can detect segment boundaries by offsets smaller than the
size of 𝐴 (i.e., 1 if 𝐴 is a column, otherwise the list size). Second,
when sorting on 𝐵, offset-value codes can bound the count of
column value comparisons to the size of 𝐵 (instead of the sum of
sizes of 𝐴 and 𝐵) times the row count (minus the segment count).

3.2 Merging pre-existing runs
Case 2 in Table 1 forms the sort key in the output from a suffix of
the sort key in the input. In terms of sorting, the input consists
of runs sorted on the desired key, one for each distinct value of
the prefix of the input sort key. Thus, an external merge sort can
skip run generation. Distinct values of the prefix define runs. If
the input has too many distinct values in its sort prefix, graceful
degradation from a single merge step to multiple merge steps
may be required.

Figure 4 shows a b-tree (represented by a triangle with the
root node on the left) with pairs of numbers as its key values.
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Figure 4: Merging pre-existing runs from key 𝐴, 𝐵 to key
𝐵,𝐴.

Three scans have reached value 17 in the second column and
will eventually proceed to 99. The output of the three scans is
merged and written sorted on the second column; the right-most
set of pairs merely inverts the column order to make the sort
order more visible. Note that the two instances of value 18 in
the second column are sorted on the first column, i.e., the merge
logic implements a stable sort.

In terms of efficiency, the savings from skipping run generation
can be substantial, since a traditional external merge sort invokes
most of its row comparisons during run generation (assuming
more rows per run than runs).

Offset-value coding can help in two ways. First, it can detect
run boundaries. Second, the offset-value codes within the pre-
existing runs can be reused after the offset component has been
decremented by the size of the prefix (i.e., 1 if 𝐴 is a column,
otherwise the list size). This manipulation of offset-value codes is
novel and unique to changing the position of a column within a
sort key, e.g., making the suffix of the input sort key into the prefix
of the output sort key. After offset-value codes have been adapted
in this way, the merge logic can use them as in a traditional merge
sort. Merging may compare additional column values and set
new offset-value codes, e.g., when finding duplicate values in
separate runs.

Case 3 in Table 1 is similar except for stable sorting (merging).
For two equal values of B, the row earlier in the input is also
earlier in the output. This is easily added to the merge logic.

3.3 Combined cases
Case 4 in Table 1 combines the conditions of cases 1 and 2; case 5
similarly combines cases 1 and 3. Case 6 extends case 4 with an
additional column that makes stable sorting more explicit; case 7
similarly extends case 5. As the techniques required for case 4
readily extend to cases 5-7, case 4 is the focus here.

In terms of sorting, the sort keys of input and output share a
prefix, which suggests segmented sorting. Within each segment,
the input consists of runs pre-sorted on the desired sort suffix,
one for each distinct value of the infix of the input sort key.

In terms of efficiency, segmented sortingmay savemerge levels
(as in case 1) and reusing pre-existing runs saves run generation
(as in case 2) – thus, the efficiency gains of cases 1 and 2 combine.

Offset-value coding can help in multiple ways: detecting seg-
ment boundaries, detecting run boundaries within segments, and
providing offset-value codes for the merge phase. Offset-value
codes for the output derive from offset-value codes in the input by

row# 𝐴 𝐵 𝐶 offset value
1 1 1 1 0 1
2 2 1 1 0 2
3 2 1 3 2 3
4 2 2 1 1 2
5 2 2 2 2 2
6 2 3 4 1 3
7 2 3 4 3 −
8 2 3 5 2 5
9 3 1 1 0 3
. . .

Figure 5: An input table sorted on columns 𝐴, 𝐵,𝐶, shown
with row#s, offsets and values.

decrementing offsets by the size of the infix. In other words, much
of the effort for column value comparisons cached in offset-value
codes of the input is reused and saves column value comparisons
when merging and producing rows in their new sort order.

Returning to the example of the introduction, i.e., enrollments
of students in courses, consider a university with multiple cam-
puses such that both student identifiers and course numbers are
meaningful only within the context of a specific campus. In that
case, all indexes, join predicates, and required sort orders, e.g.,
for merge joins, have “campus code” as a new prefix. Instead of
modifying a sort order from (course number, student identifier) to
(student identifier, course number), which the introduction used
as an example of case 3 within Table 1, the new problem is to
modify a sort order from (campus code, course number, student
identifier) to (campus code, student identifier, course number),
which is an example of case 5. Incidentally, if students can repeat
a course, e.g., after a first attempt with a poor grade, the keys
of input and output need a suffix “semester”, which creates an
example of case 7.

While the comparison effort for integer columns as in this
example is moderate and perhaps not crucial to avoid, the reader
is encouraged to imagine lists of columns, of bytes, or of symbols
(strings). In fact, even student identifiers and course numbers are
often strings rather than integers.

3.4 A concrete example
Figures 5-9 illustrate modifying a sort order from𝐴, 𝐵,𝐶 to𝐴,𝐶, 𝐵
using a combination of segmented sorting, merging pre-existing
runs, and offset-value codes. The reader is encouraged to think
of 𝐴, 𝐵, and 𝐶 as integers, as lists of columns, or as strings (lists
of symbols or bytes, even variable-sized). This example shows
how innovative use of old offset-value codes (for the pre-existing
sort order) permits creating a new sort order and setting new
offset-value codes, all without any column value comparisons.

Figure 5 shows a table sorted on columns 𝐴, 𝐵,𝐶 plus row
numbers as well as offsets and values that should be combined
into offset-value codes. Of course, only columns𝐴, 𝐵, and𝐶 need
to be stored. In fact, compression can truncate in each row a
prefix with a size equal to the offset.

While modifying the sort key from 𝐴, 𝐵,𝐶 to 𝐴,𝐶, 𝐵, the input
rows with 𝐴 = 2 form a segment. The first row in each segment
(and no other row) has offset = 0 or, if 𝐴 is a list, offset < |𝐴|, i.e.,
the size of list 𝐴.

Figure 6 shows pre-existing runs identified by distinct values
of 𝐵 within the segment with 𝐴 = 2. The first row in each run
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row# 𝐴 𝐵 𝐶 offset value classification of rows

2 2 1 1 0 2 first row in segment
3 2 1 3 2 3 other row

4 2 2 1 1 2 first row in run
5 2 2 2 2 2 other row

6 2 3 4 1 3 first row in run
7 2 3 4 3 − duplicate row
8 2 3 5 2 5 other row

Figure 6: Pre-existing runs in the segment defined by 𝐴 = 2
with rows classified based on the old offsets.

row# 𝐴 𝐶 𝐵 offset value classification of rows

2 2 1 1 1 1 first row in segment
3 2 3 1 1 3 other row

4 2 1 2 1 1 first row in run
5 2 2 2 1 2 other row

6 2 4 3 1 4 first row in run
7 2 4 3 3 − duplicate row
8 2 5 3 1 5 other row

Figure 7: Pre-existing runs prepared for merging on 𝐶, 𝐵
within the segment defined by 𝐴 = 2.

(after a segment’s first run) has offset = 1 or |𝐴| ≤ offset <
|𝐴𝐵 | = |𝐴| + |𝐵 |. These runs are pre-sorted on 𝐶 and can be
merged in order to sort the entire segment on 𝐶, 𝐵. The last
column of Figure 6 contains the classification derived from those
offset-value codes. Importantly, classifying rows relies entirely
on offset-value codes; there is no need to inspect or compare
column values.

Figure 7 shows the pre-existing runs prepared for merging
on 𝐶, 𝐵. This preparation is applied while scanning these rows;
there is no need to store the prepared rows, not even temporarily.
Compared to the prior figures, the column sequence is adjusted
for the new sort order. This is done for illustration purposes only;
it is not required in memory or on storage.

Duplicate rows, identified by offsets equal to the key size or
offset = |𝐴𝐵𝐶 |, retain their offset-value codes (shown in italic
font in Figure 7 and indicated as classification). The first row in
each run has its offset-value code saved and overwritten (shown
in bold font in the figure). The old offset-value code reflects the
difference to the values of 𝐴 or of 𝐵 in the row preceding the run.
The new offset is 1 or |𝐴|; the new value must be extracted from
key column 𝐶 . Other rows within each run, i.e., old offset = 2 or
|𝐴𝐵 | ≤ offset < |𝐴𝐵𝐶 |, retain the value part of their offset-value
code but the offset part is decremented by 1 or by |𝐵 | (shown
underlined in Figure 7).

While the small example in Figure 7 shows only three “other”
rows (one in each run), such rows would be the bulk of the merge
input in more realistic examples, e.g., tens or even thousands of
rows in each run. After their simple and efficient adjustment for
the new sort order, their new offset-value codes ensure practically
effortless comparisons in the merge logic. This is crucial for
efficiently modifying a sort order.

old row# 𝐴 𝐶 𝐵 offset value
2 2 1 1 1 1
4 2 1 2 2 2
5 2 2 2 1 2
3 2 3 1 1 3
6 2 4 3 1 4
7 2 4 3 3 −
8 2 5 3 1 5

Figure 8: Output of merging on 𝐶, 𝐵 within segment 𝐴 = 2.

Figure 8 shows the output of merging the runs in Figure 7.
The merge logic discovers that 𝐶 = 1 occurs in two of the merge
inputs and adjusts offsets and values accordingly. Even in this
case, there is no need to compare values of 𝐵 because values of 𝐵
are necessarily constant within each merge input run, different
between runs, and sorted from run to run. If 𝐵 is a list or |𝐵 | > 1,
the required new offset-value code for this difference in 𝐵 can be
derived efficiently, using a proven theorem and its corollary [3,
13], from the old offset-value codes saved from the first row of
each run. The offsets within these offset-value codes must be
incremented by 1 or by |𝐶 | to reflect the position of column 𝐵
within the new sort key. In contrast to column 𝐵, values of 𝐶
may need comparisons if an offset-value code cannot capture an
entire value, e.g., if 𝐶 is a list or |𝐶 | > 1.

Duplicate keys bypass the merge logic and immediately follow
their preceding key from the merge input to the merge output.
The merge logic cannot discover new duplicate keys because runs
differ in their value of 𝐵. However, when modifying a sort order
from 𝐴, 𝐵,𝐶 to 𝐴,𝐶 , the merge logic may discover new duplicate
keys. As part of discovering new duplicate keys, the merge logic
using a tree-of-losers priority queue and the comparison logic
using offset-value coding assign offsets equal to the key size.

Figure 9, the final figure in this sequence, shows the merge
output for the segment with 𝐴 = 2 between an earlier segment
and a later one. The only difference to Figure 8 is the adjusted
offset and value in the first row of each segment (shown in bold
font). The new offset-value code for a segment’s first output row
is the value saved from the segment’s first input row, i.e., from
the first row of the first run within the segment. In the example,
it is the offset-value code that indicates𝐴 = 2 following an earlier
value in column 𝐴.

This example does not require any column value comparisons
for𝐴 or 𝐵, whether those are columns or lists of columns, charac-
ters, or bytes. The example requires column value comparisons
for 𝐶 only if 𝐶 is a list, i.e., |𝐶 | > 1, and if the merge logic finds
values of𝐶 in different runs with equal offset-value codes. If such
a column value comparison is required, it takes advantage of
the given offset, assigns a new offset-value code to the loser, and
indicates a new opportunity for compression by prefix truncation
in the output.

This example of case 5 in Table 1 can easily be modified into
one for case 3 – it merely requires assuming a constant (single)
value for column 𝐴 and thus a single segment. It can also be
modified into an example for case 7 –multiple values with distinct
values in column𝐷 would be treated like duplicates in the figures
above, i.e., the condition would change from offset = |𝐴𝐵𝐶 | to
offset ≥ |𝐴𝐵𝐶 |. Thus, Figures 5-9 also illustrate, in a compact
way, all the examples of enrollments of students in courses, with
and without the prefix “campus code” or the suffix “semester”.
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new row# 𝐴 𝐵 𝐶 offset value
. . . 1 . . . . . . . . . . . .
2 2 1 1 0 2
3 2 1 2 2 2
4 2 2 2 1 2
5 2 3 1 1 3
6 2 4 3 1 4
7 2 4 3 3 −
8 2 5 3 1 5
. . . 3 . . . . . . 0 3

Figure 9: Final merge output of the segment with 𝐴 = 2
with adjusted offsets and values.

3.5 Algorithm
Even if the example answers most questions, a more algorithmic
description of the technique may further clarify.

The first step (during compile-time) compares the existing
sort order and the desired sort order. If there is a shared pre-
fix, including ascending vs descending sort as well as ordering
for international strings, then this prefix defines segments for
segmented sorting. If, in the desired sort order, the next sort
key(s) appear in a later position within the existing sort order,
this key (these keys) define the merge order. The intervening
sort key(s) in the existing sort order define run identifiers. A cost-
based decision based on run sizes and run counts (i.e., counts of
distinct values) determines whether to exploit the pre-existing
sort order in the way described above. A generalization of this
analysis could consider opportunities using backward scans of
sorted runs.

The next step (during run-time) ensures that the pre-sorted
input is available for scanning and merging. This may materialize
the input in memory or on storage, either entirely or one segment
at a time. The steps so far are not new or unique to the present
work.

The third step identifies and merges runs as shown in Sec-
tion 3.4. In a scan of the pre-sorted input, end-of-input or a seg-
ment boundary (identified by the row’s offset-value code for the
old sort order) flushes the prior segment. Each run boundary (also
identified by old offset-value codes) saves the old offset-value
code and then adds a run to the merge logic, i.e., one entry into
the priority queue. Flushing a prior segment means executing
the merge step. The required merge logic is well-known from
external merge sort, including offset-value codes deciding many
or most row comparisons.

There are, however, a few differences due to offset-value codes.
The first difference is that duplicate key values are identified by
old (pre-existing) offset-value codes to let these keys bypass the
tournament tree merging in the new sort order. An important
difference is that the scans feeding the merge logic adjust offset-
value codes, e.g., decrementing offsets for key values going into
themerge logic (called “other” key values in Section 3.4). A further
difference is the calculation of new offset-value codes for newly
detected duplicates in the merging keys: the offset-value codes
saved from the pre-existing sort order determine new offset-
value codes without comparison of column values that define
runs within the input.

3.6 Summary of techniques
In summary, a pair of simple techniques – segmented sorting and
merging pre-existing runs – can speed up sorting in database
query processing and probably in many other environments and
contexts. Their complexity is very limited yet their benefits can
be substantial. If comparison effort is cached in offset-value codes
and if offset-value codes are reused with adjusted offsets as in-
troduced above, this benefit is greatly amplified, as the following
hypotheses claim and the subsequent measurements show.

4 CLAIMS AND MEASUREMENTS
Our experiments aim to refute or support specific hypotheses.

4.1 Hypotheses and claims
The following claims and hypotheses delineate the value of ad-
vanced sorting, in particular segmented sorting and merging
pre-existing runs, and of offset-value codes in those contexts.

(1) Segmented sorting can save a merge level, even turning
external merge sort into internal sorting.

(2) Segmented sorting benefits from using offset-value codes
in the input for detecting segment boundaries and from ex-
tending those offset-value codes while sorting a segment.

(3) External merge sort invokes most of its row and column
comparisons during run generation, i.e., the input phase.

(4) Merging runs pre-existing in a sorted input saves many
or most comparisons.

(5) Reusing and adapting offset-value codes from the input
speeds up merging pre-existing runs.

(6) Run-length encoding in sorted column stores enables effi-
cient detection of segment boundaries, efficient transpo-
sition to row-by-row prefix truncation and offset-value
coding, and efficient merging of pre-existing runs.

(7) Merging runs pre-existing in a storage structure (such as
a b-tree or a column store) also saves I/O (compared to an
external merge sort).

(8) Merging pre-existing runs also applies to other storage
structures such as log-structured merge-forests, stepped
merge-forests, and partitioned b-trees [9, 12, 17, 22].

(9) The benefits of segmented sorting and of merging pre-
existing runs are cumulative.

(10) Interesting orderings in database query optimization should
be expanded beyond using an existing sort order – they
should also exploit techniques for modifying an existing
sort order, and they should do so in traditional row stores
and their indexes as well as in column stores and their
query execution strategies.

4.2 Thought experiments
Most of the hypotheses above do not require detailed experimen-
tal support; therefore, we support them here with arguments
rather than measurements.

For Hypothesis 1, consider a large input that requires external
merge sort, possibly even multiple merge steps and levels. If
segments are smaller than the available memory, internal sorting
one segment at a time suffices. This is an example of saving a
merge level, possibly even multiple merge levels.

For Hypothesis 2, consider an input with segments defined
by 𝑘 leading sort columns. Row-by-row comparisons are faster
if they can rely on offset-value codes rather than comparing 𝑘
column values. The second half of the hypothesis depends on how
comparisons within a segment are implemented: if they skip over
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the 𝑘 columns defining segments, and if a single column defines
the sort order within a segment, then extending pre-existing
offset-value codes has limited value; if they always compare
these 𝑘 columns first, offset-value codes save sorting effort.

The validity of Hypothesis 3 depends on the number 𝑀 of
rows per initial external run and the number𝑊 of initial external
runs. In most practical cases, the former far exceeds the latter
(𝑀 ≫𝑊 ) with more comparisons per row during run generation
than across all merge steps (log2 (𝑀/𝑒) > log2 (𝑊 )).

Hypothesis 4 follows directly from Hypothesis 3 as merging
pre-existing runs skips run generation.

Hypothesis 5 deserves experimental validation.
Detailed discussions in earlier work [4] support Hypothesis 6.
Hypothesis 7 complements Hypothesis 4. An input as assumed

here saves run generation in its entirety, not only the effort for key
value comparisons but also the effort for saving initial external
runs. If the sort input comes from a data stream, e.g., as an output
of earlier query execution operations, then the input needs to be
written with no I/O savings compared to run generation.

In Hypothesis 8, if the input is partitioned on the sort key, Hy-
potheses 4 and 7 apply. Otherwise, each partition may hold key
values from the entire key domain. This is the common situation
in log-structured merge-forests and similar storage structures.
Suppose segments within partitions are aligned (same segment
boundaries among all partitions, e.g., distinct key values in lead-
ing key columns). In that case, segments (and their key ranges)
can be sorted one at a time, which requires sorting within seg-
ments and merging across partitions. Taking advantage of un-
aligned segment boundaries requires complex bookkeeping with
rare applications and overall uncertain benefits.

Hypothesis 9 deserves experimental validation.
Hypothesis 10 is really a conclusion from all prior hypotheses:

these run-time benefits are available to database users only if
compile-time query optimization recognizes opportunities to
exploit them and assembles query execution plans accordingly.

4.3 Implementation and system context
The prototype query execution engine 3 used in the following ex-
periments is implemented in C++17. All operators in this engine
are pull-based, resulting in simple and clean interfaces. Each row
consists of its column values and a special (non-columnar) field
holding the offset-value code. To accommodate all experiments,
the number of columns is set to 32, where each column is an
8-byte integer. All sort-based operators use a tree-of-losers pri-
ority queue for run generation and for merging. Each tree entry
within this queue holds an integral 8-byte key and a reference to
the corresponding row or run. This key encodes the offset-value
code of the row along with additional information. For example,
high fence keys are introduced to indicate that a run is exhausted.
As these fences are higher than any valid key, they reach the
head of the queue only when the merge process is complete.

For the following experiments all sort operators in this engine
have been adjusted to eliminate the need to buffer rows from the
input. Instead, pointers to input rows are assumed to stay valid
and only these pointers are sorted and passed to the consumer.
In particular, the entire table is kept in memory and no rows are
spilled to disk in any operation. Each bar displays the average
run time of 10 executions on a workstation (AMD Ryzen 7 2700X,
2x16GB DDR-4 3200, Linux 6.7.8, GCC 13.2.1) and a (very small)
bar for the 95% confidence interval.

3Code available at https://github.com/kmarius/offset-value-coding/tree/edbt
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Figure 10: Run time and column comparisons of changing
an existing sort order from 𝐴, 𝐵 to 𝐵,𝐴 with column lists of
varying lengths and 220 rows.

4.4 Experiments and measurements
We tested Hypothesis 5 by sorting 220 ≈ 106 rows initially sorted
on 𝐴, 𝐵 but desired sorted on 𝐵,𝐴. This experiment mirrors the
example with course numbers and student identifiers. For the ex-
ample of Section 3.4, the experiment represents the work within
one segment.

In this experiment, 𝐴 and 𝐵 are lists of columns. Their sizes
vary by powers of 2 from 1 (a single column) to 16 (a large list
uncommon in “group by” and “join” operations but common in
“distinct” and “intersect” operations). Two versions of this ex-
periment use key values such that row comparisons are decided
by the first or the last column, respectively. To that end, most
columns of each row are filled with zeroes and only the first (last)
column in each list contains a different value (not necessarily
unique). Experiments with medium-size lists, e.g., 4 columns, are
representative also for longer lists, e.g., 8 columns, with com-
parisons decided somewhere between the first and last columns.
A sort operation without offset-value codes must compare the
columns in list 𝐴 of each row with its preceding row to detect
pre-existing runs. The sort logic then uses the columns in list
𝐵 to sort the data. No additional comparisons of 𝐴 are needed:
in case of duplicate values of 𝐵, the row from the run with the
lower index sorts lower. Hypothesis 5 is supported if offset-value
coding reduces comparison efforts and run-times.

The top diagram in Figure 10 shows the run times. In general,
longer column lists result in more expensive row comparisons
and increased run times. The fact that the operation without
offset-value codes shows only a vague upward trend can only be
attributed to cache effects. The benefits of utilizing offset-value
codes range from 20% to 35%, where the difference is smaller
when the first column of each list decides the comparisons. In
this case, the traditional sort method detects differences in rows
quickly, but duplicates require comparing the complete list. If
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the last column decides a comparison, the full list has to be
compared in all cases. Conversely, when using offset-value codes,
the sort operation on the data where the last column decides
the comparison is slightly faster than on the data where the
first column decides. Examining counts of column comparisons
provides more insights into these results.

The bottom diagram in Figure 10 shows counts of column
comparisons (i.e., the actual comparisons of column values, not
counting comparisons of offset-value codes). Note the logarith-
mic scale. With an column list length of 1, the first column is
also the last column of each list and the two versions of the ex-
periment coincide. In this case, existing offset-value codes in the
input have already captured all information so that no additional
comparisons are needed during merging the existing runs.

In the bottom left diagram, the first column decides all com-
parisons. The sort operation without offset-value codes performs
9.5 · 106 comparisons when each list consists of only one column.
This count grows to 112 · 106 for an column list of length 16. In
contrast, the operation with offset-value codes performs approxi-
mately 0.66 · 106 to 9.9 · 106 comparisons for column lists of sizes
2 to 16, respectively. Column comparisons are needed when the
merge logic finds two rows from different runs with offset |𝐴|
and the same first column in list 𝐵. In this case, the remaining
columns in 𝐵 have to be compared.

In the bottom right diagram, the last column in each list decides
comparisons. Sorting without offset-value codes performs from
9.5 · 106 to 151 · 106 comparisons. With the benefit of offset-
value codes, this count varies from 0 when each list is a single
column to just under 4, 000 when each list holds 16 columns. This
might seem surprising but the explanation is actually simple. All
comparisons performed during a merge with offset-value codes
result from comparisons within the column list 𝐵. Comparisons
of 𝐴 are completely avoided by comparing run numbers. Most
rows (other than the first in each run) have an offset of |𝐴𝐵 | −1 or
|𝐴𝐵 | if they are different from their preceding row or a duplicate,
respectively. In both cases, offset-value codes contain the full
information and the merge logic invokes no further comparisons.
Only the first row in each run has a smaller offset and once it
participates in a comparison that is not decided by offset-value
codes, its offset-value code is adjusted (with offset |𝐴𝐵 | − 1 or |𝐵 |)
and no further column comparisons are needed to distinguish it
from other rows.

Taken together, the measurements show the benefits of (re-)
using offset-value codes and support Hypothesis 5.

We tested Hypothesis 9 with an experiment similar to that
of Hypothesis 5: an input sorted on 𝐴, 𝐵,𝐶 but needed sorted
on 𝐴,𝐶, 𝐵. 𝐴, 𝐵, and 𝐶 are lists of 8 columns; all comparisons
are decided by the last column. The counts of segments, i.e., of
distinct values in𝐴, vary by powers of 4 from 2 (a single segment
boundary) to 219 (segments of two rows). Data is generated in
such a way that, as the size of a segment shrinks by a factor
of 4, both the number of runs (i.e., distinct values of 𝐵 within
each segment) and the size of each run are halved. Data is sorted
on 𝐴,𝐶, 𝐵 with three different methods, all using existing offset-
value codes in the input. The first method segments the data by
distinct values of 𝐴. Each segment is then sorted directly using a
tournament tree, disregarding the existence of pre-sorted runs.
Every row has its offset changed to |𝐴| with a value extracted
from𝐶 , corresponding to runs of size 1. The second method does
not segment the data, but instead generates runs with distinct
pairs 𝐴, 𝐵 and merges them in one process. The first row of each
run has its offset changed to 0 and value extracted from 𝐴. Every
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Figure 11: Run time of changing an existing sort order
from 𝐴, 𝐵,𝐶 to 𝐴,𝐶, 𝐵 with 220 rows and varying numbers
of segments.

other row within the runs is treated in the same way as described
in Section 3.4 and Figure 7. The third method combines these
techniques by segmenting the input and merging runs within
each segment.

Figure 11 shows run times of these methods. Sorting segments
directly without utilizing existing runs is the slowest method
for large segments (2 to 27 segments, i.e., 219 to 213 rows per
segment). The run time of this method decreases with the size of
the segments as it takes less effort to sort several small segments
than fewer large ones. The second method segments data by 𝐴𝐵
and runs twice as fast as the first method for 2 segments. As
the number of segments increases, the run time of this method
decreases but eventually increases again. This increase is due to
the fact that merging many short runs takes more comparisons
than merging fewer long ones. The third method combines both
techniques and consistently has the best run-times, supporting
Hypothesis 9 about the cumulative benefits of segmented sorting
and merging pre-existing runs.

4.5 Summary of the experimental evaluation
Overall, the arguments of Section 4.2 and the experiments of Sec-
tion 4.4 support the hypotheses and claims of Section 4.1. While
perhaps some of the experimental results were predictable quali-
tatively, the quantity of possible benefits should be surprising. If
the extent of these benefits were already known and understood,
the implementations of sorting in query execution as well as the
definition of interesting orderings in query optimization would
already be much more general than they are in today’s database
management systems.

5 SUMMARY AND CONCLUSIONS
In summary, it is wasteful to treat and sort an input as unsorted
instead of exploiting an existing sort order. By exploiting old
offset-value codes using the techniques introduced here, it is
often possible to create a new sort order, to derive new offset-
value codes, to compress by prefix truncation, and to transform
into columnar format with compression by run-length encoding
– all entirely without column value comparisons. Our claims,
hypotheses, and experiments show that substantial savings can
be realized.
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Those savings, however, require extensions to both traditional
query execution algorithms and traditional query optimization
heuristics. Query execution needs segmented sorting or, more
generally, segmented query execution; and external merge sort
must skip the run generation phase when suitable runs are readily
available in the input. In query optimization, the concept and the
enforcement of interesting orderings must be generalized beyond
the basic support in today’s database query optimizers.

These capabilities in query optimization and query execution
also affect physical database design. The example with enroll-
ments of students in courses shows how any many-to-many
relationship can support efficient join queries with fewer copies
and fewer indexes if case 3 in Table 1 is supported by merging
runs pre-existing in the sorted input; a subsequent discussion
(using a multi-campus university) extends this argument to case 5
and a side note extends it to case 7 in Table 1.

Offset-value codes in a sorted input reflect the prior sort order.
Scans of b-trees with prefix truncation can readily supply offset-
value codes, as can scans of sorted tables in columnar databases
with run-length encoding. A new but very simple adaptation
adjusts offsets and thus permits reusing the input’s offset-value
codes when modifying an existing sort order. The final offset-
value codes of the new sort order support, without further col-
umn value comparisons, compressing the sorted output by prefix
truncation in rows or by run-length encoding in columns.

In conclusion, it has long been known, even if not widely, that
offset-value coding substantially speeds up internal and external
merge sort; that offset-value coding and tree-of-losers priority
queues (tournament trees) complement each other very well;
and that their core logic and inner-most loops are so simple and
concise that they have been captured in a pair of mainframe
instructions. Recent research has expanded offset-value codes to
sort-based query execution algorithms including merge join, set
operations such as intersection, duplicate removal, grouping, and
pivoting. The essential insight is that offset-value codes cache
comparison efforts; these recent techniques extend the cache
effects from merge sort to sort-based query execution.

The work reported here extends offset-value coding and its
caching effects beyond all earlier work.While the new techniques
also apply to intermediate query results, their greatest impact
may be in scanning and merging from sorted storage structures,
e.g., ordered column stores and b-tree indexes.
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