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ABSTRACT
Complex Event Processing (CEP) and Analytical Stream Process-
ing (ASP) are two dominant paradigms for extracting knowledge
from unbounded data streams. While CEP functionality is es-
sential for detecting interesting patterns in vast data volumes,
traditional CEP systems often face scalability limitations. To ad-
dress these limitations, state-of-the-art solutions piggyback on
cloud-optimized ASP systems for enhanced scalability and per-
formance. The most common solution embeds CEP functionality
as a single unary operator within the ASP execution pipeline.
However, this design introduces conceptual bottlenecks, hinder-
ing the full utilization of ASP optimizations. To tackle this, we
analyzed the synergies between both paradigms and proposed a
general operator mapping in recent work. Our mapping trans-
lates CEP operators into their ASP counterparts, overcoming the
bottlenecks of the unary operator solution. In this demonstration,
we integrate our mapping with a declarative pattern specification
language tailored to the requirements of ASP systems. This inte-
gration automates the mapping process, seamlessly translating
high-level pattern definitions into optimized ASP query plans.
Our demonstration showcases this approach within the ASP sys-
tem NebulaStream. It allows the audience to submit declarative
CEP patterns via its UI and explore the corresponding query plans
resulting from our mapping. Additionally, we guide the audience
through key optimization opportunities enabled by our mapping,
which are unattainable with the unary operator solution.

1 INTRODUCTION
Analytical Stream Processing (ASP) and Complex Event Process-
ing (CEP) are two common stream processing paradigms for ex-
tracting knowledge from unbounded data streams. ASP systems
primarily focus on data transformation, employing operations
such as aggregation and filtering to derive insights. In contrast,
CEP systems are designed to identify intricate patterns within
data streams. Specifically, CEP allows users to define patterns that
connect events (i.e., time-stamped tuples) of multiple streams
through temporal and causal relationships [4]. During execu-
tion, the system identifies and returns matches for these patterns,
highlighting interesting behaviors in the data. These matches rep-
resent pre-interpreted results and thus allow for instantaneous
automated actions, making CEP particularly valuable for large-
scale monitoring and decision-making applications. While ASP
systems are optimized for cloud environments and provide scal-
able solutions to handle the ever-growing volume of streaming
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data, CEP systems remain limited in their ability to fully utilize
the cloud [4]. To address these scalability limitations, state-of-the-
art approaches integrate CEP functionality into cloud-optimized
ASP systems [8]. Representatives include KafkaStreamCEP1 and
FlinkCEP2. These systems leverage cloud-optimized ASP opera-
tors for efficient data gathering and pre-processing. However, the
integration of CEP is typically implemented as a unary operator
that encapsulates an entire pattern, leading to the following three
performance limitations:

(1) Compute-Intensive Design: The unary operator, often as
complex as a multi-way join, incurs significant computational
overhead and a large state [6].

(2) Order-Based Evaluation Mechanism: The unary operator
relies on a traditional order-based evaluation mechanism, i.e., a
nondeterministic finite automaton (NFA). Consequently, it exe-
cutes the pattern in the user-defined order, thereby bypassing
optimization techniques inherent to ASP systems.

(3) Stream Union Overhead: The unary operator requires merg-
ing all involved streams into a single input stream. Thus, unnec-
essary events are processed, increasing the state size and further
burdening state management.

To address these limitations, we recently proposed translating
CEP patterns into ASP operators based on an operator map-
ping [12]. Our mapping addresses Limitations (1) and (2) by de-
composing complex patterns into smaller subtasks that can be
reordered to leverage optimization strategies, such as join order-
ing and filter extraction. Limitation (3) is addressed by leveraging
the lazy evaluation inherent in ASP systems. Instead of merging
and processing all streams simultaneously in a single operator,
the execution is structured as a left-deep join tree. Thus, each
operator processes data sequentially only when needed. This
reduces unnecessary computations and significantly improves
state management by limiting the size of intermediate results. As
a result, our mapping enables ASP systems to efficiently execute
CEP patterns and enhances the synergy between ASP and CEP,
surpassing the capabilities of the unary operator approach.

In this demonstration, we present the implementation of our
mapping in the beta-released ASP system NebulaStream3[11].
To this end, we have extended NebulaStream with a declarative
pattern specification language (PSL), a parser, and two window
join types, i.e., cross and interval join. We showcase our approach
through the NebulaStream UI, which allows attendees to submit
declarative patterns and visualize query plans and results. With
this demonstration, we pave the way for seamlessly integrating
CEP functionality in ASP systems while unlocking optimization
opportunities for efficient pattern detection.
1https://github.com/fhussonnois/kafkastreams-cep
2https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/libs/cep/
3https://www.nebula.stream
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Table 1: Formal Definition of SEA Operators and their mapping.

Operator Formal Definition Mapping Syntax
Conjunction (𝑆1 ∧ 𝑆2)∗ = {(𝑒1, 𝑒2) | 𝑒1 ∈ 𝑆1 ∧ 𝑒2 ∈ 𝑆2} 𝑆1 × 𝑆2 𝑆1 AND 𝑆2
Sequence (𝑆1; 𝑆2)∗ := {(𝑒1, 𝑒2) | 𝑒1 ∈ 𝑆1 ∧ 𝑒2 ∈ 𝑆2 ∧ 𝑡𝑠𝑒1 < 𝑡𝑠𝑒2 } 𝑆1 ⊲⊳𝜃 𝑆2 𝑆1 SEQ 𝑆2
Disjunction (𝑆1 ∨ 𝑆2)∗ := {𝑒 | 𝑒 ∈ 𝑆1 ∨ 𝑒 ∈ 𝑆2} 𝑆1 ∪ 𝑆2 𝑆1 OR 𝑆2
Negated Se-
quence

(𝑆1;¬(𝑆2); 𝑆3)∗ := {(𝑒1, 𝑒3) | 𝑒1 ∈ 𝑆1 ∧ 𝑒3 ∈ 𝑆3 ∧ (𝑡𝑠𝑒1 < 𝑡𝑠𝑒3 ) ∧
¬∃𝑡𝑠𝑒2 ∈ [𝑡𝑠𝑒1 , 𝑡𝑠𝑒3 ] : 𝑒2 ∈ 𝑆2}

UDF(𝑆1 ∪ 𝑆2) ⊲⊳𝜃 𝑆3 𝑆1 SEQ NOT 𝑆2 SEQ 𝑆3

Iteration (𝑆𝑚)∗ = {𝑒𝑛 |𝑒𝑖 ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑚∧(𝑡𝑠𝑒1 < 𝑡𝑠𝑒2 < ... < 𝑡𝑠𝑒𝑚 )∧𝐴𝐺𝐺 (𝑒𝑖 )} 𝑆1 ⊲⊳𝜃 ... ⊲⊳𝜃 𝑆𝑚 𝑆 [𝑚]

The purpose of this demonstration is three-fold:

• We demonstrate how ourmapping is seamlessly integrated
into a general-purpose ASP system by highlighting the
advantage of unifying CEP and ASP paradigms in a sin-
gle system. Attendees can submit patterns and queries to
explore this practical utility firsthand.

• We showcase the necessary adaptations for a declarative
PSL in common ASP systems and discuss alternative di-
rections and open issues with the attendees.

• We show the effectiveness of the enabled optimizations
and reveal future directions by letting the audience explore
how different data and pattern characteristics influence
the query plan generation and its performance.

2 GENERAL OPERATOR MAPPING
Our previously introduced operator mapping [12] bridges the
gap between common CEP operators and their ASP counterparts.
For this mapping, we rely on the core CEP operator set defined
by the Simple Event Algebra (SEA) [4], which includes selection,
projection, window, conjunction, sequence, disjunction, negated
sequence, and iteration. We formally defined these operators
based on their verbal descriptions and the literature from related
research lines [2]. To ensure compatibility with ASP systems, we
adapted these operator semantics to (1) reach closure properties
to enable seamless composition of operators, and (2) incorporate
explicit windowing for all stateful CEP operators, a prerequisite
for mapping to stateful ASP operators. In particular, the window
operator in SEA is a time-based predicate that defines the maxi-
mal time interval𝑊 = |𝑡𝑠𝑒2 −𝑡𝑠𝑒1 | in which all event pairs (𝑒1, 𝑒2)
of the pattern need to occur to form a match [4, 6]. Its semantics
resemble an ASP sliding window with a slide per tuple [4, 12],
and serve as a foundation for the integration of CEP operations.

Using our refined semantics, we identified five SEA operators
that diverge from the native ASP operator set and mapped them
to their respective counterparts. In the following, we briefly in-
troduce these operators alongside their mapping. Table 1 summa-
rizes our final operator semantics and the respective mappings.

Conjunction: The binary conjunction operator expects a pair
of events, one from each stream 𝑆𝑖 , i.e., 𝑒1 ∈ 𝑆1 and 𝑒2 ∈ 𝑆2,
to occur within a window𝑊 . Based on its formal definition, a
conjunction is equivalent to a relational cross join × (Cartesian
product) [3], which composes two streams into one as a set of
pairs. Each pair (𝑒1, 𝑒2) is a pattern match.

Sequence: The binary sequence operator expects a pair of
events (𝑒1 ∈ 𝑆1, 𝑒2 ∈ 𝑆2) to occur in temporal order, i.e., 𝑡𝑠𝑒1 <

𝑡𝑠𝑒2 ,within a window𝑊 . Its formal definition is equivalent to the
relational theta join ⊲⊳𝜃 using the order by time as join predicate
𝜃 [3]. In particular, all event pairs (𝑒1, 𝑒2) fulfilling the condition
of consecutive timestamps are a pattern match.

Disjunction: The binary disjunction operator requires at least
one event from the specified streams 𝑆1, 𝑆2 to occur within a
window𝑊 . Its formal definition is equivalent to the relational

set union operator ∪ [3, 4]. The union operator merges two input
streams into a new one, i.e., 𝑆1 and 𝑆2 are unified to 𝑆1,2. Each
event 𝑒1,2 in 𝑆1,2 is a match of the pattern.

Iteration: The iteration operator captures multiple occur-
rences𝑚 (𝑚 > 0) of events from a single stream 𝑆 in a temporal
sequence. Unlike Kleene∗ and Kleene+, the SEA iteration opera-
tor enforces a bounded number of𝑚 occurrences [4]. Its formal
semantics equals a nested sequence over a single event type S.
Thus, the iteration is mapped to a sequence of𝑚 theta self joins
⊲⊳𝜃 using the order time constraint between consecutive event
pairs as the join predicate 𝜃 [3].

Negated Sequence: The ternary negated sequence operator
requires the absence of any events 𝑒2 ∈ 𝑆2 between a match
of the sequence (𝑒1 ∈ 𝑆1, 𝑒3 ∈ 𝑆3). Unlike a negated predicate,
the negation operator does not rely on specific attribute values
but rather on the non-occurrence of the event itself. Its formal
definition represents the combination of a sequence, i.e., (𝑆1; 𝑆3),
and the negated existential quantifier that requires the absence
of any event 𝑒2 ∈ 𝑆2 within the time interval (𝑒1 .𝑡𝑠, 𝑒3 .𝑡𝑠). Thus,
we refer to the mapping of the sequence and add the negated
quantifier as a sub-query.

By providing a semantically equivalent mapping for all op-
erators, our mapping enables general-purpose ASP systems to
execute CEP patterns as queries that leverage cloud-optimized
ASP operators. By utilizing set operations, our mapping sup-
ports pattern detection under the least selective selection policy
skip-till-any-match, while other policies can be implemented by
applying additional filtering on the matches.

3 IMPLEMENTATION
We integrate our operator mapping with a declarative PSL into
the ASP system NebulaStream [11]. NebulaStream is a novel,
general-purpose, end-to-end data processing system that com-
bines the advantages of fog and cloud environments to manage
the vast amount of data generated by geographically distributed
IoT devices on the way to the cloud. Enhancing NebulaStream
with CEP features allows domain experts in areas such as traf-
fic, air pollution, and water management to efficiently monitor
and analyze massive streams of high-frequency data in a timely
manner. In the remainder, we briefly introduce our PSL, high-
light the optimizations achieved by integrating our mapping into
NebulaStream, and describe the necessary extensions.

Pattern Specification Language. In contrast to many cloud-
based CEP solutions that rely solely on low-level programming
APIs [4], our CEP integration is based on a declarative PSL.
Using a declarative language simplifies the transition for non-
programming domain experts to more scalable solutions, thereby
enhancing the systems’ accessibility and usability. To achieve this,
we designed a dedicated grammar for our PSL, prioritizing a syn-
tax that aligns closely with existing SQL-like PSLs [5, 9]. At the
same time, we integrated necessary adaptations to meet ASP sys-
tem constraints, e.g., the definition of sinks or different window
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types, and strike a balance with SQL compliance. In particular,
our approach aims to reduce inconsistencies, such as variations
in expressing conditions or the usage of keywords, ensuring a
more intuitive experience in a system that integrates both pro-
cessing paradigms. Alternative directions to include our mapping
are programming APIs [4] or optimizing for compatibility with a
dedicated CEP language, e.g., SASE+ [5] or ZStream [9].

Our PSL supports the key operators discussed in Section 3,
with their syntax outlined in Table 1. Additionally, it features a
concise set of clauses: PATTERN specifies the pattern name, in-
volved event streams, and their causal and temporal relationships;
FROM identifies and optionally renames the streams upon which
a respective pattern should be matched; WHERE applies condi-
tions to stream attributes; SELECT defines the output structure;
WITHIN sets window type and parameters; and INTO specifies
the sink(s) for the result stream. We present the general structure
of our PSL in Listing 1, showing how it integrates these clauses
into an accessible and user-friendly syntax.

Listing 1: General structure.
PATTERN NAME SEP <event compositions>

FROM <set of streams [with renaming]>

[WHERE <set of predicates>]

[WITHIN <window W with type and parameters>]

[SELECT <output specifications>]

INTO <set of sinks>

Optimizations. Our mapping offers various angles for opti-
mization, which can be leveraged depending on the workload
characteristics and capabilities of the underlying ASP system.
In our case, NebulaStream provides a rich set of streaming op-
erators, including all traditional streaming ETL operators, and
relevant features for our mapping, i.e., temporal aggregations,
equi join with sliding windows in event-time and union. For this
demonstration, we focus on optimizing the join order and win-
dow join type selection, which we identified in our prior work as
one of the most impactful strategies for improving performance.

Window Join Reordering: Unlike order-based evaluationmecha-
nisms, which impose strict sequential processing constraints, our
mapping towards window joins allows for reordering and thus
can improve performance and resource utilization. Join order op-
timization targets patterns involving multiple conjunctions and
sequences, which are translated into multi-way window joins. In
our PSL, users can specify the join order through the pattern, al-
lowing them to suggest an efficient execution strategy. While we
rely onmanual join order selection, future work can automate our
rewriting rules based on statistics, such as the rates and selectivi-
ties, to determine an optimal join order. By reordering the joins,
the system can prioritize the most selective conditions earlier
in the query execution plan, significantly reducing intermediate
result sizes and improving overall processing efficiency.

Window Join Type Selection:Mappings based on join operations
inherently allow for optimizations by specifying join predicates.
Specifically, patterns that include equi or theta join predicates
can significantly narrow the result space, reducing the computa-
tional overhead compared to less selective join types. However,
the applicability of these optimizations depends on the operator
support of the underlying ASP system. As most systems, Neb-
ulaStream natively supports equi joins, as they align with the
key-based data partitioning strategies of ASP systems, in contrast
to cross and theta joins [1]. To this end, we extend the operator
set of NebulaStream with support for cross and interval joins.
Whereas all other join types in NebulaStream create a sequence

Figure 1: Workflow of our PSL in NebulaStream.

of windows based on time measures, the interval join creates
windows based on the occurrence of tuples from the left join
side. This window creation is a natural fit to CEP semantics and
has the key benefit of duplicate-free match detection. In our im-
plementation, the system automatically identifies patterns with
an equi join predicate, whereas all other patterns are evaluated
using a nested loop join. Furthermore, users can define different
window types, e.g., sliding window or interval, in their patterns,
observing the impact of different windowing strategies.

Workflow. Figure 1 illustrates the workflow for submitting
and parsing a pattern in NebulaStream with our extensions high-
lighted in yellow. The user specifies a pattern using the Neb-
ulaStream UI 1 . This pattern is submitted as a string to the
NebulaStream coordinator via its REST API 2 . Upon receiving
the pattern string 3 , the NebulaStream coordinator identifies it
as a pattern submission and forwards it to the PatternParsing-
Service 4 , the essential extension to NebulaStream to incorpo-
rate our PSL. As NebulaStream supports both stream processing
paradigms, users can also submit ASP queries using the same
workflow, but these queries are directed to the QueryParsing-
Service. To parse our pattern, we use the tool ANTLR [10],
which provides a lexer and parser based on a defined grammar.
The PatternParsingService incorporates the ANTLR gram-
mar for our PSL and the auto-generated ANTLR lexer and parser
code 5 . The lexer processes the pattern string by tokenizing
it into a stream of tokens, while the parser validates its syntac-
tic structure and constructs the pattern’s Abstract Syntax Tree
(AST) 6 . The AST serves as an intermediate structured repre-
sentation of the pattern, encapsulating its syntax and structure
while ensuring adherence to PSL language rules. It is passed to
the translator 7 , a module responsible for converting the syn-
tactic representation into a logical query plan. The translator
leverages ANTLR-generated listener classes, which implement
enter and exit methods for each grammar rule, to extract relevant
information from the AST [10]. Additionally, the translator incor-
porates our operator mapping. As a result, the logical query plan
consists entirely of APS operators, representing a semantically
equivalent query derived from the defined pattern. The resulting
logical query plan 8 is then optimized and transformed into
physical tasks for execution 9 . Finally, the execution engine
processes these tasks and returns detected pattern matches 10

to the NebulaStream UI, where they are presented to the user.
By unifying the translation of the PSL with our operator map-

ping, we automate the process of converting high-level pattern
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Figure 2: Submitting an example pattern of our demonstra-
tion to the Query Catalog Page with visualization of the
resulting query (right) and execution plan (left).

specifications to optimized low-level operations. Furthermore,
it abstracts away underlying complexities of implementation
details and our mapping rules for domain experts.

4 DEMONSTRATION
In this section, we first introduce the smart grid use case from the
smart city simulation IoTropolis [7] as the application scenario
for our demonstration, alongside the NebulaStream UI. Finally,
we outline our demonstration plan that utilizes both frameworks.

Smart Grid Use Case of IoTropolis. This demonstration
leverages the smart grid use case within IoTropolis [7]. In this use
case, energy is produced by distributed wind turbines and solar
panels, while households, offices, factories, and streetlights act as
energy consumers. Data regarding the produced and consumed
energy, along with the respective locations within the city, are
transmitted to NebulaStream. IoTropolis offers interactive fea-
tures that allow attendees to actively influence the environment,
e.g., participants can adjust wind levels to control the energy
production in the city. By leveraging IoTropolis, we create an en-
gaging and dynamic setting with six distinct event types (streams)
available for pattern specification. The interactive capabilities
of IoTropolis enable attendees to manipulate the data to trig-
ger patterns and observe how the system responds, providing a
hands-on demonstration of our approach.

NebulaStream UI. The UI provides end users and attendees
with an intuitive interface to interact with NebulaStream. It of-
fers several useful features, e.g., the Topology page or the Source
Catalog. The key functionality for this demonstration resides in
the Query Catalog, which enables users to submit new queries
and patterns. All registered queries are displayed in the query
catalog directly below the submission component for further
inspection. In Figure 2, we illustrate the process of submitting
one of our example patterns. Users can write patterns using our
PSL in the free-text field at the top of the page. The pattern is
added to the query catalog upon pressing the Submit Query but-
ton. This catalog provides an organized overview of all submitted
queries, including their current status and additional details, such
as the logical query and the corresponding execution plan. We

depict the query and execution plan corresponding to our exam-
ple pattern at the bottom of Figure 2. Furthermore, the Result
Visualization page plays a crucial role in our demonstration by
allowing attendees to visualize results as charts, such as a line
chart for detection latency. This enables attendees to observe and
compare the impact of different patterns (or queries) and data
characteristics.

Setup. The demonstration runs on a local machine, integrat-
ing NebulaStream for data processing and IoTropolis for smart
grid simulation. The setup can be fully reproduced using the
NebulaStream Tutorial4.

Guided Demonstration. Attendees are invited to participate
in our guided demonstration. We will start by briefly motivating
our work. Then, we will introduce the demo setup, i.e., the smart
grid use case in IoTropolis and key UI features.

• Attendees collaborate with us to discuss and submit three
prepared patterns via the NebulaStream UI, including two
semantically equivalent patterns with different join orders.

• Together, we analyze the resulting query plans, highlight-
ing the effects of our mapping and its optimizations.

• Using the interactive features of IoTropolis, we alter the
smart grid behavior to trigger the specified patterns, sim-
ulating real-world dynamics.

• Finally, we use the result visualization features of NebulaS-
tream UI to visualize the detected matches and highlight
the differences between CEP and ASP.

Interactive Engagement. Beyond the core demonstration, atten-
dees are encouraged to take on the role of end users. By creating
and deploying patterns and queries, attendees can experience
firsthand the advantages of unifying CEP and ASP paradigms in
a single platform. Our team will be available to answer questions,
highlight key insights of our work, and discuss future directions.
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