Demonstration Paper

O

proceedings

Using a Probabilistic Database
in an Image Retrieval Application

Fajrian Yunus
LTCI, Télécom Paris
Institut Polytechnique de Paris
Palaiseau, France
fajrian.yunus@telecom-paris.fr

Talel Abdessalem
LTCI, Télécom Paris
Institut Polytechnique de Paris
Palaiseau, France
talel.abdessalem@telecom-paris.fr

ABSTRACT

ProvSQL is a PostgreSQL extension implementing provenance
management and probabilistic database features. ProvSQL seam-
lessly extends relational database functionality to support the
storage, tracking through derivations and transformations, and
querying of metadata that explain and qualify the data and query
results. In this demonstration, ProvSQL is used to implement a
content-based image retrieval system. A deep learning object de-
tection model identifies objects of selected classes located within
the images of a large-scale image data set. The uncertainty asso-
ciated with object detection is recorded. ProvSQL’s provenance
model incorporates this uncertainty into the retrieval process,
thus facilitating the generation of accurate and reliable results
and allowing for decision-making in scenarios with incomplete
or uncertain information. The demonstration illustrates how
ProvSQL handles query processing, uncertainty tracking, and
probability computation. It highlights the utility of a probabilistic
database for applications dealing with uncertain data, compared
to traditional threshold-based approaches.

1 INTRODUCTION

ProvSQL [17], accessible at https://provsql.org/, is an extension
for PostgreSQL designed to manage the provenance of data, aug-
menting relational databases with advanced capabilities. It allows
for the storage, tracking, and querying of metadata that docu-
ment the origins, transformations, and derivations of data, pro-
viding detailed explanations and qualifications for both the data
and query results. Built specifically to manage uncertain data,
ProvSQL provides robust support for probabilistic databases, en-
abling users to model and reason about data with inherent uncer-
tainty. In addition to tracking provenance, ProvSQL is equipped
to compute the probabilities of query outputs, leveraging the
uncertainty encoded in the database. Furthermore, it facilitates
deeper insights into the contributions of individual database facts
by computing expected Shapley values [12], a measure of their
importance or impact on the (probabilistic) query results. These
capabilities make ProvSQL an essential tool for applications that
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require both uncertainty management and explainability in data-
driven decision-making processes.

In this demonstration, ProvSQL is employed to implement a
content-based image retrieval system, highlighting its capabili-
ties in managing uncertainty and delivering explainable results.
The system leverages the YOLOv5 [19] object detection model
to identify objects from selected classes within images from the
COCO 2017 [14] dataset, a widely-used benchmark for object de-
tection and segmentation tasks. The uncertainty inherent in the
object detection process is systematically captured and recorded.
ProvSQL’s provenance model integrates this uncertainty to pro-
vide more granular and detailed uncertainty assessments, enhanc-
ing the reliability of the retrieval process while offering deeper
insights into the confidence and likelihood of the detected objects.
This approach enables the generation of more informative and
dependable outcomes, supporting robust decision-making even
in scenarios with incomplete or uncertain information.

The demonstration highlights how ProvSQL enables complex
queries and probability computations on uncertain data. Users
can retrieve results by decreasing likelihood of certain object
combinations appearing in an image. This is compared with a
more traditional approach, which is to set a confidence threshold
on the individual objects, and then treating the resulting dataset
as perfect.

We provide a short video illustrating the demonstration sce-
nario at https://provsql.org/coco_demo_video while the code
and dataset used to support the demonstration is available at
https://provsql.org/coco_demo.

2 RELATED WORK

ProvSQL captures various provenance formalisms, including
provenance semirings [10], where-provenance [5], semirings
with monus [8] (an extension of provenance semirings for non-
monotone queries), and provenance semimodules for aggregate
queries [2]. For an overview on how these different provenance
frameworks were implemented within ProvSQL, see [15, 16].
ProvSQL is the first system to support both (m-)semiring prove-
nance and probabilistic query evaluation within a unified frame-
work. Unlike previously developed systems like MayBMS [11],
Trio [4], Orion [6], or Perm [9], which were built by modifying
the internals of obsolete PostgreSQL versions, ProvSQL is easily
deployable on modern PostgreSQL installations without mod-
ifying the database engine. ProvSQL shares non-probabilistic
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Table 1: Illustrating simplified excerpt of the dataset table

dataset
id img obj prob provenance
1 imgl 50 05 f
2 imgl 49 0.2 t2
3 imgl 45 04 t3
4 imgl 45 06 ty
5 img2 23 08 ts
6 img2 23 07 te
7 img3 75 09 t7
8 img3 58 03 ts

features with systems like Perm and GProM [3], but uniquely
integrates probabilistic data support.

3 PROBABILISTIC DATABASES AND
PROVSQL

Let us discuss how provenance can be used for probabilistic
query evaluation (Section 3.1) before discussing the way this is
implemented in ProvSQL in Section 3.2.

3.1 Provenance and Probabilities

Provenance [5], also known as data lineage [7], refers to the ex-
tra information or metadata attached to data to trace its origins
and transformations through various computational processes.
It provides a detailed account of how query results in a data-
base are derived from the input data. The concept of provenance
semirings [10], developed by Green, Karvounarakis, and Tannen,
offers a mathematical framework for tracking provenance. In this
framework, data is annotated with elements from a semiring —
an algebraic structure characterized by two binary operations
(addition and multiplication) and their respective identity ele-
ments.

Consider the relation dataset that we use in the demonstra-
tion. It contains the following attributes: id (unique identifier),
img (image identifier), obj (object class), prob (probability of ob-
ject detected from the respective class), and provenance (prove-
nance token). It stores object detection results for multiple images,
with each row representing a detected object, its associated prob-
ability, and provenance token. Though ProvSQL can represent
more complex probabilistic dependencies, in the absence of in-
formation about correlations on object annotations, we assume a
simple tuple-independent database probabilistic model [18], where
every object annotation is probabilistically independent of every
other annotation. We show an illustrating simplified excerpt of
this data in Table 1.

We explain what happens when we run the following query
in a provenance-aware database:

SELECT DISTINCT a.img
FROM dataset a JOIN dataset b ON a.img = b.img
WHERE a.obj = 50 AND b.obj = 45

The query checks whether there exists an image in the dataset
that contains at least one object of class 50 and at least one object
of class 45. In the Boolean function semiring [15], the provenance
of the query result can be computed to be the following expres-
sion:

Pex = (t1 A13) V (11 A ty)
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This means that the result is derived either from the combination
of evidence from t; and t3, or from #; and t4, where t1, t3, and t4
are the provenance annotations from the table rows correspond-
ing to the two object classes of interest (50 and 45).

The probability of the query result can be computed based on
the provenance formula. This is in general a complex (#P-hard)
problem, but for this example the computation is easy since the
provenance is read-once:

Pr(gex) = 1= (1= Pr(t1) X Pr(t3)) x (1 = Pr(t1) X Pr(zy)).

From Table 1, we get the values of Pr(#1), Pr(#3), and Pr(#4). Sub-
stituting these values into the formula, we get:

Pr(gex) =1—(1-0.5%0.4) X (1 —0.5%0.6) = 1 — 0.56 = 0.44.

Therefore, the probability of the query result is Pr(gex) = 0.44.

3.2 Implementation and Features of ProvSQL

ProvSQL [17] is a PostgreSQL extension that enables provenance
tracking through the semiring [10] framework and extensions
thereof, allowing data to be annotated and queried with prove-
nance information. Provenance is computed in a free term alge-
bra (which specializes to the integer polynomial semiring N[X]
for semiring provenance), and maps database operations like
selection, projection, and joins to corresponding semiring (and
non-semiring) operations.

Instead of using provenance formulas, ProvSQL stores prove-
nance computations as arithmetic circuits, reducing both storage
needs and processing time. To handle SQL’s multiset semantics,
ProvSQL adapts the semiring operations to account for duplicates
in SQL operations such as GROUP BY, DISTINCT, and UNION. To
support operations involving negation, such as EXCEPT, ProvSQL
leverages the m-semiring approach of [8]. Aggregate queries (e.g.,
SUM, COUNT, MIN) are managed by employing semimodules [2],
allowing annotation of specific attributes.

Utilizing provenance, ProvSQL supports probabilistic query
evaluation on probabilistic databases through a variety of tech-
niques: independent computation of provenance, decomposition
of the circuit when it is low-treewidth [1], or use of external
knowledge compilers such as d4 [13] as a last resort. It also al-
lows (expected) Shapley and Banzhaf value computations [12],
offering insights into how much a specific data item contributes
to query results.

While ProvSQL is feature-rich, certain functionalities such as
recursive queries and nested aggregation remain under develop-
ment.

4 DEMONSTRATION SCENARIO

We now present the dataset we use in our demonstration (Sec-
tion 4.1) and the way the user will interact with the system (Sec-
tion 4.2).

4.1 Dataset

Our demonstration is based on the standard COCO 2017 object
detection dataset [14]. It allows the user to find images which
contain certain combinations of objects. An image can contain
several objects of the same type and several types of objects.
Each object annotation has an independent probability value of
being correct, which is stored along with the annotation in a
SQL table similar to that of Table 1. The probability values in
our database come from the confidence score of a state-of-the-
art deep learning object detection method, YOLOV5 [19], which
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Figure 1: User interface to run a query. Here, we search for
images which contain at least one clock, at least two buses
(minimum count), and no bench (absence).

reflect its confidence in the annotation and how obvious each
object is in the picture.

To demonstrate processing of low-confidence data, we enrich
the dataset with stained version of the images in COCO 2017
dataset, using standard image filters and adding moderately ir-
regular polygons with brown background whose opacity is set
to be a random value around 50%. We also apply a box blur
inside the stained area. This staining is a form of image degrada-
tion. YOLOVS5 is sensitive to this degradation, and thus produces
a number of low-quality, low-confidence, annotations as a re-
sult. Altogether, our dataset is formed of ~ 240 000 images with
~ 1570 000 object annotations.

4.2 User Interface

Using a graphical interface (see Figure 1), the user can specify
different queries. For each possible object annotation, the user
has the possibility of fixing its minimum count (count > n where
n > 1) or requiring the object to be absent (count = 0). Minimum
count queries allow the users to find images which contain at
least a certain number of objects of a certain type (e.g., find
images which have at least three dogs). Absence queries allow
the users to find images which do not contain a certain object
(e.g., find images which have no dog). Note that due to the nature
of probabilistic databases, an object with the probability of 0.7
has probability of 1 — 0.7 = 0.3 of not existing, and therefore will
still appear in query results requiring the object to be absent, but
with a lower probability. These two query types can be combined
(e.g., find images which have at least one person and no dog).
As illustrated in Figure 1, the user can choose the object(s) by
clicking the + - x V'signs which respectively stand for increasing
the minimum count, decreasing it, requiring the object to be ab-
sent, allowing the object to be present. The user can then choose
to search either by running the query within ProvSQL as proba-
bilistic query evaluation, ordering query results by decreasing
probabilities; or by using a non-probabilistic approach, simply
setting a threshold on probabilities of annotation. This results
in SQL queries being constructed and sent to PostgreSQL (ex-
tended with ProvSQL) for evaluation. For the example of Figure 1
(knowing that clock, bench, bus have classes 74, 13, 5), ne obtains
respectively, for ProvSQL’s probabilistic query evaluation (PQE):

SELECT img, probability_evaluate(provenance()) prob
FROM (

SELECT DISTINCT p1.img

FROM dataset c, dataset b1, dataset b2

WHERE c.img=b1.img AND c.img=b2.img
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Predicted Objects
Probability Shapley Value
0.43414 0.01878

Probability: 0.07513

Name
couch
microwave
couch

0.85713
0.61585
0.32783
0.87746
0.86492
0.75313
0.70209

0.01878
0.01878
0.01878
0.00000
0.00000
0.00000
0.00000

bowl
oven

potted plant
sink

(a) Clean image returned by both type of queries
Probability: 0.01611

Predicted Objects
Probability Shapley Value
0.76989 0.00425

Name
microwave
bowl
couch

0.05892
0.57664
0.46653
0.10338
0.07110
0.85976
0.70883
0.67861
0.26362
0.14910
0.11597

0.00425
0.00331
0.00310
0.00071
0.00048
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

couch
couch
couch
tted plant
tv
sink
chair
oven
vase

(b) Degraded image, returned by PQE but not by thresholding,
unless probability threshold is set to 5% or lower

- Predicted Objects
Name  Probability
clock 0.57045
bowl
chair
couch

0.55703
0.41956
0.33836
0.23151
0.18954
0.18779
0.17927
0.13103
0.12813
0.11326
0.10214
0.08675
0.07339
0.06964
0.06735
0.06444
0.06357
0.05897
0.05151

couch
couch
couch
bowl
refrigerator
dining table
potted plant
tv
oven
dining table
sink
refrigerator
cup
cup
tv
microwave

(c) Image that does not satisfy the query, but which is returned by
thresholding if probability threshold is set to 5% or lower

Figure 2: Example case where PQE return valid images that
are impossible to separate from invalid ones through the
thresholding approach

AND c.obj=74 AND b1.obj=5 AND b2.o0bj=5
AND b1.id<>b2.id
EXCEPT
SELECT DISTINCT img FROM dataset
WHERE obj=13) t
ORDER by prob DESC

and for thresholding (say, with threshold 50%), without any
ProvSQL feature on a dataset without provenance tracking:

SELECT DISTINCT p1.img
FROM dataset c, dataset b1, dataset b2
WHERE c.img=b1.img AND c.img=b2.img
AND c.obj=74 AND b1.obj=5 AND b2.obj=5
AND b1.id<>b2.id
AND c.prob>=.5 AND b1.prob>=.5 AND b2.prob>=.5
EXCEPT
SELECT DISTINCT img FROM dataset
WHERE obj=13 AND prob>=.5

After the user runs a probabilistic query evaluation search,
he or she will get the raw number of result tuples, the expected
value of this number computed using ProvSQL’s probabilistic
evaluation of aggregated queries, and each resulting image. For



each returned image, the probability that the image satisfies
the query is displayed, along with all predicted objects inside
the image with their respective probability and their expected
Shapley value as a measure of how much they contribute to
the result. Finally, we also let users issue free-form SQL queries
on the database, to better understand how probabilistic query
evaluation works in ProvSQL.

As an example of case illustrating the value of probabilistic
query evaluation over thresholding, consider a query where a
user looks for a picture with > 2 couches, > 1 bowl, and > 1 mi-
crowave oven. An example of such image is obtained in Figure 2a,
which is the top result for PQE, and also obtained when using the
thresholding method as long as the threshold is < 32%. Now, a de-
graded version of the same image (Figure 2b) also matches, with
lower confidence score for PQE (it is ranked #4, after two other
valid matches); but to obtain this result with thresholding, one
needs to set the threshold as low as 5%. But then, with such a low
threshold, the thresholding method also returns wrong results,
such as Figure 2c where a TV is wrongly labeled as a microwave.
In addition to the difficulty of finding the right threshold, it is
common that the thresholding approach cannot separate right
results from wrong, but where probabilistic query evaluation, by
taking into account the combined confidence in every annotation,
correctly ranks images.
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