
ExaLogLog: Space-Efficient and Practical Approximate
Distinct Counting up to the Exa-Scale

Otmar Ertl
Dynatrace Research

Linz, Austria
otmar.ertl@dynatrace.com

ABSTRACT
This work introduces ExaLogLog, a new data structure for ap-
proximate distinct counting, which has the same practical prop-
erties as the popular HyperLogLog algorithm. It is commutative,
idempotent, mergeable, reducible, has a constant-time insert op-
eration, and supports distinct counts up to the exa-scale. At the
same time, as theoretically derived and experimentally verified,
it requires 43 % less space to achieve the same estimation error.

1 INTRODUCTION
Exact counting of distinct elements in a data set or a data stream is
known to take linear space [4]. However, the space requirements
can be significantly reduced, if approximate results are sufficient.
HyperLogLog (HLL) [20] with improved small-range estimation
[18, 23, 37, 42, 49] has become the standard algorithm for approx-
imate distinct counting. It achieves a relative standard error of
1.04/√𝑚 up to distinct counts in the order of 264 ≈ 1.8 · 1019

using only 6𝑚 bits [23]. Therefore, the query languages of many
data stores (see e.g. documentation of Timescale, Redis, Oracle
Database, Snowflake, Microsoft SQL Server, Google BigQuery,
Vertica, Elasticsearch, Aerospike, Amazon Redshift, KeyDB, or
DuckDB) offer special commands for approximate distinct count-
ing that are usually based on HLL. Query optimization [22, 31],
caching [46], graph analysis [7, 35], attack detection [9, 11], net-
work volume estimation [6], or metagenomics [5, 8, 17, 28] are
further applications of HLL.

HLL is actually very simple as exemplified in Algorithm 1.
It typically consists of a densely packed array of 6-bit registers
𝑟0, 𝑟1, . . . , 𝑟𝑚−1 where the number of registers 𝑚 is a power of
2, 𝑚 = 2𝑝 [23]. The choice of the precision parameter 𝑝 allows
trading space for better estimation accuracy. Adding an element
requires calculating a 64-bit hash value. 𝑝 bits are used to choose
a register for the update. The number of leading zeros (NLZ)
of the remaining 64 − 𝑝 bits are interpreted as a geometrically
distributed update value ≥ 1 with success probability 1

2 , that
is used to update the selected register. A register always holds
the maximum of all its previous update values. Estimating the
distinct count from the register values is more challenging, but
can also be implemented using a few lines of code [18, 20]. HLL
owes its popularity to the following features allowing it to be
used in distributed systems [19]:
Speed: Element insertion is a fast and allocation-free operation
with a constant time complexity independent of the sketch size.
In particular, given the hash value of the element, the update
requires only a few CPU instructions.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Idempotency: Further insertions of the same element will never
change the state. This is actually a natural property every algo-
rithm for distinct counting should support to prevent duplicates
from changing the result.
Mergeability: Partial results calculated over subsets can be eas-
ily merged to a final result. This is important when data is dis-
tributed, is processed in parallel, or needs to be aggregated.
Reproducibility: The result does not depend on the processing
order, which often cannot be guaranteed in practice anyway.
Reproducibility is achieved by a commutative insert operation
and a commutative and associative merge operation.
Reducibility: The state can be reduced to a smaller state corre-
sponding to a smaller precision parameter. The reduced state is
identical to that obtained by direct recording with lower precision.
This property allows adjusting the precision without affecting
the mergeability with older records.
Estimation: A fast and robust estimation algorithm ensures
nearly unbiased estimates with a relative standard error bounded
by a constant over the full range of practical distinct counts.
Simplicity: The implementation requires only a few lines of
code. The entire state can be stored in a single byte array of
fixed length which makes serialization very fast and convenient.
Furthermore, add and in-place merge operations do not require
any extra memory allocations.

Until recently HLL was the most space-efficient practical data
structure having all these desired properties. Space efficiency can
be measured in terms of the memory-variance product (MVP)
[34], which is the relative variance of the (unbiased) distinct-
count estimate 𝑛̂ multiplied by the storage size in bits

MVP := Var(𝑛̂/𝑛) × (storage size in bits), (1)

where 𝑛 is the true distinct count. If the MVP is asymptotically
(for sufficiently large 𝑛) a constant specific to the data structure,
it can be used for comparison as it eliminates the general inverse
dependence of the relative estimation error on the root of the
storage size (see Figure 1). Most HLL implementations use 6-bit
registers [23] to support distinct counts beyond the billion range,
resulting in a theoretical MVP of 6.48 [34]. A recent theoretical
work conjectured a general lower bound of 1.98 for the MVP of
sketches supporting mergeability and reproducibility [33], which
shows the potential for improvement.

Algorithm 1: Inserts an element with 64-bit hash value
⟨ℎ63ℎ62 . . . ℎ0⟩2 into a HyperLogLog consisting of 𝑚 = 2𝑝 (𝑝 ≥ 2)
6-bit registers 𝑟0, 𝑟1, . . . , 𝑟𝑚−1 with initial values 𝑟𝑖 = 0.
𝑖 ← ⟨ℎ63ℎ62 . . . ℎ64−𝑝 ⟩2 ⊲ extract register index
𝑎 ← ⟨ 0 . . . 0

𝑝

ℎ63−𝑝ℎ62−𝑝 . . . ℎ0⟩2 ⊲ mask register index bits

𝑘 ← nlz(𝑎) − 𝑝 + 1 ⊲ update value 𝑘 ∈ [1, 65 − 𝑝] ⊆ [1, 63]
nlz returns the number of leading zeros

𝑟𝑖 ← max(𝑟𝑖 , 𝑘) ⊲ update register

Series ISSN: 2367-2005 829 10.48786/edbt.2025.67

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.67

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
relative standard error (%)

128

256

512

1024

2048

4096

8192

m
em

or
y

(b
yt

es
)

MVP = 8
MVP = 6
MVP = 5

MVP = 4
MVP = 3
MVP = 2

Figure 1: The memory over the relative standard error for
different memory-variance products (MVPs) following (1).

1.1 Related Work
In the past, different approaches have been proposed to out-
perform the space efficiency of HLL. However, many of them
sacrificed at least one of the properties listed above [10, 24, 27, 34,
39, 48]. Therefore, in the following, we focus only on algorithms
that support at least mergeability, idempotency, and reproducibil-
ity, which we consider to be essential properties for practical
applications in distributed systems.

Lossless compression can significantly reduce the storage size
of HLL [16, 26, 38]. Since the compressed state prevents random
access to registers as required for insertion, bulking is needed to
realize at least amortized constant update times. The required
buffer partially cancels out the memory savings. Recent tech-
niques avoid buffering of insertions. The Apache DataSketches
library [1] provides an implementation using 4 bits per register
to store the most frequent values relative to a global offset. Out of
range values are kept separately in an associative array. Overall,
this leads to a smaller MVP but also to a more expensive insert
operation. Its runtime is proportional to the memory size in the
worst case, because all registers must be updated whenever the
global offset is increased. HyperLogLogLog (HLLL) [25] takes
this strategy to the extreme with 3-bit registers and achieves a
space saving of around 40 % at the expense of an insert operation
which, except for very large numbers, has been reported to be
on average more than an order of magnitude slower compared
to HLL [25].

Compression can also be applied to other data structures. Prob-
abilistic counting with stochastic averaging (PCSA) [21] is a
predecessor of HLL, also known as FM-sketch. Although less
space-efficient when uncompressed, its compressed state leads
to a smaller MVP than that of HLL [26, 38]. The compressed
probability counting (CPC) sketch as part of the Apache DataS-
ketches library [1] uses this finding. The serialized compressed
representation of the CPC sketch achieves a MVP of around 2.31
[2] that is already quite close to the conjectured lower bound of
1.98 [33]. However, this is achieved by a costly consolidation and
compression step, as the in-memory representation is more than
twice as large, since an amortized constant runtime of insertions
can only be achieved by bulking.

Recently, data structures have been proposed that are more
space-efficient than HLL while not giving up constant-time in-
sertions. ExtendedHyperLogLog (EHLL) [30] extends the HLL
registers from 6 to 7 bits to store not only the maximum update
value, but also whether there was an update with a value smaller
by one. This additional information can be used to obtain more
accurate estimates. In particular, the MVP is reduced by 16 % to
5.43. Inspired by this result, we analyzed, if even more additional
bits used to store the information about the occurrence of smaller

Table 1: Notations.

Symbol Description

⌊ . . .⌋ floor function, e.g. ⌊3.7⌋ = 3
⟨. . .⟩2 binary representation, e.g. ⟨110⟩2 = 6
| bitwise OR operation, e.g. ⟨1001⟩2 | ⟨1010⟩2 = ⟨1011⟩2
& bitwise AND operation, e.g. ⟨1001⟩2 & ⟨1010⟩2 = ⟨1000⟩2
nlz number of leading zeros if the argument is interpreted as unsigned 64-bit value,

e.g. nlz(⟨10110⟩2) = 59
𝑛 distinct count
𝑛̂ distinct count estimate
𝑏 base, 𝑏 > 1, defines distribution of update values, compare (2)
𝑝 precision parameter
𝑚 number of registers,𝑚 = 2𝑝
𝑞 number of bits used for storing an update value
𝑑 number of additional register bits to indicate updates with smaller values
𝑡 parameter of approximated update value distribution, compare (8)
𝑟𝑖 value of 𝑖-th register, 0 ≤ 𝑖 <𝑚, 0 ≤ 𝑟𝑖 ≤ (65 − 𝑝 − 𝑡)2𝑡+𝑑 + 2𝑑 − 1
𝜌update probability mass function of update values, see (2) and (8)
𝜌reg probability mass function of register values, see Section 3.1
𝜌token probability mass function of hash tokens, see (24)
𝑣 hash token parameter, hash token takes 𝑣 + 6 bits, see Section 4.3
L likelihood function, L = L(𝑛 |𝑟0 . . . 𝑟𝑚−1) , see Sections 3.2 and 4.3
Γ gamma function, Γ (𝑥) :=

∫ ∞
0 𝑦𝑥−1𝑒−𝑦𝑑𝑦

𝜁 Hurvitz zeta function, 𝜁 (𝑥, 𝑦) :=
∑∞
𝑢=0 (𝑢 + 𝑦)−𝑥 = 1

Γ (𝑥)
∫ ∞
0

𝑧𝑥−1𝑒−𝑦𝑧
1−𝑒−𝑧 𝑑𝑧

𝜇 probability that the next distinct element causes a state change, see Section 3.3
expm1 expm1(𝑥) := 𝑒𝑥 − 1, built-in function available in most standard libraries
log1p log1p(𝑥) := ln(1 + 𝑥) , built-in function available in most standard libraries

update values could further improve the MVP [19]. The result
of our theoretical analysis led to UltraLogLog (ULL), which uses
two extra bits and achieves a MVP of 4.63, an improvement of
28 % over HLL. Our theoretical analysis also showed that further
space savings would be possible with even more additional bits if,
at the same time, success probabilities smaller than 1

2 were used
for the geometric distribution of the update values. However, as
the generation of such update values is more complicated, this
approach has not been pursued so far.

Another recent data structure, SpikeSketch [15], has chosen
a different approach and combines update values following a
geometric distribution with a success probability 3

4 and a special
lossy encoding scheme to improve space efficiency. It preserves
mergeability and idempotency and also has a constant update
time. Unfortunately, our experiments presented later could not
confirm the claimed MVP of 4.08 over the entire range of dis-
tinct counts. We found values that are significantly larger for
distinct counts below 104 caused by lossy compression and also
the stepwise smoothing.

This work focuses on distinct counting of single, possibly
distributed, data flows. Data sketches for (non-distinct) counting
[29, 36, 40] or distinct counting of multiple flows [42, 47] were
thus out of scope.

1.2 Summary of Contributions
We introduce ExaLogLog (ELL), which is based on a recently
proposed and theoretically analyzed data structure [19] that gen-
eralizes HLL, EHLL, ULL, and PCSA. However, we replace the
geometric distribution of the update values by a distribution for
which it is easier to map a 64-bit hash value to a correspond-
ing random value. When optimally configured, ELL achieves a
MVP of 3.67 as theoretically predicted and experimentally con-
firmed. Compared to HLL with 6-bit registers [23], which is still
the standard algorithm in most applications, ELL supports the
same operating range up to the exa-scale, but requires up to 43 %
less space. In contrast to compressed probability counting (CPC)
[1, 26] or HyperLogLogLog (HLLL) [25], the insert operation
takes constant time independent of the sketch size and therefore
also independent of the configured precision.

830

We will show that the new update value distribution leads to
a simple maximum likelihood (ML) equation for the ELL state,
which has only a small number of terms regardless of the chosen
precision. We propose a robust and efficient algorithm based on
Newton’s method to solve this equation and, hence, to quickly
find the distinct count estimate.

Moreover, we considered martingale estimation, which is the
standard estimation algorithm, if the data is not distributed and
merging is not needed [12, 41]. For this case, the theory also pre-
dicts significant reductions of the MVP by up to 33 % compared
to HLL, which was again confirmed experimentally.

Finally, we present a strategy to realize a sparse mode for ELL
by transforming the 64-bit hash values to smaller hash tokens
which can be collected and equivalently used for insertions. We
also demonstrate how the distinct count can be directly estimated
from those hash tokens using ML estimation.

A reference implementation of ELL written in Java can be
found at https://github.com/dynatrace-research/exaloglog-paper.
This repository also contains all the source code and instructions
for reproducing the results and figures presented in this work.
Table 1 summarizes the notations used in the following.

2 DATA STRUCTURE
Recently, we have introduced and theoretically analyzed a data
structure that can be seen as generalization of HLL, EHLL and
PCSA, and that finally led us to ULL, another special case [19].
The generalized data structure consists of𝑚 = 2𝑝 registers. The
update operation uses 𝑝 bits of a uniformly distributed hash value
for selecting a register and another geometrically distributed hash
value with probability mass function (PMF)

𝜌update (𝑘) = (𝑏 − 1)𝑏−𝑘 𝑘 ≥ 1, 𝑏 > 1 (2)

for updating the selected register. Each register consists of 𝑞 + 𝑑
bits. The first 𝑞 bits store the maximum 𝑢 of all update values
the register was updated with, and the remaining 𝑑 bits indicate
the occurrences of update values from the range [𝑢 − 𝑑,𝑢 −
1]. By definition, this data structure is idempotent, as duplicate
insertions will never modify the state. Since the state may only
change for distinct insertions, it enables distinct count estimation.

2.1 Previous Theoretical Results
We have derived and presented various expressions for the MVP
of this generalized data structure [19]. If the registers are densely
stored in a bit array, the theoretical MVP for an efficient unbiased
estimator meeting the Cramér-Rao bound is

MVP ≈ (𝑞+𝑑) ln𝑏
𝜁

(
2,1+𝑏−𝑑

𝑏−1

) , (3)

where 𝜁 is the Hurvitz zeta function as defined in Table 1. For
ULL, as a special case with 𝑏 = 2 and 𝑑 = 2, we have shown that
this MVP can also be practically achieved using ML estimation.
We have also derived a first-order bias correction [14] that can
be applied to the ML estimate 𝑛̂ML according to

𝑛̂ =
𝑛̂ML

1 + 𝑐
𝑚

with 𝑐 := (ln𝑏)
(
1 + 2𝑏−𝑑

𝑏−1

) 𝜁

(
3,1+𝑏−𝑑

𝑏−1

)(
𝜁

(
2,1+𝑏−𝑑

𝑏−1

))2 . (4)

𝑐 is a constant dependent on the parameters. The bias correction
factor (1 + 𝑐

𝑚)−1 approaches 1 as𝑚 →∞.
If the state size is measured in terms of the Shannon entropy,

corresponding to optimal compression of the state, a different

0 5 10 15 20
k

2−2

2−4

2−6

2−8

2−10

2−12

pr
ob

ab
ili

ty

geometric 1 =
√

2
approximate C = 1

0 5 10 15 20
k

2−3

2−4

2−5

2−6

2−7

2−8

geometric 1 = 4√2
approximate C = 2

Figure 2: Comparing the PMFs (2) and (8) for 𝒃 = 22
−𝒕
.

expression was obtained for the MVP

MVP ≈
(
1+𝑏−𝑑

𝑏−1

)−1
+
∫ 1

0 𝑧
𝑏−𝑑
𝑏−1 (1−𝑧) ln(1−𝑧)

𝑧 ln𝑧 𝑑𝑧

𝜁

(
2,1+𝑏−𝑑

𝑏−1

)
ln 2

. (5)

This number is also known as Fisher-Shannon (FISH) number,
for which a theoretical lower bound of 1.98 was postulated [33].

In a non-distributed setting, where merging of sketches is
not needed, martingale estimation can be used [12, 41]. This
estimation method is known to be efficient [34] and leads to a
smaller MVP than (3). The corresponding asymptotic MVP, if
again the registers are densely stored in a bit array, is given by

MVP ≈ (𝑞+𝑑) ln𝑏
2

(
1 + 𝑏−𝑑

𝑏−1

)
. (6)

In contrast, if the registers are optimally compressed, the MVP
would be

MVP ≈
1+

(
1+𝑏−𝑑

𝑏−1

) ∫ 1
0 𝑧

𝑏−𝑑
𝑏−1 (1−𝑧) ln(1−𝑧)

𝑧 ln𝑧 𝑑𝑧

2 ln 2 . (7)

This expression has a lower bound of 1.63 which corresponds to
the theoretical limit [34].

2.2 Approximated Update Value Distribution
Standard hash functions usually give a uniformly distributed
64-bit hash value. Getting a hash value that is geometrically
distributed according to (2) is not straightforward except for
𝑏 = 2, where the number of leading zeros (NLZ) of a uniformly
distributed hash value can be taken. For 𝑏 ≠ 2, the hash value
could be used to seed a pseudo-random number generator that
generates values according to the desired distribution. However,
this involves floating-point operations, which might be slow on
devices without floating-point units. Alternatively, hash ranges
that map to the same update value can be precomputed, which
allows finding the update value via linear or binary search.

Both approaches will be slower and not branch-free, unlike
for 𝑏 = 2. They may also introduce inaccuracies for huge dis-
tinct counts, as the probabilities of update values will always be
multiples of 2−64 when using 64-bit hashes.

Therefore, we propose to use a different update value distribu-
tion with PMF

𝜌update (𝑘) = 1
2𝑡+1+⌊ (𝑘−1)/2𝑡 ⌋ with 𝑘 ≥ 1, 𝑡 ≥ 0. (8)

This distribution approximates geometric distributions (2) with
base value 𝑏 = 22−𝑡 quite well as shown in Figure 2. The reason
is that chunks of 2𝑡 subsequent update values have always the
same total probability. In other words,

∑𝑐2𝑡+2𝑡
𝑘=𝑐2𝑡+1 𝜌update (𝑘) =

1
2𝑐+1 holds for (2) and (8) and for all 𝑐 ≥ 0.

A big advantage of (8) over (2) is that update values can be
easily and accurately generated from a 64-bit hash value using
a few CPU instructions by taking 𝑡 bits of the hash value and

831

Algorithm 2: Inserts an element with 64-bit hash value
⟨ℎ63ℎ62 . . . ℎ0⟩2 into an ExaLogLog with (6 + 𝑡 + 𝑑)-bit regis-
ters 𝑟0, 𝑟1, . . . , 𝑟𝑚−1 (𝑚 = 2𝑝) and initial values 𝑟𝑖 = 0.
𝑖 ← ⟨ℎ𝑝+𝑡−1ℎ𝑝+𝑡−2 . . . ℎ𝑡 ⟩2 ⊲ extract register index
𝑎 ← ⟨ℎ63ℎ62 . . . ℎ𝑝+𝑡1 . . . 1

𝑝+𝑡
⟩2

𝑘 ← nlz(𝑎)2𝑡 + ⟨ℎ𝑡−1ℎ𝑡−2 . . . ℎ0⟩2 + 1 ⊲ compute update value (9),
𝑘 ∈ [1, (65 − 𝑝 − 𝑡)2𝑡]

𝑢 ← ⌊𝑟𝑖/2𝑑 ⌋ ⊲ get max. update value from 𝑟𝑖 , right-shift by 𝑑 bits
Δ← 𝑘 − 𝑢
if Δ > 0 then

𝑟𝑖 ← 𝑘 · 2𝑑 + ⌊(2𝑑 + (𝑟𝑖 mod 2𝑑))/2Δ⌋
else if Δ < 0 ∧ 𝑑 + Δ ≥ 0 then

𝑟𝑖 ← 𝑟𝑖 | 2𝑑+Δ ⊲ | denotes bitwise OR

determining the NLZ of the remaining bits according to
update value = NLZ × 2𝑡 + (value of the 𝑡 bits) + 1. (9)

Furthermore, as we will see in Section 3.2, this distribution simpli-
fies maximum likelihood estimation a lot compared to a geometric
distribution with 𝑏 ≠ 2 thanks to its power-of-two probabilities.

2.3 ExaLogLog
Our new data structure ExaLogLog (ELL) is based on the general-
ized data structure as we have recently proposed in [19] and also
briefly discussed in Section 2, however, using the approximate
distribution (8) instead of the geometric distribution (2) for the
update values. Hence, the parameter 𝑏 is replaced by 𝑡 were the
two distributions are similar for 𝑏 = 22−𝑡 . For 𝑡 = 0⇔ 𝑏 = 2 the
two distributions are even identical.

As the generalized data structure, ELL consists of 𝑚 = 2𝑝
registers. Every time an element is inserted, a 64-bit hash value is
computed of which 𝑝 bits are used to select one of the registers.
The remaining 64 − 𝑝 bits are used to generate an update value
according to (8). Each register consists of 𝑞+𝑑 bits. The first 𝑞 bits
store the maximum update value 𝑢 seen so far for that register.
The remaining 𝑑 bits memorize the occurrences of update values
in the range [𝑢 − 𝑑,𝑢 − 1].

To live up its name, ELL should, like HLL with 6-bit registers
[23], support distinct counts up to the exa-scale, which is suffi-
cient for any conceivable practical use case. As the maximum
supported distinct count is roughly given by 𝑏2𝑞 [19], 𝑞 = 6 + 𝑡
must be chosen in order to get 𝑏2𝑞 = (22−𝑡)26+𝑡

= 264 ≈ 1.8×1019.
The update procedure for inserting an element is summarized

by Algorithm 2 and exemplified in Figure 3. It splits the hash value
into three parts. The first 64 − 𝑝 − 𝑡 bits are used to determine
the number of leading zeros (NLZ) which is therefore in the
range [0, 64− 𝑝 − 𝑡]. The next 𝑝 bits address the register, and the
remaining last 𝑡 bits, in combination with the NLZ of the first
part, determine the update value according to (9). It is possible
to use the bits in a different order. In particular, the three parts
consisting of 64−𝑝 − 𝑡 , 𝑝 , and 𝑡 bits could be permuted. However,
only if the 64−𝑝−𝑡 bits for the NLZ and the 𝑝 bits for the address
are adjacent and in this order, ELL will be reducible, as described
later in Section 4.2.

Since ELL uses 64-bit hashes, update values computed accord-
ing to (9) are limited by (64−𝑝−𝑡)2𝑡 + (2𝑡 −1) +1 = (65−𝑝−𝑡)2𝑡 .
For 𝑝 ≥ 2, all possible update values thus fit into 6 + 𝑡 bits as
(65 − 𝑝 − 𝑡)2𝑡 ≤ 63 · 2𝑡 ≤ 26+𝑡 − 1 holds in any case. Adapting
distribution (8) to incorporate the limitation of update values to
the range [1, (65 − 𝑝 − 𝑡)2𝑡] gives
𝜌update (𝑘) = 1

2𝜙 (𝑘) with 𝑘 ∈ [1, (65 − 𝑝 − 𝑡)2𝑡], 𝑡 ≥ 0, (10)

Figure 3: Two element insertions into an ExaLogLog sketch
with parameters 𝒑 = 2, 𝒕 = 2, 𝒅 = 6 which has 2𝒑 = 4
registers with a size of 6 + 𝒕 + 𝒅 = 14 bits.

where we introduced the function

𝜙 (𝑘) := min(𝑡 + 1 + ⌊(𝑘 − 1)/2𝑡 ⌋, 64 − 𝑝). (11)

2.4 Choice of Parameters
Under the assumption that the formulas for the MVP presented
in Section 2.1 are still a good approximation after the exchange
of the update value distribution, we can use them to search for
parameters that lead to a good space efficiency. As our experi-
mental results will show later, the predicted MVPs are indeed
very accurate despite the deviation from a geometric distribution
which eventually justifies the made assumption.

We evaluated the MVPs given in Section 2.1 with 𝑞 = 6+ 𝑡 and
𝑏 = 22−𝑡 for 𝑡 ∈ {0, 1, 2, 3} and 𝑑 ≥ 0. Figure 4 shows the MVP
according to (3) for an unbiased and efficient estimator. Figure 5
shows the MVP given by (6) when using the martingale estimator
that can only be used for non-distributed setups. Figures 6 and 7
show the corresponding MVPs when the registers are assumed
to be optimally compressed as given by (5) and (7).

These figures allow identifying useful configurations. The
optimal setting in Figure 4 is 𝑡 = 2 and 𝑑 = 20, resulting in a total
register size of 𝑞 + 𝑑 = 6 + 𝑡 + 𝑑 = 28 bits and a theoretical MVP
of 3.67 which is 43 % less than that of HLL with 6-bit registers.
Since two registers can be packed into exactly 7 bytes, register
access is not too complicated.

An interesting configuration is also 𝑡 = 2 and 𝑑 = 24 despite
the larger theoretical MVP with a value of 3.78. The registers
with a size of 32 bits allow very fast register access when stored
in a 32-bit integer array. The 32-bit register alignment makes
this configuration even convenient for concurrent updates us-
ing compare-and-swap instructions available on modern central
processing units (CPUs). Furthermore, as Figures 6 and 7 indi-
cate, this configuration is probably more efficient than 𝑑 = 20 or
𝑑 = 16 when using compression.

When setting 𝑡 = 1, the choice 𝑑 = 9 with a MVP of 3.90 is
also worth mentioning. Although less space-efficient than the
mentioned configurations with 𝑡 = 2, this setting also results in

832

−40%

−30%

−20%

−10%

0%

0 10 20 30 40 50 60
3

3.5

4.0

4.5

5.0

5.5

6.0

6.5

m
em

or
y-

va
ri

an
ce

pr
od

uc
t

(M
V

P)

HLL

EHLL
ULL

ELL(1,9)

ELL(2,16)
ELL(2,20)

ELL(2,24)

Figure 4: The MVP according to (3) with 𝒃 = 22
−𝒕

and 𝒒 =
6 + 𝒕 when storing the registers in a bit array and using an
efficient unbiased estimator. Arrows indicate minima.

−30%

−20%

−10%

0%

0 10 20 30 40 50 60
3

2.75

3.00

3.25

3.50

3.75

4.00

4.25

m
em

or
y-

va
ri

an
ce

pr
od

uc
t

(M
V

P)

HLL
EHLL

ULL

ELL(1,9)

ELL(2,16)

ELL(2,20)

ELL(2,24)

Figure 5: The MVP according to (6) with 𝒃 = 22
−𝒕

and 𝒒 =
6 + 𝒕 when storing the registers in a bit array and using the
martingale estimator. Arrows indicate minima.

−30%

−20%

−10%

0%

0 10 20 30 40 50 60
3

2.0

2.2

2.4

2.6

2.8

3.0

m
em

or
y-

va
ri

an
ce

pr
od

uc
t

(M
V

P)

HLL

EHLL

ULL
ELL(1,9)

ELL(2,16)

ELL(2,20)

ELL(2,24)

Figure 6: The MVP according to (5) with 𝒃 = 22
−𝒕

when
assuming optimal compression of the state and using an
efficient unbiased estimator.

−15%

−10%

−5%

0%

0 10 20 30 40 50 60
3

1.6

1.7

1.8

1.9

2.0

m
em

or
y-

va
ri

an
ce

pr
od

uc
t

(M
V

P)

HLL

EHLL

ULL
ELL(1,9)

ELL(2,16)

ELL(2,20)

ELL(2,24)

Figure 7: The MVP according to (7) with 𝒃 = 22
−𝒕

when
assuming optimal compression of the state and using the
martingale estimator.

byte-aligned registers, as their size is exactly 16 bits. Variants
with 𝑡 ≥ 3 lead to larger MVPs than for 𝑑 = 2. However, as they
also lead to large 𝑑 and therefore to quite large register sizes, we
do not consider them to be useful in practice.

In the case of martingale estimation, which can be used for
non-distributed setups, the optimum is achieved for 𝑡 = 2 and
𝑑 = 16 (cf. Figure 5), which leads to a MVP of 2.77, which is 33 %
below that of HLL with 6-bit registers. As the register size is 24
bits and therefore fits exactly into 3 bytes, register access is also
relatively simple.

As the theoretical MVPs only depend on 𝑡 and 𝑑 , we will use
the notation ELL(𝑡 , 𝑑) to describe a specific class of ELL sketches
with equal MVP. The third parameter, the precision parameter 𝑝 ,
controls the trade-off between space and estimation error.

2.5 Relationship to Other Data Structures
In Section 2.3 we already mentioned that ELL with 𝑡 = 0 is
the same as the generalized data structure with 𝑏 = 2 we have
recently proposed [19]. As this data structure is in turn a gen-
eralization of HLL with 𝑑 = 0, EHLL with 𝑑 = 1, and ULL with
𝑑 = 2 [19], these therefore correspond to ELL(0, 0), ELL(0, 1),
and ELL(0, 2), respectively. There is also a direct relationship to
PCSA [21] and CPC [1, 26], as ELL(0, 64) stores exactly the same
information, albeit encoded differently. In addition, HyperMin-
Hash [51] corresponds to ELL(𝑡 , 0), whose registers only store
the maxima of update values. HyperMinHash uses an update
value distribution equivalent to (8) but defines the ordering of
register and update values differently.

3 STATISTICAL INFERENCE
To simplify the statistical model, we use the common Poisson
approximation [18, 20, 45] that the number of inserted distinct el-
ements is not fixed, but follows a Poisson distribution with mean
𝑛. Consequently, since the updates are evenly distributed over
all𝑚 registers, the number of updates with value 𝑘 per register
is again Poisson distributed with mean 𝑛

𝑚 𝜌update (𝑘) when using
𝜌update defined in (10). The probability that a register was updated
with value 𝑘 at least once, denoted by event 𝐴𝑘 , is therefore

Pr(𝐴𝑘) = 1 − 𝑒− 𝑛
𝑚
𝜌update (𝑘) . (12)

The probability that 𝑢 ∈ [1, (65 − 𝑝 − 𝑡)2𝑡] was the largest
update value, which implies that there were no updates with
values greater than 𝑢, is given by

Pr(𝐴𝑢 ∧
∧(65−𝑝−𝑡)2𝑡

𝑘=𝑢+1 𝐴𝑘) = Pr(𝐴𝑢)
∏(65−𝑝−𝑡)2𝑡

𝑘=𝑢+1 (1−Pr(𝐴𝑘))
=
(
1 − 𝑒− 𝑛

𝑚
𝜌update (𝑢)

)
exp

(
− 𝑛
𝑚

∑(65−𝑝−𝑡)2𝑡
𝑘=𝑢+1 𝜌update (𝑘)

)
=
(
1 − 𝑒− 𝑛

𝑚
𝜌update (𝑢)

)
𝑒−

𝑛
𝑚
𝜔 (𝑢) , (13)

where 𝜔 is defined as (see Lemma B.1)

𝜔 (𝑢) :=
∑(65−𝑝−𝑡)2𝑡
𝑘=𝑢+1 𝜌update (𝑘) = 2𝑡 (1−𝑡+𝜙 (𝑢))−𝑢

2𝜙 (𝑢) . (14)

3.1 Probability Mass Function for Registers
As described in Section 2, a register stores the maximum update
value 𝑢 and also if there were updates with values in the range
[𝑢 − 𝑑,𝑢 − 1]. Multiplying the probability (13) that 𝑢 was the
maximum update value with Pr(𝐴𝑘) or (1 − Pr(𝐴𝑘)) (compare
(12)) for all 𝑘 ∈ [𝑢 − 𝑑,𝑢 − 1] dependent on whether an update

833

Algorithm 3: Computation of the coefficients of log-likelihood func-
tion (15) for an ExaLogLog sketch with registers 𝑟0, 𝑟1, . . . , 𝑟𝑚−1.
𝛼 ′ ← 0 ⊲ 𝛼 ′ = 𝛼 · 264−𝑝 is an integer
(𝛽𝑡+1, 𝛽𝑡+2, . . . , 𝛽64−𝑝) ← (0, 0, . . . , 0)
for 𝑖 ← 0 to𝑚 − 1 do ⊲ iterate over all𝑚 registers

𝑢 ← ⌊𝑟𝑖/2𝑑 ⌋ ⊲ get max. update value from 𝑟𝑖 , right-shift by 𝑑 bits
𝛼 ′ ← 𝛼 ′ + 264−𝑝𝜔 (𝑢) ⊲ see (14) for a definition of function 𝜔

if 𝑢 ≥ 1 then
𝑗 ← 𝜙 (𝑢) ⊲ see (11) for a definition of function 𝜙

𝛽 𝑗 ← 𝛽 𝑗 + 1
if 𝑢 ≥ 2 then

for 𝑘 ← max(1, 𝑢 − 𝑑) to 𝑢 − 1 do
𝑗 ← 𝜙 (𝑘)
if (𝑟𝑖 & 2𝑑−𝑢+𝑘) = 0 then ⊲ & denotes bitwise AND

𝛼 ′ ← 𝛼 ′ + 264−𝑝− 𝑗
else

𝛽 𝑗 ← 𝛽 𝑗 + 1

𝛼 ← 𝛼 ′/264−𝑝

with value 𝑘 has occurred or not, gives the probability mass
function (PMF) for a single register 𝑟 :
Case 𝒓 = 0:

𝜌reg (𝑟 |𝑛) = 𝑒−
𝑛
𝑚
𝜔 (0) = 𝑒−

𝑛
𝑚 .

Case 𝒓 = 𝒖2𝒅 + ⟨𝒍1 . . . 𝒍𝒖−1⟩22𝒅+1−𝒖 with 1 ≤ 𝒖 ≤ 𝒅:

𝜌reg (𝑟 |𝑛) = (1 − 𝑒−
𝑛
𝑚
𝜌update (𝑢))𝑒− 𝑛

𝑚
𝜔 (𝑢) ·

·∏𝑢−1
𝑗=1 (1 − 𝑒−

𝑛
𝑚
𝜌update (𝑢− 𝑗))𝑙 𝑗 (𝑒− 𝑛

𝑚
𝜌update (𝑢− 𝑗))1−𝑙 𝑗 .

Case 𝒓 = 𝒖2𝒅 + ⟨𝒍1 . . . 𝒍𝒅⟩2 with 𝒅 + 1 ≤ 𝒖 ≤ (65 − 𝒑 − 𝒕)2𝒕 :

𝜌reg (𝑟 |𝑛) = (1 − 𝑒−
𝑛
𝑚
𝜌update (𝑢))𝑒− 𝑛

𝑚
𝜔 (𝑢) ·

·∏𝑑
𝑗=1 (1 − 𝑒−

𝑛
𝑚
𝜌update (𝑢− 𝑗))𝑙 𝑗 (𝑒− 𝑛

𝑚
𝜌update (𝑢− 𝑗))1−𝑙 𝑗 .

3.2 Maximum-Likelihood Estimation
Since the registers are independent due to the Poisson approxima-
tion, the log-likelihood function for register states 𝑟0, 𝑟1, . . . , 𝑟𝑚−1
can be written as

lnL = lnL(𝑛 |𝑟0, . . . , 𝑟𝑚−1) =
∑𝑚−1
𝑖=0 ln 𝜌reg (𝑟𝑖 |𝑛).

According to (10), 𝜌update is always a power of two from the
set { 1

2𝑡+1 ,
1

2𝑡+2 , . . . ,
1

264−𝑝 }. Therefore, the log-likelihood function
always has the shape

lnL = − 𝑛
𝑚𝛼 +∑64−𝑝

𝑢=𝑡+1 𝛽𝑢 ln(1 − 𝑒− 𝑛
𝑚2𝑢), (15)

where the sum has at most 64 − 𝑝 − 𝑡 nonzero terms. The coeffi-
cients 𝛼 and 𝛽𝑢 depend just on the register states 𝑟0, 𝑟1, . . . , 𝑟𝑚−1
and can be computed according to Algorithm 3. Since 𝑗 is the
result of 𝜙 (𝑘) (10), it is bounded by 64 − 𝑝 and all contributions
to 𝛼 are integer multiples of 1

264−𝑝 . Therefore, the summation can
be performed with integer arithmetic only, if 𝛼 ′ = 𝛼 · 264−𝑝 is
computed instead.

In the following we consider the case where 𝛼 and at least one
of the coefficients 𝛽𝑢 are positive. 𝛽𝑢 all zero requires all registers
to be in the initial state leading to a ML estimate of zero. 𝛼 = 0
can only occur, if all registers are saturated. In this case, which
only occurs with a noteworthy probability for distinct counts
that are entirely unrealistic, the ML estimate would be infinite.
When introducing

𝑥 := exp
(

𝑛
𝑚2𝑢max

) − 1, (16)
𝑢min := min𝑡+1≤𝑢≤64−𝑝 {𝑢 | 𝛽𝑢 > 0},

𝑢max := max𝑡+1≤𝑢≤64−𝑝 {𝑢 | 𝛽𝑢 > 0},
𝜑 (𝑥) := 𝛽𝑢max +

∑𝑢max−𝑢min
𝑗=1 𝛽𝑢max− 𝑗

∏𝑗−1
𝑙=0

2
(1+𝑥)2𝑙 +1 , (17)

the ML equation can be equivalently written as 𝑓 (𝑥) = 0 where
𝑓 is defined as

𝑓 (𝑥) := −𝑥 (1 + 𝑥) 𝜕
𝜕𝑥 lnL

= 𝛼2𝑢max𝑥 −∑𝑢max−𝑢min
𝑗=0

𝛽𝑢max− 𝑗 2𝑗𝑥
(1+𝑥)2𝑗 −1

= 𝛼2𝑢max𝑥 − 𝜑 (𝑥) . (18)

This function is strictly increasing and concave for 𝑥 ≥ 0 as
shown in Lemma B.2. As a result, it has a well-defined root,
because 𝑓 (0) = −∑𝑢max

𝑗=𝑢min
𝛽 𝑗 < 0 and 𝑓 (∞) → ∞ > 0. If 𝑥

denotes the root of 𝑓 , hence 𝑓 (𝑥) = 0, the ML estimate 𝑛̂ML is
given according to (16) by

𝑛̂ML =𝑚2𝑢max ln(1 + 𝑥). (19)

As an optional last step, the ML estimate can be corrected accord-
ing to (4) with 𝑏 = 22−𝑡 to reduce the bias.

The evaluation of 𝑓 is cheap, because the number of terms is
limited by𝑢max−𝑢min +1 ≤ 64−𝑝 − 𝑡 . Moreover, as all occurring
exponents are powers of two, they can be computed recursively
by squaring using simple multiplications. As the denominator in
(17) is always greater than or equal to 2, the evaluation is also
numerically safe. To reduce the numerical error, we can replace
the denominator by 2 + 𝑦𝑙 with

𝑦𝑙 := (1 + 𝑥)2𝑙 − 1 ≥ 0 (20)

and use the recursion

𝑦𝑙+1 = 𝑦𝑙 · (2 + 𝑦𝑙) . (21)

The product appearing in (17)

𝜆 𝑗 :=
∏𝑗−1

𝑙=0
2

(1+𝑥)2𝑙 +1
can then be also computed recursively following

𝜆 𝑗+1 = 𝜆 𝑗
2

2+𝑦 𝑗
. (22)

The simplicity of the ML equation is a result of distribution (8).
For comparison, geometrically distributed update values follow-
ing (2) would have led to significantly more terms. In addition,
the computations of the resulting power expressions with real
exponents would have been much more expensive. Appendix A
describes a robust and fast-converging algorithm for finding the
root of the ML equation.

3.3 Martingale Estimation
A simple, efficient, and unbiased way to estimate the distinct
count is to start from zero and increment the estimate, whenever
the state of the sketch is modified, according to the inverse of the
probability that such a modification occurs with the insertion of
any unseen element. This online approach is known as martin-
gale or historic inverse probability (HIP) estimation [12, 41] and
even leads to smaller estimation errors as already mentioned in
Sections 2.1 and 2.4. However, martingale estimation is limited to
cases where the data is not distributed and merging of sketches
is not needed.

In addition to the estimate, the martingale estimator also keeps
track of the current state change probability 𝜇. Initially, 𝜇 = 1
as the first update will certainly change the state. Whenever a
register is modified, the probability of state changes for further

834

Algorithm 4: Incrementally updates the martingale estimate
𝑛̂martingale and the state change probability 𝜇 whenever a register
is altered from 𝑟 to 𝑟 ′ (𝑟 < 𝑟 ′). Initially, 𝑛̂martingale = 0 and 𝜇 = 1.

𝑛̂martingale ← 𝑛̂martingale + 1
𝜇 ⊲ update estimate

𝜇 ← 𝜇 − (ℎ(𝑟) − ℎ(𝑟 ′)) ⊲ update state change probability,
ℎ(𝑟) > ℎ(𝑟 ′), compare (23)

Algorithm 5: Merges two corresponding registers 𝑟 and 𝑟 ′ of Exa-
LogLog sketches with identical parameters 𝑡 , 𝑑 , and 𝑝 .
function MergeRegister(𝑟 , 𝑟 ′, 𝑑)

𝑢 ← ⌊𝑟/2𝑑 ⌋ ⊲ get max. update value from 𝑟 , right-shift by 𝑑 bits
𝑢′ ← ⌊𝑟 ′/2𝑑 ⌋ ⊲ get max. update value from 𝑟 ′, right-shift by 𝑑 bits
if 𝑢 > 𝑢′ ∧ 𝑢′ > 0 then

return 𝑟 | ⌊(2𝑑 + (𝑟 ′ mod 2𝑑))/2𝑢−𝑢′ ⌋ ⊲ | denotes bitwise OR
else if 𝑢′ > 𝑢 ∧ 𝑢 > 0 then

return 𝑟 ′ | ⌊(2𝑑 + (𝑟 mod 2𝑑))/2𝑢′−𝑢⌋
else

return 𝑟 | 𝑟 ′

elements decreases. The probability, that a new unseen element
changes the ELL state, is given by

𝜇 (𝑟0, . . . , 𝑟𝑚−1) =
∑𝑚−1
𝑖=0 ℎ(𝑟𝑖). (23)

ℎ(𝑟𝑖) is the probability that register 𝑟𝑖 is changed with the next
new element. The function ℎ is strictly monotonically decreasing
and defined for a register value 𝑟 = 𝑢2𝑑 + ⟨𝑙1 . . . 𝑙𝑑 ⟩2 as

ℎ(𝑟) = 1
𝑚 (𝜔 (𝑢) +

∑𝑢−1
𝑘=max(1,𝑢−𝑑) (1 − 𝑙𝑢−𝑘) · 𝜌update (𝑘))

when using 𝜔 from (14) and 𝜌update from (10).
The martingale estimator is incremented with every state

change by 1
𝜇 prior the update as demonstrated by Algorithm 4.

𝜇 itself can also be incrementally adjusted, such that the whole
update takes constant time. The martingale estimator is unbiased
and optimal, if mergeability is not needed [34].

4 PRACTICAL IMPLEMENTATION
Like other probabilistic data structures such as HLL, ELL also
relies on high-quality 64-bit hash values for the elements. Known
good hash functions are WyHash [50], Komihash [44], or Poly-
murHash [32]. Insert operations according to Algorithm 2 obvi-
ously take constant time and are very fast, because all statements
can be translated into inexpensive CPU instructions. Expressions
of kind ⌊𝑥/2𝑦⌋ can be realized by a right-shift operation by 𝑦
bits, and 𝑥 mod 2𝑦 is the same as masking the lower 𝑦 bits. Fur-
thermore, specific instructions exist on modern CPUs to obtain
the number of leading zeros (NLZ).

4.1 Mergeability
If two ELL data structures are equally configured, thus they have
equal 𝑝 , 𝑡 , and 𝑑 values, they can be easily merged by pairwise
merging of individual registers. A register stores the maximum
update value 𝑢 in its upper 6 + 𝑡 and the occurrences of update
values in the range [𝑢 − 𝑑,𝑢 − 1] in its lower 𝑑 bits (compare
Figure 3). Since the merged state is the result of the union of
all updates, the merged register must finally store the common
maximum update value, and the𝑑 bits must indicate the combined
occurrences of the next 𝑑 smaller update values relative to this
common maximum. Algorithm 5 demonstrates how efficient
register merging can be realized using bitwise operations. The
result of the merge operation is equivalent to inserting the union
of all individual original elements, previously inserted into one

Algorithm 6: Reduces an ExaLogLog (ELL) sketch with registers
𝑟0, 𝑟1, . . . , 𝑟𝑚−1 and parameters 𝑡 , 𝑑 , 𝑝 to an ELL sketch with registers
𝑟 ′0, 𝑟
′
1, . . . , 𝑟

′
𝑚′−1 and parameters 𝑡 , 𝑑′, 𝑝′, where 𝑚 = 2𝑝 , 𝑚′ = 2𝑝′ ,

𝑑 ≥ 𝑑′ ≥ 0, and 𝑝 ≥ 𝑝′ ≥ 0.
𝑎 ← (64 − 𝑡 − 𝑝) · 2𝑡 + 1
for 𝑖 ← 0 to𝑚′ − 1 do

𝑟 ′ ← 0
for 𝑗 ← 0 to 2𝑝−𝑝′ − 1 do

𝑟 ← ⌊𝑟𝑖+𝑗 ·𝑚′/2𝑑−𝑑 ′ ⌋ ⊲ right-shift by 𝑑 − 𝑑′ bits
𝑢 ← ⌊𝑟/2𝑑 ′ ⌋ ⊲ right-shift by 𝑑′ bits
if 𝑢 ≥ 𝑎 then ⊲ satisfied if NLZ was 64 − 𝑡 − 𝑝 in (9) for 𝑢

⊲ 𝑟 must be adapted, if 𝑢 was different at precision 𝑝′
𝑠 ← ((𝑝 − 𝑝′) − (64− nlz(𝑗))) · 2𝑡 ⊲ assuming 𝑗 has 64 bits

⇒ nlz(𝑗) ∈ [0, 64]
if 𝑠 > 0 then

𝑣 ← 𝑑′ + 𝑎 − 𝑢
if 𝑣 > 0 then 𝑟 ← ⌊𝑟/2𝑣⌋ · 2𝑣 + ⌊(𝑟 mod 2𝑣)/2𝑠 ⌋
𝑟 ← 𝑟 + 𝑠 · 2𝑑 ′

𝑟 ′ ← MergeRegister(𝑟 , 𝑟 ′, 𝑑′) ⊲ see Algorithm 5
𝑟 ′
𝑖
← 𝑟 ′

of the two data structures, directly into an empty data structure
using Algorithm 2.

ELL sketches are also mergeable if not all the parameters are
equal as long as the sketches share the same 𝑡-parameter. If
the sketch parameters are (𝑡, 𝑑, 𝑝) and (𝑡, 𝑑′, 𝑝′), respectively,
they both can be reduced to an ELL sketch with parameters
(𝑡,min(𝑑, 𝑑′),min(𝑝, 𝑝′)) first. This is useful for migration sce-
narios, if the precision 𝑝 or parameter 𝑑 must be changed while
mergeability with older records should be preserved.

4.2 Reducibility
The reduction of the 𝑑-parameter is straightforward. Decrement-
ing it from 𝑑 to 𝑑′ with 𝑑 ≥ 𝑑′ only requires right-shifting all
registers by 𝑑 − 𝑑′ bits. The reduction of the precision from 𝑝

to 𝑝′ is more complex, as 2𝑝−𝑝′ registers need to be combined
into one. However, due to the way in which the hash bits are
consumed in Algorithm 2, this is also possible in a lossless way,
meaning that the result is the same as if all elements would be
recorded directly using a sketch with the reduced parameters, as
demonstrated by Algorithm 6.

4.3 Sparse Mode
ExaLogLog uses a fixed array of registers, which guarantees
constant-time insertions. However, if space efficiency is more im-
portant, allocating that array from the beginning does not make
sense if keeping the raw input data takes less space. Therefore,
many data sketches start with a sparse mode with a linearly scal-
ing memory footprint and only switch to the dense representation
at the break-even point.

For ELL, a sparse representation could be realized by just
storing the 64-bit input hash values in a list. To save space, we
can reduce those hash values to (𝑣 + 6)-bit values, which we call
hash tokens, by keeping only information needed for insertions
into ELL sketches with 𝑝 + 𝑡 ≤ 𝑣 . A hash token stores the least
significant 𝑣 bits of the original hash value and, in addition, the
NLZ of the remaining (64 − 𝑣) most significant bits of the hash
value. If 𝑣 ≥ 1 the NLZ fits into 6 bits and a 64-bit hash value
⟨ℎ63ℎ62 . . . ℎ0⟩2 can be mapped to a (𝑣 + 6)-bit hash token 𝑤
according to

𝑤 = ⟨ℎ𝑣−1 . . . ℎ0000000⟩2 + nlz(⟨ℎ63ℎ62 . . . ℎ𝑣11 . . . 1
𝑣

⟩2) .

835

Algorithm 7: Computation of the coefficients for the log-likelihood
function (26) from a set 𝑇 of distinct (𝑣 + 6)-bit hash tokens.
𝛼 ′ ← 264 ⊲ start from 0 when using an unsigned 64-bit integer
(𝛽𝑣+1, 𝛽𝑡+2, . . . , 𝛽64) ← (0, 0, . . . , 0)
for𝑤 ∈ 𝑇 do ⊲ iterate over all collected distinct tokens

𝑗 ← min(𝑣 + 1 + (𝑤 mod 64), 64)
𝛽 𝑗 ← 𝛽 𝑗 + 1
𝛼 ′ ← 𝛼 ′ − 264− 𝑗

𝛼 ← 𝛼 ′/264;

While in sparse mode, it is sufficient to keep only distinct hash
tokens. When switching to dense mode, the hash tokens can be
transformed back to representative 64-bit hash values following

⟨ℎ′63ℎ
′
62 . . . ℎ

′
0⟩2 = 264−⟨𝑠5𝑠4𝑠3𝑠2𝑠1𝑠0 ⟩2 − 2𝑣 + ⟨𝑠𝑣+5𝑠𝑣+4 . . . 𝑠6⟩2

where ⟨𝑠𝑣+5𝑠𝑣+4 . . . 𝑠0⟩2 is the binary representation of the token.
The reconstructed hash values can be equivalently used for the
insertion using Algorithm 2 as the original hash value.

It is also possible, to estimate the distinct count directly from
a given set of distinct hash tokens 𝑇 . Since the first 𝑣 bits are
uniformly distributed and the NLZ, stored in the remaining 6 bits,
are distributed according to a truncated geometric distribution
with maximum value 64− 𝑣 , the probability mass function (PMF)
of hash tokens is given by

𝜌token (𝑤) =
{

1
2min(𝑣+1+(𝑤 mod 64),64) 𝑤 mod 64 ≤ 64 − 𝑣,
0 else,

(24)

with 𝑤 ∈ [0, 2𝑣+6) and 𝑣 ≥ 1. As for any PMF, summing up the
probabilities for all possible values yields 1∑2𝑣+6−1

𝑤=0 𝜌token (𝑤) = 1. (25)
As in Section 3, we use again the Poisson approximation, which

allows to write the probability that some hash token 𝑤 is in the
set of collected hash tokens 𝑇 as Pr(𝑤 ∈ 𝑇) = 1 − 𝑒−𝑛𝜌token (𝑤) .
Therefore, the log-likelihood function is
lnL = lnL(𝑛 |𝑇)

=
∑

𝑤∉𝑇 ln(𝑒−𝑛𝜌token (𝑤)) +∑𝑤∈𝑇 ln(1 − 𝑒−𝑛𝜌token (𝑤))
= −𝑛∑𝑤∉𝑇 𝜌token (𝑤) +

∑
𝑤∈𝑇 ln(1 − 𝑒−𝑛𝜌token (𝑤))

= −𝑛(1 −∑𝑤∈𝑇 𝜌token (𝑤)) +
∑

𝑤∈𝑇 ln(1 − 𝑒−𝑛𝜌token (𝑤))
= −𝑛𝛼 +∑64

𝑢=𝑣+1 𝛽𝑢 ln(1 − 𝑒− 𝑛
2𝑢) (26)

where we used (25). The coefficients 𝛼 and 𝛽𝑢 can be obtained
using Algorithm 7. The log-likelihood function (26) has the same
shape as that for the ELL registers (15) when setting 𝑚 = 1 ⇔
𝑝 = 0 and 𝑡 = 𝑣 . Therefore, the ML estimate can be found again
with the same root-finding algorithm described in Appendix A.

5 EXPERIMENTS
We provide a Java reference implementation of ExaLogLog
(ELL) together with instructions and source code to repro-
duce all the presented results and figures at https://github.
com/dynatrace-research/exaloglog-paper. The repository also
includes numerous unit tests that cover 100 % of the code. In
particular, merging of ELL sketches based on Algorithm 5 was
tested by creating many pairs of random ELL sketches for which
we compared the merged ELL sketch with a sketch into which
the unified stream of elements was inserted. Similarly, Algo-
rithm 6 was tested by inserting the identical elements into two
ELL sketches with different configurations and checking whether
the state was the same after reduction to the same parameters.

5.1 Estimation Error
We need to verify that the estimation error of ELL really matches
the theoretically predicted error, despite modeling (8) by (2) and
the number of distinct element insertions by a Poisson distri-
bution. According to (1) we would expect a root-mean-square
error (RMSE) error of

√︁
MVP/((𝑞 + 𝑑)𝑚) with 𝑞 = 6+ 𝑡 , 𝑏 = 22−𝑡 ,

and the MVP either given by (3) or (6), depending on whether
the ML or the martingale estimator is used.

An accurate evaluation of the error requires thousands of esti-
mates of different data sets with identical true distinct count 𝑛.
It is infeasible to use real data sets, if we want to repeat that for
many different and also large𝑛. Therefore, we use a more efficient
approach [19]. Extensive empirical tests [43] have shown that
the output of modern hash functions such as WyHash [50], Komi-
hash [44], or PolymurHash [32] can be considered like uniform
random values. Otherwise, field-tested probabilistic data struc-
tures like HLL would not work. This fact allows us to perform
the experiments without real or artificially generated data.

Insertion of a new element can be simulated by simply generat-
ing a 64-bit random value to be used directly as the hash value of
the inserted element in Algorithm 2. Duplicate insertions of the
same element can be ignored as they cannot change the state of
ELL by definition. Processing a random data set with true distinct
count 𝑛 is thus equivalent to using 𝑛 random values instead. Ac-
cidental collisions of random values can be ignored because they
occur with the same probability as hash collisions for real data.
To simulate the estimation error for a predefined distinct count
value 𝑛, the estimate is computed after updating the ELL sketch
using Algorithm 2 with 𝑛 random values and finally compared
against the true distinct count 𝑛. By repeating this process with
many different random sequences, in our experiments 100 000,
the bias and the RMSE can be empirically determined.

As this approach becomes computationally infeasible for dis-
tinct counts beyond 1 million, we switch to a different strat-
egy [19]. After the first million insertions, for which a random
value was generated each time, we just generate the waiting
time (the number of distinct count increments) until a register is
processed with a certain update value the next time. The proba-
bility that a register is updated with any possible update value
𝑘 ∈ [1, (65 − 𝑝 − 𝑡)2𝑡] is given by 𝜌update (𝑘)/𝑚 with 𝜌update (𝑘)
from (10). Therefore, the number of distinct count increments
until a register is updated with a specific value 𝑘 the next time is
geometrically distributed with corresponding success probability.
In this way, we determine the next update time for each regis-
ter and for each possible update value. Since the same update
value can only modify a register once, we do not need to consider
further updates which might occur with the same value for the
same register. Knowing these𝑚× ((65−𝑝 − 𝑡)2𝑡) distinct counts
leading to possible state changes in advance, enables us to make
large distinct count increments, resulting in a huge speedup. This
eventually allowed us to simulate the estimation error for dis-
tinct counts up to values of 1021 and also to test the presented
estimators up to the exa-scale.

Figure 8 shows the empirical relative bias and RMSE together
with the theoretical RMSE given by

√︁
MVP/((𝑞 + 𝑑)𝑚) for the

ML and the martingale estimator for configurations (𝑡, 𝑑) ∈
{(1, 9), (2, 16), (2, 20), (2, 24)} and precisions 𝑝 ∈ {4, 6, 8, 10}. For
intermediate distinct counts, perfect agreement with theory is
observed. For small distinct counts the estimation error is even
much smaller. Interestingly, the estimation error also decreases
slightly at the end of the operating range, which is in the order

836

0

5

10

15

re
la

ti
ve

er
ro

r
(%

) C = 1, 3 = 9, ? = 4 (32 bytes)

0

5

10
C = 2, 3 = 16, ? = 4 (48 bytes)

0

5

10 C = 2, 3 = 20, ? = 4 (56 bytes)

0

5

10 C = 2, 3 = 24, ? = 4 (64 bytes)

0.0

2.5

5.0

7.5

re
la

ti
ve

er
ro

r
(%

) C = 1, 3 = 9, ? = 6 (128 bytes)

0

2

4

6 C = 2, 3 = 16, ? = 6 (192 bytes)

0

2

4

6
C = 2, 3 = 20, ? = 6 (224 bytes)

0

2

4
C = 2, 3 = 24, ? = 6 (256 bytes)

0

2

4

re
la

ti
ve

er
ro

r
(%

) C = 1, 3 = 9, ? = 8 (512 bytes)

0

1

2

3 C = 2, 3 = 16, ? = 8 (768 bytes)

0

1

2

3
C = 2, 3 = 20, ? = 8 (896 bytes)

0

1

2
C = 2, 3 = 24, ? = 8 (1024 bytes)

100 103 106 109 1012 1015 1018 1021

distinct count =

0

1

2

re
la

ti
ve

er
ro

r
(%

) C = 1, 3 = 9, ? = 10 (2048 bytes)

100 103 106 109 1012 1015 1018 1021

distinct count =

0.0

0.5

1.0

1.5 C = 2, 3 = 16, ? = 10 (3072 bytes)

100 103 106 109 1012 1015 1018 1021

distinct count =

0.0

0.5

1.0

1.5
C = 2, 3 = 20, ? = 10 (3584 bytes)

100 103 106 109 1012 1015 1018 1021

distinct count =

0.0

0.5

1.0
C = 2, 3 = 24, ? = 10 (4096 bytes)

ML theory ML rmse ML bias martingale theory martingale rmse martingale bias

Figure 8: The relative bias and the RMSE for the ML and the martingale estimator for different ELL configurations obtained
from 100 000 simulation runs. The theoretically predicted errors perfectly match the experimental results. Individual
insertions were simulated up to a distinct count of 106 before switching to the fast simulation strategy.

0

5

10

re
la

ti
ve

er
ro

r
(%

)

E = 6 (token size = 12 bits)

0.0

2.5

5.0 E = 8 (token size = 14 bits)

0

2

re
la

ti
ve

er
ro

r
(%

)

E = 10 (token size = 16 bits)

0

1
E = 12 (token size = 18 bits)

100 101 102 103 104 105

distinct count =

0.0

0.1

0.2

re
la

ti
ve

er
ro

r
(%

)

E = 18 (token size = 24 bits)

100 101 102 103 104 105

distinct count =

0.000

0.005

0.010
E = 26 (token size = 32 bits)

bias
rmse

Figure 9: The relative bias and the RMSE when estimating
the distinct count from a set of collected distinct hash
tokens with different sizes.

of 264 ≈ 1.9 × 1019 and thus lies in the exa-scale range. The
estimators are essentially unbiased. The tiny bias which appears
for small 𝑝 for the ML estimator can be ignored in practice as it
is much smaller than the theoretical RMSE.

We also verified estimation from sets of hash tokens as pro-
posed in Section 4.3. Again, we performed 100 000 simulation
runs, where we simulated 64-bit hash values by taking 64-bit
random values and transforming them into corresponding hash
tokens using different parameters 𝑣 ∈ {6, 8, 10, 12, 18, 26}. We con-
sidered distinct counts up to 105, which is typically far beyond the
break-even point where a transition to the dense representation
takes place. As shown in Figure 9, the estimates are unbiased, and
the relative estimation error is slightly smaller than the estima-
tion error of an ELL sketch for which 𝑝 + 𝑡 = 𝑣 . The reason is that

the set of hash tokens contains information that is equivalent
to an ELL sketch with 𝑑 → ∞. From a practical perspective, a
hash token size of 4 bytes (𝑣 = 26) is particularly interesting,
because it is big enough to support any practical ELL configura-
tions. Furthermore, as the tokens can be stored in a plain 32-bit
integer array, off-the-shelve sorting algorithms can be used for
deduplication.

5.2 Space Efficiency Comparison
Our experiments have shown that the estimation error matches
the theoretical predicted estimation error. Since the space re-
quirement of ELL is constant (𝑞 + 𝑑)𝑚 bits, the theoretically
predicted MVP, as discussed in Section 2.4, can be achieved if
memory overhead for the Java object or auxiliary fields can be
ignored. However, for a fairer comparison with other practical
algorithms, we considered the empirical MVP based on the total
space allocated by the whole data structure.

We performed 1 million simulation runs. In each cycle, the
distinct count was estimated and the allocated amount of memory
as well as the serialization size were measured after adding up
to 106 distinct random elements. This allowed us to compute the
RMSE and, together with the average space requirements, the
empirical MVPs according to (1).

Table 2 compares our ELL reference implementation to other
state-of-the-art algorithms. All algorithms were configured to
give roughly 2 % estimation error. Since the reference implemen-
tation of SpikeSketch [15] is not very space-efficient and also
does not support serialization, we used the size of the plain regis-
ter array without any additional overheads as lower bound size
estimates. For algorithms that allocate variable space, such as
HLL with 4-bit registers, CPC, or HLLL, the standard deviation
of the size is also shown.

The serialization size is always smaller than the in-memory
size to which object overhead or auxiliary fields such as buffers

837

Table 2: Comparison of mergeable approximate distinct counting algorithms when estimating the distinct count after
inserting 𝒏 = 106 distinct elements. The parameters were chosen to obtain roughly 2% root-mean-square error (RMSE).
The actual RMSE was empirically determined from 1 million simulation runs. The memory-variance product (MVP) is
estimated as MVP = (average memory/serialization size in bits) × (RMSE)2 and is a fair measure of the space efficiency.
The table is sorted by the in-memory MVP.

Size in bytes MVP (space efficiency) Constant-time
insert operationAlgorithm References Source code (https://github.com/...) RMSE memory serialized memory serialized

HyperLogLog (HLL, 8-bit registers, 𝑝 = 11) [1] apache/datasketches-java 2.29 % 2296 2088 9.66 8.78 ✓
HyperLogLog (HLL, 6-bit registers, 𝑝 = 11) [1, 23] apache/datasketches-java 2.29 % 1792 1577 7.54 6.63 ✓
HyperLogLog (HLL, ML estimator, 𝑝 = 11) [18] dynatrace-oss/hash4j 2.29 % 1576 1536 6.63 6.46 ✓
HyperLogLog (HLL, 4-bit registers, 𝑝 = 11) [1] apache/datasketches-java 2.29 % 1331±56 1067±4 5.60 4.49 –
Compressed probability counting (CPC, 𝑝 = 10) [1, 26] apache/datasketches-java 2.16 % 1416±34 656±11 5.30 2.46∗ –
UltraLogLog (ULL, ML estimator, 𝑝 = 10) [19] dynatrace-oss/hash4j 2.38 % 1056 1024 4.78 4.64 ✓
HyperLogLogLog (HLLL, 𝑝 = 11) [25] mkarppa/hyperlogloglog 2.30 % 1100±13 898±16 4.64 3.79 –
SpikeSketch (128 buckets) [15] duyang92/SpikeSketch 2.26 %∗∗ ≥ 1024∗∗∗ ≥ 1024∗∗∗ ≥ 4.19∗∗∗ ≥ 4.19∗∗∗ ✓
ExaLogLog (ELL, 𝑡 = 2, 𝑑 = 24, 𝑝 = 8) this work dynatrace-research/exaloglog-paper 2.15 % 1064 1024 3.93 3.79 ✓
ExaLogLog (ELL, 𝑡 = 2, 𝑑 = 20, 𝑝 = 8) this work dynatrace-research/exaloglog-paper 2.27 % 936 896 3.86 3.69 ✓

Conjectured lower bound [33] – – – – 1.98 1.98 not known
∗ achieved by expensive compression during serialization
∗∗ error can be much larger for smaller distinct counts
∗∗∗ lower bound values based on theoretical considerations completely ignoring auxiliary data fields (empirical values are meaningless as the reference implementation is not optimized)

also contribute. The difference is particularly large for CPC,
whose serialization method also applies a specialized and rel-
atively expensive (see Section 5.3) compression step [26]. A fair
comparison would require the development of specific compres-
sion techniques for all other data structures which is out of the
scope of this work. However, the theoretical MVPs for optimal
compression shown in Figure 6 indicate that the size of ELL could
be further reduced. For ULL, which is a special case of ELL, we
have already shown that MVPs below 3 can be achieved. Its 1-
byte register array seems to be very convenient for standard
compression algorithms [19].

Figure 10 also shows the memory consumption and the corre-
sponding MVP for other distinct counts. ELL requires constant
space and never allocates additional data. The data structures
from the Apache DataSketches library have implemented a sparse
mode that allows them to be more space-efficient for small dis-
tinct counts. However, a sparse mode could also be easily imple-
mented for ELL as discussed in Section 4.3.

The MVP of SpikeSketch stands out at lower distinct counts.
The high values are a result of the lossy compression and stepwise
smoothing. The latter reduces the update probability even of
empty SpikeSketches by a factor of 64 %. As a consequence, the
estimation error is 100 % with a 36 % probability independent
of the number of buckets for the extreme case of 𝑛 = 1. We,
therefore, do not consider SpikeSketch to be suitable for practical
use. HLLL also shows a spike around 𝑛 = 5 × 103, which is a
result of using the original HLL estimator [20] that is known to
have some issues [18, 23].

5.3 Performance Comparison
To compare the performance of ELL with the other algorithms
listed in Table 2, we used an Amazon EC2 c5.metal instance
running Ubuntu Server 24.04 LTS. Turbo Boost was disabled by
setting the processor P-state to 1 [3]. We used Java implementa-
tions for all algorithms except for HLLL and SpikeSketch whose
reference implementations are written in C++.

Figure 11 shows the results of our benchmarks. First, element
insertion was tested by adding up to 106 random 16-byte arrays
that were generated and stored in memory in advance. As Apache
DataSketches uses the 128-bit version of Murmur3 as built-in
hash function without the flexibility of defining a different one,
we used it also for all other algorithms to make a fair comparison.

The corresponding graph shows the average time per inserted
element, which also includes the initial allocation of the data
structure. For this reason, the measured times for small 𝑛 tend
to be higher. All insertion times, except those for HLLL and
SpikeSketch are between 20 and 50 ns. For ELL, we investigated
insertion with and without martingale estimator.

The fastest estimation times are achieved by algorithms, in-
cluding those from Apache DataSketches, that maintain a martin-
gale estimator or keep track of other redundant statistics during
insertion. The ELL ML estimator compares well to those algo-
rithms that insert elements without such additional bookkeeping.

To analyze serialization, we measured the time to write the
state into a newly allocated byte array. For ELL, this means just
copying the byte array holding the register values, which is very
fast. The results also show that the serialization of CPC is more
than an order of magnitude slower due to the expensive com-
pression, as discussed before. We do not have data for HLLL and
SpikeSketch as their reference implementations come without a
serialization method.

Finally, we also investigated the time to merge two data struc-
tures, both filled with 𝑛 random elements. The results show that
ELL is very fast. Algorithms that have implemented a sparse
mode are, as expected, faster for small 𝑛 as less data has to be
processed. The comparison with the algorithms from Apache
DataSketches is not entirely fair, as they rebuild internal statistics
for estimation during the merging process. For this reason, we
have also considered merging followed by estimation, which is a
common operation sequence in practice. ELL also performs quite
well in this case. We have no data for SpikeSketch as its reference
implementation does not include a working merge operation.

It is worth noting that our ELL reference implementation is
generic and supports arbitrary values of 𝑡 and 𝑑 . Hardcoding
these values could potentially further improve its performance.

6 FUTUREWORK
A topic for future research is the compressibility of ELL. Accord-
ing to Figures 6 and 7, much lower MVPs could be achieved with
optimal compression. For ULL, a special case of ELL with 𝑡 = 0
and 𝑑 = 2 (compare Section 2.5), a reduction close to the theoret-
ical limit can be achieved with standard compression algorithms
[19] such as Zstandard [13]. Unlike ULL, whose register size is
exactly one byte, we assume that standard algorithms will work

838

101 102 103 104 105 106

distinct count =

0.0

0.5

1.0

1.5

2.0

m
em

or
y

(K
iB

)

101 102 103 104 105 106

distinct count =

0

2

4

6

8

10

em
pi

ri
ca

lM
V

P

Figure 10: The averagememory footprint and the empirical
MVP for 𝒏 ∈ {10, 20, 50, 100, 200, 500, . . . , 106} obtained from
1million simulation runs. The legend is given in Figure 11.

worse in the general case. Since the shape of the register distri-
bution is known (see Section 3.1), some sort of entropy coding
could be a way to approach the theoretical limit.

As discussed in Section 2.5, HyperMinHash is a special case
of ELL, and PCSA and CPC contain the same information as
an ELL(0, 64) sketch. Therefore, our proposed ML estimation
approach, in which the ML equation is first reduced to the sim-
ple form (15) with a relatively small number of terms, should
also work for them. We assume that this method could lead to
slightly lower estimation errors than current approaches, as ML
estimation is generally known to be asymptotically efficient.

7 CONCLUSION
We have introduced a new algorithm for distinct counting called
ExaLogLog (ELL), which includes already-known algorithms as
special cases. With the right parameters, the space efficiency
can be improved significantly. In particular, a configuration was
presented that reduces the MVP by 43 % compared to the widely
used HyperLogLog algorithm. ELL also supports practical prop-
erties such as mergeability, idempotency, reproducibility, and
reducibility. We have also shown that maximum likelihood (ML)
estimation using the developed robust numerical solver and mar-
tingale estimation are feasible. The observed estimation errors
are fully consistent with the theory. In contrast to other recent
approaches, insertions always require constant time, regardless
of the chosen accuracy. We also proposed a sparse mode based
on hash tokens, which allows the allocation of the register array
to be postponed. All this makes ELL very attractive for wider use
in practice.

A NUMERICAL ROOT-FINDING
As the function 𝑓 defined in (18) is strictly increasing and concave
(see Lemma B.2), the root of the ML equation 𝑓 (𝑥) = 0 can be
robustly found using Newton’s method when starting from a
point 𝑥0 satisfying 𝑓 (𝑥0) ≤ 0. According to Lemma B.3 such a
point is

𝑥0 = exp(ln(1 + 𝜎1
𝛼2𝑢max) 𝜎0

𝜎1
) − 1

with 𝜎0 :=
∑𝑢max

𝑗=𝑢min
𝛽 𝑗 and 𝜎1 :=

∑𝑢max
𝑗=𝑢min

𝛽 𝑗2𝑢max− 𝑗 . (27)

As a result, the sequence of points obtained by Newton’s method

𝑥𝑡+1 = 𝑥𝑡 − 𝑓 (𝑥𝑡)
𝑓 ′ (𝑥𝑡) = 𝑥𝑡

(
1 − 𝑓 (𝑥𝑡)

𝑥𝑡 𝑓
′ (𝑥𝑡)

)

10−8

10−7

av
er

ag
e

ex
ec

ut
io

n
ti

m
e

(s
)

insert

10−8

10−7

10−6

10−5

10−4

av
er

ag
e

ex
ec

ut
io

n
ti

m
e

(s
)

estimate

10−6

10−5 serialize

101 102 103 104 105 106

distinct count =

10−6

10−5

10−4

av
er

ag
e

ex
ec

ut
io

n
ti

m
e

(s
)

merge

101 102 103 104 105 106

distinct count =

10−6

10−5

10−4 merge + estimate

ELL (C = 2, 3 = 20, ? = 8, ML)
ELL (C = 2, 3 = 24, ? = 8, ML)
ELL (C = 2, 3 = 20, ? = 8, marting.)
ELL (C = 2, 3 = 24, ? = 8, marting.)
Hash4j ULL (? = 10)
Hash4j HLL (? = 11)
DataSketches CPC (? = 10)
DataSketches HLL (4-bit, ? = 11)
DataSketches HLL (6-bit, ? = 11)
DataSketches HLL (8-bit, ? = 11)
SpikeSketch (128 buckets)
HyperLogLogLog (p=11)

Figure 11: The average execution time for insert, estimate,
serialize, merge, and combined merge and estimate opera-
tions for 𝒏 ∈ {10, 20, 50, 100, 200, 500, . . . , 106}.

is always increasing and approaches 𝑥 . The recursion can be
transformed using

𝑥 𝑓 ′ (𝑥) − 𝛼2𝑢max𝑥 = −𝑥 𝜕
𝜕𝑥

∑𝑢max−𝑢min
𝑗=1 𝛽𝑢max− 𝑗 2𝑗𝑥

(1+𝑥)2𝑗 −1

=
∑𝑢max−𝑢min

𝑗=1 𝛽𝑢max− 𝑗
(

4𝑗𝑥2 (1+𝑥)2𝑗 −1

((1+𝑥)2𝑗 −1)2 −
2𝑗𝑥

(1+𝑥)2𝑗 −1

)
=
∑𝑢max−𝑢min

𝑗=1 𝛽𝑢max− 𝑗 2𝑗𝑥
(1+𝑥)2𝑗 −1

(
2𝑗𝑥 (1+𝑥)2𝑗 −1

(1+𝑥)2𝑗 −1
− 1

)
= 𝜓 (𝑥)

with

𝜓 (𝑥) :=
∑𝑢max−𝑢min

𝑗=1 𝛽𝑢max− 𝑗
(∏𝑗−1

𝑙=0
2

(1+𝑥)2𝑙 +1

)
·

·
((∏𝑗−1

𝑙=0
2(1+𝑥)2𝑙
(1+𝑥)2𝑙 +1

)
− 1

)
(28)

into
𝑥𝑡+1 = 𝑥𝑡

(
1 + 𝜑 (𝑥𝑡)−𝛼2𝑢max𝑥𝑡

𝜓 (𝑥𝑡)+𝛼2𝑢max𝑥𝑡

)
. (29)

Function 𝜓 shares the same product as 𝜑 (17), which therefore
needs to be computed only once. The last factor in (28) is always
nonnegative as the product consists of factors that are all greater

than or equal to 1, because 1 ≤ 2(1+𝑥)2𝑙
(1+𝑥)2𝑙 +1 < 2. Furthermore, when

using standard floating-point types, overflows will not occur as
the product has at most 𝑢max − 𝑢min ≤ 63 − 𝑝 − 𝑡 factors and
all of them are smaller than 2. To reduce numerical errors and
minimize the number of operations, we compute

𝜂 𝑗 :=
(∏𝑗−1

𝑙=0
2(1+𝑥)2𝑙
(1+𝑥)2𝑙 +1

)
− 1

839

Algorithm 8: Numerical computation of the distinct count esti-
mate by solving the ML equation using Newton’s method. 𝛼 and
𝛽𝑡+1, . . . , 𝛽64−𝑝 are the coefficients of the log-likelihood function (15).

𝜎0 ← 0, 𝜎1 ← 0, 𝑢min ← −1, 𝑢max ← 0
for 𝑗 ← 𝑡 + 1 to 64 − 𝑝 do

if 𝛽 𝑗 > 0 then
if 𝑢min < 0 then 𝑢min ← 𝑗

𝑢max ← 𝑗

𝜎0 ← 𝜎0 + 𝛽 𝑗 , 𝜎1 ← 𝜎1 + 𝛽 𝑗 · 2− 𝑗 ⊲ see (27)

if 𝑢min < 0 then return 0 ⊲ all 𝛽 𝑗 are zero
𝜎1 ← 𝜎1 · 2𝑢max

𝑥 ← 𝜎1/(𝛼 · 2𝑢max)
if 𝑢min < 𝑢max then ⊲ 𝑥 is already the root of 𝑓 , if 𝑢min = 𝑢max

𝑥 ← expm1(log1p(𝑥) · (𝜎0/𝜎1)) ⊲ starting point, see (27)
loop ⊲ main loop of Newton iteration

𝜆 ← 1, 𝜂 ← 0, 𝑦 ← 𝑥 , 𝑢 ← 𝑢max
𝜑 ← 𝛽𝑢 ,𝜓 ← 0
loop ⊲ loop for summing up 𝜑 (17) and𝜓 (28)

𝑢 ← 𝑢 − 1
𝑧 ← 2/(2 + 𝑦) ⊲ 𝑧 ∈ [0, 1]
𝜆 ← 𝜆 · 𝑧 ⊲ 𝜆 is decreasing, compare (22)
𝜂 ← 𝜂 · (2 − 𝑧) + (1 − 𝑧) ⊲ 𝜂 is increasing, compare (30)
𝜑 ← 𝜑 + 𝛽𝑢 · 𝜆,𝜓 ← 𝜓 + 𝛽𝑢 · 𝜆 · 𝜂
if 𝑢 ≤ 𝑢min then break
𝑦 ← 𝑦 · (𝑦 + 2) ⊲ compare (21)

𝑥 ′ ← (𝛼 · 2𝑢max) · 𝑥
if 𝜑 ≤ 𝑥 ′ then break ⊲ stop iteration if 𝑓 (𝑥) ≥ 0, see (18)
𝑥old ← 𝑥

𝑥 ← 𝑥 · (1 + (𝜑 − 𝑥 ′)/(𝜓 + 𝑥 ′)) ⊲ compare (29)
if 𝑥 ≤ 𝑥old then break ⊲ stop if numerically converged

return𝑚 · 2𝑢max · log1p(𝑥) ⊲ compare (19)

recursively using (20) according to

𝜂 𝑗+1 = 𝜂 𝑗 (2 − 2
2+𝑦 𝑗
) + (1 − 2

2+𝑦 𝑗
). (30)

The Newton iteration (29) can be stopped, if 𝑓 (𝑥𝑡) ≥ 0, equiv-
alent to 𝜑 (𝑥𝑡) ≤ 𝛼2𝑢max𝑥𝑡 , because we expect the sequence 𝑥𝑡
to be increasing and converging towards the root. The case
𝜑 (𝑥𝑡) < 𝛼2𝑢max𝑥𝑡 may happen due to numerical errors. It is
reasonable to stop the Newton iteration also in this case, as the
numerical error limits have been reached. Similarly, we stop the
iteration, if 𝑥𝑡+1 ≤ 𝑥𝑡 . In practice, only a small number of it-
erations is needed to satisfy any of the two stop conditions. In
all our experiments presented in Section 5, the number of itera-
tions never exceeded 10 when calculating the estimate from ELL
sketches. On average, we observed between 5 and 7 iterations,
dependent on the ELL parameters and the true distinct count. The
whole procedure to compute the ML estimate using Newton’s
method is summarized by Algorithm 8.

B PROOFS
Lemma B.1. For 𝜌update and 𝜙 as defined in (10) and (11)∑(65−𝑝−𝑡)2𝑡
𝑘=𝑢+1 𝜌update (𝑘) = 2𝑡 (1−𝑡+𝜙 (𝑢))−𝑢

2𝜙 (𝑢) holds.

Proof. This formula can be proven by induction. For 𝑢 =
(65−𝑝−𝑡)2𝑡 both sides are zero. If the identity holds for𝑢, it can be
shown that it also holds for𝑢−1. Since𝜙 (𝑢)−𝜙 (𝑢−1) ∈ {0, 1}, we
show the identity for both possible cases. First, if 𝜙 (𝑢) = 𝜙 (𝑢−1):∑(65−𝑝−𝑡)2𝑡

𝑘=(𝑢−1)+1 𝜌update (𝑘) = 𝜌update (𝑢)+
∑(65−𝑝−𝑡)2𝑡
𝑘=𝑢+1 𝜌update (𝑘)

= 1
2𝜙 (𝑢) +

2𝑡 (1−𝑡+𝜙 (𝑢))−𝑢
2𝜙 (𝑢) = 2𝑡 (1−𝑡+𝜙 (𝑢−1))−(𝑢−1)

2𝜙 (𝑢−1) .

And, second, if 𝜙 (𝑢) = 𝜙 (𝑢 − 1) + 1, which implies according
to (11) 𝑢 − 1 ≡ 0 (mod 2𝑡) and further 𝜙 (𝑢) = 𝑡 + 1 + 𝑢−1

2𝑡 ⇔
2𝑡 (𝜙 (𝑢) − 𝑡 − 1) −𝑢 + 1 = 0. With the help of this identity we can
show again∑(65−𝑝−𝑡)2𝑡

𝑘=(𝑢−1)+1 𝜌update (𝑘) = 𝜌update (𝑢)+
∑(65−𝑝−𝑡)2𝑡
𝑘=𝑢+1 𝜌update (𝑘)

= 1
2𝜙 (𝑢) +

2𝑡 (1−𝑡+𝜙 (𝑢))−𝑢
2𝜙 (𝑢) + 2𝑡 (𝜙 (𝑢)−𝑡−1)−𝑢+1

2𝜙 (𝑢)

= 2𝑡 (−2𝑡+2𝜙 (𝑢))−2(𝑢−1)
2𝜙 (𝑢) = 2𝑡 (1−𝑡+𝜙 (𝑢−1))−(𝑢−1)

2𝜙 (𝑢−1) .

□

Lemma B.2. The function 𝑓 (𝑥) as defined in (18) is strictly
increasing and concave for 𝑥 ≥ 0 and 𝛼 > 0.

Proof. It is sufficient to show that 𝑔(𝑥) := − 𝑥
(1+𝑥)𝑐−1 with

𝑐 ∈ Z+ is increasing and concave, which is the case if 𝑔′ (𝑥) ≥ 0
and 𝑔′′ (𝑥) ≤ 0. The first derivative is given by

𝑔′ (𝑥) = 𝑐𝑥 (1+𝑥)𝑐−1−((1+𝑥)𝑐−1)
((1+𝑥)𝑐−1)2 =

𝑐𝑥 (1+𝑥)𝑐−1−∑𝑐−1
𝑗=0 𝑥 (1+𝑥) 𝑗

((1+𝑥)𝑐−1)2

=
𝑥
∑𝑐−2

𝑗=0 (1+𝑥)𝑐−1−(1+𝑥) 𝑗
((1+𝑥)𝑐−1)2 ≥ 0,

which is nonnegative. The second derivative can be expressed as

𝑔′′ (𝑥) = 𝑐 (1+𝑥)𝑐−2 ((2+𝑥) ((1+𝑥)𝑐−1)−𝑐𝑥 (1+(1+𝑥)𝑐))
((1+𝑥)𝑐−1)3

=
𝑐 (1+𝑥)𝑐−2 (2((1+𝑥)𝑐−1)−(𝑐+1)𝑥 (1+𝑥)0−(𝑐−1)𝑥 (1+𝑥)𝑐)

((1+𝑥)𝑐−1)3

= −
𝑐 (1+𝑥)𝑐−2𝑥

(
(𝑐−1) (1+𝑥)𝑐+(𝑐−1) (1+𝑥)0−2

∑𝑐−1
𝑗=1 (1+𝑥) 𝑗

)
((1+𝑥)𝑐−1)3 .

Since (1 + 𝑥)𝑦 is convex with respect to 𝑦,

(𝑐 − 1) terms︷ ︸︸ ︷
(1 + 𝑥)𝑐 + . . . + (1 + 𝑥)𝑐 +

(𝑐 − 1) terms︷ ︸︸ ︷
(1 + 𝑥)0 + . . . + (1 + 𝑥)0

≥

2(𝑐 − 1) terms︷ ︸︸ ︷
(1 + 𝑥)𝑐−1 + (1 + 𝑥)𝑐−1 + . . . + (1 + 𝑥)1 + (1 + 𝑥)1

holds according to Karamata’s inequality, which shows that the
last factor of the numerator is nonnegative. Since all factors are
nonnegative we have 𝑔′′ (𝑥) ≤ 0. □

Lemma B.3. The root 𝑥 of 𝑓 as defined in (18) can be bracketed by
exp(ln(1 + 𝜎1

𝛼2𝑢max
) 𝜎0
𝜎1
) − 1 ≤ 𝑥 ≤ 𝜎0

𝛼2𝑢max where 𝜎0 :=
∑𝑢max

𝑗=𝑢min
𝛽 𝑗

and 𝜎1 :=
∑𝑢max

𝑗=𝑢min
𝛽 𝑗2𝑢max− 𝑗 .

Proof. We rewrite 𝑓 (𝑥) = 0 as

𝛼2𝑢max𝑥 − 𝜎0

∑𝑢max−𝑢min
𝑗=0 𝛽𝑢max− 𝑗𝑔 (𝑥,2𝑗)∑𝑢max−𝑢min

𝑗=0 𝛽𝑢max− 𝑗
= 0 (31)

with 𝑔(𝑥,𝑦) := 𝑥𝑦

(1+𝑥)𝑦−1 . As 𝑔 is convex with respect to 𝑦, which
follows from 𝑧

𝑒𝑧−1 being convex with 𝑧 = ln(1 + 𝑥)𝑦, we can
apply Jensen’s inequality

𝛼2𝑢max𝑥 − 𝜎0 · 𝑔
(
𝑥, 𝜎1

𝜎0

)
= 𝛼2𝑢max𝑥 − 𝜎0 · 𝑔

(
𝑥,

∑𝑢max−𝑢min
𝑗=0 𝛽𝑢max− 𝑗 2𝑗∑𝑢max−𝑢min
𝑗=0 𝛽𝑢max− 𝑗

)
≥ 𝛼2𝑢max𝑥 − 𝜎0

∑𝑢max−𝑢min
𝑗=0 𝛽𝑢max− 𝑗𝑔 (𝑥,2𝑗)∑𝑢max−𝑢min

𝑗=0 𝛽𝑢max− 𝑗
= 0.

Resolving for 𝑥 finally gives the lower bound. The upper bound
results from (31) when using 𝑔(𝑥,𝑦) ≤ 1 that is a consequence of
Bernoulli’s inequality. □

840

REFERENCES
[1] [n.d.]. Apache Data Sketches: A software library of stochastic streaming algo-

rithms. Retrieved February 15, 2025 from https://datasketches.apache.org/
[2] [n.d.]. Apache Data Sketches: Features Matrix for Distinct Count Sketches.

Retrieved February 15, 2025 from https://datasketches.apache.org/docs/
DistinctCountFeaturesMatrix.html

[3] [n.d.]. Processor state control for your EC2 instance. Retrieved Janu-
ary 5, 2025 from https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
processor_state_control.html

[4] N. Alon, Y. Matias, and M. Szegedy. 1999. The Space Complexity of Approxi-
mating the Frequency Moments. J. Comput. System Sci. 58, 1 (1999), 137–147.
https://doi.org/10.1006/jcss.1997.1545

[5] D. N. Baker and B. Langmead. 2019. Dashing: fast and accurate genomic
distances with HyperLogLog. Genome Biology 20, 265 (2019). https://doi.org/
10.1186/s13059-019-1875-0

[6] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz. 2018. Network-
wide routing-oblivious heavy hitters. In Proceedings of the 16th Symposium
on Architectures for Networking and Communications Systems (ANCS). 66–73.
https://doi.org/10.1145/3230718.3230729

[7] P. Boldi, M. Rosa, and S. Vigna. 2011. HyperANF: Approximating the
neighbourhood function of very large graphs on a budget. In Proceedings
of the 20th International Conference on World Wide Web (WWW). 625–634.
https://doi.org/10.1145/1963405.1963493

[8] F. P. Breitwieser, D. N. Baker, and S. L. Salzberg. 2018. KrakenUniq: confident
and fast metagenomics classification using unique k-mer counts. Genome
biology 19, 1 (2018), 1–10. https://doi.org/10.1186/s13059-018-1568-0

[9] Y. Chabchoub, R. Chiky, and B. Dogan. 2014. How can sliding HyperLog-
Log and EWMA detect port scan attacks in IP traffic? EURASIP Journal on
Information Security 2014, 5 (2014). https://doi.org/10.1186/1687-417X-2014-5

[10] A. Chen, J. Cao, L. Shepp, and T. Nguyen. 2011. Distinct Counting With a
Self-Learning Bitmap. J. Amer. Statist. Assoc. 106, 495 (2011), 879–890. https:
//doi.org/10.1198/jasa.2011.ap10217

[11] V. Clemens, L.-C. Schulz, M. Gartner, and D. Hausheer. 2023. DDoS Detection
in P4 Using HYPERLOGLOG and COUNTMIN Sketches. In Network Oper-
ations and Management Symposium (NOMS). 1–6. https://doi.org/10.1109/
NOMS56928.2023.10154315

[12] E. Cohen. 2015. All-Distances Sketches, Revisited: HIP Estimators for Massive
Graphs Analysis. IEEE Transactions on Knowledge and Data Engineering 27, 9
(2015), 2320–2334. https://doi.org/10.1109/TKDE.2015.2411606

[13] Y. Collet and M. Kucherawy. 2021. Zstandard Compression and the ’applica-
tion/zstd’ Media Type. RFC 8878. https://doi.org/10.17487/RFC8878

[14] D. R. Cox and E. J. Snell. 1968. A General Definition of Residuals. Journal
of the Royal Statistical Society. Series B (Methodological) 30, 2 (1968), 248–275.
http://www.jstor.org/stable/2984505

[15] Y. Du, H. Huang, Y. Sun, K. Li, B. Zhang, and G. Gao. 2023. A Better Cardinality
Estimator with Fewer Bits, Constant Update Time, and Mergeability. In IEEE
Conference on Computer Communications (IEEE INFOCOM). 1–10. https:
//doi.org/10.1109/INFOCOM53939.2023.10229088

[16] M. Durand. 2004. Combinatoire analytique et algorithmique des ensembles de
données. Ph.D. Dissertation. École Polytechnique, Palaiseau, France. https:
//pastel.hal.science/pastel-00000810

[17] R. A. L. Elworth, Q. Wang, P. K. Kota, C. J. Barberan, B. Coleman, A. Balaji, G.
Gupta, R. G. Baraniuk, A. Shrivastava, and T. J. Treangen. 2020. To Petabytes
and beyond: recent advances in probabilistic and signal processing algorithms
and their application to metagenomics. Nucleic Acids Research 48, 10 (2020),
5217–5234. https://doi.org/10.1093/nar/gkaa265

[18] O. Ertl. 2017. New cardinality estimation algorithms for HyperLogLog sketches.
(2017). arXiv:cs.DS/1702.01284

[19] O. Ertl. 2024. UltraLogLog: A Practical and More Space-Efficient Alternative
to HyperLogLog for Approximate Distinct Counting. Proceedings of the VLDB
Endowment 17, 7 (2024), 1655–1668. https://doi.org/10.14778/3654621.3654632

[20] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. 2007. HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. In Proceedings of
the 13th International Conference on the Analysis of Algorithms (AofA). 127–146.
https://doi.org/10.46298/dmtcs.3545

[21] P. Flajolet and G. N. Martin. 1985. Probabilistic counting algorithms for data
base applications. Journal of computer and system sciences 31, 2 (1985), 182–209.
https://doi.org/10.1016/0022-0000(85)90041-8

[22] M. J. Freitag and T. Neumann. 2019. Every Row Counts: Combining Sketches
and Sampling for Accurate Group-By Result Estimates. In Proceedings of the
9th Conference on Innovative Data Systems Research (CIDR).

[23] S. Heule, M. Nunkesser, and A. Hall. 2013. HyperLogLog in Practice: Algo-
rithmic Engineering of a State of the Art Cardinality Estimation Algorithm.
In Proceedings of the 16th International Conference on Extending Database
Technology (EDBT). 683–692. https://doi.org/10.1145/2452376.2452456

[24] S. Janson, J. Lumbroso, and R. Sedgewick. 2024. Bit-Array-Based Alternatives
to HyperLogLog. In Proceedings of the 35th International Conference on Proba-
bilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms
(AofA). 5:1–5:19. https://doi.org/10.4230/LIPIcs.AofA.2024.5

[25] M. Karppa and R. Pagh. 2022. HyperLogLogLog: Cardinality Estimation
With One Log More. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD). 753–761. https://doi.org/10.
1145/3534678.3539246

[26] K. J. Lang. 2017. Back to the Future: an Even More Nearly Optimal Cardinality
Estimation Algorithm. (2017). arXiv:cs.DS/1708.06839

[27] J. Lu, H. Chen, J. Zhang, T. Hu, P. Sun, and Z. Zhang. 2023. Virtual self-adaptive
bitmap for online cardinality estimation. Information Systems 114, 102160
(2023). https://doi.org/10.1016/j.is.2022.102160

[28] G. Marçais, B. Solomon, R. Patro, and C. Kingsford. 2019. Sketching and Sublin-
ear Data Structures in Genomics. Annual Review of Biomedical Data Science 2,
1 (2019), 93–118. https://doi.org/10.1146/annurev-biodatasci-072018-021156

[29] R. Morris. 1978. Counting large numbers of events in small registers. Commun.
ACM 21, 10 (1978), 840–842. https://doi.org/10.1145/359619.359627

[30] T. Ohayon. 2021. ExtendedHyperLogLog: Analysis of a new Cardinality
Estimator. (2021). arXiv:cs.DS/2106.06525

[31] C. Pavlopoulou, M. J. Carey, and V. J. Tsotras. 2022. Revisiting Runtime
Dynamic Optimization for Join Queries in Big Data Management Systems.
In Proceedings of the 25th International Conference on Extending Database
Technology (EDBT). https://doi.org/10.5441/002/edbt.2022.01

[32] O. Peters. [n.d.]. PolymurHash. Retrieved February 15, 2025 from https:
//github.com/orlp/polymur-hash

[33] S. Pettie and D. Wang. 2021. Information Theoretic Limits of Cardinality
Estimation: Fisher Meets Shannon. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing (STOC). 556–569. https://doi.
org/10.1145/3406325.3451032

[34] S. Pettie, D. Wang, and L. Yin. 2021. Non-Mergeable Sketching for Cardinality
Estimation. In 48th International Colloquium on Automata, Languages, and
Programming (ICALP), Vol. 198. 104:1–104:20. https://doi.org/10.4230/LIPIcs.
ICALP.2021.104

[35] B. W. Priest, R. Pearce, and G. Sanders. 2018. Estimating Edge-Local Triangle
Count Heavy Hitters in Edge-Linear Time and Almost-Vertex-Linear Space.
In Proceedings of the IEEE High Performance Extreme Computing Conference
(HPEC). https://doi.org/10.1109/HPEC.2018.8547721

[36] W. R. Punter, O. Papapetrou, and M. Garofalakis. 2023. OmniSketch: Efficient
Multi-Dimensional High-Velocity Stream Analytics with Arbitrary Predicates.
Proceedings of the VLDB Endowment 17, 3 (2023), 319–331. https://doi.org/10.
14778/3632093.3632098

[37] J. Qin, D. Kim, and Y. Tung. 2016. LogLog-Beta and More: A New Al-
gorithm for Cardinality Estimation Based on LogLog Counting. (2016).
arXiv:cs.DS/1612.02284

[38] B. Scheuermann and M. Mauve. 2007. Near-optimal compression of probabilis-
tic counting sketches for networking applications. In Proceedings of the 4th
ACM International Workshop on Foundations of Mobile Computing (FOMC).

[39] R. Sedgewick. 2022. HyperBit: A Memory-Efficient Alternative to
HyperLogLog. (2022). https://www.birs.ca/workshops/2022/22w5004/files/
BobSedgewick/HyperBit.pdf Analytic and Probabilistic Combinatorics Work-
shop at the Banff International Research Station (BIRS) for Mathematical
Innovation and Discovery.

[40] R. Stanojevic. 2007. Small Active Counters. In IEEE Conference on Com-
puter Communications (IEEE INFOCOM). 2153–2161. https://doi.org/10.1109/
INFCOM.2007.249

[41] D. Ting. 2014. Streamed Approximate Counting of Distinct Elements: Beating
Optimal Batch Methods. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 442–451. https:
//doi.org/10.1145/2623330.2623669

[42] D. Ting. 2019. Approximate distinct counts for billions of datasets. In Proceed-
ings of the International Conference on Management of Data (SIGMOD). 69–86.
https://doi.org/10.1145/3299869.3319897

[43] R. Urban. [n.d.]. SMhasher: Hash function quality and speed tests. Retrieved
February 15, 2025 from https://github.com/rurban/smhasher

[44] A. Vaneev. [n.d.]. Komihash. Retrieved February 15, 2025 from https://github.
com/avaneev/komihash/tree/b27fd681308f92a1fae617b4ecd0981cc69d31a0

[45] D. Wang and S. Pettie. 2023. Better Cardinality Estimators for HyperLogLog,
PCSA, and Beyond. In Proceedings of the 42nd ACM Symposium on Principles of
Database Systems (PODS). 317–327. https://doi.org/10.1145/3584372.3588680

[46] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and A. Warfield. 2014. Charac-
terizing storage workloads with counter stacks. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 335–349. https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/wires

[47] Q. Xiao, S. Chen, M. Chen, and Y. Ling. 2015. Hyper-Compact Virtual
Estimators for Big Network Data Based on Register Sharing. In Proceed-
ings of the 2015 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS). 417–428. https:
//doi.org/10.1145/2745844.2745870

[48] Q. Xiao, S. Chen, Y. Zhou, and J. Luo. 2020. Estimating Cardinality for Ar-
bitrarily Large Data Stream With Improved Memory Efficiency. IEEE/ACM
Transactions on Networking 28, 2 (2020), 433–446. https://doi.org/10.1109/
TNET.2020.2970860

[49] Y. Zhao, S. Guo, and Y. Yang. 2016. Hermes: An Optimization of HyperLogLog
Counting in real-time data processing. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN). 1890–1895. https://doi.org/10.1109/
IJCNN.2016.7727430

[50] W. Yi. [n.d.]. Wyhash. Retrieved February 15, 2025 from https://github.com/
wangyi-fudan/wyhash

[51] Y. Yu and G. M. Weber. 2022. HyperMinHash: MinHash in LogLog Space.
IEEE Transactions on Knowledge & Data Engineering 34, 01 (2022), 328–339.
https://doi.org/10.1109/TKDE.2020.2981311

841

