
Evaluating SQL Understanding in Large Language Models
Ananya Rahaman

University of Western Ontario
London, Ontario

arahaman@uwo.ca

Anny Zheng
University of Western Ontario

London, Ontario
azheng45@uwo.ca

Mostafa Milani
University of Western Ontario

London, Ontario
mostafa.milani@uwo.ca

Fei Chiang
McMaster University
Hamilton, Ontario

fchiang@mcmaster.ca

Rachel Pottinger
University of British Columbia
Vancouver, British Columbia

rap@cs.ubc.ca

ABSTRACT
The rise of large language models (LLMs) has significantly im-
pacted various domains, including natural language processing
(NLP) and image generation, by making complex computational
tasks more accessible. While LLMs demonstrate impressive gen-
erative capabilities, there is an ongoing debate about their level
of “understanding,” particularly in structured domains like SQL.
In this paper, we evaluate the extent to which LLMs “under-
stand” SQL by testing them on a series of key SQL tasks. These
tasks, such as syntax error detection, missing token identification,
query performance prediction, query equivalence checking, and
query explanation, assess the models’ proficiency in recognition,
context awareness, semantics, and coherence—skills essential
for SQL understanding. We generate labeled datasets from well-
known workloads, and evaluate the latest LLMs, focusing on how
query complexity and syntactic features influence performance.
Our results indicate that while GPT4 excels at tasks requiring
recognition and context, all models struggle with deeper seman-
tic understanding and coherence, especially in query equivalence
and performance estimation, revealing the limitations of current
LLMs in achieving full SQL comprehension.

1 INTRODUCTION
The rise of LLMs is having a significant impact across all domains,
making computational and data science tasks more accessible and
efficient. For example, in areas such as NLP and image generation,
LLMs are able to generate human-like text and realistic images.
While LLMs clearly do not have the same level of “understanding”
as humans, their ability to solve problems (for which they are
not directly trained) has alluded to some degree of “understand-
ing” [17, 28, 33]. Thus, for LLMs, “understanding” refers to the
model’s ability to perform fundamental tasks at least as profi-
ciently as humans, and potentially even better, across different
contexts.

This level of proficiency can be measured against a set of
characteristic skills to assess understanding. Recognition involves
identifying the intended object/entity of interest, e.g., identifying
and differentiating between objects and scenes in image genera-
tion. Semantics involves identifying how meaning is constructed
and interpreted, e.g., the meaning of a red octagon is to stop,
grasping the meaning of words and phrases. Context defines the
scope and setting in which the semantics are interpreted, e.g.,

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

in NLP, resolving ambiguities when there exist multiple mean-
ings based on context, comprehending intent (understanding the
purpose behind a speaker’s words, such as detecting sarcasm or
politeness), and handling out-of-distribution elements (identi-
fying when an object or scenario doesn’t fit familiar patterns).
Lastly, coherence identifies the logical interconnection between
objects, e.g., object coherence ensures that objects are placed
in realistic positions relative to each other in image generation
and identifies the logical links between words, sentences, and
paragraphs sharing the same meaning. Achieving “understand-
ing” requires models to demonstrate (increasing) proficiency in
these skills and to complete task-specific operations accurately
and meaningfully. Developing a deeper insight into LLMs’ “un-
derstanding” is crucial for reliable performance in real-world
applications where accuracy is essential.

Toward this goal, we study how LLMs can be used in data
management, particularly in terms of their ability to perform SQL-
related tasks. Our study goes beyond simply content generation;
it evaluates specific SQL tasks that exhibit the aforementioned
skills. We pose the question: How well do LLMs “understand" SQL?
SQL Tasks. We propose a series of core SQL tasks designed
to probe the depth of LLMs’ SQL “understanding". Novice to
advanced SQL users perform tasks ranging from syntax error
identification to query performance estimation to query equiv-
alence and explanation. We evaluate LLMs’ ability to perform
such tasks, in increasing order of difficulty to reflect increasing
skill proficiency.
Syntax error identification. Detecting advanced syntax errors
that violate structural and semantic requirements vs. basic errors
(e.g., missing parentheses) reflect varying levels of SQL “under-
standing". For example, detecting the misalignment of attributes,
aggregation functions among SELECT, GROUP BY, HAVING clauses,
incompatible attribute types between outer and inner queries,
and invalid join operations require a complex “understanding”
of the queries.
Missing token identification. Identifying missing tokens is a cru-
cial pre-step for applications such as query recommendation,
where missing token imputation and query auto-completion are
key functionalities [16, 41]. We evaluate the ability to not only
recognize a missing token but to identify the precise location and
the type of missing token (e.g., missing keywords (e.g., SELECT or
WHERE), table names, aliases used in joins or conditions, or literal
values.
Query performance estimation. Given only the SQL query text,
accurately estimating its runtime performance is challenging,
as multiple factors such as the database schema, specific data
instances, and the query workload all play a role [41]. Using
publicly available query workloads, recent work has shown that

Experiments & Analyses Paper

Series ISSN: 2367-2005 909 10.48786/edbt.2025.74

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.74

Skill syntax missing Q.perf. Q.equiv. Q.explain.
error token estimate

Recognition ✓✓✓ ✓✓✓
Semantics ✓✓✓ ✓✓✓
Context ✓✓✓ ✓✓✓ ✓✓✓
Coherence ✓✓✓ ✓✓✓ ✓✓✓

Table 1: Skill-to-SQL task mapping

more complex, longer queries with multiple joins and multiple
predicate conditions incur higher execution costs [12, 18, 37]. We
evaluate LLMs “understanding" of query complexity for perfor-
mance estimation, going beyond surface-level syntax.
Query equivalence. Two syntactically different queries are equiv-
alent if they return the same result for all database instances.
This is important for query optimization [4, 15], and query rec-
ommendation [41], where simpler query representations facili-
tate faster execution times. We evaluate query equivalence us-
ing labeled, equivalent (positive), and non-equivalent (negative)
query pairs. While generating equivalent pairs is subtle, the neg-
ative case requires careful consideration. If we pair random, non-
equivalent queries and label them as such, then the task becomes
overly simplistic, as superficial differences will often identify non-
equivalence without testing the model’s ability to understand
deeper query semantics.
Query explainability. We evaluate LLMs to explain SQL queries
by describing the query output. This task is similar to assess-
ments in code and image understanding to generate code doc-
umentation [24] and image captions, respectively, to measure
understanding.We evaluate over a wide range of complex queries,
including multiple tables, nested subqueries, and intricate logical
conditions.
The choice of SQL tasks and their related skills. The SQL
tasks in our study were carefully chosen to evaluate essential
skills required for effective SQL use: recognition, semantics, con-
text, and coherence, which are critical for several database ap-
plications. Table 1 illustrates how each task maps to these skills,
providing a clear justification for their selection as a means to
evaluate proficiency in these critical areas.

Syntax error identification tests recognition and coherence by
focusing on detecting syntactic violations and ensuring logical
consistency, such as aligning aggregation functions with GROUP
BY clauses or using aliases clearly and unambiguously. This task
and the two related skills are vital for constructing valid queries
and are core for query development and debugging. Missing
token identification evaluates recognition and context by detect-
ing and correcting missing elements such as keywords, table
names, or values. This task directly supports query recommenda-
tion systems for auto-completion and token imputation [16, 41].
Query performance estimation examines context and coherence
by analyzing query complexity, schema, and workload to pre-
dict performance. This is fundamental for query optimization,
resource management, and performance tuning [4, 15]. Query
equivalence focuses on semantics and coherence by determin-
ing whether different query formats produce the same output,
supporting applications such as query optimization and query
recommendation [41] by enabling efficient execution of simpli-
fied queries. Lastly, query explanation evaluates semantics and
context by generating descriptions of a query’s purpose and

results in relation to its schema and data context. This is criti-
cal for user-facing applications, enhancing documentation and
usability [24].

Together, these tasks address key challenges in SQL workflows
and are relevant for assessing LLMs’ SQL capabilities. While the
selected tasks and the related skills are broad and address a wide
range of SQL applications, we acknowledge that this study does
not claim to comprehensively evaluate LLMs across all important
SQL skills and tasks. Instead, it provides an in-depth experimental
evaluation of some of the most important and fundamental tasks
in SQL applications, as described above.
Paper Contributions. We present an experimental study evalu-
ating the performance of the major LLMs over core SQL tasks.
SQL task-driven data benchmark. Many of these tasks require
labeled data, which we generate by modifying raw queries from
popular SQL workloads, such as the Sloan Digital Sky Survey
(SDSS) [37], SQLShare [12], and Join Order [18]. For syntax error
and missing token identification tasks, we create semi-synthetic
datasets by randomly selecting queries from workloads and in-
jecting errors or by removing tokens. For each task, we select
an appropriate type, such as the type of syntax error to inject
or the type of missing token (e.g., keyword, table name, column
name). For query performance tasks, we rely on the SDSS work-
load, which includes log information from past query evaluations.
We classify queries based on their runtime, where high runtime
represents computationally expensive queries. For query equiv-
alence tasks, we manually modify selected queries to generate
equivalent and non-equivalent pairs, ensuring that the modifi-
cations reflect realistic query transformations, such as rewriting
nested queries using joins. Our SQL task-driven data benchmark
is publicly available.1
Prompt-to-SQL task performance. Prompt tunning is key in en-
suring consistent results from LLMs. We experiment with var-
ious prompts, testing them in small-scale trials using a subset
of labeled data to identify the best prompt per task. However,
interaction with LLMs goes beyond prompt design. Processing
their responses is complex, and in our work, we addressed this
by using a combination of automated scripts and manual checks
to extract the labels.
SQL task evaluation framework. We systematically evaluate the
factors influencing LLM performance across SQL tasks. Our eval-
uation framework considers three key dimensions. First, we com-
pare SQL task performance across different LLMs. Second, we
analyze the properties of the query workloads, particularly the
syntactic complexity of the SQL queries, such as the number of
tables, conditions, nested subqueries, and overall query length.
We investigate how these syntactic properties affect the LLMs’
ability to process and understand queries. Finally, we evaluate the
performance of specific SQL tasks across varying parameters, e.g.,
how different types of missing tokens or query transformations
affect LLM performance, and whether certain forms of query
equivalence or error detection are more challenging to recognize.
By considering these three dimensions: LLM performance com-
parison, workload properties, and task types, we aim to provide
a comprehensive evaluation of the factors that influence LLM
performance in SQL tasks.
Extensive comparative evaluation. Our experiments show that
GPT4 performs best across most tasks, while no other model
consistently ranks second. Although most models demonstrate
strong performance in binary class tasks such as identifying

1https://github.com/AnanyaRahaman/LLMs_SQL_Understanding

910

syntax errors or missing tokens, all LLMs face challenges and
suffer reduced accuracy in multi-class tasks, such as identifying
the type ofmissing token or syntax error. LLMs generally struggle
with longer and more complex queries, particularly involving
logical reasoning or numerical computations, consistent with
prior results [5, 9, 35].

Our experimental results demonstrate that LLMs perform well
at tasks requiring recognition and context, such as syntax error
detection and missing token identification. However, for tasks
requiring coherence and semantic understanding, such as query
equivalence and performance estimation, the models exhibit lim-
itations. This suggests that while LLMs demonstrate proficiency
at surface-level “understanding", they struggle to fully compre-
hend deeper semantic relationships, and logical coherence in SQL
queries, underscoring the need for further improvements.
Paper Organization. Section 2 describes the workloads used in
the study. Section 3 outlines the experimental setup, covering the
SQL tasks, data generation from the workloads, the LLMs, and
our interaction with the LLMs, such as prompt tuning. Section 4
presents the experimental results and analysis, Section 5 reviews
related work. We discuss directions for future work in Section 6.

2 QUERYWORKLOADS
A query workload, or simply a workload, is a collection of SQL
queries executed against a database, used to simulate real-world
usage patterns for performance evaluation and optimization. We
give an overview and analysis of the four workloads used in our
experimental study.
The Sloan Digital Sky Survey (SDSS) dataset [37]. SDSS con-
sists of a relational database with data from a major astronomical
survey providing detailed images and spectra of the sky and a
SQL query workload used to interact with the SDSS database.
The SDSS workload is characterized by its complexity and the
need for precise astronomical data retrieval. The workload has
been collected over two decades, containing millions of queries.
In our study, we use queries recorded in 2023.
SQLShare [12]. SQLShare is an open data platform designed to
make data sharing and querying more accessible. The SQLShare
workload consists of a diverse set of user-generated SQL queries,
ranging from simple data retrieval to complex data manipulation
tasks. Unlike our other workloads, SQLShare consists of query
statements over several databases with different schemas.
Join-Order [18]. The Join-Order Benchmark is a synthetic work-
load designed to evaluate the performance of database systems
in optimizing join queries. The benchmark includes complex SQL
queries to test the optimizer’s ability to find efficient join orders.
Spider [38]. Spider is a large-scale, complex, cross-domain Text-
to-SQL benchmark used to evaluate a model’s natural language
understanding, and SQL generation capabilities. It includes a
wide range of databases, to evaluate generalization across dif-
ferent database schemas. Spider is used extensively in NLP to
benchmark model performance to translate natural language
queries to SQL. We use the Spider dataset exclusively for query
explanation, while the other three workloads are used for the
remaining tasks.

All workloads, except Join-Order, contain too many queries
to include in our study. Sampling was necessary, particularly for
SQLShare and SDSS, due to their large size and the computa-
tional cost of interacting with LLMs. While some processes could
be automated, full automation is challenging due to the tasks’

Workload Number of Queries Query Type Aggregate NestLvl

Original Sampled SELECT CREATE Yes No 0 1
SDSS 5,081,188 285 Fig 1a 21 264 Fig 1c
SQLShare 9,623 250 Fig 2a 59 192 Fig 2c
Join-Order 157 157 113 44 119 38 - -
Spider 4, 486 200 200 0 96 104 185 15

Table 2: Workload statistics overview

complexity and the need for human oversight. Consequently, we
created smaller datasets by sampling a subset of queries.

Table 2 shows the “original” number of queries in the work-
loads, and “sampled” shows the sampled number of queries in our
experiments. We describe the dataset generation process in Sec-
tion 3.2. Next, we examine the syntactic properties of our sampled
queries, to provide context to interpret our results. Henceforth,
we will use SDSS, SQLShare, Join-Order, and Spider to refer to
the datasets created from the sampled queries of the original
workloads.

2.1 Syntactic Properties of SQL Queries
For each SQL query, we assess the following properties:
• char_count and word_count, respectively, refer to the number
of characters and the number of words in the query.

• query_type refers to the type of the query, e.g., SELECT, UPDATE,
and CREATE.

• table_count and join_count refer to the number of distinct
tables referenced in the query and the total number of joins,
respectively. Joins include both explicit joins (using join key-
words such as INNER JOIN) and implicit joins (tables in the
FROM clause with join conditions).

• column_count refers to the number of distinct columns used
or referenced in the SELECT clause of the query.

• function_count refers to the total number of functions in the
query, including built-in (like min, avg) and user-defined func-
tions. predicate_count is the number of conditions specified
in the WHERE clause.

• nestedness is the nested depth of subqueries within the query.
• aggregate refers to whether the query uses aggregate func-
tions.
Table 2 provides a statistical overview of all four workloads,

including the number of SELECT and CREATE queries and a break-
down of aggregate vs. simple queries. Figures 1-3 illustrate ad-
ditional properties. Each figure is a histogram showing query
counts on the𝑦-axis and query properties on the𝑥-axis, where the
𝑥-values represent a range of properties. For example, Figure 1b
shows the number of queries (𝑦-axis) across different ranges of
query lengths (word_count). The figures highlight that SDSS and
SQLShare contain more complex queries, with longer queries
of various types. In contrast, Join-Order has simpler, less nested
queries. For query length (word_count), SDSS and Join-Order
have longer queries compared to SQLShare.

While the selected workloads are widely used in the literature,
they may not fully capture the characteristics of SQL tasks in
specialized domains, which often exhibit unique and domain-
specific features. In our discussions, we emphasize the specific
workload properties used in this study and their influence on LLM
performance. We study LLM performance on domain-specific,
specialized SQL workloads as an avenue of future research.

911

SE
LE

CT SE
T

EX
EC

DR
OP

DE
CL

AR
E

CR
EA

TE
IN

SE
RT

0

100

200

251

11 8 6 4 3 2

(a) query_type
1-

30

30
-6

0

60
-9

0

90
-1

20

12
0+

0
20
40
60
80

100
112

33
14

83

43

(b) word_count

0 1 2 3 4 5 60

50

100

150

200

250 251

4 7 8 3 5 7

(c) nestedness

Figure 1: SDSS Statistics

SE
LE

CT

W
IT

H

CR
EA

TE

W
AI

TF
OR

0

50

100

150

200

238

10 2 1

(a) query_type

1-
30

30
-6

0

60
-9

0

90
-1

20

12
0+

0

50

100

150

178

51

8 5 9

(b) word_count

0 1 2 3 4 50

50

100

150

200
212

28
7 2 1 1

(c) nestedness

Figure 2: SQLShare Statistics

1-
30

30
-6

0

60
-9

0

90
-1

20

12
0+

0

10

20

30

40
40

19
27 24

47

Figure 3: word_count in Join-Order

0 100 200 300 400 500+
Elapsed Time (ms)

0

50

100

150

200

250

Fr
eq

ue
nc

y

244

0 0 0 0
41

Figure 4: Elapsed time in SDSS

3 EXPERIMENTAL SETUP
We introduce our SQL tasks in Section 3.1, and our data prepa-
ration steps to inject errors, missing tokens, and derive equiva-
lent and non-equivalent queries in Section 3.2. We then give
an overview of the evaluated LLMs in Section 3.3, and how
we prompt and respond to the LLMs in Section 3.4. Finally, we
present the baselines used in our experiments in Section 3.5.

3.1 SQL Tasks
We grouped the tasks into binary, multi-class, and explanation.

3.1.1 Binary Tasks. We begin with binary classification tasks
that identify syntactic errors, missing tokens, and query equiva-
lence.
syntax_error. We evaluate the LLM’s ability to detect the pres-
ence of syntax errors, focusing on six specific types described
below. Listing 1 provides examples of each error type. These six
representative errors were selected by reviewing common issues
identified through web searches and personal experience while
excluding trivial cases like typos and overly complex, domain-
specific errors.
(1) aggr-attr. Aggregate functions are used without properly

grouping non-aggregated columns.
(2) aggr-having. Misusing the HAVING clause to filter non- ag-

gregated columns instead of using WHERE.
(3) nested-mismatch. The inner query in a nested query re-

turns multiple rows, which is not correctly handled in the
outer query.

(4) condition-mismatch. Operations with incompatible data
types, e.g., comparing numeric columns to strings.

(5) alias-undefined. An alias is used in a query but is not
defined.

(6) alias-ambiguous. The same column appears in multiple
tables, but its usage in a query does not specify the table
reference.

-- Q1: Aggregation without GROUP BY (aggr -attr)

SELECT plate ,mjd ,COUNT (*), AVG(z)

FROM SpecObj WHERE z >0.5;

-- Q2: Incorrect Use of HAVING (aggr -having)

SELECT plate ,COUNT (*) AS NumSpectra

FROM SpecObj GROUP BY plate HAVING z>0.5;

-- Q3: Type mismatch in subquery (nested -mismatch)

SELECT p.ra,p.dec ,s.z

FROM PhotoObj AS p JOIN SpecObj AS s

ON s.bestobjid =(SELECT bestobjid FROM SpecObj);

-- Q4: Type mismatch in condition (condition -mismatch)

SELECT plate ,mjd ,fiberid FROM SpecObj WHERE z='high';

-- Q5: Undefined alias (alias -undefined)

SELECT s.plate ,s.mjd ,z

FROM SpecObj AS s JOIN PhotoObj AS p

ON s.bestobjid=photoobj.bestobjid;

-- Q6: Ambiguous alias (alias -ambiguous)

SELECT plate ,fid FROM SpecObj AS s JOIN PhotoObj AS p

ON s.bestobjid=p.bestobjid WHERE bestobjid >1000;

Listing 1: SQL syntax error examples

miss_token. We evaluate whether an LLM can identify miss-
ing tokens in a SQL query. While related to syntax_error, this
task is treated separately due to its practical importance. We con-
sider six token types: keyword, table, column, value, alias, and
predicate (comparisons). Missing keywords include essential
clauses like SELECT, WHERE, or JOIN, which define query struc-
ture. Missing tables refer to absent table names in the FROM
clause, causing execution ambiguity. Missing columns involve
omitted column names in SELECT or conditions, critical for defin-
ing output or filters. Missing values include absent literals in
conditions (e.g., WHERE age ≤), leaving comparisons incomplete.
Missing aliases result in ambiguity when table or subquery

912

aliases are omitted. Missing predicates involve incomplete con-
ditions, such as “age 50” where the comparison operator, e.g.,
≤, is missing.
query_equiv. Determines whether two SQL queries are equiva-
lent, i.e., whether they have the same schema and produce the
same results. We study ten types of equivalences and eight types
of non-equivalences. Listings 2 shows a few examples of these
types using the SDSS workload. For the full list of equivalence
and non-equivalence types, along with detailed explanations and
examples, we refer the reader to our GitHub repository.
(1) swap-subqueries. Swapping inner and outer sub-queries

in nested queries.
(2) join-nested. Converting a join into a subquery or vice

versa.
(3) cte. Rewriting a query using common table expressions

(CTEs), a temporary result set defined using WITH, which
simplifies complex queries and is referenced within the main
query.

(4) reorder-conditions. Re-arranging the order of conditions
in a WHERE clause.

We study four types of non-equivalent transformations:
(1) agg-function. Modifying an aggregate function, e.g., up-

dating to SUM from AVG.
(2) change-join-condition. Modifying the type of join, such

as switching from an INNER JOIN to a LEFT JOIN.
(3) logical-conditions. Altering logical operators, such as

changing AND to OR.
(4) value-change. Updating a filtering condition, e.g., altering

the comparison value.

-- Q7: swap -subqueries (Equivalent)

SELECT s.plate ,s.mjd FROM SpecObj AS s WHERE s.plate IN

(SELECT p.plate FROM PhotoObj AS p WHERE p.ra >180);

-- Equivalent Query:

SELECT p.plate ,p.mjd FROM PhotoObj AS p

WHERE p.ra >180 AND p.plate IN

(SELECT s.plate FROM SpecObj AS s);

-- Q8: join -nested (Equivalent)

SELECT s.fiberid FROM SpecObj AS s JOIN PhotoObj AS p

ON s.bestobjid=p.objid WHERE p.ra >180;

-- Equivalent Query:

SELECT fiberid FROM SpecObj WHERE bestobjid IN

(SELECT objid FROM PhotoObj WHERE ra >180);

-- Q9: cte (Equivalent)

SELECT plate ,mjd FROM SpecObj WHERE z>0.5;

-- Equivalent Query:

WITH HighRedshift AS

(SELECT plate ,mjd FROM SpecObj WHERE z>0.5)

SELECT plate ,mjd FROM HighRedshift;

-- Q10: reorder -conditions (Equivalent)

SELECT * FROM SpecObj WHERE plate =1000 AND mjd >55000;

-- Equivalent Query:

SELECT * FROM SpecObj WHERE mjd >55000 AND plate =1000;

-- Q11: agg -function (Non -Equivalent)

SELECT plate ,AVG(z) FROM SpecObj GROUP BY plate;

-- Non -Equivalent Query:

SELECT plate ,SUM(z) FROM SpecObj GROUP BY plate;

-- Q12: change -join -condition (Non -Equivalent)

SELECT s.plate ,s.mjd FROM SpecObj AS s

JOIN PhotoObj AS p ON s.bestobjid=p.objid;

-- Non -Equivalent Query:

SELECT s.plate ,s.mjd FROM SpecObj AS s

LEFT JOIN PhotoObj AS p ON s.bestobjid=p.objid;

-- Q13: logical -conditions (Non -Equivalent)

SELECT plate ,mjd ,fiberid

FROM SpecObj WHERE z>0.5 AND ra >180;

-- Non -Equivalent Query:

SELECT plate ,mjd ,fiberid

FROM SpecObj WHERE z>0.5 OR ra >180;

-- Q14: value -change (Non -Equivalent)

SELECT plate , mjd , fiberid FROM SpecObj WHERE z>0.5;

-- Non -Equivalent Query:

SELECT plate ,mjd ,fiberid FROM SpecObj WHERE z>5;

Listing 2: Examples of SQL equivalence and non-
equivalence

performance_pred. We evaluate the model’s ability to predict
query runtime performance. Only the SDSS workload contains
ground truth query execution times. Figure 4 shows a clear sepa-
ration between short running (low-cost) vs. long running queries
(costly), which we pose as a binary classification task, and con-
sider costly queries as the positive class.

3.1.2 Multi-class Tasks. We extend the binary tasks towards
multi-class tasks by probing LLMs to indicate the type of syntax
error (syntax_error), type ofmissing token (miss_token_type),
and type of query equivalence (query_equiv_type). We also
evaluate the task of identifying a missing token’s location (miss_
token_loc).

3.1.3 Query explanation. This task (query_exp) explainswhat
a SQL query does. It is the reverse of the text-to-SQL task, where
existing benchmarks for text-to-SQL, such as WikiSQL [40], pro-
vide natural language descriptions of queries. However, many
of these benchmarks contain relatively simple SQL queries com-
pared to the more complex workloads in SDSS and SQLShare.
Thus, we chose the Spider dataset [38] that includes more com-
plex queries, and we further sampled longer and more complex
queries.

Our analysis is qualitative rather than quantitative. We manu-
ally review the LLM generated explanations, and compare them
with the ground truth descriptions provided in the workload.
Our goal is to analyze and discuss when and why models fail to
provide accurate, meaningful explanations (Section 4.5). While
this task does not strictly require existing explanations, we use
Spider’s explanations to help with validation, and to streamline
the evaluation process.

3.2 Data Preparation and Label Generation
We describe the generation of task-specific labels for each dataset.
syntax_error and miss_token. Semi-synthetic datasets were
created by randomly selecting queries from each workload and
injecting errors or removing tokens. For syntax_error, one of
six error types (see Section 3.1) or an error-free case was applied.
Queries were labeled as error-containing or error-free, with error
types recorded formulti-class classification (syntax_error_type).
For miss_token, specific tokens (e.g., keywords, table names, or
literals) were randomly removed to simulate missing tokens, and
queries were labeled with the type and position of the missing
token. These datasets used the SDSS, SQLShare, and Join-Order
workloads.
query_equiv. Equivalent and non-equivalent query pairs were
generated using the SDSS, SQLShare, and Join-Order workloads.
Equivalent pairs were created by applying transformations that
preserved functionality, while non-equivalent pairs introduced
functional differences (e.g., changing join conditions or filters)
while maintaining sufficient similarity for a challenging task.
Each pair was labeled as equivalent or non-equivalent, with ad-
ditional labels for transformation type.
performance_pred. This task used the SDSS workload, which
includes runtime data. From 285 randomly selected queries, run-
time classifications were made: queries exceeding 500 ms were

913

labeled high cost, and those below were low cost. This threshold
was based on the runtime distributions shown in Figure 4.
Clarifications onData Preparation.While parts of the process,
like error injection and query transformation, were automated,
manual oversight ensured meaningful query modifications and
accurate labels. For instance, generating non-equivalent pairs
required careful changes to preserve similarity while introducing
functional differences, ensuring realistic datasets for effective
evaluation.

3.3 Large Language Models
We evaluate state-of-the-art LLMs, briefly summarized below:
• GPT3.5: OpenAI’s 175B-parameter model (2022) trained on
diverse corpora, excelling in general NLP tasks [3].

• GPT4: OpenAI’s 200B+ parameter model (2023), improving
contextual understanding and reasoning over GPT3.5 [25].

• Gemini: Google’s 50B-parameter model (2024), designed for
multimodal tasks and ethical AI applications [1].

• Llama3: Meta’s scalable model (up to 70B, 2023), optimized
for general-purpose tasks and efficiency [32].

• MistralAI: A 16B-parameter model (2024) focused on domain-
specific content and multilingual tasks, excelling in structured
data contexts like SQL [23].

LLMs derive their performance from extensive training on datasets
spanning hundreds of billions to trillions of tokens, leveraging in-
creasingly sophisticated architectures to generalize across diverse
tasks [3, 23, 25, 32].

3.4 Refining LLM Interactions
Interacting with LLMs requires careful attention to both input
prompts and processing of their responses. By tuning prompts,
we guide the models toward generating more accurate and rele-
vant outputs. However, the responses also require post-processing
because LLMs often provide verbose and unstructured answers
instead of straightforward formats, such as a simple label. Post-
processing ensures that the necessary information is extracted
and reformatted to meet the specific requirements of each task.
Prompt Tuning. Designing and refining input prompts to guide
LLMs toward accurate responses is particularly important for
complex tasks, where well-crafted prompts can significantly im-
provemodel performance [22, 29, 36]. In our study, prompt tuning
was critical to effectively handle the intricacies of SQL syntax
and semantics. Our tuning process involved two key steps:
(1) Prompt Generation and Refinement.Weused LLMs to generate

a variety of prompt candidates, which were then manually
refined to ensure clarity and alignment with our task objec-
tives [2, 34].

(2) Mock Experiments.We conducted mock experiments with a
subset of data to evaluate the effectiveness of each prompt.
The top-performing prompts from these tests were selected
for full-scale experiments.

Following this approach, we developed a set of task-specific
prompts to extract meaningful responses from the models. These
prompts were tailored to each experimental task and varied in
complexity, addressing challenges such as syntax error detection,
query equivalence, and runtime estimation:
• syntax_error and syntax_error_type. Does the following
query contain any syntax errors? If so, explain the error. [Query]

• miss_token, miss_token_type, and miss_token_loc. Does
the following query have any syntax errors? (yes/no) If yes, is
there a missing word? (yes/no) If yes, what is the type of the

missing word? If yes, what is the missing word? If yes, what
is the position of the missing word? (Provide the word count
position where the word is missing.) [Query]

• query_equiv and query_equiv_type. Are the following two
queries equivalent (do they produce the same results on the
same database schema)? If yes, why are they equivalent? [Query
1, Query 2]

• performance_pred. Does the following query take longer than
usual to run? [Query]

• query_exp. Provide a single statement describing this query:
[Query].
The prompts listed above reflect the outcomes of our prompt

tuning approach, which was specifically designed to address the
SQL tasks in our study.
Handling LLM Output. Despite carefully designed prompts,
LLMs often produce verbose and lengthy responses, even when
explicitly instructed to respond concisely with “yes” or “no.” Post-
processing is necessary to extract relevant information and refor-
mat it for evaluation. For example, in the prediction task, while
most LLMs respond with a binary “yes” or “no,” they frequently
include explanations about why a query might take a long or
short time to execute. Similarly, in miss_token, the responses are
not always structured in a way that aligns with our evaluation
criteria. To address this, we use a combination of manual process-
ing and automated scripts. Automated scripts detect common
response patterns and extract relevant responses from predictable
structures. For more complex or unstructured outputs, manual
intervention ensures accuracy by isolating specific information,
such as extracting a “yes” or “no” from verbose explanations.
These steps ensure consistent formatting of LLM outputs and
enable effective evaluation.
Zero-Shot, Few-Shot, and Fine-Tuning. Zero-shot learning
refers to a model’s ability to perform a task without specific ex-
amples, relying solely on pre-trained knowledge. This approach
evaluates the model’s inherent understanding of a domain. Our
experiments focused exclusively on zero-shot learning to assess
a model’s ability to detect syntax errors, evaluate query equiva-
lence, and predict query runtime costs. This reflects real-world
scenarios where task-specific data may not be available. Few-shot
learning uses a small number of examples to improve perfor-
mance, while fine-tuning trains a model on task-specific datasets
to enhance accuracy. Although these methods can address limi-
tations in initial performance, we did not use them in our study.
Our goal was to evaluate LLMs in their raw form, with minimal
training, to reflect performance in environments with limited
labeled data.

3.5 Baselines for Experimental Evaluation
We employ baselines to contextualize the results from LLMs and
evaluate their strengths andweaknesses. For performance_pred,
we fine-tuned the BERT model to predict SQL query execution
times. BERT, a pretrained transformer widely used for NLP tasks,
was adapted to our dataset of 10,000 randomly selected SQL
queries from the SDSS 2024 workload, annotated with binary
labels (’high’ or ’low’ runtime). Binary cross-entropy was em-
ployed as the loss function to fine-tune the model for this task.
No data leakage occurred, as distinct queries from SDSS 2023
were used for testing. For syntax_error and miss_token, we
used ANTLR [26], a general-purpose parser widely used for SQL,
as a baseline. ANTLR detects syntax errors and missing tokens

914

Ca
se Model SDSS SQLShare Join-Order

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Sy
nt
ax

Er
ro
r GPT4 0.98 0.95 0.97 0.94 0.93 0.93 0.95 0.91 0.93

GPT3.5 0.94 0.85 0.89 0.91 0.86 0.89 0.93 0.81 0.86
Llama3 0.95 0.76 0.84 0.92 0.81 0.86 0.95 0.65 0.77
MistralAI 0.93 0.91 0.92 0.92 0.91 0.92 0.85 0.94 0.89
Gemini 0.94 0.70 0.80 0.97 0.53 0.68 0.84 0.61 0.70

SQLParser 0.90 0.05 0.09 0.80 0.02 0.04 0.75 0.03 0.05

Sy
n.

Er
ro
rT

yp
e GPT4 0.96 0.95 0.95 0.89 0.88 0.88 0.90 0.89 0.89

GPT3.5 0.87 0.85 0.85 0.85 0.82 0.83 0.83 0.78 0.78
Llama3 0.83 0.79 0.79 0.79 0.76 0.76 0.78 0.67 0.64
MistralAI 0.90 0.88 0.89 0.81 0.80 0.79 0.86 0.81 0.82
Gemini 0.81 0.74 0.73 0.73 0.60 0.58 0.68 0.53 0.52

Table 3: Accuracy in syntax_error and syntax_error_type

without relying on schema information, ensuring fair comparison
with LLMs.

Using DBMSs with workload-specific schemas for parsing was
deemed impractical for SQLShare (diverse databases) and SDSS
(large schema with limited access). Moreover, DBMS-based base-
lines would create an unfair advantage by incorporating unavail-
able schema details. The parser baseline, denoted as SQLParser,
provides binary outputs for syntax_error and miss_token and
extracts error messages to infer miss_token_loc details. The
parser does not classify specific syntax errors or missing token
types as defined in this study, and we limit the baseline compari-
son to the binary tasks and miss_token_loc.

4 EXPERIMENTAL RESULTS
We present our results and analysis, with each subsection focus-
ing on a primary SQL task, and its related secondary tasks.

Across all experiments, GPT4 consistently outperforms other
models, with no clear runner-up in most cases. This dominance
may be because of the larger model size, as we outlined in Sec-
tion 3.3, and possibly the model being trained on a larger corpus
of SQL queries. To avoid repetition, this general observation will
not be restated in the individual result discussions.

4.1 Syntax Error Tasks
In this section, we present results for the two related tasks of
syntax_error and syntax_error_type.
syntax_error. Table 3 (top) shows the comparative accuracy
on the syntax_error task. The best-performing model is high-
lighted in bold, and the second-best is underlined. GPT4, GPT3.5,
andMistralAI perform well, while Llama3 and Gemini struggle.
This may be because Llama3 is trained on general-purpose text,
and Gemini focuses more on AI ethics and multimodal tasks,
meaning both have less specific knowledge of SQL compared to
the other models.

Across all LLM models, recall tends to be lower than precision,
suggesting that the models are more conservative in detecting
errors, missing some existing syntax errors (lower recall) but
making fewer incorrect claims about errors (higher precision).
One possible explanation is that these models may have been
trained more extensively on correct SQL queries, with less ex-
posure to syntactically incorrect examples. This precision-recall
imbalance is particularly pronounced in Llama3 and Gemini,

which exhibit significantly lower recall, resulting in reduced F1
scores as well.

SQLParser, the baseline for this task, achieves high precision
but very low recall across all datasets. This is because the syntax
errors considered in syntax_error are advanced and often can-
not be detected using only the grammatical rules of SQL in such
parsers. For example, nested-mismatch, where the return type
of a subquery does notmatch the expected type in the outer query,
is beyond the capabilities of SQLParser. Similarly, most parsers,
including the one used in our experiments, cannot verify the
having clause for errors like aggr-having. The high precision
is mainly due to simpler error types, such as alias-undefined,
which resemble missing tokens and can be detected by parsers.
These results emphasize the limitations of traditional parsers
and affirm the superior ability of LLMs to effectively detect both
simple and advanced syntax errors, as well as other complex
cases.

An important question is when and why LLMs fail in syntax_
error. To explore this, we examined two hypotheses: first, that
failures are related to the syntactic properties of queries, such as
word_count or table_count; and second, that they are linked
to specific types of syntax errors, such as aggr-attr or nested-
mismatch, as discussed in Section 3.1. We applied the same anal-
ysis to other tasks while testing these hypotheses.

For the first hypothesis, we analyzed the distribution of syn-
tactic properties across four categories: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). Fig-
ure 5 illustrates this for syntax_error in SDSS, showing query
distributions by word_count. The numbers below each category
represent the average (top), median (middle), and total number of
queries (bottom). Figures 5a and 5b show similar data for Llama3
and Gemini.

TP
 65.45
 57.00
 140

TN
 60.32
 50.00

 93

FP
 22.60
 11.00

 5

FN
 72.18

 105.00
 45

0

20

40

60

80

100

120

W
or

d
Co

un
t

(a) Llama3

TP
 66.93
 66.00
 131

TN
 61.97
 56.00

 90

FP
 18.25
 11.00

 8

FN
 67.46
 73.50

 54

0

20

40

60

80

100

120

W
or

d
Co

un
t

(b) Gemini

Figure 5: Relationship between word_count and failure in
syntax_error for SDSS. The three values (e.g., 65.45, 57,
140) indicate the average and median query lengths and
the number of queries in the TP category. Orange scatter
points show the query length distribution per category on
the y-axis.

To explore the correlation between query length (word_count)
and model failure, we compared TP and FN (for queries with
errors) as well as TN and FP (for queries without errors) while
concluding when there are significant queries in each category.
For example, in Figure 5a, the TP and FN categories have sufficient
queries (140 and 45, respectively) to observe a pattern: the FP
queries tend to be significantly shorter (average 22.60 vs 72.18,
median 11 vs 105). A opposite trend is seen when comparing FP
and FN, where FP queries are shorter but FN queries are very long.

915

Ca
se Model SDSS SQLShare Join-Order

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

M
iss

in
g
To

ke
n GPT4 0.99 0.97 0.98 0.98 0.96 0.97 1.00 0.97 0.99

GPT3.5 0.92 0.92 0.92 0.97 0.88 0.93 0.98 0.94 0.96
Llama3 0.96 0.94 0.95 0.91 0.92 0.91 0.97 0.94 0.96
MistralAI 0.99 0.86 0.92 0.96 0.87 0.91 1.00 0.94 0.97
Gemini 0.99 0.76 0.86 0.98 0.68 0.80 0.97 0.69 0.81

SQLParser 0.97 0.95 0.96 0.94 0.93 0.94 0.97 0.93 0.95

To
ke
n
Ty

pe

GPT4 0.94 0.94 0.94 0.91 0.89 0.90 0.98 0.97 0.98
GPT3.5 0.76 0.75 0.75 0.75 0.71 0.73 0.84 0.82 0.82
Llama3 0.88 0.85 0.86 0.78 0.69 0.72 0.87 0.82 0.84
MistralAI 0.89 0.85 0.86 0.82 0.75 0.78 0.93 0.88 0.90
Gemini 0.63 0.63 0.54 0.75 0.53 0.57 0.44 0.60 0.39

Table 4: Accuracy for miss_token and miss_token_type

This trend is also observed while comparing TP and FN inGemini
in Figure 5b, Overall, these findings suggest a correlation between
query length (word_count) and failure in syntax_error, with
longer queries being more prone to misclassification. We did
not observe a similar pattern for any other syntactic properties
across models or datasets, indicating that word_count is the most
significant factor influencing failure likelihood in this task.

For the second hypothesis, Figure 6 presents the proportion
of queries in FN for each type of syntax error, where a larger
bar indicates that detecting errors of that type has been more
challenging for the models. The results for SDSS (Figure 6a)
suggest that type mismatch errors (nested-mismatch and
condition-mismatch) are particularly difficult for all mod-
els to detect. This is expected as the workload involves queries
with many conditions for which the type of operands could
be difficult to tell. For SQLShare (Figure 6b), ambiguous alias
(alias-ambigous) errors are more problematic, which is ex-
pected given the large number of schemas and varied table aliases
used in these queries. Lastly, in Join-Order (Figure 6c), errors in-
volving mismatch in using nested queries (nested-mimatch)
are the most frequently missed by the models since similar to
SDSS the queries in Join-Order also have lengthy conditions in
the WHERE clauses.
syntax_error_type. Table 3 (bottom) presents the weighted ac-
curacy for syntax_error_type, which considers the six types
of syntax errors (see Section 3.1). The strong performance of
GPT4 and MistralAI, and GPT3.5 in detecting syntax errors also
extends to identifying error types, while Llama3 and Gemini con-
tinue to perform less effectively, as expected. Overall, results for
syntax_error_type are lower than for syntax_error, reflect-
ing the increased difficulty of this task. Another key observation
is that all models show lower performance on the SQLShare
dataset, likely due to its more complex schema, which makes
identifying the type of syntax errors more challenging.
Takeaways: The analysis of syntax_error and syntax_error
_type shows thatGPT4,MistralAI, andGPT3.5 outperform Llama3
and Gemini, likely due to differences in training focus. Longer
queries are more prone to errors, and the types of syntax errors
the models struggle with largely depend on the specific dataset.

4.2 Missing Token Tasks
Regarding missing token, we start by miss_token, and then
present results related to miss_token_type and miss_token_loc.

miss_token. Table 4 (top) presents the accuracy of various LLMs
in miss_token. Accuracy is higher compared to syntax_error,
as miss_token is a simpler task. A notable change is Llama3
’s improved performance in this task. This can be attributed to
the fact that detecting missing tokens relies more on general
pattern recognition, which is less specialized for SQL. Llama3 ’s
broader training in recognizing patterns likely helps it improve
in this context. Overall, recall remains lower than precision in
miss_token, similar to syntax_error, likely because the models
are more conservative in detecting errors, as explained previously.
SQLParser easily identifies queries with missing tokens. This is
because the simple grammatical rules used in SQL parsers like
SQLParser effectively detect missing tokens during syntax tree
construction.

We investigated the relationship between LLM failures in the
miss_token task and the syntactic properties of queries. Fig-
ure 7a shows that, for GPT3.5 on the SQLShare dataset, query
length (word_count) is correlated with failures, with an average
word_count of 57 in FN compared to 27 in TP. We also examined
other properties such as predicate count (predicate_count),
nestedness level (nestedness), and table count (table_count),
as seen in Figures 7b, 7c, and 7d. In all cases, the average values
for FN are significantly higher than for TP (1.80 vs 0.90 in 7b, 0.44
vs 0.05 in 7c, and 1.92 vs 1.33 in 7d). However, due to the small
number of FP queries, no definitive conclusions can be drawn
for that category.

We now shift our analysis to the impact of the missing token
type on the performance of LLMs in miss_token. We examined
the breakdown of FN by token type, as shown in Figure 8, similar
to our analysis for syntax_error. A key observation in SDSS
is that the most frequent type of failure occurs for keyword ().
This is likely because SDSS contains a diverse set of query types
with a higher occurrence of keywords compared to SQLShare
and Join-Order. In SQLShare, the most challenging missing token
types are aliases and tables (and), which can be attributed to
the presence of many small databases with numerous tables and
various aliases in their queries. Finally, in Join-Order, there is no
single token type with a notably higher failure rate, likely due to
the simpler nature of the queries and the relatively low number
of failures.

To better understand SQLParser’s performance, which ranked
second for most workloads, we analyzed its ability to detect differ-
ent types of missing tokens. We found that SQLParser struggled
particularly with missing columns and aliases, likely because
these rely heavily on schema information, which cannot be fully
addressed using only the grammatical rules of an SQL parser.
miss_token_type.We reported the weighted average accuracy
values in Table 4 (bottom), with weights based on the number of
queries for each type. The results indicate that miss_token_type
is more challenging than miss_token across all LLMs, as evi-
denced by the reduced accuracy. The lowest accuracy is observed
in SQLShare, which is expected due to its complex schema com-
pared to SDSS and Join-Order. Conversely, Join-Order shows
the highest accuracy, reflecting its simpler schema. Notably, Mis-
tralAI consistently achieves the second-best performance. This
is interesting as Llama3 was the second in miss_token, which
suggests although Llama3 is better at detection due to its strength
in detecting general patterns,MistralAI is better at SQL-related
pattern recognition, correctly deciding the error type for more
queries.
miss_token_loc. Table 5 compares the performance of various
LLMs and the baseline SQLParser in predicting the location of

916

GPT4 GPT3.5 LLama3 MistralAI Gemini0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ra
tio

aggr-attr
aggr-having
nested - mismatch
condition - mismatch
alias-undefined
alias-ambiguous

(a) SDSS

GPT4 GPT3.5 LLama3 MistralAI Gemini0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ra
tio

(b) SQLShare

GPT4 GPT3.5 LLama3 MistralAI Gemini0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ra
tio

(c) Join-Order

Figure 6: Relationship between syntax error type and FN in syntax_error.

TP
 28.72
 17.00
 165

TN
 27.00
 15.00

 56

FP
 20.60
 20.00

 5

FN
 57.14
 34.50

 22

101

102

W
or

d
Co

un
t (

lo
g

sc
al

e)

(a) word_count in GPT3.5

TP
 1.16
 1.00
 126

TN
 0.90
 0.00
 59

FP
 0.50
 0.50

 2

FN
 1.80
 1.00
 61

9
8

7
5

4
3

2
1

0
Pr

ed
ica

te
 C

ou
nt

1 0 0 0
0 1 0 3
2 0 0 0
1 1 0 5
5 0 0 3
9 5 0 6
8 3 0 5

55 19 1 21
45 30 1 18

0

10

20

30

40

50

(b) predicate_count inGemini

TP
 0.21
 0.00
 126

TN
 0.05
 0.00
 59

FP
 0.00
 0.00

 2

FN
 0.44
 0.00
 61

5
4

3
2

1
0

Ne
st

ed
ne

ss
 L

ev
el

1 0 0 0

0 0 0 1

0 0 0 2

2 0 0 5

17 3 0 7

106 56 2 46
0

20

40

60

80

100

(c) nestedness in Gemini

TP
 1.37
 1.00
 163

TN
 1.33
 1.00
 54

FP
 1.29
 1.00

 7

FN
 1.92
 2.00
 24

6
5

4
3

2
1

0
Ta

bl
e

Co
un

t

2 1 0 1

1 0 0 1

0 2 0 0

8 1 0 2

36 8 2 9

110 39 5 11

6 3 0 0
0

20

40

60

80

100

(d) table_count in MistralAI

Figure 7: LLMs’ failure in miss_token for SQLShare.

Model SDSS SQLShare Join-Order

MAE HR MAE HR MAE HR
GPT4 4.69 0.56 3.96 0.63 3.45 0.57
GPT3.5 17.71 0.25 7.71 0.42 14.31 0.39
Llama3 15.60 0.33 7.57 0.40 13.11 0.39
MistralAI 18.09 0.36 8.58 0.42 9.92 0.40
Gemini 19.78 0.34 9.79 0.38 20.22 0.32

SQLParser 10.31 0.35 7.63 0.45 8.24 0.42
Table 5: MAE and Hit Rate (HR) for miss_token_loc

missing tokens across SDSS, SQLShare, and Join-Order. Key
metrics include Mean Absolute Error (MAE) and Hit Rate (HR),
where lower MAE and higher HR indicate better performance.

GPT4 consistently achieves the best results with the lowest
MAE and highest HR across all datasets. Llama3 performs well in

Model Prec. Rec. F1
GPT4 0.88 0.93 0.90
GPT3.5 0.81 0.83 0.85
Llama3 0.76 0.90 0.82
MistralAI 0.47 0.90 0.62
Gemini 0.71 0.73 0.72
BERT 0.84 0.91 0.87

Table 6: Acc. for performance_pred

SQLShare but shows weaker results in other datasets.GPT3.5 and
MistralAI show reasonable performance but with higher MAE
and lower HR, indicating less precision. SQLParser performs
comparatively well and is the second best in most evaluations,
leveraging syntax tree construction to accurately detect missing
tokens and their locations in most queries.

Most models correctly predict the exact location at least 30%
of the time, except GPT3.5 in SDSS, where the HR drops to 25%.
Longer queries, especially in SDSS, contribute to higher MAE
values, making precise location prediction more difficult.
Takeaways: All models perform better over the missing token
tasks than syntax error detection, as missing token identification
seems to be a simpler task related to learning frequent patterns.
Llama3 shows improved performance due to its broad training
in pattern detection. More complex queries tend to increase pre-
diction errors, where complexity is related to different syntactic
properties, such as word_count, predicate_count, nestedness,
and table_count.

4.3 Query Performance Prediction
Table 6 shows the performance metrics for the SDSS dataset on
the performance_pred task. Among LLMs, GPT4 achieves the
best results, followed by GPT3.5 and Llama3, which perform
similarly.MistralAI and Gemini show lower overall performance.
Across all models, recall is generally higher than precision, likely
due to positive bias. LLMs tend to produce overly optimistic re-
sponses, in this case predicting that queries will take longer to
run. Additionally, the queries are selected from more complex,
lengthy queries in SDSS, which increases the likelihood of being
labeled as costly. The baseline, BERT, performs competitively
with the LLMs, ranking as the second-best model. This is ex-
pected, as it benefits from training data and can identify basic
signals for costly queries. It is important to note that the LLMs

917

GPT4 GPT3.5 LLama3 MistralAI Gemini0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

Keyword
Column
Table
Value
Alias
Comparison

(a) SDSS

GPT4 GPT3.5 LLama3 MistralAI Gemini0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

(b) SQLShare

GPT4 GPT3.5 LLama3 MistralAI Gemini0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

(c) Join-Order

Figure 8: Relationship between missing token type and FN in miss_token.

achieve comparable performance without access to such training
data.

As with miss_token, we examined the relationship between
syntactic properties and failure rates for this task. The models
show strong correlations between word_count and failure, with
longer queries leading to more FP, as shown in Figure 9a forMis-
tralAI. A similar trend is seen with column_count in Figure 9b.
This suggests that the models mistakenly associate longer queries
or those with more columns with higher execution time.

To compare the baseline model, BERT, we analyzed its perfor-
mance on queries with different syntactic properties. The model
captures the general correlation between long queries and higher
evaluation costs, likely influenced by the limited examples of
long-runtime queries. However, it struggles to identify short,
costly queries, and some long queries that run fast. This limi-
tation can be attributed to class imbalance, as most queries in
the training data are fast (a common characteristic in SDSS),
and the subset of costly queries includes very few short queries.
The best LLM, GPT4, outperforms BERT without access to such
training data, demonstrating their existing knowledge of SQL
evaluation and their superior ability to handle these challenging
query types.
Takeaways: In the query performance prediction task, GPT4 con-
sistently shows the highest accuracy. However, all models tend
to overestimate runtimes, leading to higher recall but lower pre-
cision, especially for longer and more complex queries. This
suggests that improving model training with diverse query types
could reduce this bias and enhance prediction accuracy.

TP
 71.97
 64.50

 36

TN
 59.70
 32.00
 203

FP
 82.78

 107.00
 40

FN
 28.50
 26.00

 4

0

20

40

60

80

100

120

W
or

d
Co

un
t

(a) word_count

TP
 13.97
 5.00
 36

TN
 32.91
 14.00
 203

FP
 35.08
 21.50

 40

FN
 52.75
 67.00

 4

100

101

Co
lu

m
n

Co
un

t

(b) column_count

Figure 9:MistralAI’s failure in performance_pred

Ca
se Model SDSS SQLShare Join-Order

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Eq
ui
va
le
nc
e GPT4 0.98 1.00 0.99 0.97 1.00 0.99 0.91 1.00 0.95

GPT3.5 0.87 0.99 0.93 0.96 1.00 0.98 0.83 0.99 0.90
Llama3 0.88 1.00 0.93 0.94 0.98 0.96 0.87 0.99 0.93
MistralAI 0.95 0.95 0.95 0.95 0.93 0.94 0.86 0.89 0.88
Gemini 0.84 0.97 0.90 0.92 0.99 0.95 0.85 0.96 0.90

Eq
ui
v.
Ty

pe

GPT4 0.99 0.99 0.99 0.98 0.98 0.98 0.95 0.85 0.83
GPT3.5 0.97 0.91 0.91 0.96 0.92 0.94 0.90 0.78 0.77
Llama3 0.97 0.85 0.86 0.93 0.88 0.89 0.93 0.81 0.80
MistralAI 0.85 0.76 0.80 0.92 0.88 0.89 0.84 0.68 0.68
Gemini 0.86 0.72 0.71 0.91 0.85 0.87 0.87 0.77 0.75

Table 7: Accuracy in query_equiv and query_equiv_type

4.4 Query Equivalence
Table 7 presents the results for query_equiv (top) and query_equ
iv_type (bottom). For both tasks, GPT4 achieves the best perfor-
mance, with GPT3.5 and Llama3 following closely but slightly
less consistently. MistralAI and Gemini show more variability
and generally lower scores across datasets. A positive bias (higher
recall than precision) is noticeable in query_equiv but not in
query_equiv_type, likely due to the latter being a multiclass
task rather than binary.

Overall, query_equiv_type proves more challenging, with
lower performance across LLMs and datasets, except for GPT4,
which maintains near-perfect accuracy. This is expected, as deter-
mining equivalence is simpler than identifying the type of equiv-
alence. Lower performance in Join-Order and SDSS compared to
SQLShare suggests that longer queries make query_equiv more
difficult.

Across all datasets, most LLMs show very few or no FN, re-
flected in the high recall. For example, GPT4 records FP in SDSS
(5), SQLShare (4), and Join-Order (9) but has no FN. Thus, we
focus on FP to identify where models fail. A common feature
of FP queries is that they involve modified conditions, such as
changing values in conditions. For instance, altering “WHERE
run = 756 AND field = 103” to “WHERE run = 756 AND field =
200” or “WHERE run = 756 OR field = 103.” This indicates that
LLMs struggle with logical reasoning and numerical manipula-
tion, a limitation discussed in the literature [5–7, 9, 14, 35] and
we confirm in our study.

918

In addition to logical reasoning and numerical issues, these
problems become more pronounced in more complex queries,
such as those with longer lengths or more tables and predicates.
For GPT4 in SDSS, all 5 FP involve queries over 100 words, a
pattern also observed in GPT3.5 (Figure 10). In Join-Order, where
most queries are lengthy, both FP and FN occur more frequently
across all LLMs. We report only Llama3 for Join-Order, as other
LLMs exhibit similar trends. Considering table_count as a com-
plexity parameter, in Join-Order, all FP occur in queries with
more than 8 tables. Figure 11 shows that in SDSS, FP occurs
in queries with 5 or more predicates. Similarly, in Join-Order
(Figure 11), all FP across models are caused by queries with over
19 predicates. We include the figure for MistralAI, as all LLMs
exhibit the same pattern. These suggest that query_equiv and
query_equiv_type aremore difficult for complex queries (longer
queries with more predicates and tables).
Takeaways: In the query equivalence task, GPT4 performs best
across datasets. However, distinguishing between different types
of equivalence (query_equiv_type) proves more difficult, espe-
cially for Gemini and MistralAI. The errors mainly stem from
challenges in understanding complex query conditions, highlight-
ing the need for better SQL logic comprehension in LLMs.

TP
 63.90
 46.50
 164

TN
 75.69

 107.00
 55

FP
 90.29

 107.00
 24

FN
 83.50
 83.50

 2

0

20

40

60

80

100

120

W
or

d
Co

un
t

(a) GPT3.5 in SDSS

TP
 112.46
 109.00

 92

TN
 108.77
 105.00

 44

FP
 117.14
 111.00

 14

FN
50

75

100

125

150

175

200

225

250

W
or

d
Co

un
t

(b) Llama3 in Join-Order

Figure 10: word_count and LLM failures in query_equiv.

TP
 4.25
 4.00
 161

TN
 4.27
 3.00
 48

FP
 3.61
 3.00
 31

FN
 7.00
 6.00

 5

100

101

Pr
ed

ica
te

 C
ou

nt
 (l

og
 sc

al
e)

(a) Gemini in SDSS

TP
 18.43
 18.00

 83

TN
 17.49
 16.00

 45

FP
 19.23
 19.00

 13

FN
 16.89
 18.00

 9

10

15

20

25

30

35

40

45

Pr
ed

ica
te

 C
ou

nt

(b) MistralAI in Join-Order

Figure 11: predicate_count and LLM failure in
query_equiv.

4.5 Case Study: Query Explanation
We study the query_exp task and analyze several cases where
LLMs failed to provide accurate explanations for SQL queries.
The queries are presented in Listing 3. Here, we present the
correct ground truth descriptions from Spider, the erroneous

explanations generated by the models, and briefly provide our
analysis of the case:
Q15. The query identifies the maximum number of times a course
enrollment result can appear in different transcripts and displays
the course enrollment ID. Gemini’s explanation is: “Finds the
student course IDwith the highest number of occurrences.”While
this partially captures the query’s purpose, it misses the query
context of searching in transcripts.
Q16. The query finds the name and location of stadiums where
concerts took place in both 2014 and 2015. GPT4 explains it as:
“The query identifies stadiums that hosted concerts in both 2014
and 2015.” This only partially explains the query and does not
include the selected attributes. This issue occurs because LLMs
often focus on capturing the overall semantics of a query but
overlook specific details, such as selected attributes, especially
in more complex tasks.
Q17. The query retrieves the number of cylinders for the Volvo
car with the least acceleration. Llama3 incorrectly explains: “This
SQL query retrieves the number of cylinders of the Volvo car with
the fastest acceleration.” The models misinterpret the “ORDER BY
... ASC LIMIT 1” clause, misunderstanding that the query is
looking for the slowest car (lowest acceleration) rather than the
fastest. OnlyMistralAI correctly explains this query.
Takeaways: These examples highlight a common issuewith LLMs
when explaining SQL queries: they often miss or misinterpret key
details, particularly in tasks requiring context retention. While
models may capture parts of a query, they frequently fail to
provide complete and accurate explanations. This reflects known
limitations of LLMs in retaining context and applying knowledge
to specific scenarios [21, 27, 30].
-- Q15:

SELECT count (*),student_course_id FROM Transcript_Cnt

GROUP BY student_course_id ORDER BY count (*)

DESC LIMIT 1

-- Q16:

SELECT S.name ,S.loc FROM concert AS C JOIN stadium AS S

ON C.stadium_id=S.stadium_id WHERE C.Year =2014

INTERSECT

SELECT S.name ,S.loc FROM concert AS C JOIN stadium AS S

ON C.stadium_id=S.stadium_id WHERE C.Year =2015

-- Q17:

SELECT C.cylinders FROM CARS_DATA AS C JOIN CAR_NAMES

AS T ON C.Id=T.MakeId WHERE T.Model='volvo '

ORDER BY C.accelerate ASC LIMIT 1;

Listing 3: Query statements with inaccurate explanations

4.6 Reflections and Broader Insights
Our SQL tasks were designed to evaluate the core skills of un-
derstanding—recognition, semantics, context, and coherence. This
section summarizes key observations, links findings to these
skills, and offers actionable insights for future research.
Key Observations. LLM performance is influenced by query
complexity, task-specific challenges, and workload character-
istics. Complex queries with higher word count (word_count),
predicate count (predicate_count), and table count (table_count)
lead to increased FP and FN, particularly in syntax error detection
and query equivalence tasks. Longer queries exacerbate runtime
overestimations in performance prediction, reflecting simplis-
tic assumptions about execution costs. Task-specific challenges,
such as ambiguous aliases in SQLShare and nested mismatches in
SDSS and Join-Order, reveal some limitations in simple tasks such
as syntax_error, where the type of error is challenging to find.
Workload-specific issues amplify these challenges, with SDSS

919

requiring extensive schema understanding, SQLShare testing
semantic and contextual skills across independent schemas, and
Join-Order exposing coherence issues despite simpler queries.
Core Strengths and Challenges. LLMs, particularly GPT4, ex-
cel in recognition and context, as demonstrated in syntax error
detection and missing token identification. High precision in
these tasks highlights strong pattern recognition and contextual
awareness, making LLMs suitable for query validation and auto-
completion. However, tasks requiring semantics and coherence,
such as query equivalence and performance prediction, reveal
significant gaps. Models struggle to maintain logical consistency
and reason about deeper semantic relationships, underscoring
the need for enhanced reasoning capabilities to handle complex
queries effectively.
Actionable Insights and Future Directions. Building on our
experimental findings, we recommend the following approaches
to advance LLMs for SQL tasks:
• Hybrid Methods: Addressing LLM weaknesses in logical rea-
soning (e.g., query condition equivalence) and numerical rea-
soning are key to improving SQL tasks such as query equiva-
lence and performance prediction. Combining LLMs with rule-
based systems, symbolic solvers, or hybrid neuro-symbolic
methods [8, 11] enhances semantic understanding, logical co-
herence, and reasoning capabilities, making workflows more
robust and accurate.

• Schema- and Instance-Aware Pretraining: Incorporating
schema metadata, database structures, and sample data in-
stances during pretraining can enhance contextual and seman-
tic reasoning. This approach is particularly beneficial for tasks
such as syntax_error, especially in identifying complex error
types that rely on schema awareness.

• Targeted andTask-Specific Fine-Tuning: Fine-tuning LLMs
for specific tasks and error types, such as nested mismatches
or ambiguous aliases, can improve robustness. For critical ap-
plications such as SQL injection detection in security, LLMs
can augment traditional methods by enhancing accuracy and
efficiency through their pattern recognition capabilities.
These insights emphasize leveraging LLMs’ strengths in recog-

nition and context while addressing gaps in semantics and coher-
ence through targeted training and hybrid approaches. Advanc-
ing these areas will enhance their applicability in SQL workflows
and bridge the gap between current AI capabilities and practical
needs.

5 RELATEDWORK
Recent advancements in LLMs have led to innovative approaches
in data management, tackling tasks such as data wrangling, entity
matching, table manipulation, and text-to-SQL generation.

Li et al. [20] propose an LLM-based approach for data wran-
gling that leverages code generation for structured data transfor-
mations. This method significantly reduces computational costs
compared to row-by-row processing, which is common in tradi-
tional LLM approaches. Their work highlights the importance
of deterministic transformations to enhance model interpretabil-
ity and reliability for data tasks like unit conversion and error
detection.

In entity matching, Zhang et al. [39] introduce AnyMatch, a
zero-shot entity matching model that achieves competitive per-
formance using a small, specialized LLM. By utilizing efficient
data selection techniques, this model performs comparably to
larger models like GPT-4, while requiring fewer computational

resources. Complementing this, Steiner et al. [31] explore the
benefits of fine-tuning LLMs for entity matching, showing signif-
icant performance improvements but also noting that fine-tuning
may reduce cross-domain generalization.

LLMs have been used for table manipulation as shown in Li
et al. [19] with Table-GPT. This fine-tuned model is designed for
tasks such as data cleaning and table-based question answering.
The study demonstrates that LLMs trained on natural language
text face limitations when handling two-dimensional tabular data,
and that table-specific fine-tuning is necessary to overcome these
challenges.

LLMs have also made significant progress in text-to-SQL tasks.
Surveys by Hong et al. [13] and Gao et al. [10] provide overviews
of how LLMs handle complex and cross-domain SQL generation.
These studies highlight that while LLMs perform well on sim-
pler queries, their accuracy drops with more complex structures
involving nested queries, joins, and aggregations.

These works underscore the expanding role of LLMs in data
management, from entity matching and data wrangling to text-
to-SQL. Despite their potential for automating complex tasks,
further research is needed to overcome challenges in efficiency,
scalability, and generalization across domains.

6 CONCLUSION AND FUTUREWORK
In this paper, we study the proficiency of state-of-the-art LLMs
towards “understanding" SQL. We evaluate their performance
on key SQL tasks such as syntax error identification, missing
token identification, query equivalence, query performance esti-
mation, and query explanation. Our evaluation revealed that all
models perform well on tasks requiring recognition and context.
GPT4 consistently outperformed other models, particularly in
handling complex SQL queries, while GPT3.5, MistralAI, and
Llama3 showed strong capabilities in pattern recognition. In con-
trast, Gemini struggled with all SQL-specific tasks, particularly
error detection. Despite these strengths, LLMs faced challenges
with long and complex queries, an inability to pinpoint the exact
location of missing tokens, and struggled with tasks requiring
semantic coherence and logical connections within queries.

Building on our evaluation, future work can focus on targeted
fine-tuning and dynamic prompt optimization to improve perfor-
mance in tasks requiring semantic understanding and coherence.
Fine-tuning for specific tasks, such as handling syntax error
types, could enhance robustness. Schema- and instance-aware
pretraining, leveraging database metadata and sample instances,
could strengthen contextual reasoning and mitigate challenges
in query equivalence and performance prediction. Additionally,
LLMs hold promise for SQL education, where interactive tools
could provide real-time feedback, explain query logic, and suggest
improvements. Expanding research into tasks like error correc-
tion and interactive query composition would further support
both educational and practical applications.

As next steps, we will explore fine-tuning to handle query
complexity and dynamic prompt tuning to improve accuracy,
along with addressing barriers to using LLMs for query recom-
mendation and query optimization. We anticipate that targeted
fine-tuning and dynamic prompt adjustment could significantly
mitigate current limitations in handling complex queries and
improve task-specific performance. Enhancing LLMs in these
ways is expected to bridge the gap between AI capabilities and
real-world SQL needs, enabling better integration with database
systems.

920

REFERENCES
[1] Anthropic. 2024. Gemini: A Safe and Ethical Large Language Model. Anthropic

Research (2024).
[2] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and

Elena L Glassman. 2024. ChainForge: A Visual Toolkit for Prompt Engineering
and LLM Hypothesis Testing. In CHI. 1–18.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. NeurIPS 33 (2020),
1877–1901.

[4] Surajit Chaudhuri. 1998. An overview of query optimization in relational
systems. In PODS. 34–43.

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2023. Palm: Scaling language modeling with
pathways. JMLR 24, 240 (2023), 1–113.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo
Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman. 2021. Training Verifiers
to Solve Math Word Problems. ArXiv abs/2110.14168 (2021). https://api.
semanticscholar.org/CorpusID:239998651

[7] Antonia Creswell, Murray Shanahan, and Irina Higgins. 2022. Selection-
Inference: Exploiting Large Language Models for Interpretable Logical Rea-
soning. In ICLR.

[8] Richard Evans and Edward Grefenstette. 2018. Learning explanatory rules
from noisy data. JAIR 61 (2018), 1–64.

[9] Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori,
Thomas Lukasiewicz, Philipp Petersen, and Julius Berner. 2024. Mathematical
capabilities of chatgpt. NeurIPS 36 (2024).

[10] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding,
and Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models:
A Benchmark Evaluation. PVLDB 17, 5 (2024), 1132–1145.

[11] Artur d’Avila Garcez and Luis C Lamb. 2023. Neurosymbolic AI: The 3 rd
wave. AI Rev 56, 11 (2023), 12387–12406.

[12] Alon Y Halevy et al. 2014. SQLShare: A Platform for Structured Data Sharing.
CIDR (2014).

[13] Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran
Huang, and Xiao Huang. 2024. Next-Generation Database Interfaces: A Survey
of LLM-based Text-to-SQL. arXiv preprint arXiv:2406.08426 (2024).

[14] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. 2022.
Language models as zero-shot planners: Extracting actionable knowledge
for embodied agents. In International conference on machine learning. PMLR,
9118–9147.

[15] Won Kim. 1982. On optimizing an SQL-like nested query. TODS 7, 3 (1982),
443–469.

[16] Eugenie Yujing Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao
Cao, and Rachel Pottinger. 2023. Workload-Aware Query Recommendation
Using Deep Learning. In EDBT. 53–65.

[17] Bruce W Lee and JaeHyuk Lim. 2024. Tasks That Language Models Don’t
Learn. arXiv preprint arXiv:2402.11349 (2024).

[18] Viktor Leis et al. 2015. Join Order Benchmark. VLDB (2015).
[19] Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle

Rifinski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2024. Table-GPT:
Table Fine-tuned GPT for Diverse Table Tasks. SIGMOD 2, 3 (2024), 1–28.

[20] Xue Li and Till Döhmen. 2024. Towards Efficient Data Wrangling with LLMs
using Code Generation. In DM4ML. 62–66.

[21] Xing Liu et al. 2023. Attention Mechanisms in Large Language Models: A
Critical Review. JAIR 69 (2023), 1021–1050.

[22] Ggaliwango Marvin, Hellen Nakayiza, Daudi Jjingo, and Joyce Nakatumba-
Nabende. 2023. Prompt engineering in large language models. In Springer
DICI. 387–402.

[23] MistralAI. 2023. Mistral: New Model Architecture and Training. Company
Blog (2023). Accessed: 2024-08-14.

[24] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and
Brad Myers. 2024. Using an llm to help with code understanding. In ICSE.
1–13.

[25] OpenAI. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023).
[26] Terence Parr. 2013. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf.
[27] Fabio Petroni et al. 2020. Contextualizing Knowledge for LLMs: Challenges

and Opportunities. In EMNLP. 123–136.
[28] Jing Qian, HongWang, Zekun Li, Shiyang Li, and Xifeng Yan. 2023. Limitations

of Language Models in Arithmetic and Symbolic Induction. (2023).
[29] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,

and Aman Chadha. 2024. A systematic survey of prompt engineering in large
language models: Techniques and applications. arXiv preprint arXiv:2402.07927
(2024).

[30] Noah Shinn, Shuyuan Kuo, et al. 2023. Context Forgetting in Large Language
Models. arXiv preprint arXiv:2303.12345 (2023).

[31] Aaron Steiner, Ralph Peeters, and Christian Bizer. 2024. Fine-tuning Large
Language Models for Entity Matching. arXiv preprint arXiv:2409.08185 (2024).

[32] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. [n.d.]. LLaMA: Open and Efficient Foundation Language
Models. ([n. d.]).

[33] Thinh Hung Truong, Timothy Baldwin, Karin Verspoor, and Trevor Cohn.
2023. Language models are not naysayers: an analysis of language models on
negation benchmarks. In *SEM. 101–114.

[34] Li Wang, Xi Chen, XiangWen Deng, Hao Wen, MingKe You, WeiZhi Liu, Qi
Li, and Jian Li. 2024. Prompt engineering in consistency and reliability with
the evidence-based guideline for LLMs. npj Digital Medicine 7, 1 (2024), 41.

[35] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. NeurIPS 35 (2022), 24824–24837.

[36] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. [n.d.].
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
([n. d.]).

[37] Donald G York et al. 2000. The Sloan Digital Sky Survey. AJ (2000).
[38] Tao Yu et al. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex

and Cross-Domain Semantic Parsing and Text-to-SQL Task. EMNLP (2018).
[39] Zeyu Zhang, Paul Groth, Iacer Calixto, and Sebastian Schelter. 2024.

AnyMatch–Efficient Zero-Shot Entity Matching with a Small Language Model.
arXiv preprint arXiv:2409.04073 (2024).

[40] Victor Zhong et al. 2017. Seq2SQL: Generating Structured Queries from Natu-
ral Language using Reinforcement Learning. arXiv preprint arXiv:1709.00103
(2017).

[41] Zainab Zolaktaf, Mostafa Milani, and Rachel Pottinger. 2020. Facilitating SQL
query composition and analysis. In SIGMOD. 209–224.

921

