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ABSTRACT

Graphs effectively represent structural relationships, while time
series capture temporal dynamics, both of which are critical to
understanding complex systems, such as asset management, IoT
optimization, and micromobility demand predictions. In these
contexts, the interplay between evolving entities and their rela-
tionships, captured by graphs and large volumes of time-series
data, remains challenging to fully exploit, due to the absence of a
unified approach. Practitioners are thus forced to treat both data
structures as isolated and must create connections with manual
effort. Our vision, HyGraph, includes a hybrid data model and
operator concept designed to integrate the expressive power of
temporal graphs with time-series analysis, providing a holistic
approach for complex queries, analytics, and predictive tasks,
which are currently unfeasible by working solely on isolated
data structures. This vision has the potential to drive significant
advancements in both research and practice, addressing limita-
tions associated with isolated data models and fostering new
opportunities for interdisciplinary insights.

1 INTRODUCTION

Data interconnection and temporal evolution are emerging as
essential modeling aspects in modern data management. Graphs
were proved to be a working abstraction to capture the for-
mer [67], while data streams [37] and time series [35, 47] ef-
fectively describe the latter. However, analysts are currently
forced to put manual efforts when both modeling needs appear
together [14, 15, 63] because a hybrid solution for this integration
is currently missing.

Figure 1 (left) illustrates the issue: (streaming) time series are
ideal for representing evolving value but lack the semantic rich-
ness to represent meaningful relationships [6, 11]. Conversely,
graph data models, like labeled property graphs, are already suf-
ficiently expressive to capture structural changes [42, 65], but
fail to represent the sequential nature of time-series data, re-
ducing their integration to a simple attribute and/or losing the
opportunity to interact with them as objects in the graph. This
combination presents research challenges in data management,
impacting data mining and AI communities, where attention to
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Figure 1: HyGraph’s vision: data model and architecture.

evolving connected data is growing [58]. Current trends increas-
ingly explore approaches to enrich time series with structural
information [14, 62, 75] or, inversely, to augment entities and rela-
tionships within a graph using evolving contextual data [63, 86].
Such investigations are a first step towards a unified data abstrac-
tion. Indeed, this is promising since both data structures excel at
different purposes; their combination may reveal patterns that
would remain undetected when analyzed in isolation.

This paper presents our vision, namely HyGraph, for a unified
view of graph and time-series data. Our goal with HyGraph is
to propose a research direction for unifying property graphs and
time-series data into a cohesive data model that treats both as
first-class citizens. This novel approach enables hybrid opera-
tions, analyses, and machine-learning opportunities that address
questions involving structural and temporal dimensions (as il-
lustrated in Figure 1). By allowing users to interact with a single
HyGraph instance, we eliminate the need to switch between
different data models or systems through a seamless integration.
While we do not claim to address all challenges in a single project,
this work provides a foundational framework to inspire further
exploration in this domain, leading to three key contributions:
• We introduce use cases that demonstrate the necessity of Hy-
Graph and identify the requirements to address;

• We present preliminary results on HyGraph, including data
model and operations, for solving a running example;

• We outline a research roadmap and present a selected dataset
to discuss and substantiate our vision.

Outline. Section 2 presents industrial use cases and analyzes the
requirements for a solution. In Section 3, a running example from
the financial domain is introduced, illustrating the benefits of our
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vision. Section 4 elaborates the vision in more detail, while Sec-
tion 5 presents our preliminary work. Finally, Section 6 outlines
the research roadmap, and Section 7 concludes the paper.

2 FROM USE CASES TO REQUIREMENTS

This section presents industrial use cases that combine graphs
and time series. By highlighting the challenges such use cases
unveil, we elicit some foundational requirements for our vision.

Uncovering financial fraud [81, 82] requires navigating con-
nections between assets (e.g., cards, bank accounts) and to classify
or aggregate value fluctuations within a time frame. These oper-
ations demand graph traversal queries and advanced time-series
analysis, often achieved through complex, ad-hoc solutions. Man-
aging financial entities involves capturing the temporal dynamics
of both physical and virtual entities, such as companies, equities,
funds, and portfolios. The dynamic structure (e.g., entity rela-
tionships) and data (e.g., time series) drive many query patterns.
For example, a query spanning a long period (e.g., in backtest-
ing) needs to cover a number of stages and milestones for some
company 𝐶 , such as its inception, being privately held, having
an IPO event, and going public, being listed on stock exchange(s)
with varying membership levels over the years, being acquired
by a company 𝐷 , being sold to another company 𝐸, and 𝐸 (and
all its subsidiaries) going bankrupt. All these changes in𝐶’s state
impact the topology of the graph. Moreover, these stages reflect
distinct properties, such as daily stock prices for publicly listed
companies, highlighting the interplay between graph topology
and time-series data. In this paper, credit card fraud detection

will serve as our use case, which we will further develop and
analyze in Section 3 to show the potential of the HyGraph model.

The Internet of Things (IoT) and smart manufacturing is an-
other application domain containing scenarios with thousands
of time series structurally connected [74]. IoT data analytics

is crucial for cost reduction and optimization [18] but it must
consider the devices’ physical and logical disposition and struc-
ture, how the devices are connected (topology) as well as the
environment they are operating in.

In urban micromobility, dynamic sensor topologies on vehi-
cles add complexity. Smart bike and scooter providers must pre-
dict demand at stations and districts to optimize distribution [29].
Rental station networks, user relationships, and evolving metrics
like bike availability and battery levels can significantly enhance
prediction accuracy. Our published dataset of temporal property
graphs (TPGs) and time-series data enables research on optimiz-
ing vehicle distribution [52].

We have elicited the four requirements for the HyGraph vi-
sion based on the use cases. (R1) Expressiveness. In HyGraph
data model, the query primitives, and the analytical operations
must preserve the expressiveness of their counterparts for time
series and TPGs, i.e., integrating existing graphs or time series in
the hybrid model without losing structural or temporal informa-
tion. (R2) Consistency. The HyGraph model must accurately
represent the dynamic interplay between structure and time. This
includes ensuring chronological integrity in time series [69] and
temporal integrity in the graph [65], and enabling users to define
and manage alternative logical views over a model instance, e.g.,
via grouping or sampling. (R3) Timeliness. The HyGraphmodel
must be designed for replacing stale data without compromising
the structure’s integrity, even for high ingestion. Moreover, struc-
tural updates must satisfy the velocity requirements of time-sen-
sitive scenarios. (R4) Scalability. Additionally, the HyGraph

User 1

User 3

Merchant 1
Merchant 2

Merchant 4

Merchant 6

User 4

Merchant 8

12:30
12:40

12:50

12:55

Pays Suspicious entity

12:25

12:20

t0 t6t5

t0 t6t5

t0 t6t5

t0 t6t5

Normal time-​series behaviour
Deviated time-​series behaviour

Graph based analysis Time-​series based analysis

Normal entity

1 2

User 3 User 4

User 2User 1

Credit card Credit card

Credit card

Uses

Transfer

User 2 Credit card

Figure 2: Existing methods to enhance Fraud Detection.

model must handle high-velocity data ingestion, the increasing
volume, and the complexity of the hybrid graph time series data.
It must enable scalable data processing with minimal overhead
as data volume increases.

3 RUNNING EXAMPLE

This section elaborates on the financial fraud use case to present
a running example. It focuses on Credit Card Fraud Detection [22]
as it emerged as a crucial area within the financial domain where
graph and time-series analysis have already been independently
applied. Assume having recorded transactions between users
and merchants to identify fraudulent users. We discuss possi-
ble solutions using graph models and time-series data models
individually (Figure 2), then a combined approach using existing
systems, and finally through HyGraph in Section 4. The time
series in Figure 2 illustrate the expenditure behavior of the users.
The graph-based way. Existing graph-based approaches adopt
pattern matching [17] and machine learning algorithms [59]
to detect fraudulent transactions. The former can be a graph
pattern query like the one in Listing 1, which finds users with
high transaction amounts to at least three merchants nearby
within an hour. For our example graph in Figure 2, a user who
briefly conducts transactions with multiple merchants might be
considered suspicious if such behavior deviates from the usual
pattern. The query in Listing 1 would return User 1 and User 3 as
potentially suspicious, as they meet the specified criteria.
The time-series way. Time-series data is used to analyze trans-
action patterns over time (e.g., transactions frequency or balance)
to detect anomalies [27]. This method involves outlier detection
by employing distance-based methods to identify transactions
that deviate significantly from a user’s typical spending pattern
(Listing 2). For instance, User 1 in Figure 2 is marked as sus-
picious due to several significant peaks of transactions within
a short interval [𝑡5, 𝑡6) which may indicate fraudulent activity.
However, this separation often fails to capture the complete pic-
ture, as graph analysis might identify suspicious entities without
time-contextual transactional behaviors, and time-series analysis
might spot irregular spending patterns without knowledge of
the correlation to other related entities. Thus, (R2) and (R3) are
only partially fulfilled as each data model is treated separately,
while (R1) remains unfulfilled.
The combinedway. Some single-core andmulti-model databases
can handle both graph and time-series data but typically treat
them as separate silos. For example, MongoDB [54] supports
time-series collections and basic graph capabilities. While this
allows basic querying, it leads to complexity and performance
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1 MATCH (u:User)-[:USES]->(cc:CreditCard)-[t1:TX WHERE t1.
amount>1000]->(m1:Merchant),

2 MATCH (u:User)-[t1:TX WHERE t1.amount>1000]->(m1:Merchant)
, path=(u)-[:TX]->(m2:Merchant)

3 WITH u, collect(m2) as mrs, relationships(path) as txs
4 WHERE ALL(tx IN txs WHERE tx.amount > 1000 AND tx <> t1)
5 AND ALL(m IN mrs WHERE distance(m.loc, m1.loc) < 1000)
6 AND ALL(t IN txs WHERE t.time-t1.time <= duration("1H"))
7 AND length(mrs) > 2
8 RETURN u.name AS suspiciousUser

Listing 1: Fraud detection using graph model only.

1 def detect_fraudulent_transactions(timeseries):
2 centroid = np.mean(timeseries[:10])
3 distances = np.linalg.norm(timeseries[:10]-centroid)
4 threshold = np.max(distances)
5 is_fraudulent = any((np.linalg.norm(timeseries[10:])-

np.mean(timeseries[10:])) > threshold)
6 return is_fraudulent

Listing 2: Fraud detection using time-series model only.

bottlenecks due to a lack of optimization techniques for advanced
analyses like graph traversals or time-series-based computations
(R4). Existing solutions either lack a unified language or provide
limited ones (e.g., AQL [7]), failing to provide seamless hybrid
capabilities and requiring ad-hoc, task-specific solutions that com-
promise consistency (R2) and maintainability (R3). The simple
alternation for a dedicated solution enforces a physical separa-
tion of the specified pipeline, limiting the model expressiveness
(R1). In contrast, HyGraph unifies data models and analyzes all
levels, paving the way for new combined representations that
fulfill all requirements.

4 THE HYGRAPH VISION

HyGraph is a transformative approach that unites temporal
property graphs (TPGs) and time series into a coherent model
without losing any expressiveness of each data structure. Hy-
Graph treats time series as a living part of the graph, contributing
to the evolving narrative of connections. Similarly, the graph rep-
resents the flow of structural and contextual changes, with each
graph element enriched with temporal information and seam-
lessly integrating time series. The distinction between graph
and time-series data dissolves, allowing users to interact with a
unified model. The HyGraph model’s internal core masks the
complexity, eliminating the need to toggle between different data
models and enabling more efficient querying and analysis. Hy-

Graph operations can analyze and manipulate TPG and time
series simultaneously: the existing time-series analyses can be
redefined to use the semantic graph data for enhanced results,
while operations of the graph domain can benefit from the infor-
mation captured by the underlying patterns in the time series.
Moreover, new operators can be defined that can be executed on
a HyGraph instance. For instance, the creation of logical graph
patterns from nodes that exhibit similar time-series patterns and
conduct frequent pattern mining for community detection.

Figure 3 depicts such intuition at the bottom (marked by 10 ):
HyGraph introduces a higher level abstraction over two simpler
data models, enabling interactions between them.
Related Work on Graphs and Times Series Management.

The need for a unifying view over graphs and time series is emerg-
ing in the data management community [84]. Figure 3 shows

the state of the art on existing data models and transformations
between them.

The top half of Figure 3 shows the static and temporal data
models. In the top layer, semantically rich graph data models, la-
beled graphs (LG) [61] and labeled property graphs (LPG) [6] add
properties as key-value pairs to vertices and edges while the data
series model, a sequence of values ordered in some manner [5],
enable operations on serialized data, e.g., byte streams. The ar-
rows 1 and 2 represent operations on these data models, e.g.,
frequent pattern mining, subgraph matching, path queries, etc.,
while 4 represents data series sampling, filtering, grouping, etc.
The middle layer shows the temporal context with TPGs [42, 65],
which have equal expressiveness as LPG but extend it with the
time dimension to model all changes in the graph over time.
The arrow 3 represents operations on TPGs, like snapshot re-
trieval [45], temporal pattern matching [87], etc., that solely oper-
ate on TPGs. The 5 represents operations on the time series [21],
like classification [20] or subsequence mining [60].

Some approaches already use both data models in their tasks:
arrow 6 in Figure 3 represents a graph representation of a novel
low-dimensionality embedding of time-series subsequences in
recent research works [14, 15]. Similarly, a novel approach is
proposed in [33], where time series are connected by edges based
on their similarity. The FeatTS approach [75] shaping time-series
data into a labeled graph form is also represented by arrow 6 .
The transformation of an LPG into a data series is done through
simple pattern-matching queries returning property values or
aggregates as a series of values (marked by 7 ).

An instance of interaction between LPG and time series ( 8
in Figure 3) consists of LPG augmented with time-series data as
properties. Time-series analysis is then used to encode relation-
ships between two time series that can be navigated with the
help of pattern matching. Arrow 9 in Figure 3 represents oper-
ations that use both LPG and time series. While recent research
has made significant strides towards integrating time-series data
within graph databases satisfying arrows partially ( 8 and 9 ),
most existing frameworks [10, 72] treat time series as secondary
properties attached to nodes and edges, rather than as first-class
citizens. Such a hierarchical approach causes discrepancies where
graph components such as nodes and edges are prioritized over
time series data. In practice, such models do not allow time series
and graph components to interact on an equal footing, potentially
limiting the depth of analysis that can be derived.

Data 
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Figure 3: State-of-the-art data models and operations (top),

Proposed HyGraph data model and operations (bottom).
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Moreover, works on RDF stream processing (RSP) [16, 79] are
worth mentioning. RSP aims at extending the Linked Data infras-
tructure for continuous querying [13]. To this extent, RSP solu-
tions ingest a streaming extension of RDF based on timestamped
graphs or triples [16, 78], their relation to HyGraph is limited. In
particular, RSP focuses on reactiveness and recency, limiting the
temporal aspect to window operators. Instead, HyGraph aims at
making time series first-class citizens in the model.

Research on HyGraph is also related to multi-databases [73],
which include multistores and polystores. The former exposes
a unified declarative query interface over heterogeneous data
models. The latter combines the benefits of the multistores with
polyglot querying [39], i.e., they expose multiple query interfaces
over heterogeneous data models [28]. Regardless of their architec-
ture, multi-databases aim to reduce the amount of jobs required
to have a uniform view of heterogeneous data. Although data
integration is one of the objectives of HyGraph, our vision goes
beyond system federation and integration. HyGraph aims at
enabling a whole new family of complex workloads that combine
the navigational nature of graph queries and the sequential anal-
ysis of time series. It represents a paradigm shift towards a new
data model that inherently supports the complexity of modern
data, combining the strengths of property graphs and time series.

In the past, researchers have extensively explored hybrid mod-
els to enable data processing and analysis techniques that surpass
the limitations of individual models. For example, the authors of
[51] highlight the usefulness and reusability of relational plat-
forms for scalable linear algebra due to their robustness and in-
built cost-based optimizations. An efficient processing technique
for such hybrid platforms is proposed in [70]. The compilation
framework presented in [71] paves the way for enhanced in-
database machine learning. Similarly, our vision with HyGraph
aims to unify time series and graph databases, enabling advanced
analytics that transcend the capabilities of either data model.

5 PRELIMINARYWORK

Basic data model. Various approaches exist to integrate the
TPG model with time-series data. One approach enriches time
series with graph elements, adding structural connectivity [15],
while another embeds time series as graph properties [10], en-
abling values to vary over time. Our preferred method treats
both as first-class citizens, ensuring equal graph and time-series
data representation. We propose the HyGraph Model (HGM) to
unify LPGs [6], TPGs [65], and time-series data [25], supporting
univariate and multivariate time series [1, 46] as 1) vertices, 2)
edges, or 3) properties.

Given a set of property keys 𝐾 , a set of property values N , a
set of labels 𝐿, a set of tuples𝑌 , and a set of ordered timestamps𝑇 .
The HyGraph model is a tuple 𝐻𝐺 = (𝑉 , 𝐸, 𝑆,𝑇𝑆, 𝜂,𝛾, 𝜆, 𝜙, 𝜌, 𝛿),
where 𝑉 is a set of vertices, 𝐸 is a set of edges, 𝑆 is a set of
logical subgraphs and𝑇𝑆 is a set of (multi-variate) time series. To
emphasize the equality of graph data and time-series data as first-
class citizens of the model, we define property graph vertices/edges
and time-series vertices/edges. Formally,𝑉 = 𝑉𝑝𝑔 ∪𝑉𝑡𝑠 with 𝑣𝑝𝑔 ∈
𝑉𝑝𝑔 is a property graph vertex and 𝑣𝑡𝑠 ∈ 𝑉𝑡𝑠 is a time-series vertex.
Similarly, 𝐸 = 𝐸𝑝𝑔 ∪ 𝐸𝑡𝑠 with 𝑒pg ∈ 𝐸𝑝𝑔 is a property graph edge,
and 𝑒ts ∈ 𝐸𝑡𝑠 is a time-series edge. The function 𝛿 : (𝑉𝑡𝑠 ∪
𝐸𝑡𝑠 ) → 𝑇𝑆 maps each time-series vertex and edge to a multi-
variate time series in𝑇𝑆 . A multi-variate time series 𝑡𝑠 ∈ 𝑇𝑆 is an
ordered set of tuples 𝑡𝑠 = {(𝑡1, 𝑦1), (𝑡2, 𝑦2), . . . , (𝑡𝑛, 𝑦𝑛) |𝑛 ∈ N}
with 𝑡 ∈ 𝑇 represents a timestamp and𝑦 ∈ 𝑌 represents a tuple of

Table 1: Performance benchmarking of Neo4j and Time-

TravelDB (TTDB): Mean Response Time (MRS) and Coeffi-

cient of Variation (CV).

Neo4j TTDB
Query MRS (ms) CV (%) MRS (ms) CV (%)
Q1 3.40 20.50 4.33 5.39
Q2 41.47 20.92 7.02 4.08
Q3 56.09 21.28 20.48 5.43
Q4 31109.26 21.41 71.86 50.19
Q5 73814.52 21.37 62.85 41.14
Q6 73446.80 21.61 64.95 26.53
Q7 48299.03 21.29 48.39 38.57
Q8 54494.19 21.19 48.61 7.66

values of the time series with𝑦 = (𝑣𝑎𝑙1, 𝑣𝑎𝑙2, . . . , 𝑣𝑎𝑙𝑘 ). Whenever
a time series semantically represents an entity or relationship,
specialized vertex 𝑣ts and edge 𝑒ts are used. Such an approach
is optimal when the focus is on the evolution of a given entity
attribute as it neglects the need to monitor the entity’s other
properties. The function 𝜌 : (𝑉𝑝𝑔 ∪ 𝐸𝑝𝑔 ∪ 𝑆) → 𝑇 ×𝑇 retrieves
the timestamps, ⟨𝑡start, 𝑡end⟩, between which an object is valid
(𝑡end is initialized to𝑚𝑎𝑥 (𝑇 )).

We define the set of property values as N = NΣ ∪NTS, with
NΣ ∩NTS = ∅, whereNΣ = {𝜎1, 𝜎2, . . .} andNTS = {𝑡𝑠1, 𝑡𝑠2, . . .}
with 𝑡𝑠𝑖 ∈ 𝑇𝑆 (𝑖 ∈ N), represent static and time-series property
values, respectively. A time series is represented as a property
when it is supplementary to the primary entity, providing addi-
tional context but not the main focus. The assignment function
𝜂 : 𝐸 → 𝑉 × 𝑉 maps an edge to vertices, while the function
𝛾 : 𝑆 × 𝑇 → P(𝑉 ) × P(𝐸) is a function that assigns to every
subgraph at each point 𝑡 ∈ 𝑇 a subset of vertices 𝑉 and edges 𝐸
where P(·) denotes the power set. Furthermore, the functions
𝜆 : 𝑉 ∪ 𝐸 ∪ 𝑆 → P(𝐿) and 𝜙 : (𝑉𝑝𝑔 ∪ 𝐸𝑝𝑔 ∪ 𝑆) × 𝐾 → N assign
labels to the entities and values to the property keys, respectively.
First HyGraph analysis prototype. The HyGraph analysis
package [3, 4] is a Python-based package that implements our
data model and provides a range of queries and operations for
managing and analyzing hybrid data. It leverages two main li-
braries, Xarray [88] and NetworkX [57], for in-memory storage
and computation, enabling efficient handling of both (multivari-
ate) time-series data and graph structures within the same frame-
work. The predefined operators rank from simple read, write,
and update of the HyGraph instance to a set of hybrid operators
like hybrid pattern matching, enabling users to query patterns
span both temporal and structural dimensions. We allow trans-
formations between graph and time series data to guarantee that
both data types are treated as first-class citizens. Starting from
graph data, we can generate time series by applying operations
that aggregate edges into super-edges, storing edge information
in a time series format, and then applying time-series operators.
Conversely, we can build a graph on top of time series data, en-
abling graph operators. This bidirectional capability guarantees
that our system treats both data models equally.
First HyGraph storage prototype.We conducted benchmark-
ing experiments using our bike-sharing dataset [52] by compar-
ing Neo4j as a native graph database with TimeTravelDB [68], our
polyglot persistence research prototype combining Neo4j with
TimescaleDB that uses an extended Cypher-based language for
querying. We store the time series in Neo4j as properties of nodes
and edges, where each timestamp and its corresponding value
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Figure 4: HyGraph pipeline to solve the running example.

are stored as separate properties. This approach significantly
increases the number of properties, resulting in high write over-
head. We design eight distinct queries to evaluate performance,
ranging from straightforward time-range queries to more com-
plex queries involving aggregations of time series values. Table 1
presents the performance metrics for Neo4j and TimeTravelDB
(TTDB). The results demonstrate TTDB’s significant advantage in
terms of query performance, particularly for complex queries. For
instance, in Q4, Neo4j exhibits a mean response time of 31,109.26
ms, while TTDB achieves a mean response time of 71.86 ms, rep-
resenting a speedup of several orders of magnitude. Similarly,
for Q5 and Q6, where Neo4j records response times exceeding
73,000 ms, TTDB maintains response times below 100 ms. Even
for simpler queries apart from Q1, which is a simple time range
query, TTDB outperforms Neo4j, with mean response times as
low as 7 ms for Q2 compared to 41.47 ms for Neo4j. Although
Neo4j exhibits relatively consistent performance with CV values
around 21% across all queries, its significantly higher response
times make it unsuitable for efficiently handling time-series data.
We also refer to refer the reader to [80] for more experiment
details. Moreover, the queries in Neo4j were significantly longer
and more complex due to the need to manually handle time se-
ries data stored as properties. This shows that storing time series
data directly within a graph database can lead to performance
bottlenecks. In Figure 1, we highlighted in red this limitation,
i.e., the ‘All-in-graph Storage’ approach; conversely, we show in
green the more promising ‘Polyglot persistence’ approach.
Other works. Our previous work on Gradoop [64, 65] intro-
duces a scalable open-source framework for managing and ana-
lyzing temporal graphs. The TPG model provides operators and
algorithms; it serves as the basis for our vision and uses its ar-
chitecture to build a scalable system. Moreover, we explore the
evolution of graph metrics over time in TPGs [63]. This work is
pertinent to the HyGraphmodel as it underscores the importance
of time-series analysis in understanding graph structures.
Basic operations: Solving the motivation use case. The Hy-
Graph vision suggests solving the credit card fraud example by
classifying clusters based on the behaviors of their members as
either “ordinary” or “suspicious”, as follows.

Users and merchants are represented as PG (property graph)
vertices while credit cards are described as TS (time series) ver-
tices, as the focus is only on the evolution of the balance. Edges
connecting the user to the credit card are represented as PG edges.
In contrast, edges connecting the credit card to the merchant are
TS edges, highlighting the dynamic nature of transaction flows.
Two credit cards can also be connected to highlight their simi-
larity. The similarity edge between two credit cards is a TS edge
because the entity represents a time series encapsulating the time-
varying nature of their transactional similarities. Such a method
utilizes distinct interfaces to facilitate interaction between those
data models. Thus, we identify below three different interfaces
into which the operations will fall and create a complete pipeline,
as shown in Figure 4. The placeholder <X> represents either a
TPG or a time-series model.

Table 2: Time Series vs Graphs: Querying, Analysis, and

ML. Legend: [Q]uerying, [D]etection, [P]attern [M]ining,

[E]mbeddings, [C1] Classification and [C2] Clustering.

Time Series Graph

Q1 Subsequence matching [89] Subgraph matching [11]
Q2 Downsampling [48] Graph aggregation [90]
Q3 Correlation [55] Reachability [11]
Q4 Segmentation [26] Snapshot [45]

D Anomalies [8] Communities [34]
PM Sequence, Motif [32] Subgraph, Motif [11]

E Subsequence matching [89] Vertex/Edge/Path/Graph [19]
C1 Temporal FAT, trends [36] Labels, edge/vertex feat. [43]
C2 Temporal proximity [31] Connectivity, Density [40]

The <X>ToHyGraph interface allows the integration of graphs
and time series into a given or newHyGraph instance. It involves
operations such as the addition of vertices, edges, and time series
to properties. An example of an operation in this class is trans-
forming temporal graph data with time series into the HyGraph
(the first step in Figure 4).

The HyGraphTo<X> interface enables data extraction from a
HyGraph instance, ensuring compatibilitywith existing pipelines.
Users can extract graph or time series instances in their original
formats and apply operations without losing functionality. For
example, themetricEvolution operator, inspired by [63], computes
meta-properties like node degree and community ID over time
stored as time series properties of the corresponding vertices.
It shows the duality of the <X>ToHyGraph and HyGraphTo<X>
operations, enriching graph metrics into time-series data and
storing them as properties.

Finally, the HyGraphToHyGraph interface enables advanced
processing of HyGraph instances. For example, the clustering
algorithm in HyGraph will analyze transactional interactions
(graph data) and account balance (time series) to produce en-
riched clusterswithmeta-properties, transaction edges, and credit
card similarity measures. A temporal evolution of these metrics
across clusters can be further used for classification to detect
fraudulent clusters and annotate the HyGraph instance, reduc-
ing false positives and negatives. This would aid in detecting
"User 3" as a false positive and "User 1" as a "suspicious entity" due
to its subgraph connections and time series behavior. By enrich-
ing transitions between graph and time-series models, HyGraph
enables more accurate analyses.

6 RESEARCH ROADMAP

The HyGraph’s research roadmap weaves the definition of sim-
ple querying and analytics and paves the way to multi-model
intelligent data management. Table 2 overviews related technolo-
gies for graph and time-series research areas. The table includes
querying, analytics, and machine learning. We show how each
respective combination leads to new hybrid operators.
Querying HyGraph. Querying involves defining primitives
based on graph pattern matching, reachability, and spatiotem-
poral constructs of property graphs [11, 12, 44]. Unlike previous
work that separated queries into static graphs or time-series
data [11, 41], HyGraph unifies these approaches to enhance
querying efficiency across both domains. (Q1) introduces an oper-
ator that matches specific temporal patterns with corresponding
structural patterns (subgraphs), thus detecting complex hybrid
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patterns. (Q2) is useful for summarising high-frequency data,
or even in streaming [66, 78], without losing context. This op-
erator summarizes and aggregates graph elements and adjusts
the frequency of associated time series to a user-defined gran-
ularity, improving scalability and performance. (Q3) measures
the correlation between time-series data of vertices to enhance
reachability analysis, aiding in identifying entities with similar
temporal patterns. (Q4) creates graph snapshots at significant
time intervals identified through time series segmentation, al-
lowing a detailed analysis of graph evolution [58].
Analyzing HyGraph. Analytics within HyGraph can be in-
tricate, often necessitating a multi-stage process that combines
basic operators with established algorithms for graphs and time
series. We will emphasize analytical tasks crucial to the data
communities, such as detection and pattern mining. Detection (D)
tasks differ slightly between time series and graphs: the former
typically focuses on identifying anomalies, while the latter con-
centrates on detecting communities. HyGraph exploits such a
duality to enrich anomaly detection with contextual data from
graph communities and to use trends in data for informed anom-
aly identification. Pattern Mining (PM) in HyGraph involves
identifying recurring subgraphs. It refers to generating potential
subgraphs through the HyGraphToGraph interface, testing their
occurrence frequency, and integrating time-series data to analyze
trends in sub-structures featuring common vertex types.
HyGraph and AI. HyGraph explores various methodologies
for merging graph-based and time-series machine learning mod-
els, such as combining them into a cohesive unit like the GC-
LSTM model [24] or enhancing existing models with time-series
capabilities, such as TISER-GCN [9]. We also explore hybrid tech-
niques that involve training separate models and integrating their
findings through joint learning techniques [38, 83]. We plan to
design specialized embeddings (E) to capture the topological and
temporal data characteristics within HyGraph, such as incorpo-
rating node2vec [53] or FastRP [23] for structure and context and
PCA [91] for time-series aspects. Besides, enhancing classification
(C1) and clustering (C2) by developing methods that utilize fea-
tures from time series for clustering based on the graph structure,
and employing trend analysis for graph-based classification.

Graph Retrieval-Augmented Generation (GraphRAG) employs
a graph as a source of contextual information for the LLM [30].
Since HyGraph maps not only structural information but also
its evolution over time and masses of correlated time-series data,
it serves as an ideal extended knowledge base for GraphRAG.
Our plan for integrating HyGraph into a GraphRAG pipeline
comprises three steps. Initially, the HyGraph implementation
must provide a query API and support vector similarity searches.
Subsequently, as previously described, nodes are augmented with
new embeddings that represent both evolutionary graph- and
time series features. Finally, the HyGraph is integrated into an
orchestration framework, so that relevant nodes are found by
similar embeddings. Those nodes can either be directly used as
knowledge or used as the starting point for subsequent queries.
HyGraph Implementation feasibility and challenges. Imple-
menting HyGraph in real-world scenarios requires addressing
challenges in managing and querying hybrid data efficiently
(OLTP) and enabling advanced analysis (OLAP). This section
explores the implementation feasibility and proposes an archi-
tecture (Figure 1, right)) to address indexing, scalability, and
integration concerns. One of the key challenges in implementing
HyGraph is to unify both data models into a single, coherent data

model without treating them separately. In this unified approach,
users primarily interact with a HyGraph instance. To deal with
only one data model, functions are implemented to extract the
necessary single data model when needed.

We propose an architecture that leverages existing data man-
agement systems through polyglot persistence (already tested)
or multi-model databases (in our roadmap, explaining the yellow
color in Figure 1), integrating our HyGraph data model that is
responsible for unifying approach, deeply on top of the storage
layer. This HyGraph architecture (see Figure 1) allows users to
interact with hybrid data as if stored in a single system.

In designing HyGraph’s storage layer, we plan to leverage
the scalability mechanisms provided by existing data manage-
ment systems [2, 49]. Selecting inherently scalable systems will
be crucial for efficiently managing hybrid graph and time-series
data. Initially, we aim to adopt single storage systems to simplify
design and maintenance, avoiding the complexities of distributed
systems. However, these systems may lack the horizontal scala-
bility required for large-scale datasets. As workloads grow, we
plan to transition to distributed storage systems that enable hori-
zontal scaling by distributing data across nodes while addressing
challenges such as network overhead and data consistency [85].

To optimize performance, we plan to apply in-memory caching
techniques. For efficient querying and analysis, we plan to use ex-
isting indexing mechanisms at the storage layer, such as Neo4j’s
adjacency index and TimescaleDB’s B-Tree and hypertable parti-
tioning [76, 77] in our polyglot prototype. We aim to implement
combined indexing mechanisms at the HyGraph data model
layer to integrate graph and time-series indices. For example,
Neo4j’s property index could be extended to include aggregated
time-series features, enabling the grouping of nodes by shared
characteristics. Moreover, we will develop semantic indices [56]
that combine embeddings from graph structures and time-series
data. Such advanced indexing methods support future applica-
tions such as HyGraph-RAG, going beyond the separate indexing
approaches used in current multi-model databases [50].

7 CONCLUSION

In this paper, we present our vision for HyGraph, a new power-
ful model that unifies temporal graphs and time series to form
a single coherent hybrid model. It bridges the gap between dis-
parate data models and opens up new dimensions of analytical
capabilities with its flexible model and operator pipelines. Our
proposed research roadmap lays the foundations for realizing the
full potential of HyGraph. It aims to take HyGraph from a vision-
ary concept to a working tool, concentrating on developing the
hybrid data model, intuitive querying, and simple and complex
hybrid analytics. HyGraph will pave the way for joint research
in data management, and machine learning communities.
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