
Towards Hybrid Graphs: Unifying Property Graphs and Time
Series

Mouna Ammar
Leipzig Univ. & ScaDS.AI

Leipzig, Germany
ammar@informatik.uni-

leipzig.de

Christopher Rost
Leipzig Univ. & ScaDS.AI

Leipzig, Germany
rost@informatik.uni-

leipzig.de

Riccardo Tommasini
INSA Lyon, LIRIS
Lyon, France

riccardo.tommasini@insa-
lyon.fr

Shubhangi Agarwal
Lyon 1 Univ., LIRIS

Lyon, France
shubhangi.agarwal@

liris.cnrs.fr

Angela Bonifati
Lyon 1 Univ., LIRIS, IUF

Lyon, France
angela.bonifati@univ-

lyon1.fr

Petra Selmer
Bloomberg

New York, United States
pselmer@bloomberg.net

Evgeny Kharlamov
Bosch Center for AI
Renningen, Germany
evgeny.kharlamov@

de.bosch.com

Erhard Rahm
Leipzig Univ. & ScaDS.AI

Leipzig, Germany
rahm@informatik.uni-

leipzig.de

ABSTRACT

Graphs effectively represent structural relationships, while time
series capture temporal dynamics, both of which are critical to
understanding complex systems, such as asset management, IoT
optimization, and micromobility demand predictions. In these
contexts, the interplay between evolving entities and their rela-
tionships, captured by graphs and large volumes of time-series
data, remains challenging to fully exploit, due to the absence of a
unified approach. Practitioners are thus forced to treat both data
structures as isolated and must create connections with manual
effort. Our vision, HyGraph, includes a hybrid data model and
operator concept designed to integrate the expressive power of
temporal graphs with time-series analysis, providing a holistic
approach for complex queries, analytics, and predictive tasks,
which are currently unfeasible by working solely on isolated
data structures. This vision has the potential to drive significant
advancements in both research and practice, addressing limita-
tions associated with isolated data models and fostering new
opportunities for interdisciplinary insights.

1 INTRODUCTION

Data interconnection and temporal evolution are emerging as
essential modeling aspects in modern data management. Graphs
were proved to be a working abstraction to capture the for-
mer [67], while data streams [37] and time series [35, 47] ef-
fectively describe the latter. However, analysts are currently
forced to put manual efforts when both modeling needs appear
together [14, 15, 63] because a hybrid solution for this integration
is currently missing.

Figure 1 (left) illustrates the issue: (streaming) time series are
ideal for representing evolving value but lack the semantic rich-
ness to represent meaningful relationships [6, 11]. Conversely,
graph data models, like labeled property graphs, are already suf-
ficiently expressive to capture structural changes [42, 65], but
fail to represent the sequential nature of time-series data, re-
ducing their integration to a simple attribute and/or losing the
opportunity to interact with them as objects in the graph. This
combination presents research challenges in data management,
impacting data mining and AI communities, where attention to

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: HyGraph’s vision: data model and architecture.

evolving connected data is growing [58]. Current trends increas-
ingly explore approaches to enrich time series with structural
information [14, 62, 75] or, inversely, to augment entities and rela-
tionships within a graph using evolving contextual data [63, 86].
Such investigations are a first step towards a unified data abstrac-
tion. Indeed, this is promising since both data structures excel at
different purposes; their combination may reveal patterns that
would remain undetected when analyzed in isolation.

This paper presents our vision, namely HyGraph, for a unified
view of graph and time-series data. Our goal with HyGraph is
to propose a research direction for unifying property graphs and
time-series data into a cohesive data model that treats both as
first-class citizens. This novel approach enables hybrid opera-
tions, analyses, and machine-learning opportunities that address
questions involving structural and temporal dimensions (as il-
lustrated in Figure 1). By allowing users to interact with a single
HyGraph instance, we eliminate the need to switch between
different data models or systems through a seamless integration.
While we do not claim to address all challenges in a single project,
this work provides a foundational framework to inspire further
exploration in this domain, leading to three key contributions:
• We introduce use cases that demonstrate the necessity of Hy-
Graph and identify the requirements to address;

• We present preliminary results on HyGraph, including data
model and operations, for solving a running example;

• We outline a research roadmap and present a selected dataset
to discuss and substantiate our vision.

Outline. Section 2 presents industrial use cases and analyzes the
requirements for a solution. In Section 3, a running example from
the financial domain is introduced, illustrating the benefits of our

Vision Paper

Series ISSN: 2367-2005 970 10.48786/edbt.2025.79

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.79

vision. Section 4 elaborates the vision in more detail, while Sec-
tion 5 presents our preliminary work. Finally, Section 6 outlines
the research roadmap, and Section 7 concludes the paper.

2 FROM USE CASES TO REQUIREMENTS

This section presents industrial use cases that combine graphs
and time series. By highlighting the challenges such use cases
unveil, we elicit some foundational requirements for our vision.

Uncovering financial fraud [81, 82] requires navigating con-
nections between assets (e.g., cards, bank accounts) and to classify
or aggregate value fluctuations within a time frame. These oper-
ations demand graph traversal queries and advanced time-series
analysis, often achieved through complex, ad-hoc solutions. Man-
aging financial entities involves capturing the temporal dynamics
of both physical and virtual entities, such as companies, equities,
funds, and portfolios. The dynamic structure (e.g., entity rela-
tionships) and data (e.g., time series) drive many query patterns.
For example, a query spanning a long period (e.g., in backtest-
ing) needs to cover a number of stages and milestones for some
company 𝐶 , such as its inception, being privately held, having
an IPO event, and going public, being listed on stock exchange(s)
with varying membership levels over the years, being acquired
by a company 𝐷 , being sold to another company 𝐸, and 𝐸 (and
all its subsidiaries) going bankrupt. All these changes in𝐶’s state
impact the topology of the graph. Moreover, these stages reflect
distinct properties, such as daily stock prices for publicly listed
companies, highlighting the interplay between graph topology
and time-series data. In this paper, credit card fraud detection

will serve as our use case, which we will further develop and
analyze in Section 3 to show the potential of the HyGraph model.

The Internet of Things (IoT) and smart manufacturing is an-
other application domain containing scenarios with thousands
of time series structurally connected [74]. IoT data analytics

is crucial for cost reduction and optimization [18] but it must
consider the devices’ physical and logical disposition and struc-
ture, how the devices are connected (topology) as well as the
environment they are operating in.

In urban micromobility, dynamic sensor topologies on vehi-
cles add complexity. Smart bike and scooter providers must pre-
dict demand at stations and districts to optimize distribution [29].
Rental station networks, user relationships, and evolving metrics
like bike availability and battery levels can significantly enhance
prediction accuracy. Our published dataset of temporal property
graphs (TPGs) and time-series data enables research on optimiz-
ing vehicle distribution [52].

We have elicited the four requirements for the HyGraph vi-
sion based on the use cases. (R1) Expressiveness. In HyGraph
data model, the query primitives, and the analytical operations
must preserve the expressiveness of their counterparts for time
series and TPGs, i.e., integrating existing graphs or time series in
the hybrid model without losing structural or temporal informa-
tion. (R2) Consistency. The HyGraph model must accurately
represent the dynamic interplay between structure and time. This
includes ensuring chronological integrity in time series [69] and
temporal integrity in the graph [65], and enabling users to define
and manage alternative logical views over a model instance, e.g.,
via grouping or sampling. (R3) Timeliness. The HyGraphmodel
must be designed for replacing stale data without compromising
the structure’s integrity, even for high ingestion. Moreover, struc-
tural updates must satisfy the velocity requirements of time-sen-
sitive scenarios. (R4) Scalability. Additionally, the HyGraph

User 1

User 3

Merchant 1
Merchant 2

Merchant 4

Merchant 6

User 4

Merchant 8

12:30
12:40

12:50

12:55

Pays Suspicious entity

12:25

12:20

t0 t6t5

t0 t6t5

t0 t6t5

t0 t6t5

Normal time-​series behaviour
Deviated time-​series behaviour

Graph based analysis Time-​series based analysis

Normal entity

1 2

User 3 User 4

User 2User 1

Credit card Credit card

Credit card

Uses

Transfer

User 2 Credit card

Figure 2: Existing methods to enhance Fraud Detection.

model must handle high-velocity data ingestion, the increasing
volume, and the complexity of the hybrid graph time series data.
It must enable scalable data processing with minimal overhead
as data volume increases.

3 RUNNING EXAMPLE

This section elaborates on the financial fraud use case to present
a running example. It focuses on Credit Card Fraud Detection [22]
as it emerged as a crucial area within the financial domain where
graph and time-series analysis have already been independently
applied. Assume having recorded transactions between users
and merchants to identify fraudulent users. We discuss possi-
ble solutions using graph models and time-series data models
individually (Figure 2), then a combined approach using existing
systems, and finally through HyGraph in Section 4. The time
series in Figure 2 illustrate the expenditure behavior of the users.
The graph-based way. Existing graph-based approaches adopt
pattern matching [17] and machine learning algorithms [59]
to detect fraudulent transactions. The former can be a graph
pattern query like the one in Listing 1, which finds users with
high transaction amounts to at least three merchants nearby
within an hour. For our example graph in Figure 2, a user who
briefly conducts transactions with multiple merchants might be
considered suspicious if such behavior deviates from the usual
pattern. The query in Listing 1 would return User 1 and User 3 as
potentially suspicious, as they meet the specified criteria.
The time-series way. Time-series data is used to analyze trans-
action patterns over time (e.g., transactions frequency or balance)
to detect anomalies [27]. This method involves outlier detection
by employing distance-based methods to identify transactions
that deviate significantly from a user’s typical spending pattern
(Listing 2). For instance, User 1 in Figure 2 is marked as sus-
picious due to several significant peaks of transactions within
a short interval [𝑡5, 𝑡6) which may indicate fraudulent activity.
However, this separation often fails to capture the complete pic-
ture, as graph analysis might identify suspicious entities without
time-contextual transactional behaviors, and time-series analysis
might spot irregular spending patterns without knowledge of
the correlation to other related entities. Thus, (R2) and (R3) are
only partially fulfilled as each data model is treated separately,
while (R1) remains unfulfilled.
The combinedway. Some single-core andmulti-model databases
can handle both graph and time-series data but typically treat
them as separate silos. For example, MongoDB [54] supports
time-series collections and basic graph capabilities. While this
allows basic querying, it leads to complexity and performance

971

1 MATCH (u:User)-[:USES]->(cc:CreditCard)-[t1:TX WHERE t1.
amount>1000]->(m1:Merchant),

2 MATCH (u:User)-[t1:TX WHERE t1.amount>1000]->(m1:Merchant)
, path=(u)-[:TX]->(m2:Merchant)

3 WITH u, collect(m2) as mrs, relationships(path) as txs
4 WHERE ALL(tx IN txs WHERE tx.amount > 1000 AND tx <> t1)
5 AND ALL(m IN mrs WHERE distance(m.loc, m1.loc) < 1000)
6 AND ALL(t IN txs WHERE t.time-t1.time <= duration("1H"))
7 AND length(mrs) > 2
8 RETURN u.name AS suspiciousUser

Listing 1: Fraud detection using graph model only.

1 def detect_fraudulent_transactions(timeseries):
2 centroid = np.mean(timeseries[:10])
3 distances = np.linalg.norm(timeseries[:10]-centroid)
4 threshold = np.max(distances)
5 is_fraudulent = any((np.linalg.norm(timeseries[10:])-

np.mean(timeseries[10:])) > threshold)
6 return is_fraudulent

Listing 2: Fraud detection using time-series model only.

bottlenecks due to a lack of optimization techniques for advanced
analyses like graph traversals or time-series-based computations
(R4). Existing solutions either lack a unified language or provide
limited ones (e.g., AQL [7]), failing to provide seamless hybrid
capabilities and requiring ad-hoc, task-specific solutions that com-
promise consistency (R2) and maintainability (R3). The simple
alternation for a dedicated solution enforces a physical separa-
tion of the specified pipeline, limiting the model expressiveness
(R1). In contrast, HyGraph unifies data models and analyzes all
levels, paving the way for new combined representations that
fulfill all requirements.

4 THE HYGRAPH VISION

HyGraph is a transformative approach that unites temporal
property graphs (TPGs) and time series into a coherent model
without losing any expressiveness of each data structure. Hy-
Graph treats time series as a living part of the graph, contributing
to the evolving narrative of connections. Similarly, the graph rep-
resents the flow of structural and contextual changes, with each
graph element enriched with temporal information and seam-
lessly integrating time series. The distinction between graph
and time-series data dissolves, allowing users to interact with a
unified model. The HyGraph model’s internal core masks the
complexity, eliminating the need to toggle between different data
models and enabling more efficient querying and analysis. Hy-

Graph operations can analyze and manipulate TPG and time
series simultaneously: the existing time-series analyses can be
redefined to use the semantic graph data for enhanced results,
while operations of the graph domain can benefit from the infor-
mation captured by the underlying patterns in the time series.
Moreover, new operators can be defined that can be executed on
a HyGraph instance. For instance, the creation of logical graph
patterns from nodes that exhibit similar time-series patterns and
conduct frequent pattern mining for community detection.

Figure 3 depicts such intuition at the bottom (marked by 10):
HyGraph introduces a higher level abstraction over two simpler
data models, enabling interactions between them.
Related Work on Graphs and Times Series Management.

The need for a unifying view over graphs and time series is emerg-
ing in the data management community [84]. Figure 3 shows

the state of the art on existing data models and transformations
between them.

The top half of Figure 3 shows the static and temporal data
models. In the top layer, semantically rich graph data models, la-
beled graphs (LG) [61] and labeled property graphs (LPG) [6] add
properties as key-value pairs to vertices and edges while the data
series model, a sequence of values ordered in some manner [5],
enable operations on serialized data, e.g., byte streams. The ar-
rows 1 and 2 represent operations on these data models, e.g.,
frequent pattern mining, subgraph matching, path queries, etc.,
while 4 represents data series sampling, filtering, grouping, etc.
The middle layer shows the temporal context with TPGs [42, 65],
which have equal expressiveness as LPG but extend it with the
time dimension to model all changes in the graph over time.
The arrow 3 represents operations on TPGs, like snapshot re-
trieval [45], temporal pattern matching [87], etc., that solely oper-
ate on TPGs. The 5 represents operations on the time series [21],
like classification [20] or subsequence mining [60].

Some approaches already use both data models in their tasks:
arrow 6 in Figure 3 represents a graph representation of a novel
low-dimensionality embedding of time-series subsequences in
recent research works [14, 15]. Similarly, a novel approach is
proposed in [33], where time series are connected by edges based
on their similarity. The FeatTS approach [75] shaping time-series
data into a labeled graph form is also represented by arrow 6 .
The transformation of an LPG into a data series is done through
simple pattern-matching queries returning property values or
aggregates as a series of values (marked by 7).

An instance of interaction between LPG and time series (8
in Figure 3) consists of LPG augmented with time-series data as
properties. Time-series analysis is then used to encode relation-
ships between two time series that can be navigated with the
help of pattern matching. Arrow 9 in Figure 3 represents oper-
ations that use both LPG and time series. While recent research
has made significant strides towards integrating time-series data
within graph databases satisfying arrows partially (8 and 9),
most existing frameworks [10, 72] treat time series as secondary
properties attached to nodes and edges, rather than as first-class
citizens. Such a hierarchical approach causes discrepancies where
graph components such as nodes and edges are prioritized over
time series data. In practice, such models do not allow time series
and graph components to interact on an equal footing, potentially
limiting the depth of analysis that can be derived.

Data
SeriesLPG

State-of-the-Art
Our Vision

LG

Hybrid Data Model

Hybrid Operations
TPG TS

HyGraph

Static
Temporal

9

Labeled Graph

Labeled
Property
Graph

1

2

3

6

8

4

5

10

Time
Series

Temporal
Property

Graph

Existing Operations
Missing Operations

7

Figure 3: State-of-the-art data models and operations (top),

Proposed HyGraph data model and operations (bottom).

972

Moreover, works on RDF stream processing (RSP) [16, 79] are
worth mentioning. RSP aims at extending the Linked Data infras-
tructure for continuous querying [13]. To this extent, RSP solu-
tions ingest a streaming extension of RDF based on timestamped
graphs or triples [16, 78], their relation to HyGraph is limited. In
particular, RSP focuses on reactiveness and recency, limiting the
temporal aspect to window operators. Instead, HyGraph aims at
making time series first-class citizens in the model.

Research on HyGraph is also related to multi-databases [73],
which include multistores and polystores. The former exposes
a unified declarative query interface over heterogeneous data
models. The latter combines the benefits of the multistores with
polyglot querying [39], i.e., they expose multiple query interfaces
over heterogeneous data models [28]. Regardless of their architec-
ture, multi-databases aim to reduce the amount of jobs required
to have a uniform view of heterogeneous data. Although data
integration is one of the objectives of HyGraph, our vision goes
beyond system federation and integration. HyGraph aims at
enabling a whole new family of complex workloads that combine
the navigational nature of graph queries and the sequential anal-
ysis of time series. It represents a paradigm shift towards a new
data model that inherently supports the complexity of modern
data, combining the strengths of property graphs and time series.

In the past, researchers have extensively explored hybrid mod-
els to enable data processing and analysis techniques that surpass
the limitations of individual models. For example, the authors of
[51] highlight the usefulness and reusability of relational plat-
forms for scalable linear algebra due to their robustness and in-
built cost-based optimizations. An efficient processing technique
for such hybrid platforms is proposed in [70]. The compilation
framework presented in [71] paves the way for enhanced in-
database machine learning. Similarly, our vision with HyGraph
aims to unify time series and graph databases, enabling advanced
analytics that transcend the capabilities of either data model.

5 PRELIMINARYWORK

Basic data model. Various approaches exist to integrate the
TPG model with time-series data. One approach enriches time
series with graph elements, adding structural connectivity [15],
while another embeds time series as graph properties [10], en-
abling values to vary over time. Our preferred method treats
both as first-class citizens, ensuring equal graph and time-series
data representation. We propose the HyGraph Model (HGM) to
unify LPGs [6], TPGs [65], and time-series data [25], supporting
univariate and multivariate time series [1, 46] as 1) vertices, 2)
edges, or 3) properties.

Given a set of property keys 𝐾 , a set of property values N , a
set of labels 𝐿, a set of tuples𝑌 , and a set of ordered timestamps𝑇 .
The HyGraph model is a tuple 𝐻𝐺 = (𝑉 , 𝐸, 𝑆,𝑇𝑆, 𝜂,𝛾, 𝜆, 𝜙, 𝜌, 𝛿),
where 𝑉 is a set of vertices, 𝐸 is a set of edges, 𝑆 is a set of
logical subgraphs and𝑇𝑆 is a set of (multi-variate) time series. To
emphasize the equality of graph data and time-series data as first-
class citizens of the model, we define property graph vertices/edges
and time-series vertices/edges. Formally,𝑉 = 𝑉𝑝𝑔 ∪𝑉𝑡𝑠 with 𝑣𝑝𝑔 ∈
𝑉𝑝𝑔 is a property graph vertex and 𝑣𝑡𝑠 ∈ 𝑉𝑡𝑠 is a time-series vertex.
Similarly, 𝐸 = 𝐸𝑝𝑔 ∪ 𝐸𝑡𝑠 with 𝑒pg ∈ 𝐸𝑝𝑔 is a property graph edge,
and 𝑒ts ∈ 𝐸𝑡𝑠 is a time-series edge. The function 𝛿 : (𝑉𝑡𝑠 ∪
𝐸𝑡𝑠) → 𝑇𝑆 maps each time-series vertex and edge to a multi-
variate time series in𝑇𝑆 . A multi-variate time series 𝑡𝑠 ∈ 𝑇𝑆 is an
ordered set of tuples 𝑡𝑠 = {(𝑡1, 𝑦1), (𝑡2, 𝑦2), . . . , (𝑡𝑛, 𝑦𝑛) |𝑛 ∈ N}
with 𝑡 ∈ 𝑇 represents a timestamp and𝑦 ∈ 𝑌 represents a tuple of

Table 1: Performance benchmarking of Neo4j and Time-

TravelDB (TTDB): Mean Response Time (MRS) and Coeffi-

cient of Variation (CV).

Neo4j TTDB
Query MRS (ms) CV (%) MRS (ms) CV (%)
Q1 3.40 20.50 4.33 5.39
Q2 41.47 20.92 7.02 4.08
Q3 56.09 21.28 20.48 5.43
Q4 31109.26 21.41 71.86 50.19
Q5 73814.52 21.37 62.85 41.14
Q6 73446.80 21.61 64.95 26.53
Q7 48299.03 21.29 48.39 38.57
Q8 54494.19 21.19 48.61 7.66

values of the time series with𝑦 = (𝑣𝑎𝑙1, 𝑣𝑎𝑙2, . . . , 𝑣𝑎𝑙𝑘). Whenever
a time series semantically represents an entity or relationship,
specialized vertex 𝑣ts and edge 𝑒ts are used. Such an approach
is optimal when the focus is on the evolution of a given entity
attribute as it neglects the need to monitor the entity’s other
properties. The function 𝜌 : (𝑉𝑝𝑔 ∪ 𝐸𝑝𝑔 ∪ 𝑆) → 𝑇 ×𝑇 retrieves
the timestamps, ⟨𝑡start, 𝑡end⟩, between which an object is valid
(𝑡end is initialized to𝑚𝑎𝑥 (𝑇)).

We define the set of property values as N = NΣ ∪NTS, with
NΣ ∩NTS = ∅, whereNΣ = {𝜎1, 𝜎2, . . .} andNTS = {𝑡𝑠1, 𝑡𝑠2, . . .}
with 𝑡𝑠𝑖 ∈ 𝑇𝑆 (𝑖 ∈ N), represent static and time-series property
values, respectively. A time series is represented as a property
when it is supplementary to the primary entity, providing addi-
tional context but not the main focus. The assignment function
𝜂 : 𝐸 → 𝑉 × 𝑉 maps an edge to vertices, while the function
𝛾 : 𝑆 × 𝑇 → P(𝑉) × P(𝐸) is a function that assigns to every
subgraph at each point 𝑡 ∈ 𝑇 a subset of vertices 𝑉 and edges 𝐸
where P(·) denotes the power set. Furthermore, the functions
𝜆 : 𝑉 ∪ 𝐸 ∪ 𝑆 → P(𝐿) and 𝜙 : (𝑉𝑝𝑔 ∪ 𝐸𝑝𝑔 ∪ 𝑆) × 𝐾 → N assign
labels to the entities and values to the property keys, respectively.
First HyGraph analysis prototype. The HyGraph analysis
package [3, 4] is a Python-based package that implements our
data model and provides a range of queries and operations for
managing and analyzing hybrid data. It leverages two main li-
braries, Xarray [88] and NetworkX [57], for in-memory storage
and computation, enabling efficient handling of both (multivari-
ate) time-series data and graph structures within the same frame-
work. The predefined operators rank from simple read, write,
and update of the HyGraph instance to a set of hybrid operators
like hybrid pattern matching, enabling users to query patterns
span both temporal and structural dimensions. We allow trans-
formations between graph and time series data to guarantee that
both data types are treated as first-class citizens. Starting from
graph data, we can generate time series by applying operations
that aggregate edges into super-edges, storing edge information
in a time series format, and then applying time-series operators.
Conversely, we can build a graph on top of time series data, en-
abling graph operators. This bidirectional capability guarantees
that our system treats both data models equally.
First HyGraph storage prototype.We conducted benchmark-
ing experiments using our bike-sharing dataset [52] by compar-
ing Neo4j as a native graph database with TimeTravelDB [68], our
polyglot persistence research prototype combining Neo4j with
TimescaleDB that uses an extended Cypher-based language for
querying. We store the time series in Neo4j as properties of nodes
and edges, where each timestamp and its corresponding value

973

Figure 4: HyGraph pipeline to solve the running example.

are stored as separate properties. This approach significantly
increases the number of properties, resulting in high write over-
head. We design eight distinct queries to evaluate performance,
ranging from straightforward time-range queries to more com-
plex queries involving aggregations of time series values. Table 1
presents the performance metrics for Neo4j and TimeTravelDB
(TTDB). The results demonstrate TTDB’s significant advantage in
terms of query performance, particularly for complex queries. For
instance, in Q4, Neo4j exhibits a mean response time of 31,109.26
ms, while TTDB achieves a mean response time of 71.86 ms, rep-
resenting a speedup of several orders of magnitude. Similarly,
for Q5 and Q6, where Neo4j records response times exceeding
73,000 ms, TTDB maintains response times below 100 ms. Even
for simpler queries apart from Q1, which is a simple time range
query, TTDB outperforms Neo4j, with mean response times as
low as 7 ms for Q2 compared to 41.47 ms for Neo4j. Although
Neo4j exhibits relatively consistent performance with CV values
around 21% across all queries, its significantly higher response
times make it unsuitable for efficiently handling time-series data.
We also refer to refer the reader to [80] for more experiment
details. Moreover, the queries in Neo4j were significantly longer
and more complex due to the need to manually handle time se-
ries data stored as properties. This shows that storing time series
data directly within a graph database can lead to performance
bottlenecks. In Figure 1, we highlighted in red this limitation,
i.e., the ‘All-in-graph Storage’ approach; conversely, we show in
green the more promising ‘Polyglot persistence’ approach.
Other works. Our previous work on Gradoop [64, 65] intro-
duces a scalable open-source framework for managing and ana-
lyzing temporal graphs. The TPG model provides operators and
algorithms; it serves as the basis for our vision and uses its ar-
chitecture to build a scalable system. Moreover, we explore the
evolution of graph metrics over time in TPGs [63]. This work is
pertinent to the HyGraphmodel as it underscores the importance
of time-series analysis in understanding graph structures.
Basic operations: Solving the motivation use case. The Hy-
Graph vision suggests solving the credit card fraud example by
classifying clusters based on the behaviors of their members as
either “ordinary” or “suspicious”, as follows.

Users and merchants are represented as PG (property graph)
vertices while credit cards are described as TS (time series) ver-
tices, as the focus is only on the evolution of the balance. Edges
connecting the user to the credit card are represented as PG edges.
In contrast, edges connecting the credit card to the merchant are
TS edges, highlighting the dynamic nature of transaction flows.
Two credit cards can also be connected to highlight their simi-
larity. The similarity edge between two credit cards is a TS edge
because the entity represents a time series encapsulating the time-
varying nature of their transactional similarities. Such a method
utilizes distinct interfaces to facilitate interaction between those
data models. Thus, we identify below three different interfaces
into which the operations will fall and create a complete pipeline,
as shown in Figure 4. The placeholder <X> represents either a
TPG or a time-series model.

Table 2: Time Series vs Graphs: Querying, Analysis, and

ML. Legend: [Q]uerying, [D]etection, [P]attern [M]ining,

[E]mbeddings, [C1] Classification and [C2] Clustering.

Time Series Graph

Q1 Subsequence matching [89] Subgraph matching [11]
Q2 Downsampling [48] Graph aggregation [90]
Q3 Correlation [55] Reachability [11]
Q4 Segmentation [26] Snapshot [45]

D Anomalies [8] Communities [34]
PM Sequence, Motif [32] Subgraph, Motif [11]

E Subsequence matching [89] Vertex/Edge/Path/Graph [19]
C1 Temporal FAT, trends [36] Labels, edge/vertex feat. [43]
C2 Temporal proximity [31] Connectivity, Density [40]

The <X>ToHyGraph interface allows the integration of graphs
and time series into a given or newHyGraph instance. It involves
operations such as the addition of vertices, edges, and time series
to properties. An example of an operation in this class is trans-
forming temporal graph data with time series into the HyGraph
(the first step in Figure 4).

The HyGraphTo<X> interface enables data extraction from a
HyGraph instance, ensuring compatibilitywith existing pipelines.
Users can extract graph or time series instances in their original
formats and apply operations without losing functionality. For
example, themetricEvolution operator, inspired by [63], computes
meta-properties like node degree and community ID over time
stored as time series properties of the corresponding vertices.
It shows the duality of the <X>ToHyGraph and HyGraphTo<X>
operations, enriching graph metrics into time-series data and
storing them as properties.

Finally, the HyGraphToHyGraph interface enables advanced
processing of HyGraph instances. For example, the clustering
algorithm in HyGraph will analyze transactional interactions
(graph data) and account balance (time series) to produce en-
riched clusterswithmeta-properties, transaction edges, and credit
card similarity measures. A temporal evolution of these metrics
across clusters can be further used for classification to detect
fraudulent clusters and annotate the HyGraph instance, reduc-
ing false positives and negatives. This would aid in detecting
"User 3" as a false positive and "User 1" as a "suspicious entity" due
to its subgraph connections and time series behavior. By enrich-
ing transitions between graph and time-series models, HyGraph
enables more accurate analyses.

6 RESEARCH ROADMAP

The HyGraph’s research roadmap weaves the definition of sim-
ple querying and analytics and paves the way to multi-model
intelligent data management. Table 2 overviews related technolo-
gies for graph and time-series research areas. The table includes
querying, analytics, and machine learning. We show how each
respective combination leads to new hybrid operators.
Querying HyGraph. Querying involves defining primitives
based on graph pattern matching, reachability, and spatiotem-
poral constructs of property graphs [11, 12, 44]. Unlike previous
work that separated queries into static graphs or time-series
data [11, 41], HyGraph unifies these approaches to enhance
querying efficiency across both domains. (Q1) introduces an oper-
ator that matches specific temporal patterns with corresponding
structural patterns (subgraphs), thus detecting complex hybrid

974

patterns. (Q2) is useful for summarising high-frequency data,
or even in streaming [66, 78], without losing context. This op-
erator summarizes and aggregates graph elements and adjusts
the frequency of associated time series to a user-defined gran-
ularity, improving scalability and performance. (Q3) measures
the correlation between time-series data of vertices to enhance
reachability analysis, aiding in identifying entities with similar
temporal patterns. (Q4) creates graph snapshots at significant
time intervals identified through time series segmentation, al-
lowing a detailed analysis of graph evolution [58].
Analyzing HyGraph. Analytics within HyGraph can be in-
tricate, often necessitating a multi-stage process that combines
basic operators with established algorithms for graphs and time
series. We will emphasize analytical tasks crucial to the data
communities, such as detection and pattern mining. Detection (D)
tasks differ slightly between time series and graphs: the former
typically focuses on identifying anomalies, while the latter con-
centrates on detecting communities. HyGraph exploits such a
duality to enrich anomaly detection with contextual data from
graph communities and to use trends in data for informed anom-
aly identification. Pattern Mining (PM) in HyGraph involves
identifying recurring subgraphs. It refers to generating potential
subgraphs through the HyGraphToGraph interface, testing their
occurrence frequency, and integrating time-series data to analyze
trends in sub-structures featuring common vertex types.
HyGraph and AI. HyGraph explores various methodologies
for merging graph-based and time-series machine learning mod-
els, such as combining them into a cohesive unit like the GC-
LSTM model [24] or enhancing existing models with time-series
capabilities, such as TISER-GCN [9]. We also explore hybrid tech-
niques that involve training separate models and integrating their
findings through joint learning techniques [38, 83]. We plan to
design specialized embeddings (E) to capture the topological and
temporal data characteristics within HyGraph, such as incorpo-
rating node2vec [53] or FastRP [23] for structure and context and
PCA [91] for time-series aspects. Besides, enhancing classification
(C1) and clustering (C2) by developing methods that utilize fea-
tures from time series for clustering based on the graph structure,
and employing trend analysis for graph-based classification.

Graph Retrieval-Augmented Generation (GraphRAG) employs
a graph as a source of contextual information for the LLM [30].
Since HyGraph maps not only structural information but also
its evolution over time and masses of correlated time-series data,
it serves as an ideal extended knowledge base for GraphRAG.
Our plan for integrating HyGraph into a GraphRAG pipeline
comprises three steps. Initially, the HyGraph implementation
must provide a query API and support vector similarity searches.
Subsequently, as previously described, nodes are augmented with
new embeddings that represent both evolutionary graph- and
time series features. Finally, the HyGraph is integrated into an
orchestration framework, so that relevant nodes are found by
similar embeddings. Those nodes can either be directly used as
knowledge or used as the starting point for subsequent queries.
HyGraph Implementation feasibility and challenges. Imple-
menting HyGraph in real-world scenarios requires addressing
challenges in managing and querying hybrid data efficiently
(OLTP) and enabling advanced analysis (OLAP). This section
explores the implementation feasibility and proposes an archi-
tecture (Figure 1, right)) to address indexing, scalability, and
integration concerns. One of the key challenges in implementing
HyGraph is to unify both data models into a single, coherent data

model without treating them separately. In this unified approach,
users primarily interact with a HyGraph instance. To deal with
only one data model, functions are implemented to extract the
necessary single data model when needed.

We propose an architecture that leverages existing data man-
agement systems through polyglot persistence (already tested)
or multi-model databases (in our roadmap, explaining the yellow
color in Figure 1), integrating our HyGraph data model that is
responsible for unifying approach, deeply on top of the storage
layer. This HyGraph architecture (see Figure 1) allows users to
interact with hybrid data as if stored in a single system.

In designing HyGraph’s storage layer, we plan to leverage
the scalability mechanisms provided by existing data manage-
ment systems [2, 49]. Selecting inherently scalable systems will
be crucial for efficiently managing hybrid graph and time-series
data. Initially, we aim to adopt single storage systems to simplify
design and maintenance, avoiding the complexities of distributed
systems. However, these systems may lack the horizontal scala-
bility required for large-scale datasets. As workloads grow, we
plan to transition to distributed storage systems that enable hori-
zontal scaling by distributing data across nodes while addressing
challenges such as network overhead and data consistency [85].

To optimize performance, we plan to apply in-memory caching
techniques. For efficient querying and analysis, we plan to use ex-
isting indexing mechanisms at the storage layer, such as Neo4j’s
adjacency index and TimescaleDB’s B-Tree and hypertable parti-
tioning [76, 77] in our polyglot prototype. We aim to implement
combined indexing mechanisms at the HyGraph data model
layer to integrate graph and time-series indices. For example,
Neo4j’s property index could be extended to include aggregated
time-series features, enabling the grouping of nodes by shared
characteristics. Moreover, we will develop semantic indices [56]
that combine embeddings from graph structures and time-series
data. Such advanced indexing methods support future applica-
tions such as HyGraph-RAG, going beyond the separate indexing
approaches used in current multi-model databases [50].

7 CONCLUSION

In this paper, we present our vision for HyGraph, a new power-
ful model that unifies temporal graphs and time series to form
a single coherent hybrid model. It bridges the gap between dis-
parate data models and opens up new dimensions of analytical
capabilities with its flexible model and operator pipelines. Our
proposed research roadmap lays the foundations for realizing the
full potential of HyGraph. It aims to take HyGraph from a vision-
ary concept to a working tool, concentrating on developing the
hybrid data model, intuitive querying, and simple and complex
hybrid analytics. HyGraph will pave the way for joint research
in data management, and machine learning communities.

ACKNOWLEDGMENTS

The DFG, under grant number RA 497/25-1, and ANR, under
grant number ANR-22-CE92-0025-01, fund this project. We fur-
ther acknowledge the Federal Ministry of Education and Research
of Germany’s financial support and the Sächsische Staatsminis-
terium für Wissenschaft, Kultur und Tourismus for ScaDS.AI.

REFERENCES

[1] Ratnadip Adhikari and Ramesh K Agrawal. 2013. An introductory study on
time series modeling and forecasting. arXiv preprint arXiv:1302.6613 (2013).

[2] Divyakant Agrawal, Amr El Abbadi, Sudipto Das, and Aaron J Elmore. 2011.
Database scalability, elasticity, and autonomy in the cloud. In International

975

conference on database systems for advanced applications. Springer, 2–15.
[3] Mouna Ammar. 2024. HyGraph-core py package installation. https://pypi.org/

project/hygraph-core/ Accessed: 2024-12-10.
[4] Mouna Ammar. 2024. HyGraph-core python package: Combined graph and

time series analysis. https://github.com/dbs-leipzig/HyGraph-package/tree/
develop Accessed: 2024-12-10.

[5] Eric Anderson, Martin Arlitt, Charles B Morrey III, and Alistair Veitch. 2009.
DataSeries: An efficient, flexible data format for structured serial data. ACM
SIGOPS Operating Systems Review 43, 1 (2009), 70–75.

[6] Renzo Angles. 2018. The Property Graph Database Model. In Proceedings of
the 12th Alberto Mendelzon International Workshop on Foundations of Data
Management, Cali, Colombia, May 21-25, 2018 (CEUR Workshop Proceedings),
Dan Olteanu and Barbara Poblete (Eds.), Vol. 2100. CEUR-WS.org.

[7] ArangoDB. 2023. ArangoDB: Multi-model NoSQL Database. https://
arangodb.com/graph-document/

[8] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. 2021. A
review on outlier/anomaly detection in time series data. ACM computing
surveys (CSUR) 54, 3 (2021), 1–33.

[9] Stefan Bloemheuvel, Jurgen van den Hoogen, Dario Jozinović, Alberto Miche-
lini, and Martin Atzmueller. 2023. Graph neural networks for multivariate
time series regression with application to seismic data. International Journal
of Data Science and Analytics 16, 3 (2023), 317–332.

[10] E. Bollen, R. Hendrix, and B. Kuijpers. 2024. Managing Data of Sensor-
Equipped Transportation Networks using Graph Databases. Geoscientific
Instrumentation, Methods and Data Systems Discussions 2024 (2024), 1–30.
https://doi.org/10.5194/gi-2024-3

[11] Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets.
2018. Querying Graphs. Morgan & Claypool Publishers.

[12] Angela Bonifati, Wim Martens, and Thomas Timm. 2017. An Analytical Study
of Large SPARQL Query Logs. Proc. VLDB Endow. 11, 2 (2017), 149–161.

[13] Angela Bonifati and Riccardo Tommasini. 2024. An Overview of Continuous
Querying in (Modern) Data Systems. In Companion of the 2024 International
Conference on Management of Data, SIGMOD/PODS 2024, Santiago AA, Chile,
June 9-15, 2024, Pablo Barceló, Nayat Sánchez-Pi, Alexandra Meliou, and
S. Sudarshan (Eds.). ACM, 605–612. https://doi.org/10.1145/3626246.3654679

[14] Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-based Subse-
quence Anomaly Detection for Time Series. Proc. VLDB Endow. 13, 11 (2020),
1821–1834. http://www.vldb.org/pvldb/vol13/p1821-boniol.pdf

[15] Paul Boniol, Themis Palpanas, MohammedMeftah, and Emmanuel Remy. 2020.
GraphAn: Graph-based subsequence anomaly detection. Proceedings of the
VLDB Endowment 13, 12 (2020), 2941–2944.

[16] Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell’Aglio,
Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Kon-
stantin Schekotihin, Danh Le Phuoc, Alessandra Mileo, Patrik Schneider,
Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. 2024. Grounding
Stream Reasoning Research. TGDK 2, 1 (2024), 2:1–2:47. https://doi.org/
10.4230/TGDK.2.1.2

[17] Fabian Braun, Olivier Caelen, Evgueni N Smirnov, Steven Kelk, and Bertrand
Lebichot. 2017. Improving card fraud detection through suspicious pattern
discovery. In Advances in Artificial Intelligence: From Theory to Practice: 30th
International Conference on Industrial Engineering and Other Applications of
Applied Intelligent Systems, IEA/AIE 2017, Arras, France, June 27-30, 2017, Pro-
ceedings, Part II 30. Springer, 181–190.

[18] Hongming Cai, Boyi Xu, Lihong Jiang, and Athanasios V Vasilakos. 2016.
IoT-based big data storage systems in cloud computing: perspectives and
challenges. IEEE Internet of Things Journal 4, 1 (2016), 75–87.

[19] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A
comprehensive survey of graph embedding: Problems, techniques, and ap-
plications. IEEE transactions on knowledge and data engineering 30, 9 (2018),
1616–1637.

[20] Remy Cazabet, Pablo Jensen, and Pierre Borgnat. 2018. Tracking the evolution
of temporal patterns of usage in bicycle-Sharing systems using nonnegative
matrix factorization on multiple sliding windows. International Journal of
Urban Sciences 22, 2 (2018), 147–161.

[21] Chris Chatfield. 2003. The Analysis of Time Series. 352 pages. https://doi.org/
10.4324/9780203491683

[22] Khyati Chaudhary, Jyoti Yadav, and Bhawna Mallick. 2012. A review of
fraud detection techniques: Credit card. International Journal of Computer
Applications 45, 1 (2012), 39–44.

[23] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven
Skiena. 2019. Fast and accurate network embeddings via very sparse ran-
dom projection. In Proceedings of the 28th ACM international conference on
information and knowledge management. 399–408.

[24] Jinyin Chen, XuekeWang, and Xuanheng Xu. 2022. GC-LSTM: Graph convolu-
tion embedded LSTM for dynamic network link prediction. Applied Intelligence
(2022), 1–16.

[25] Fatoumata Dama and Christine Sinoquet. 2021. Time series analysis and
modeling to forecast: A survey. arXiv preprint arXiv:2104.00164 (2021).

[26] Vitor de Castro Silva, Bruno Bogaz Zarpelão, Eric Medvet, and Sylvio Barbon.
2023. Explainable time series tree: An explainable top-down time series
segmentation framework. IEEE Access 11 (2023), 120845–120856.

[27] R Devaki, V Kathiresan, and S Gunasekaran. 2014. Credit card fraud detection
using time series analysis. International Journal of Computer Applications 3
(2014), 8–10.

[28] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magdalena Balazinska,
Bill Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and
Stanley B. Zdonik. 2015. The BigDAWG Polystore System. SIGMOD Rec. 44, 2
(2015), 11–16. https://doi.org/10.1145/2814710.2814713

[29] Sathishkumar V. E., Jangwoo Park, and Yongyun Cho. 2020. Using data
mining techniques for bike sharing demand prediction in metropolitan
city. Comput. Commun. 153 (2020), 353–366. https://doi.org/10.1016/
J.COMCOM.2020.02.007

[30] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, and Jonathan Larson. 2024. From local to global: A graph
rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130
(2024).

[31] Benjamin Ertl, Jörg Meyer, Matthias Schneider, and Achim Streit. 2021. Semi-
Supervised Time Point Clustering for Multivariate Time Series.. In Canadian
AI.

[32] Philippe Esling and Carlos Agon. 2012. Time-series data mining. ACM
Computing Surveys (CSUR) 45, 1 (2012), 1–34.

[33] Leonardo N Ferreira and Liang Zhao. 2016. Time series clustering via commu-
nity detection in networks. Information Sciences 326 (2016), 227–242.

[34] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486,
3-5 (2010), 75–174.

[35] Tak-chung Fu, Fu-lai Chung, Robert Luk, and Chak-man Ng. 2008. Repre-
senting financial time series based on data point importance. Engineering
Applications of Artificial Intelligence 21, 2 (2008), 277–300.

[36] Ben D Fulcher and Nick S Jones. 2014. Highly comparative feature-based time-
series classification. IEEE Transactions on Knowledge and Data Engineering 26,
12 (2014), 3026–3037.

[37] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. 2005.
Mining data streams: a review. ACM Sigmod Record 34, 2 (2005), 18–26.

[38] Snezhana Gocheva-Ilieva, Hristina Kulina, and Antoaneta Yordanova. 2022.
Stacking Machine Learning Models using Factor Analysis to Predict the Out-
put Laser Power. In 2022 International Conference on Electrical, Computer,
Communications and Mechatronics Engineering (ICECCME). IEEE, 1–6.

[39] Philipp Marian Grulich, Steffen Zeuch, and Volker Markl. 2021. Babelfish:
Efficient Execution of Polyglot Queries. Proc. VLDB Endow. 15, 2 (2021), 196–
210. http://www.vldb.org/pvldb/vol15/p196-grulich.pdf

[40] Erez Hartuv and Ron Shamir. 2000. A clustering algorithm based on graph
connectivity. Information processing letters 76, 4-6 (2000), 175–181.

[41] Martin Hirzel, Guillaume Baudart, Angela Bonifati, Emanuele Della Valle,
Sherif Sakr, and Akrivi Vlachou. 2018. Stream Processing Languages in the
Big Data Era. SIGMOD Rec. 47, 2 (2018), 29–40.

[42] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports
519, 3 (2012), 97–125.

[43] Saiful Islam, Md Nahid Hasan, and Pitambar Khanra. 2024. A Structural
Feature-Based Approach for Comprehensive Graph Classification. arXiv
preprint arXiv:2408.05474 (2024).

[44] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and
Heng Tao Shen. 2008. Discovery of convoys in trajectory databases. Proc.
VLDB Endow. 1, 1 (2008), 1068–1080.

[45] Udayan Khurana and Amol Deshpande. 2013. Efficient snapshot retrieval
over historical graph data. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE). IEEE, 997–1008.

[46] Thi Kieu Khanh Ho, Ali Karami, and Narges Armanfard. 2023. Graph-based
Time-Series Anomaly Detection: A Survey and Outlook. arXiv e-prints (2023),
arXiv–2302.

[47] Gebhard Kirchgässner, Jürgen Wolters, and Uwe Hassler. 2012. Introduction to
modern time series analysis. Springer Science & Business Media.

[48] Xingni Li, Yi Gu, Po-Chun Huang, Duo Liu, and Liang Liang. 2017. Down-
sampling of time-series data for approximated dynamic time warping on
nonvolatile memories. In 2017 IEEE 6th Non-Volatile Memory Systems and
Applications Symposium (NVMSA). IEEE, 1–6.

[49] André Lopes, Diogo Rodrigues, João Saraiva, Maryam Abbasi, Pedro Martins,
and CristinaWanzeller. 2023. Scalability and Performance Evaluation of Graph
Database Systems: A Comparative Study of Neo4j, JanusGraph, Memgraph,
NebulaGraph, and TigerGraph. In 2023 Second International Conference On
Smart Technologies For Smart Nation (SmartTechCon). IEEE, 537–542.

[50] Jiaheng Lu and Irena Holubová. 2019. Multi-model databases: a new journey
to handle the variety of data. ACM Computing Surveys (CSUR) 52, 3 (2019),
1–38.

[51] Shangyu Luo, Zekai J Gao, Michael Gubanov, Luis L Perez, and Christopher
Jermaine. 2018. Scalable linear algebra on a relational database system. ACM
SIGMOD Record 47, 1 (2018), 24–31.

[52] Lyft Bikes & Scooters and Constantin Urbainsky. 2024. New York City Bike
Sharing Network: Time-Series Enhanced Nodes and Edges Dataset. https:
//doi.org/10.5281/zenodo.13846868 Accessed: 2024-09-27.

[53] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. 2018. dynnode2vec:
Scalable dynamic network embedding. In 2018 IEEE International Conference
on Big Data (Big Data). IEEE, 3762–3765.

[54] mangodb. 2023. MongoDB: Time-series collection: time-series data and query
optimization. https://www.mongodb.com/docs/manual/core/timeseries-
collections/

[55] Johan Medrano, Abderrahmane Kheddar, and Sofiane Ramdani. 2024. Assess-
ing time series correlation significance: A parametric approach with appli-
cation to physiological signals. Biomedical Signal Processing and Control 94

976

(2024), 106235.
[56] Neo4j. 2024. Neo4j: Semantic indexes. https://neo4j.com/docs/cypher-manual/

current/indexes/semantic-indexes/overview/
[57] networkX. 2024. NetworkX: Network analysis in python. https://networkx.org/
[58] Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell’Aglio, Daniil

Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose,
Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tom-
masini, and Johannes Wachs. 2023. How Does Knowledge Evolve in Open
Knowledge Graphs? TGDK 1, 1 (2023), 11:1–11:59. https://doi.org/10.4230/
TGDK.1.1.11

[59] Debachudamani Prusti, Daisy Das, and Santanu Kumar Rath. 2021. Credit
card fraud detection technique by applying graph database model. Arabian
Journal for Science and Engineering 46, 9 (2021), 1–20.

[60] Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gustavo E.
A. P. A. Batista, M. BrandonWestover, Qiang Zhu, Jesin Zakaria, and Eamonn J.
Keogh. 2012. Searching and mining trillions of time series subsequences under
dynamic time warping. In KDD. ACM, 262–270.

[61] Marko A. Rodriguez and Peter Neubauer. 2010. Constructions from dots
and lines. Bulletin of the American Society for Information Science and
Technology 36, 6 (2010), 35–41. https://doi.org/10.1002/bult.2010.1720360610
arXiv:https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/bult.2010.1720360610

[62] Christopher Rost, Philip Fritzsche, Lucas Schons, Maximilian Zimmer, Dieter
Gawlick, and Erhard Rahm. 2021. Bitemporal Property Graphs to Organize
Evolving Systems. CoRR abs/2111.13499 (2021). arXiv:2111.13499 https:
//arxiv.org/abs/2111.13499

[63] Christopher Rost, Kevin Gomez, Peter Christen, and Erhard Rahm. 2023. Evo-
lution of Degree Metrics in Large Temporal Graphs. In Datenbanksysteme für
Business, Technologie und Web (BTW 2023) (LNI), Vol. P-331. Gesellschaft für
Informatik e.V., 485–507. https://doi.org/10.18420/BTW2023-23

[64] Christopher Rost, Kevin Gómez, Philip Fritzsche, Andreas Thor, and Erhard
Rahm. 2021. Exploration and Analysis of Temporal Property Graphs. In
Proceedings of the 24th International Conference on Extending Database Tech-
nology, EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021. 682–685. https:
//doi.org/10.5441/002/EDBT.2021.83

[65] Christopher Rost, Kevin Gómez, Matthias Täschner, Philip Fritzsche, Lucas
Schons, Lukas Christ, Timo Adameit, Martin Junghanns, and Erhard Rahm.
2022. Distributed temporal graph analytics with Gradoop. VLDB J. 31, 2 (2022),
375–401. https://doi.org/10.1007/S00778-021-00667-4

[66] Christopher Rost, Riccardo Tommasini, Angela Bonifati, Emanuele Della Valle,
Erhard Rahm, KeithW. Hare, Stefan Plantikow, Petra Selmer, andHannes Voigt.
2024. Seraph: Continuous Queries on Property Graph Streams. In Proceedings
of the 27td International Conference on Extending Database Technology, EDBT
2024, Paestum, Italy, March 25 - March 28, 2024, Letizia Tanca, Qiong Luo,
Giuseppe Polese, Loredana Caruccio, Xavier Oriol, and Donatella Firmani
(Eds.). OpenProceedings.org. https://doi.org/10.48786/edbt.2024.21

[67] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Am-
mar, Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A.
Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf
Hartig, Bernhard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana
Iamnitchi, Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric
Peukert, Stefan Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu,
Christian Schulz, Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor
Szárnyas, Riccardo Tommasini, Antonino Tumeo, Alexandru Uta, Ana Lucia
Varbanescu, Hsiang-YunWu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021.
The future is big graphs: a community view on graph processing systems.
Commun. ACM 64, 9 (2021), 62–71.

[68] Axel Schuster. 2023. TimeTravelDB: Polyglot persistence combining Graph
and Time series. https://git.informatik.uni-leipzig.de/ammar/time-travel-
db-v-2-benchmark Accessed: 2024-12-10.

[69] Arie Segev and Rakesh Chandra. 1993. A data model for time-series analysis.
Advanced Database Systems (1993), 191–212.

[70] Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. 2022. Func-
tional collection programming with semi-ring dictionaries. Proceedings of the
ACM on Programming Languages 6, OOPSLA1 (2022), 1–33.

[71] Amir Shaikhha, Maximilian Schleich, and Dan Olteanu. 2021. An interme-
diate representation for hybrid database and machine learning workloads.
Proceedings of the VLDB Endowment 14, 12 (2021), 2831–2834.

[72] Benjamin Steer, Felix Cuadrado, and Richard Clegg. 2020. Raphtory: Streaming
analysis of distributed temporal graphs. Future Generation Computer Systems
102 (2020), 453–464.

[73] Ran Tan, Rada Chirkova, Vijay Gadepally, and Timothy G. Mattson. 2017.
Enabling query processing across heterogeneous data models: A survey. In
2017 IEEE International Conference on Big Data (IEEE BigData 2017), Boston,
MA, USA, December 11-14, 2017, Jian-Yun Nie, Zoran Obradovic, Toyotaro
Suzumura, Rumi Ghosh, Raghunath Nambiar, Chonggang Wang, Hui Zang,
Ricardo Baeza-Yates, Xiaohua Hu, Jeremy Kepner, Alfredo Cuzzocrea, Jian
Tang, and Masashi Toyoda (Eds.). IEEE Computer Society, 3211–3220. https:
//doi.org/10.1109/BigData.2017.8258302

[74] Zhipeng Tan, Zhuoxun Zheng, Antonis Klironomos, Mohamed H. Gad-Elrab,
Guohui Xiao, Ahmet Soylu, Evgeny Kharlamov, and Baifan Zhou. 2023. Literal-
Aware Knowledge Graph Embedding forWelding Quality Monitoring. In ISWC
2023 (CEUR Workshop Proceedings), Vol. 3632.

[75] Donato Tiano, Angela Bonifati, and Raymond Ng. 2021. FeatTS: Feature-
based Time Series Clustering. In SIGMOD ’21: International Conference on

Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2784–2788.

[76] Timescale. 2024. TimescaleDB: About hypertables. https://docs.timescale.com/
use-timescale/latest/hypertables/about-hypertables/

[77] Timescale. 2024. TimescaleDB vs. InfluxDB: Purpose Built Differently for Time-
Series Data. https://www.timescale.com/blog/timescaledb-vs-influxdb-for-
time-series-data-timescale-influx-sql-nosql-36489299877/

[78] Riccardo Tommasini, Pieter Bonte, Femke Ongenae, and Emanuele Della
Valle. 2021. RSP4J: An API for RDF Stream Processing. In The Semantic
Web - 18th International Conference, ESWC 2021, Virtual Event, June 6-10,
2021, Proceedings (Lecture Notes in Computer Science), Ruben Verborgh, Katja
Hose, Heiko Paulheim, Pierre-Antoine Champin, Maria Maleshkova, Óscar
Corcho, Petar Ristoski, and Mehwish Alam (Eds.), Vol. 12731. Springer, 565–
581. https://doi.org/10.1007/978-3-030-77385-4_34

[79] Riccardo Tommasini, Pieter Bonte, Fabiano Spiga, and Emanuele Della Valle.
2023. Streaming Linked Data. Springer.

[80] Constantin Urbainsky. 2023. TimeTravelDB: Polyglot persistence
combining Graph and Time series. https://git.informatik.uni-
leipzig.de/ammar/time-travel-db-v-2-benchmark/-/blob/main/benchmark/
Benchmark_timetraveldb_neo4j.pdf?ref_type=heads Accessed: 2024-12-10.

[81] Atif Usman, Nasir Naveed, and Saima Munawar. 2023. Intelligent anti-money
laundering fraud control using graph-based machine learning model for the
financial domain. Journal of Cases on Information Technology 25, 1 (2023),
1–20.

[82] Salvatore Vilella, Arthur Thomas Edward Capozzi Lupi, Giancarlo Ruffo,
Marco Fornasiero, Dario Moncalvo, Valeria Ricci, and Silvia Ronchiadin. 2023.
Exploiting graph metrics to detect anomalies in cross-country money transfer
temporal networks. In Companion Proceedings of the ACM Web Conference
2023. 1245–1248.

[83] Zhihong Wang, Hongru Ren, Renquan Lu, and Lirong Huang. 2022. Stack-
ing Based LightGBM-CatBoost-RandomForest Algorithm and Its Application
in Big Data Modeling. In 2022 4th International Conference on Data-driven
Optimization of Complex Systems (DOCS). IEEE, 1–6.

[84] Klaus Wehmuth, Artur Ziviani, and Eric Fleury. 2015. A unifying model for
representing time-varying graphs. In 2015 IEEE International Conference on
Data Science and Advanced Analytics (DSAA). IEEE, 1–10.

[85] Lena Wiese. 2015. Advanced data management: for SQL, NoSQL, cloud and
distributed databases. Walter de Gruyter GmbH & Co KG.

[86] Giles Winchester, George Parisis, and Luc Berthouze. 2023. On the Temporal
Behaviour of a Large-Scale Microservice Architecture. In NOMS. IEEE, 1–6.

[87] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.
2014. Path Problems in Temporal Graphs. Proc. VLDB Endow. 7, 9 (2014),
721–732. https://doi.org/10.14778/2732939.2732945

[88] xarray. 2024. Xarray: Dealing with multidimensional arrays in python. https:
//docs.xarray.dev/en/stable

[89] Haoran Xiong, Hang Zhang, Zeyu Wang, Zhenying He, Peng Wang, and
X Sean Wang. 2024. CIVET: Exploring Compact Index for Variable-Length
Subsequence Matching on Time Series. Proceedings of the VLDB Endowment
17, 9 (2024), 2123–2135.

[90] Jiajia Xu, Yichang Qiu, Haiying Zhang, Meng Li, and Manli Li. 2017. Large-
scale time series data down-sampling based on Map-Reduce programming
mode. In 2017 IEEE 2nd Advanced Information Technology, Electronic and Au-
tomation Control Conference (IAEAC). IEEE, 409–413.

[91] Kiyoung Yang and Cyrus Shahabi. 2004. A PCA-based similarity measure for
multivariate time series. In Proceedings of the 2nd ACM international workshop
on Multimedia databases. 65–74.

977

