
Parallel Spatial Join Processing with Adaptive Replication
Nikolaos Koutroumanis
Dept. of Digital Systems
University of Piraeus

Piraeus, Greece
koutroumanis@unipi.gr

Christos Doulkeridis
Dept. of Digital Systems
University of Piraeus

Piraeus, Greece
cdoulk@unipi.gr

Akrivi Vlachou
Dept. of Inf. & Com. Syst.

Engineering
University of Aegean
Karlovasi, Greece

avlachou@aegean.gr

ABSTRACT
Parallel spatial join algorithms are essential for scalable process-
ing and analysis of big spatial data. The state-of-the-art algo-
rithms rely on splitting the data into partitions and replicating
objects from one data set in neighboring partitions, so that parti-
tions can be processed in parallel independently without produc-
ing duplicate results. However, this universal replication of one
data set leads to suboptimal performance in the case of skewed
data sets with varying density. Instead, we advocate an approach
that adaptively selects which data set to replicate in different
local areas of the space, thus minimizing replication and boosting
the performance of query processing. To this end, we contrive a
graph-based framework for modeling replication between neigh-
boring partitions. We study the theoretical properties that lead
to adaptive replication with correct and duplicate-free results.
Then, we design a data-parallel algorithm in Apache Spark which
is based on adaptive replication, and we demonstrate its perfor-
mance gain over the state-of-the-art for large-sized data sets, real
and synthetic, under various settings.

1 INTRODUCTION
Parallel spatial joins [2, 3, 10, 13, 14, 17, 21, 27, 28] has been a
field of great interest in the era of big spatial data [7], as they
find application in diverse scientific domains, including urban
planning, cartography, neuroscience and astrophysics. In this
paper, we revisit a fundamental problem in spatial joins, namely
the 𝜖-distance spatial join 𝑅 ⊲⊳𝜖 𝑆 between point data: given two
collections of spatial points 𝑅 and 𝑆 , find the pairs of points (𝑟, 𝑠)
with 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 , such that their distance 𝑑 () is smaller than 𝜖 ,
i.e., 𝑑 (𝑟, 𝑠) ≤ 𝜖 .

Existing algorithms for parallel spatial joins are based on split-
ting the data points into partitions and replicating points from
one data set locally to neighboring partitions [13, 20, 22, 24, 25,
27]. In this way, partitions can be processed independently in par-
allel, and the algorithm guarantees correctness without duplicate
results. As indicated in a recent comparative study of spatial join
algorithms [12], one of the best performing and widely-used algo-
rithms for in-memory spatial joins is PBSM [13], which forms the
basis for many other variations of parallel spatial join algorithms.

In PBSM, a grid is used for splitting the space into cells (par-
titions) and each point is assigned to the cell that encloses it.
Also, each point of one of the two data sets, e.g., 𝑟 ∈ 𝑅, is addition-
ally replicated to cells that intersect with the circle centered at 𝑟
with radius equal to the distance join threshold 𝜖 . The concept
is illustrated in Figure 1a, where 𝑟3 must also be replicated to
the upper neighboring cell, so that the join result (𝑟3, 𝑠3) can be
identified by examining the points of the upper partition only. It

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

r1
r2

r3
s1

s2

s3

0.1

1

10

100

REAL ⨝REAL SYN ⨝SYN REAL ⨝SYN

R
e

p
lic

a
ti
o

n
 (

#
o

b
je

c
ts

)
m

u
lt
.

Data sets combinations

Adaptive Repl.
PBSM

Figure 1: Example of point replication (left) and relative
overhead in replication of PBSM over our approach (right).

is trivial to show that after replication, PBSM guarantees that the
correct result without duplicates, can be computed by examining
individual cells.

Nevertheless, the global selection of a single data set for repli-
cation leads to suboptimal performance in practice, especially
in the case of skewed data sets with varying density. Figure 1b
shows the relative overhead (in log scale) in terms of number
of replicated objects of PBSM compared to the adaptive replica-
tion approach proposed in this paper. As shown in the chart, for
different combinations of data sets, the adaptive replication that
makes local decisions about which data set to replicate results
can reduce replication by a factor of 10x–75x, while guarantee-
ing result correctness. In turn, this gain by reduced replication
greatly improves the performance of query processing.

Motivated by this observation, in this paper, we introduce a
novel approach for parallel spatial joins, which exploits adaptive
replication of points to neighboring partitions. Essentially, our
approach allows neighboring partitions to make local decisions
about the data set that will be replicated, so as to minimize replica-
tion and (consequently) processing costs, without compromising
correctness nor causing duplicate results. This is particularly ben-
eficial in the case of non-uniform or skewed data sets of varying
density, which are commonly encountered in real applications.
As a result, our approach manifests as a data-parallel algorithm
that is more efficient than the state-of-the-art for parallel spatial
joins.

Concretely, in this paper, we make the following contributions:
• We identify a limitation of state-of-the-art algorithms for
parallel spatial joins, namely excessive data replication,
which has negative effect on performance.
• We contrive a graph-based framework for modeling neigh-
boring data partitions, leading to theoretical properties
for the design of adaptive object replication such that the
corresponding join algorithm is correct and duplicate-free.
• We design and implement an efficient algorithm for par-
allel spatial joins in Apache Spark that outperforms the
state-of-the-art.
• By means of experiments on real and synthetic data sets,
we demonstrate the performance gain of our approach,

Series ISSN: 2367-2005 464 10.48786/edbt.2025.37

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.37

in comparison with PBSM and Apache Sedona, a state-of-
the-art framework for big spatial data processing.

The rest of the paper is structured as follows: Section 2 reviews
related work. In Section 3 we provide the problem formulation
along with useful properties, and we motivate our approach.
Then, in Section 4, we present a graph-based abstraction, called
the graph of agreements, and its background. Section 5 provides
the details on adaptive replication of objects. Section 6 describes
the proposed data-parallel algorithm for spatial joins in Apache
Spark. In Section 7, we present the results of the experiments
and we conclude in Section 8.

2 RELATEDWORK
Distributed/Parallel Algorithms. Parallel spatial join algo-
rithms are classified as single-assigned multi-join (SAMJ) ormulti-
assigned single-join (MASJ), based on object assignment and how
partitions are joined. In SAMJ, an object is assigned to a single
partition, and a partition from the one set may be joined with
multiple partitions from the other set. Instead, in MASJ, an object
may be assigned to more than one partitions, but then each par-
tition is joined with a single other partition. MASJ methods have
the property of producing duplicate results, which has a negative
impact on performance due to communication cost and the ex-
tra workload. As such, a deduplication process is required after
the join computation or the use of the reference-point duplicate
avoidance technique [5].

In the SAMJ category, one of the first algorithms utilize the
R-Tree structure [3]. The join is performed on two R-Trees in
which the overlapping root entries that constitute a sub-tree, are
joined. In the MASJ category, the Partition-based Spatial Merge
Join (PBSM) algorithm [13] partitions the space uniformly into
disjoint cells of equal size (grid partitioning), and the objects of
the two data sets are assigned to one or more cells (so as to ensure
correctness). Then, cells are assigned to processors based on a
strategy (e.g., round-robin). Interestingly, as indicated in a recent
comparative study of spatial join algorithms [12], PBSM [13] is
one of the best performing algorithms for in-memory spatial
joins. A similar approach to PBSM, but for parallel processing,
is proposed in [28]. Later, Patel and DeWitt [14] highlight the
adverse effect of data skewness. Partitions are distributed to
workers by using a hash function or in a round-robin scheme,
and two parallel join algorithms are introduced, the Clone and
the Shadow join.

SPINOJA [17] introduces the MOD-Quadtree (metric-based
object decomposition Quadtree), where the criterion for subdi-
viding a cell is a work metric (not the number of objects). Later,
an adaptive partitioning algorithm (ADP) [23] is proposed to
form load-balanced workload partitions of spatial objects with
extent, such as polygon and polyline. Both studies employ dupli-
cate avoidance techniques. Lately, Tsitsigkos et. al. [21] revamp
the popular PBSM algorithm, targeting to optimize its execution
through the proper tuning of the number of grid partitions and
the axis on which plane sweep will be performed per partition. Pa-
rameter tuning has been also studied in [19] with implementation
aspects, where substantial performance gain is achieved with a
uniform grid against other structures such as R-Tree and CR-Tree.
In TRANSFORMERS [15], disk-based spatial joins are executed
in a data-driven manner. The algorithm detects divergence in
densities, and adjusts its execution accordingly.

MapReduce Algorithms. In recent years, many studies lever-
age the MapReduce paradigm [4] for processing big spatial data.

In SJMR (Spatial Join With MapReduce) [27], grid partitioning
is applied to form 𝑁 tiles that are assigned to 𝑃 partitions in a
round-robin manner. In the map phase, every object is assigned
to one or more partitions, while in the reduce phase, the space
of each partition is split to stripes according to tiles and plane
sweep is performed for each tile. García-García et al. [10] present
and evaluate algorithms for distance-based join queries and clos-
est pairs queries in SpatialHadoop [6]. A later version of the
work improves the efficient of the distance-join query using
Voronoi-based partitioning [8]. MR-DSJ [18] adjusts the size of
the grid cells and adopts a rule-based replication approach among
cells that guarantees correct and duplicate-free results, without
considering the data distribution. Pechlivanoglou et al. [16] pro-
pose a distributed sweep-line algorithm for spatial intersection
joins, implemented in Apache Spark [26]. Apache Sedona (for-
merly GeoSpark) [25], LocationSpark [20], SpatialSpark [24] and
Simba [22] are engines that extend Spark, supporting distributed
spatial query operations and indexes. In [9], 𝑘 nearest neighbor
join query and 𝑘 closest pairs query are implemented on top
of Apache Sedona, LocationSpark and Simba, and a compara-
tive study on different parameters is conducted regarding their
performance.

3 PRELIMINARIES
3.1 Problem Statement
Consider two sets of spatial points 𝑅 and 𝑆 , where each point
𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 is described by its coordinates (𝑟 .𝑥, 𝑟 .𝑦) and
(𝑠 .𝑥, 𝑠 .𝑦) respectively. The problem of the 𝜖-distance spatial join
is to retrieve pairs (𝑟, 𝑠) that are within a user-specified distance
threshold 𝜖 .

Definition 3.1. (𝜖-distance spatial join) Given two collections
of spatial points 𝑅 and 𝑆 the 𝜖-distance join (𝑅 ⊲⊳𝜖 𝑆) identifies
the pairs (𝑟, 𝑠) with 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 , such that 𝑑 (𝑟, 𝑠) ≤ 𝜖 , where
𝑑 (𝑟, 𝑠) is a distance function and 𝜖 is the distance threshold of
the join.

In its simplest version, the computation of spatial distance join
can be performed by comparing all points of 𝑅 with all points of 𝑆 .
The cost is𝑂 (|𝑅 | · |𝑆 |) where |𝑅 | and |𝑆 | denote the cardinalities of
the two data sets respectively. Even though this cost may be tol-
erable for small data sets, it becomes prohibitively expensive for
large data sets. Therefore, spatial joins are addressed by a divide-
and-conquer strategy, where the computation is broken in smaller
parts [13]. To achieve that, space partitioning methods are uti-
lized that group the data into a set of partitions {𝑃1, 𝑃2, ..., 𝑃𝑛} ∈ 𝑃
that contain spatial points. In the case of grid partitioning, which
is used in this paper, the partitions correspond to grid cells. Then,
we are able to compute the result set of the spatial join operation,
by processing the join in each individual partition.

The remaining question is how to assign points to partitions.
We identify two important properties for the assignment of points
to partitions that are relevant for any 𝜖-distance spatial join
algorithm.

Definition 3.2. (correctness) In the 𝜖-distance spatial join, an
assignment of points to 𝑛 partitions is called correct, if the result
of the join can be derived from the union of the results of each
partition, i.e., 𝑅 ⊲⊳𝜖 𝑆 =

⋃
𝑅𝑖 ⊲⊳𝜖 𝑆𝑖 , where 𝑖 = 1 . . . 𝑛.

Definition 3.3. (duplicate-free assignment) In the 𝜖-distance
spatial join, an assignment of points to 𝑛 partitions is called
duplicate-free, if the intersection of the results of all partitions is
empty, i.e.,

⋂
𝑅𝑖 ⊲⊳𝜖 𝑆𝑖 = ∅, where 𝑖 = 1 . . . 𝑛.

465

C

BA

D

ε

r6

r2

s8

r1

r3

r8

ε

s7
r7

s3

s6

r4

r5

s1

s5

s4
s2 BA

CD

0

2

2

3

2

0

2

1 3

0

1

2

Figure 2: Running example with four cells.

3.2 Motivation and Objective
Consider Figure 2 showing a data space partitioned in four cells
{𝐴, 𝐵,𝐶 , 𝐷} in order to create the workload partitions for comput-
ing the 𝜖-distance spatial join. Assume that the sides of each cell
are greater than 2 · 𝜖 . Points in the grey region are candidates
for replication. Applying PBSM would require choosing one of
the two data sets (say 𝑅) and then replicating its points 𝑟 ∈ 𝑅 to
any cell 𝑐𝑖 that is within distance 𝜖 . We use 𝑀𝐼𝑁𝐷𝐼𝑆𝑇 (𝑟, 𝑐𝑖) to
denote the minimum distance of a point 𝑟 to any point of cell 𝑐𝑖 ,
thus the condition for replication of 𝑟 to 𝑐𝑖 is 𝑑 (𝑟, 𝑐𝑖) ≤ 𝜖 .

Table 1 shows for the example of Figure 2 the replicated points
for each cell and the cell to which they are replicated. In the
table, the worst-case cost per cell is shown, as the product of the
number of the two sets of points in a cell. The cost is equivalent to
the number of comparisons (𝑟 · 𝑠) for performing the spatial join
operation 𝑅𝑖 ⊲⊳𝜖 𝑆𝑖 in the 𝑖-th cell. In this example, by replicating
the points from the R set universally, we can achieve a lower
overall cost of spatial join compared to the universal replication
of S set (41 < 42) with a lower number of replicated objects (12 <
13) and with a lower maximum cost per partition (15 < 18).

Universal replication of 𝑅 set

Cells Replicated from Cost per

R
ep

lic
at
ed

to

𝐴 𝐵 𝐶 𝐷 cell (𝑟 ·𝑠)
𝐴 - 𝑟2 𝑟5 𝑟7, 𝑟8 (1+4)·3 = 15
𝐵 ∅ - 𝑟5 ∅ (3+1)·1 = 4
𝐶 ∅ 𝑟2, 𝑟4 - 𝑟7 (2+3)·2 = 10
𝐷 𝑟1 𝑟2 𝑟5, 𝑟6 - (2+4)·2 = 12

Universal replication of 𝑆 set

Cells Replicated from Cost per

R
ep

lic
at
ed

to

𝐴 𝐵 𝐶 𝐷 cell (𝑟 ·𝑠)
𝐴 - 𝑠4 𝑠5 𝑠7 1·(3+3) = 6
𝐵 𝑠1, 𝑠2, 𝑠3 - 𝑠5 𝑠7 3·(1+5) = 18
𝐶 𝑠3 ∅ - 𝑠7, 𝑠8 2·(2+3) = 10
𝐷 𝑠3 ∅ 𝑠5 - 2·(2+2) = 8

Table 1: The replicated objects and the respective cost per
cell when replicating universally the 𝑅 and the 𝑆 set.

The objective in this paper is to design an algorithm that
avoids the need for universal replication of one data set, while
maintaining the desired properties of correctness and duplicate-
free assignment. The algorithm will choose a different set for
replication in different areas of the space in an adaptive way based
on the data distribution. Thus, our objective is to minimize the
replicated points, and consequently improve the performance by
minimizing execution time. However, the main challenge when
alternating between data sets for replication is to maintain the
duplicate-free property. For example, assume that 𝑟2 joins with
𝑠5 in Figure 2, as they are within distance 𝜖 . Since cells 𝐴 and
𝐵 exchange points from 𝑅 set, 𝑟2 will be replicated from cell 𝐵

to 𝐴. Also, since other cells exchange objects from 𝑆 set, 𝑠5 will
be replicated from cell 𝐶 to 𝐴 and 𝐵. Thus, the pair {𝑟2, 𝑠5} will
be reported by both 𝐴 and 𝐵 cells, leading to duplicate results.
Existing algorithms for parallel spatial joins do not address this
challenge and this is the novelty of our approach.

4 AGREEMENT-BASED REPLICATION
In this section, we present a graph-based abstraction for model-
ing the replication between neighboring grid cells. In contrast to
PBSM, where one of the data sets is chosen universally for repli-
cation between any pair of adjacent cells, our method follows
an adaptive approach. Essentially, a pair of adjacent cells may
take different decision (called agreement) than another pair of
cells, about which data set to replicate. In this way, we achieve
adaptive replication of points to partitions (Sect. 5) and we set the
ground for an efficient parallel spatial join algorithm (Sect. 6).

4.1 Grid Resolution
Consider a regular grid in the 2-dimensional data space that con-
sists of equi-sized cells. In the case of spatial joins, fine-grained
cells can lead to excessive data replication, while coarse-grained
cells can lead to partitions that cover large spaces, thus producing
a large number of candidate pairs of points.

To address this issue, we construct cells whose side length 𝑙 is
at least twice larger than the distance threshold 𝜖 , i.e., 𝑙 > 2 · 𝜖 .
In this way, we ensure that a point will be replicated to at most 3
other cells, thus imposing a limit to amount of replicated data,
and restricting the number of candidate objects that are produced
by each cell. The number𝑚𝑥 (resp.𝑚𝑦) of cells for dimension 𝑥
(resp. 𝑦) is computed as:𝑚𝑥 = ⌈(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)/2 · 𝜖)⌉ − 1, where
𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 correspond to the minimum and maximum values in
the data set for 𝑥 .

4.2 Graph of Agreements
We apply an approach that is based on selective replication of
𝑅 and 𝑆 data sets, for different cells, by introducing the notion
of agreements between cells. Agreements can be utilized in grid
structures that fulfill the condition 𝑙 > 2 · 𝜖 . An agreement desig-
nates the type of the data set (i.e., 𝑅 or 𝑆) that will be replicated
between two adjacent cells (i.e., those having at least one common
point), and it is bilaterally adhered.

We introduce an abstraction, named graph of agreements, to
model agreements between cells. Each vertex of the graph rep-
resents a cell. Two vertices 𝑣𝑖 and 𝑣 𝑗 that represent adjacent
cells, are connected with either 1 or 2 pairs of {𝑒𝑖 𝑗 , 𝑒 𝑗𝑖 } edges. A
directed edge 𝑒𝑖 𝑗 indicates the type of the data set that will be
replicated from vertex 𝑣𝑖 to vertex 𝑣 𝑗 . This is defined by its type 𝜏
(𝜏 ∈ {𝑅, 𝑆}). The edges that connect 2 particular vertices, have al-
ways the same type 𝜏 . This means that points from the same data
set 𝜏 are replicated between these cells. We call this an agreement
between these cells, and use 𝛼𝜏 to denote the agreement type.

The reason of having 2 pairs of {𝑒𝑖 𝑗 , 𝑒 𝑗𝑖 } edges between 𝑣𝑖 and
𝑣 𝑗 vertices is that these vertices belong to 2 different subgraphs.
The graph of agreements is viewed as a set of subgraphs com-
posed of 4 fully-connected vertices that represent 4 cells that are
adjacent. Hereafter, we will refer to such cells as quartets. In the
scope of the subgraph, 2 vertices are always connected with 2
edges that belong exclusively to the subgraph. In total, 12 edges
exist per subgraph. A vertex may be part of 1, 2 or 4 subgraphs.

Example 4.1. Figure 3 depicts an instance of a graph of agree-
ments of a 2×3 grid. Cells are depicted as vertices and the edges

466

B

F

C CBA

ED

ε

F

CA

D

ε

ε

E

p’

BA

D

ε

p

Figure 3: An instance of grid and the respective graph of
agreements that consists of two subgraphs.

indicate the agreements. The agreement type is illustrated using
dark or white coloured edges. Two subgraphs exist in this graph
of agreements, namely {A, B, E, D} and {B, C, F, E}, shown with
red-coloured dashed borders. Note that vertices B and E are con-
nected with two pairs of edges {𝑒𝐵𝐸 , 𝑒𝐸𝐵 }, where the two pairs
belong to different subgraphs.

Definition 4.2. The Graph of Agreements𝐺 (𝑉 , 𝐸) is a directed,
weighted multigraph, where:
• each vertex 𝑣 ∈ 𝑉 corresponds to a grid cell.
• two vertices 𝑣𝑖 , 𝑣 𝑗 are linked with one or two pairs of
directed edges {𝑒𝑖 𝑗 , 𝑒 𝑗𝑖 }.
• a directed edge 𝑒𝑖 𝑗 ∈ 𝐸 linking adjacent cells 𝑖 and 𝑗 can
be of two types.
• the edges that link two vertices are always of the same
type.
• 𝑤 () : 𝑉 × 𝑉 → N is a function that assigns weights to
edges.
• the directed edges that have the same tail and head vertices,
have the same weight𝑤 .

4.3 Instantiating the Graph of Agreements
Given a grid structure, we can derive many different instances of
the graph of agreements, depending on the type of agreement
(𝛼𝑅 or 𝛼𝑆) between any two adjacent cells. The interest lies on
how to select an instance from the pool of potential instances of
graph of agreements.

Determining the agreement type. Ideally, for a pair of ad-
jacent cells, the agreement type should be of that type 𝜏 , which
induces the lowest overhead in terms of replication and cost per
cell. Based on this, we employ two variants, called LPiB and DIFF,
for deciding the agreement type between two adjacent cells.
• Least points in boundaries (LPiB): The agreement type be-
tween two adjacent cells is defined by the data set having
the minimum number of candidate points for replication
between the two cells.
• Least points in the cell with the greatest difference in number
of points (DIFF): The cell with the greatest difference in
the number of points of the two data sets determines the

agreement type. The type of agreement corresponds to
the data set that has the fewest points within the cell.

Example 4.3. Consider the cells A and D of the grid depicted in
Figure 2.When the LPiB approach is applied for choosing the type
of agreement between the two cells, we consider the replication
area of the two cells, where there exist 2 points of S type (𝑠3, 𝑠7)
and 3 points of R type (𝑟1, 𝑟7, 𝑟8). The type with the minimum
number of candidate points for replication is the S set (2<3), thus
the agreement type is 𝛼𝑆 . Instead, when the DIFF approach is
applied, we consider at first the cell the greatest difference of the
number of points from the two sets (|#𝑝𝑡𝑠𝑟 − #𝑝𝑡𝑠𝑠 |). Cell A has
the greatest difference (|1−3| = 2) compared to cell D (|2−2| = 0).
Thus, the agreement type is 𝛼𝑅 as in cell A the fewest points are
of R type (not shown in the graph of Figure 2, as it is LPiB-based
instantiated).

Defining edge weights. After the agreement types have been
decided, weights are computed for the edges of the graph. If the
agreement between cells 𝑖 and 𝑗 is 𝑎𝑅 , then the edge 𝑒𝑖 𝑗 indicates
that R points from cell 𝑖 will be replicated to cell 𝑗 . The edge
weight 𝑤𝑖 𝑗 is the product of the number of points (of type R)
that will be replicated from cell 𝑖 with the number of points (of
type S) that exist in cell 𝑗 . Intuitively, the weight𝑤𝑖 𝑗 shows the
processing cost that is caused due to the replication of points
from cell 𝑖 to 𝑗 . This cost corresponds to the number of pairs that
need to be examined due to the replication.

Example 4.4. In the example of Figure 2, the weight of the
edge 𝑒𝐵𝐴 (of type 𝑎𝑅) is the product of the number of R points
that will be replicated from cell B to cell A (𝑟2), with the number
S points in cell A (𝑠1, 𝑠2, 𝑠3). Therefore𝑤𝐵𝐴 = 1 · 3 = 3. Instead,
edge 𝑒𝐶𝐵 is of type 𝑎𝑆 , therefore 𝑤𝐶𝐵 = 1 · 3 = 3 because one
S point (𝑠5) will be replicated to cell B, which contains three R
points (𝑟2, 𝑟3, 𝑟4).

4.4 Correctness
Interestingly, the abstraction of the graph of agreements is helpful
to provide a deeper understanding of the problem of parallel spa-
tial joins. First, we make the observation that PBSM corresponds
to an instance of the graph of agreements, where all agreement
types are identical (either 𝛼𝑅 or 𝛼𝑆). The following lemma jus-
tifies the need of having edges of the same type between two
nodes, as otherwise the point assignment to cells may jeopardize
correctness.

Lemma 4.5. If the two edges of an agreement are of different
type (𝜏), then the property of correctness cannot be guaranteed.

Proof. By contradiction. Let us assume that the property of
correctness is guaranteed in the instance of Figure 2, although
two edges of an agreement are of different type. Consider two
such edges 𝑒𝐴𝐵 of type 𝑎𝑅 and 𝑒𝐵𝐴 of type 𝑎𝑆 between the neigh-
boring cells 𝐴 and 𝐵. Further, consider the two points 𝑠3 ∈ 𝐴 and
𝑟2 ∈ 𝐵 that constitute a join result, i.e., 𝑑 (𝑠3, 𝑟2) ≤ 𝜖 . Since 𝑒𝐴𝐵 is
of type 𝑎𝑅 , only points of data set 𝑅 will be replicated to cell 𝐵,
thus 𝑠3 will not be replicated in cell 𝐵. Also, since 𝑒𝐵𝐴 is of type
𝑎𝑆 , 𝑟2 will not be replicated in cell 𝐴. As a result, the pair (𝑠3, 𝑟2)
will not be assigned to any cell, and thus will not be reported as
join result, which contradicts the assumption that correctness is
guaranteed. □

Corollary 4.6. The graph of agreements specifies an assign-
ment that has the property of correctness.

467

BA

C

(a) Graph of agreements

 C

 B A

ε

si

ε

p

ri

Duplicate-
prone area

of Cell A

(b) Data space

Figure 4: Graph of agreements producing duplicate results.

Even though the graph of agreements guarantees correctness,
it does not ensure the duplicate-free property. Consider the data
space case of Figure 4b. The three depicted cells have a common
touching point 𝑝 and one of them shares borders with the other
two. Cell B shares its borders with cells A and C, while A touches
with cell C. Let us discern for each space the dark-shaded areas
(one per cell) with the red-coloured borders. A point located in
these areas is candidate for replication in two cells. Depending on
the layout of the three cells, these areas may be quadrant-shaped
(as in cell A and C) or squared-shaped (as in cell B). We will refer
to these areas as duplicate-prone areas, designated in the context
of three cells, i.e., a triad of cells.

Definition 4.7. (duplicate-prone area) A point 𝑜 ∈ 𝑐𝑖 is located
in the duplicate-prone area of 𝑐𝑖 in a triad of cells 𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘 , if
𝑀𝐼𝑁𝐷𝐼𝑆𝑇 (𝑜, 𝑐 𝑗) ≤ 𝜖 ∧𝑀𝐼𝑁𝐷𝐼𝑆𝑇 (𝑜, 𝑐𝑘) ≤ 𝜖 .

Points in the duplicate-prone areas of a triad, are responsible
for the violation of the duplicate-free property as they may be
matched with the same points in two individual cells. This oc-
curs when the cells represented by the vertices on the graph of
agreements contain the two agreement types. We will refer to
three fully-connected vertices as triangle. The terms triad and
triangle will be used interchangeably, depending on the context.
Triad is used when it is necessary to focus on the space layout of
the three cells, while triangle is used for their representation on
the graph of agreements.

Lemma 4.8. The graph of agreements does not guarantee the
duplicate-free property, if there exists a triangle with both agree-
ment types.

Proof. By contradiction. Assume that there exists a triangle
with both agreement types in the graph of agreements, and that
the duplicate-free property is guaranteed, i.e., duplicate join re-
sults cannot be produced. It suffices to construct an instance of
(part of) the graph of agreements that will generate duplicate
results. Figure 4a shows such an instance for the ABC triangle
for the data space of Figure 4b. The pair of points (𝑟𝑖 , 𝑠𝑖) consti-
tutes a join result, as they are within distance 𝜖 . Based on the
agreements shown in the figure, 𝑠𝑖 will be replicated to cells 𝐴
and 𝐵, while 𝑟𝑖 will be replicated to cell 𝐴. Thus, the pair (𝑟𝑖 , 𝑠𝑖)
will be reported by both cells 𝐴 and 𝐵, resulting in a duplicate
result. □

4.5 Duplicate-free Assignment
To resolve the issue of duplicate results and obtain a duplicate-
free graph assignment, we focus on the triangles from which
duplicates are produced and prevent their generation. This is
achieved by means of excluding points from replication that ex-
ist in specific areas (Sect. 4.5.1). At the same time, we consider
that the correctness property must be ensured. For this, we repli-
cate additional points that exist in other, supplementary areas

BA

C

(2)(1)

(a) Edge marking: 𝑒𝐶𝐴 or 𝑒𝐶𝐵

 C

 B A

ε

si

ε

p

ri

Suppl.
Area of
Cell B

rj

(b) Supplementary area of cell B

Figure 5: Triangle ABC with two possible edge markings
and the supplementary area of cell B.

(Sect. 4.5.2). Then, we make some adaptations on the replica-
tion process in order to be applicable on triangles that are part
of a subgraph that models the agreements of a quartet of cells
(Sect. 4.5.3).

4.5.1 Edge Marking in a triangle (plain triad case). Based on
Lemma 4.8, a triangle where both𝛼𝑅 and𝛼𝑆 agreements exist may
produce duplicate join results. In the respective triad, the problem
stems from the cell that replicates the same type of points to the
other two cells, e.g., cell C in Figure 4. The points located in the
duplicate-prone area of cell C are replicated to the other two cells,
i.e., A and B, and this may cause duplicate results. To prevent
this, we need to replicate the points in the duplicate-prone area
of C to one cell only (A or B). For this purpose, we exclude these
points from replication to either A or B cell. Notice that this
affects only the duplicate-prone area, i.e., the other points of cell
C are replicated.

To handle this, we introduce the concept of edge marking
on the graph. Given a triangle where both 𝛼𝑅 and 𝛼𝑆 agree-
ments exist, a marked edge 𝑒𝑖 𝑗 excludes the objects located in the
duplicate-prone area of cell 𝑖 from replication to cell 𝑗 . Notice
that there are always two candidate edges for marking in such a
triangle.
Edge marking. The candidate edges for edge marking in a
triangle are those having: (i) the same type 𝛼𝜏 , and (ii) the same
tail vertex 𝑣𝑖 (𝑒𝑖 𝑗 or 𝑒𝑖𝑘).
Figure 5a depicts with red cross the two possible edge markings
that can occur for the graph of agreements of the example of
Figure 4. In the first option, the objects in duplicate-prone area
of cell C are excluded from being replicated to cell A, while in
the second option, the objects are excluded from being replicated
to cell B.

4.5.2 Ensuring Correction in Edge Marking of a triangle. In
some cases, edge marking has no negative effect on correctness.
Specifically, this is the case when the marked edge concerns two
cells that have only a single touching point. We capture this in
the following corollary.

Corollary 4.9. Edge marking does not violate the correctness
property, if the head and tail vertices of the marked edge in a
triangle represent cells that have only one common touching point.

However, in any other case than the one described above, edge
marking may affect correctness. Particularly, this is noticed for
the marking of the 𝑒𝐶𝐵 edge in Figure 5a, option (2). For the
respective triad (Figure 5b), the points located in the duplicate-
prone area of cell C can form pairs with points from an additional
subarea of cell B. We will refer to the additional subarea as supple-
mentary area. It is depicted as quadrant-shaped and is adjacent to

468

BA

C

(a) Graph of agreements

 C

 B A

ε

ε

p

ri

siSuppl.
Area of
Cell C

sj

(b) Data space

Figure 6: An instance of a data space with cells A, B, C and
its graph of agreements.

BA

CD

(a) Graph of agreements

 C

 B A

 D

ε

ri

ε

si
p

rj

Suppl.
Area of
Cell B

Merged Dup.-
prone Area of

Cell C

(b) Grid areas

Figure 7: Merged duplicate-prone area and edge locking.

the B’s duplicate-prone area. In Figure 5b, 𝑠𝑖 will not be replicated
to cell B, and thus the pair (𝑟 𝑗 , 𝑠𝑖) will not be found in any cell.

The supplementary area of cell 𝑐 𝑗 in a triad of cells that consist
of 𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘 cells with a common touching point 𝑝 , is defined by
the duplicate prone area of 𝑐𝑖 whose points will not be replicated
to 𝑐 𝑗 . The supplementary area is disjoint from the duplicate-prone
area of 𝑐 𝑗 and a point 𝑜 located in it, can form pairs with the
points in the duplicate-prone area of 𝑐𝑖 .

Definition 4.10. (supplementary area) Given a triad 𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘
with common touching point 𝑝 , a point 𝑜 ∈ 𝑐 𝑗 is located in
the supplementary area of cell 𝑐 𝑗 if: 𝑀𝐼𝑁𝐷𝐼𝑆𝑇 (𝑜, 𝑐𝑖) ≤ 𝜖 ∧
𝑀𝐼𝑁𝐷𝐼𝑆𝑇 (𝑜, 𝑐𝑘) > 𝜖 ∧ 𝑑 (𝑜, 𝑝) ≤ 2𝜖 .

To resolve the matching problem, we consider the points lo-
cated in the supplementary area as being a supplementary part
of its cell’s duplicate-prone area. This means that the points in
the supplementary area adhere to the replication process of the
duplicate-prone area. Specifically, in the example of Figure 5b, the
points of R type located in the supplementary area, are replicated
to cell A, as the points of the duplicate-prone area of cell B do. In
this way, the pair (𝑟 𝑗 , 𝑠𝑖) is found in cell A and will be reported
as a join result.

As a side-note, the supplementary area may not be quadrant-
shaped in all cases. This depends on the shape of the duplicate-
prone area of the cell in which the supplementary area exists.
Figure 6 shows an instance where the 𝑒𝐵𝐶 edge in the graph of
agreements is marked. For the respective triad in Figure 6b, the
supplementary area exists in cell C. The duplicate-prone area of
cell C is quadrant-shaped, while the rest illustrated area is the
supplementary area.

4.5.3 Edge Marking in a subgraph’s triangles (quartet case). In
the context of a quartet, the area from which duplicates can occur
is the union of all duplicate-prone areas. This area is depicted as
squared-shaped for each cell in Figure 7b. We will refer to it as
merged duplicate-prone area. Therefore, we need to consider the
merged duplicate-prone area of every cell, when we examine the
4 triangles for edge marking.

In a subgraph, correctness can be violated by edge marking
in another triangle. For instance, in Figure 7a, 𝑒𝐶𝐵 is a marked
edge based on the ABC triangle. This means that points in the
squared-shaped area of cell C (such as 𝑠𝑖) are replicated to cell
A. Also, points in the duplicate-prone area of cell B (such as
𝑟𝑖) and its supplementary area (such as 𝑟 𝑗) are also replicated
to cell A. Therefore, for the ABC triangle, the replication due
to the other two edges 𝑒𝐶𝐴 and 𝑒𝐵𝐴 is crucial for guaranteeing
correctness. However, these edges are eligible for being marked
during the examination of another triangle of the subgraph, thus
violating correctness. For instance, 𝑒𝐵𝐴 can be marked during the
examination of the ABD triangle. To ensure that such edges will
not be marked when considering another triangle, we introduce
the notion of edge locking.
Edge locking. In a triangle with vertices 𝑣𝑖 , 𝑣 𝑗 and 𝑣𝑘 , where
edge 𝑒𝑖 𝑗 is marked, the edges whose head is the 𝑣𝑘 vertex, i.e.,
𝑒 𝑗𝑘 and 𝑒𝑖𝑘 , are locked.
In Figure 7a, in the ABC triangle, the marking of edge 𝑒𝐶𝐵

causes the locking of edges 𝑒𝐵𝐴 and 𝑒𝐶𝐴 . Edge locking is depicted
with a green-colored dash. Hence, in the ABD triangle, only 𝑒𝐵𝐷
can be marked, as 𝑒𝐵𝐴 has been locked.
Duplicate-free property of a grid. A graph of agreements
that represents a grid, does guarantee the duplicate-free prop-
erty if all of the individual subgraphs that represent the quartets,
ensure their duplicate-free property.

5 ADAPTIVE REPLICATION
In this sectionwe present the representation of the graph of agree-
ments and how to obtain a duplicate-free assignment, guarantee-
ing its correctness. Also, we provide the respective algorithms
for reaching the duplicate-free assignment.

5.1 Representation of Graph of Agreements
We use two dictionaries for the representation of the graph of
agreements that allow efficient access to cells and subgraphs. The
first dictionary uses the cell identifier as key, and the represen-
tation of the cell as value. Thus, we maintain for each cell the
number of points from the 𝑅 and 𝑆 sets in the areas where points
are candidates for replication. This dictionary allows access of
the contents of a given cell in constant time. The dictionary is
loaded with entries when the sampling procedure of the R and S
data sets takes place.

The second dictionary is used to maintain the formed sub-
graphs. The key in this dictionary is the reference point, i.e., the
common touching point of the cells of the quartet. The value is
the set of edges associated with the subgraph that consists of
these 4 cells. Practically, this set of edges are used to represent the
agreements between the respective 4 cells. Thus, the dictionary
offers access to the information required about replication in
constant time.

5.2 Duplicate-free Graph Generation
To obtain an assignment that is both correct and duplicate-free,
we need to ensure that there exists no subgraph that may produce
duplicate results. In turn, this requires that no triangle exists (in
any subgraph) that may produce duplicate results.

Thus, we enumerate the subgraphs and for each subgraph we
invoke Algorithm 1. Given a subgraph, the algorithm accesses its
edges via the dictionary, examines each edge for marking, and
if it gets marked then the other edges of the triangle are locked.

469

Algorithm 1: Duplicate-free Graph Generation.
Input: Sorted list of edges 𝐸 of subgraph 𝑠
Output: Processed list of edges 𝐸′

1 𝐸′ ← 𝐸

2 for each 𝑒𝑖 𝑗 ∈ 𝐸′ do
3 if !𝑒𝑖 𝑗 .isLocked() then
4 for 𝑡1, 𝑡2 triangles do
5 if 𝑒𝑖𝑘 .𝜏 == 𝑒𝑖 𝑗 .𝜏 and 𝑒 𝑗𝑘 .𝜏 != 𝑒𝑖 𝑗 .𝜏 then
6 if !𝑒 𝑗𝑘 .isMarked() and !𝑒𝑖𝑘 .isMarked() then
7 mark 𝑒𝑖 𝑗 , lock 𝑒 𝑗𝑘 , lock 𝑒𝑖𝑘
8 break

9 return 𝐸′

BA

CD

0

2

2

3

2

0

2

1 3

0

1

2

(a) Graph of agreements

BA

CD

0

2

22

0

2

1

0

1

2

3

3

(b) Marked and locked edges

Figure 8: Example of applying Algorithm 1.

As the algorithm needs to access the list of edges, we need to
specify an ordering for this list. Intuitively, accessing edges based
on descending weight is beneficial, so as to avoid replication of
many points. However, this may induce extra replication, due to
the supplementary areas. As shown in Section 4.5.2, this occurs
only when marking edges whose vertices represent cells with a
common side. Consequently, our algorithm prioritizes access to
those edges whose two vertices constitute cells with a common
touching point, and then proceeds to the rest ones. Therefore, the
list of edges contains first the edges whose connected cells have
a common touching point and then the edges whose connected
cells have a common side, and within each of these groups edges
are sorted based on descending weight.

Example 5.1. In Figure 8a, the algorithm first traverses every
edge that connects two cells with a common touching point (𝑒𝐴𝐶 ,
𝑒𝐶𝐴, 𝑒𝐵𝐷 and 𝑒𝐷𝐵) in descending order of its weight. Starting
from 𝑒𝐴𝐶 , the triangles ABC and ACD are examined, but neither
of them fulfills the conditions for its marking. Then, the algorithm
continues with 𝑒𝐵𝐷 . The triangles ABD and BCD are examined,
and ABD is selected, thus 𝑒𝐵𝐷 is marked and at the same time
𝑒𝐵𝐴 and 𝑒𝐷𝐴 are locked. Then, 𝑒𝐶𝐴 is accessed and based on
triangle ABC 𝑒𝐶𝐴 is marked, while 𝑒𝐶𝐵 and 𝑒𝐴𝐵 are locked. Then,
𝑒𝐷𝐵 is checked but is not marked. The algorithm continues with
accessing the edges whose connected cells have a common side,
i.e., 𝑒𝐶𝐵 and 𝑒𝐵𝐴 . These edges are skipped, as they are locked.
Then, 𝑒𝐶𝐷 is examined and marked through the triangle BCD,
and 𝑒𝐶𝐵 and 𝑒𝐷𝐵 are locked. The remaining edges are examined
but cannot be marked. Figure 8b shows the result, which is an
assignment that is both correct and duplicate-free.

For the special case where the marking of an edge can be done
in two triangles, the selected triangle is the one whose locked
edges from the potential marking have the largest sum of weight.

Algorithm 2: Point replication to cells.
Input: Coordinates of a point 𝑜 (𝑥, 𝑦) and its type (𝜏)
Output: A set with the ids of the assigned cells (𝑃)

1 𝑐𝑖 ← 𝑔𝑒𝑡𝐶𝑒𝑙𝑙 (𝑥, 𝑦)
2 𝑃 ← {𝑐𝑖 .𝑖𝑑 }
3 if in no replication area then
4 return 𝑃

5 else if in merged duplicate-prone area of quartet q then
6 𝑟𝑒𝑠 ← 𝑀𝑒𝐷𝑢𝑃𝐴𝑟 (𝑔𝑟𝑎𝑝ℎ𝐷𝑖𝑐𝑡 .𝑔𝑒𝑡 (𝑞), 𝑜, 𝜏, 𝑐𝑖)
7 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑠)
8 𝑟𝑒𝑠 ← 𝑆𝑢𝑝𝐴𝑟 (𝑔𝑟𝑎𝑝ℎ𝐷𝑖𝑐𝑡 .𝑔𝑒𝑡 (𝑞′), 𝑜, 𝜏, 𝑐𝑖)
9 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑠)

10 𝑟𝑒𝑠 ← 𝑆𝑢𝑝𝐴𝑟 (𝑔𝑟𝑎𝑝ℎ𝐷𝑖𝑐𝑡 .𝑔𝑒𝑡 (𝑞′′), 𝑜, 𝜏, 𝑐𝑖)
11 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑠)
12 else
13 𝑠 ← 𝑔𝑟𝑎𝑝ℎ𝐷𝑖𝑐𝑡 .𝑔𝑒𝑡 (𝑞)
14 if 𝑠.𝑒𝑖 𝑗 .𝜏 == 𝑜.𝜏 then
15 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐 𝑗 .𝑖𝑑)
16 𝑟𝑒𝑠 ← 𝑆𝑢𝑝𝐴𝑟 (𝑔𝑟𝑎𝑝ℎ𝐷𝑖𝑐𝑡 .𝑔𝑒𝑡 (𝑞), 𝑜, 𝜏, 𝑐𝑖)
17 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑠)
18 𝑟𝑒𝑠 ← 𝑆𝑢𝑝𝐴𝑟 (𝑔𝑟𝑎𝑝ℎ𝐷𝑖𝑐𝑡 .𝑔𝑒𝑡 (𝑞′), 𝑜, 𝜏, 𝑐𝑖)
19 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑠)
20 return 𝑃

5.3 Algorithms for Duplicate-free Assignment
Algorithm 2 describes the process of point replication to cells. As
input, it requires the coordinates of the point 𝑜 (𝑥,𝑦) and its type
𝜏 . The output 𝑃 of the algorithm is a set of cell identifiers (ids)
of the cells in which the point is assigned. Also, the cell 𝑐𝑖 that
encloses 𝑜 is located. A set named 𝑃 is initialized with the cell
id of 𝑐𝑖 . Neighboring cell ids may be added to 𝑃 . Algorithms 3
and 4 are invoked, named 𝑀𝑒𝐷𝑢𝑃𝐴𝑟 and 𝑆𝑢𝑝𝐴𝑟 respectively.
MeDuPAr constitutes the procedure of point assignment to cells
given that it is located in the merged duplicate-prone area of a
quartet. SupAr constitutes the procedure of point assignment
located in a supplementary area of a quartet. Then, Algorithm 2
detects the exact area within cell 𝑐𝑖 in which the point is located.
We identify the following three areas:
(1) No replication area (line 3). This area is depicted with
white color in Figure 9. If the point is located in this area, it is
not replicated to any other cell.

ε

s
q’q

q’’

Suppl.
Area of q

ε

s

q’q

Plain Rep.
Area

No Rep.
Area

Merged
Dup.-prone

Area of q

Suppl.
Area of q’’

Figure 9: Cell areas considered for point replication.

(2) Merged duplicate-prone area of a quartet (line 5). This
area constitutes a part of the merged duplicate-prone area of a
quartet with reference point 𝑞. Simultaneously, a point located
in this area, may be located in a supplementary area of other two
quartets as well, with reference points 𝑞′ and 𝑞′′. In a cell, there
may exist at most four merged duplicate-prone areas (squared-
shaped), each one belonging to a distinct quartet of cells. These
areas are depicted with grey color as dark-shaded in Figure 9. If

470

Algorithm 3: MeDuPAr.
Input: Subgraph (𝑠𝑢𝑏), point 𝑜 (𝑥 , 𝑦), point type (𝜏) and cell (𝑐𝑖)
Output: A set with the ids of the assigned cells (𝑃)

1 𝑃 ← ∅
2 for 𝑐 𝑗 in 𝑐1, 𝑐2 cells do

/* 𝑐 𝑗: an adjacent cell to 𝑐𝑖 */

3 if 𝑠𝑢𝑏.𝑒𝑖 𝑗 .𝜏 == 𝜏 and !𝑠𝑢𝑏.𝑒𝑖 𝑗 .isMarked() then
4 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐 𝑗 .𝑖𝑑)

5 if 𝑠𝑢𝑏.𝑒𝑖𝑙 .𝜏 == 𝜏 and !𝑠𝑢𝑏.𝑒𝑖𝑙 .isMarked() then
/* 𝑐𝑙: cell with the common touching point with 𝑐𝑖

*/
6 if 𝑑 (𝑠𝑢𝑏.𝑟𝑒 𝑓 , 𝑜) < 𝜖 then
7 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑙 .𝑖𝑑)
8 else
9 for 𝑐 𝑗 in 𝑐1, 𝑐2 cells do
10 if 𝑠𝑢𝑏.𝑒𝑖 𝑗 .𝜏 == 𝜏 and 𝑠𝑢𝑏.𝑒𝑖 𝑗 .isMarked() then

/* 𝑐𝑙: cell with the common touching

point with 𝑐𝑖 */

11 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑙 .𝑖𝑑)

12 return 𝑃

the point is located in the merged duplicate-prone area of the
quartet with reference point 𝑞, then Algorithm 3 (MeDuPAr) is
executed. Subsequently, Algorithm 4 (SupAr) is executed for the
other two quartets with reference point 𝑞′ and 𝑞′′, which are
the nearest to the 𝑞 reference point. This algorithm checks if
the point is located to a supplementary area of a triad in the
respective quartet. Both Algorithms 3 and 4 require as arguments
the quartet’s subgraph 𝑠𝑢𝑏, the point 𝑜 , its type (𝜏) and its native
cell (𝑐𝑖). Concerning the subgraph’s argument, this is fetched from
the dictionary that handles the graphs (𝑔𝑟𝑎𝑝ℎ𝐷𝑖𝑐𝑡) by providing
the quartet’s reference point. Also, the two algorithms output
a set with the ids of the assigned cells in the quartet, which are
appended to 𝑃 set.
(3) Plain replication area (line 12). A point located in this area,
is candidate for replication at a cell (𝑐𝑘) as𝑀𝐼𝑁𝐷𝐼𝑆𝑇 (𝑜, 𝑐𝑘) ≤ 𝜖 .
This is captured in line 12, when the point does not exist in the
two aforementioned types of areas. In a cell, these areas are four
in total, depicted with grey color in Figure 9. If the agreement
between the point’s native cell and its adjacent cell (𝑐𝑘) is the
same with the point’s type, then the id of the adjacent cell is
appended to 𝑃 set (line 14). For this, the subgraph of the quartet
with the nearest reference point𝑞 to the point𝑜 (line 13) is fetched
from the 𝑔𝑟𝑎𝑝ℎ𝐷𝑖𝑐𝑡 dictionary at first. Then, the type (𝜏) of the
𝑒𝑖 𝑗 edge of the subgraph is checked. Finally, Algorithm 4 follows
for the quartets 𝑞 and 𝑞′, whose reference points are the nearest
to the point, as it may be located in a supplementary area of
them.

Both Algorithms 3 and 4 initialize an empty set (𝑃), which will
be their output. The set is appended with the id of the cells in
which the point is replicated.

Algorithm 3 starts by checking the replication procedure of
the point to cells 𝑐1 and 𝑐2 (stated as 𝑐 𝑗 in the for loop in line 2)
that have common borders with the point’s native cell (𝑐𝑖) (line 3).
For this, the type of the 𝑒𝑖 𝑗 edge type checked and its state. The
Algorithm is completed with the checking procedure for replicat-
ing the point to the cell (𝑐𝑙) that has only one common touching
point with the point’s native cell (line 5). The point will be repli-
cated to 𝑐𝑙 if its distance is less than 𝜖 to the quartet’s reference

Algorithm 4: SupAr.
Input: Subgraph (𝑠𝑢𝑏), point 𝑜 (𝑥 , 𝑦), point type (𝜏) and cell (𝑐𝑖)
Output: A set with the id of the assigned cell (𝑃)

1 𝑃 ← ∅
2 for 𝑐 𝑗 in 𝑐1, 𝑐2 cells do

/* 𝑐 𝑗: an adjacent cell to 𝑐𝑖 */

3 if 𝑑 (𝑠𝑢𝑏.𝑟𝑒 𝑓 , 𝑜) ≤ 2 ∗ 𝜖 and 𝑑 (𝑐 𝑗 , 𝑜) ≤ 𝜖 then
4 if 𝑠𝑢𝑏.𝑒 𝑗𝑖 .𝜏 != 𝜏 and 𝑠𝑢𝑏.𝑒 𝑗𝑖 .isMarked() then
5 if 𝑠𝑢𝑏.𝑒𝑖𝑘 .𝜏 == 𝜏 and !𝑠𝑢𝑏.𝑒𝑖𝑘 .isMarked() and

𝑠𝑢𝑏.𝑒 𝑗𝑘 .𝜏 != 𝜏 and !𝑠𝑢𝑏.𝑒 𝑗𝑘 .isMarked() then
6 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑘 .𝑖𝑑)
7 else if 𝑠𝑢𝑏.𝑒𝑖𝑙 .𝜏 == 𝜏 and !𝑠𝑢𝑏.𝑒𝑖𝑙 .isMarked() and

𝑠𝑢𝑏.𝑒 𝑗𝑙 .𝜏 != 𝜏 and !𝑠𝑢𝑏.𝑒 𝑗𝑙 .isMarked() then
/* 𝑐𝑙: cell with the common touching

point with 𝑐𝑖 */

8 𝑃.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑙 .𝑖𝑑)

9 return 𝑃

point or if one of the edges that connects the native cell (𝑐𝑖) with
its adjacent cells (𝑐 𝑗 in the for loop) is marked and has the same
type with the point.

Algorithm 4 considers at first the two cells (𝑐1 and 𝑐2, stated
as 𝑐 𝑗 in the for loop in line 2) that share common borders with
point’s native cell (𝑐𝑖). The point is checked for being located
in a potential supplementary area defined by the 𝑐 𝑗 cell. This
is validated by calculating the distance between the quartet’s
reference point and the point, and the distance between the 𝑐 𝑗
cell and the point (line 3). If the respective conditions are both
fulfilled, then the existence of the supplementary area for the
point’s type is checked. This takes place by validating the type
and the state of the edge that indicates the replication of points
from 𝑐 𝑗 to 𝑐𝑖 cell (𝑒 𝑗𝑖). If the type that edge is opposite of the
point’s type and is marked, then the supplementary area exists for
the point (line 4). The algorithm continues with the assignment
of the point to one of the other two cells in the quartet (𝑐𝑘 or 𝑐𝑙).
The point is assigned to the cell whose connecting edges with
the point’s native cell (𝑐𝑖) and the cell from which supplementary
area is defined (𝑐 𝑗), fulfill specific conditions that concern to their
type and state (lines 5 and 7).

6 PARALLEL DISTANCE JOIN ALGORITHM
In this section, we present our algorithm for parallel 𝜖-distance
spatial joins, which is designed and implemented in Apache
Spark.

6.1 Parallel Distance Join Execution
Algorithm 5 describes 𝜖-distance join in the Spark context. The
commands in bold correspond to Spark operations. The algorithm
can be split in discrete steps. Initially, the𝑔𝑟𝑖𝑑 is determined given
theminimum bounding box rectangle of data (𝑚) and the distance
join threshold (𝜖), in line 1.
Sampling and Agreement-based Grid Construction. This
step includes the loading of 𝑅 and 𝑆 data sets from HDFS in
raw format (txt files) into two RDDs that handle the tuples of
each set. For this purpose the𝑚𝑎𝑝 function is used (lines 2 and
3). Then, data sampling on each RDD follows, and the sample
is fetched to the driver. The two data samples are exploited to
supply with information the grid cells (lines 4 and 5), required

471

Algorithm 5: 𝜖-distance Spatial Join Algorithm in Spark.
Input: MBR of data space (𝑚), dist. threshold (𝜖), 𝑅 set (𝑝𝑎𝑡ℎ𝑅) ,

𝑆 set (𝑝𝑎𝑡ℎ𝑆) , SparkContext (𝑠𝑐) , sample size (𝜙)
Output: Pairs (𝑝) of matched points ({𝑟, 𝑠 })

1 grid← Grid(𝑚, 𝜖)
2 𝑟𝑑𝑑𝑅 ← sc.textFile(𝑝𝑎𝑡ℎ𝑅).map(line→ tup)
3 𝑟𝑑𝑑𝑆 ← sc.textFile(𝑝𝑎𝑡ℎ𝑆).map(line→ tup)
4 𝑟𝑑𝑑𝑅.sample(𝜙).forEach(tup→ grid.addR(tup.x, tup.y))
5 𝑟𝑑𝑑𝑆 .sample(𝜙).forEach(tup→ grid.addS(tup.x, tup.y))
6 𝑔𝐵𝑟 ← 𝑠𝑐 .broadcast(grid)
7 𝑝𝑎𝑖𝑟𝑅𝑑𝑑𝑅 ← 𝑟𝑑𝑑𝑅.flatMapToPair(t→ tList(gBr.getIds(o, R)))
8 𝑝𝑎𝑖𝑟𝑅𝑑𝑑𝑆 ← 𝑟𝑑𝑑𝑆 .flatMapToPair(t→ tList(gBr.getIds(o, S)))
9 𝑝 ← 𝑝𝑎𝑖𝑟𝑅𝑑𝑑𝑅.join(𝑝𝑎𝑖𝑟𝑅𝑑𝑑𝑆) .filter(𝑑 (𝑟𝑖 , 𝑠 𝑗) ≤ 𝜖)

10 return 𝑝

for the formation of the agreements (they do not take place yet).
Then, the grid is broadcast to every node of the cluster (line 6).
Spatial Mapping of Points. The mapping procedure is based
on the broadcast grid, as it maps every point to a set of 1D values
based on its coordinates (𝑥,𝑦). In this phase, agreements are
formed while requesting the mapping values of points. Essen-
tially, this is the point where the algorithms of Section 5 are used.
The point assignment to 1D values is combined with the mapping
of each RDD to a PairRDD, which is practically an RDD of key-
value pairs. This is achieved by means of Spark’s transformation
𝑓 𝑙𝑎𝑡𝑀𝑎𝑝𝑇𝑜𝑃𝑎𝑖𝑟 . In our case, the key is set as a single 1D value,
while the value constitutes the tuple. Thus, a single RDD tuple
may be matched to more than one PairRDD entries, particularly
as many times as the number of assigned 1D values (lines 7 and
8).
Assigning and Joining the Partitions. Having the two Pair-
RDDs formed, data shuffling occurs, ensuring that the PairRDD
entries with the same key will be located on the same node. Af-
ter shuffling, the data on each node are hash-joined locally on
the key value. This determines the set of candidate join results
(line 9).
Computing distance join at partition-level. Directly after the
production of a candidate pair of points, their actual distance is
computed. If 𝑑 (𝑟, 𝑠) ≤ 𝜖 , then pair is reported in the final result
set, otherwise it is disregarded. This comprises the refinement
phase, where false positives are discarded (also shown in line 9).

6.2 Assignment of Cells to Workers
Based on the sample, each cell can be associated with an estimate
of the induced cost for processing. This cost is practically the
product of the estimated points of sets𝑅 and 𝑆 that will eventually
be in the cell. The remaining question is how to find an assign-
ment of the set of 𝐶 cells to𝑊 workers in Spark that achieves
load balancing. We set as optimization criterion that the maxi-
mum number of join results per worker should be minimized. In
turn, this is expected to minimize the maximum processing time
per worker.

This problem is equivalent to the Multiprocessor Scheduling
Problem [11], which is known to be NP-hard. Therefore, we utilize
a greedy algorithm called LPT (Longest Processing Time) which
sorts the cells’ costs based on number of join records and then
assigns them to the worker with the lowest aggregate number of
join results so far. Notice that the reason that makes the LPT algo-
rithm applicable in our setting is that we have an estimate of the
number of join records per cell, due to the sampling procedure.

Product Codename Cardinality
TIGER/Area Hydrography R1 94.1M
OSM/Parks R2 42.7M
SYNTHETIC/Gaussian S1 100M
SYNTHETIC/Gaussian S2 100M

Table 2: Overview of the data sets used in the experiments.

7 EXPERIMENTS
In this section, we present the results of the experimental eval-
uation. Our code1 is written in Java and Apache Spark version
v3.1.3.

7.1 Experimental Setup
Data sets. In our evaluation we use real data sets from TIGER2
and OpenSteetMap3, summarized in Table 2, and obtained from
the SpatialHadoop project4. To test scalability with larger data
sets, we also use synthetic data sets that follow the Gaussian
distribution consist of 30 clustered areas of points with standard
deviation in the range [0.1, 0.8]. They were generated in the same
minimum bounding rectangle of the real data sets. In all experi-
ments we use as sample the 3% of each data set. We found that
this sample size offers the best performance in our experiments.
Algorithms. We study the performance of our algorithm pre-
sented in Section 6 which uses adaptive replication. We use two
variants of this algorithm, denoted LPiB and DIFF, which differ
on how to instantiate the graph of agreement, as outlined in
Sect. 4.3.

We compare against three adaptations of PBSM for Apache
Spark that also rely on grid partitioning and use a hash-based
partitioner to distribute partitions to workers. Specifically, the
two variants of PBSM, denoted as UNI(R) and UNI(S), replicate
the data sets 𝑅 and 𝑆 respectively, having the same grid resolution
(2𝜖 × 2𝜖) as LPiB and DIFF. The third variant of PBSM, denoted
as 𝜖-grid, has 𝜖 × 𝜖 grid resolution and replicates the data set
with the fewest objects. The choice of PBSM is justified as it
has been indicated as one of the best performing algorithms for
in-memory spatial joins [12], it has been evaluated for parallel
spatial joins [21], and it is used in most distributed processing
systems for big spatial data [1, 6, 25, 27].

Additionally, we employ the Apache Sedona v1.4.1 processing
framework, denoted simply as Sedona. The join execution in
Sedona is performed in three phases that pertain to partitioning,
indexing and join computation. At first, the objects of the data
sets are assigned to partitions. We choose the QuadTree spatial
partitioning scheme. The structure is built on the driver regarding
one of the data sets by fetching a sample. For this, we select the set
with the fewest objects as on this set replication will be induced
(objects may be assigned to more than one partitions). After
the data partitioning and assignment to the executors, spatial
indexing takes place. A local RTree index is built (per partition)
on the set that contains the most points. Then, join is computed
by issuing queries from the other set to the index. We opt for the
usage index, as Sedona performs better than not using index.
Metrics. We use the following metrics: (a) execution time of
the job that performs the spatial distance join, (b) number of
replicated data objects, and (c) the size of the shuffled data over
1https://github.com/nkoutroumanis/parallel-spatial-joins
2https://www.census.gov/programs-surveys/geography/guidance/
tiger-data-products-guide.html
3https://www.openstreetmap.org
4http://spatialhadoop.cs.umn.edu/datasets.html

472

Distance threshold 𝜖 0.009, 0.012, 0.015, 0.018
Covering surface (%) 4·10-4, 6·10-4, 8·10-4, 9·10-4
Data size (S1 ⊲⊳ S2) x1, x2, x4, x6, x8
Number of nodes 4, 6, 8, 10, 12
Tuple size factor f0, f1, f2, f3, f4

Data sets combinations 𝑺1 ⊲⊳ 𝑺2, 𝑅1 ⊲⊳ 𝑆1, 𝑅2 ⊲⊳ 𝑅1

Table 3: Experimental parameters (default values in bold).

the network. In all experiments, we report the average results of
10 executions.
Platform.The experiments are performed in theOkeanos-Knossos
IaaS platform, a cloud service that offers virtual computing and
storage services, supported by GRNET (https://grnet.gr) for re-
search purposes. In total, 15 VMs are used, running Ubuntu
16.04.6 LTS, each equipped with 4 CPU cores, 8GB RAM and
30GB system disk. Twelve of these VMs have a mounted disk of
102GB. The offered attachable disk of Okeanos-Knossos platform
is based on the Ceph (https://ceph.io/) storage system, which
is a distributed block level storage. The VMs with the attached
mounted disk run the HDFS v3.2.1 and function as Datanodes
and NodeManagers. The remaining 3 VMs act as NameNode,
ResourceManager (YARN) and Driver for the running jobs. The
HDFS uses the default configuration (128MB block size and repli-
cation factor of 3).
Parameters. Table 3 summarizes the experimental parameters:
distance threshold 𝜖 , data size, the number of nodes (equal to
the number of executors) used for the join, and tuple size fac-
tor (i.e., the overhead in bytes of each tuple, besides the spatial
information). The latter is used because real-world data often
contain extra data apart from spatial coordinates, such as names,
descriptions, etc., that need to be transferred, which (i) poses an
overhead in distributed processing, and (ii) cannot be efficiently
handled in a post-processing step as in centralized settings, be-
cause retrieving this information from a distributed data set has
non-negligible cost.

The number of Spark partitions for the join operation on the
PairRDDs is set to 96 as default. In the experiments where we
vary the data set size, we increase it to 192 for 400M and by 96
for each subsequent data size factor. Also, for the experiments
where we vary the tuple size, the number of partitions is set to
192 except for the combination of the real data sets (𝑅1 ⊲⊳ 𝑅2)
which is set to 120. For every case, the same number of partitions
is applied in all algorithms. Also notice that our largest synthetic
data set contains (800M) of data objects.

7.2 Experimental Results
7.2.1 Effect of varying the distance threshold 𝜖 . Figures 10, 11

and 12 show the effect of varying radius on replication, shuffled
remote reads and execution time for performance of spatial join
for two combinations of data sets (synthetic and real with syn-
thetic). In Figures 10a and 10b, the number of replicated data is
shown in log scale. Our algorithms (LPiB and DIFF) outperform
the UNI(R), UNI(S) and 𝜖-grid by at least one order of magnitude
for all values of 𝜖 , verifying our motivation for minimizing repli-
cation. When the distance threshold is increased, we notice that
our algorithms require less replication. This is attributed to the
fact that for larger 𝜖 , the grid cells also become larger in size,
thus less replication is induced as in both combinations, the data
is skewed. The 𝜖-grid algorithm has the highest replication (7.1x),
while the replication in Sedona for the synthetic data sets is in
the same level as in LPiB/DIFF due to the fact that the resulted

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

0.009 0.012 0.015 0.018

R
e

p
lic

a
ti
o

n
 (

#
o

b
je

c
ts

)

Distance threshold ε

UNI(R)
UNI(S)

LPiB
DIFF

ε-grid
Sedona

(a) S1 ⊲⊳ S2

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

0.009 0.012 0.015 0.018

R
e

p
lic

a
ti
o

n
 (

#
o

b
je

c
ts

)

Distance threshold ε

UNI(R)
UNI(S)

LPiB
DIFF

ε-grid
Sedona

(b) R1 ⊲⊳ S1

Figure 10: Effect of varying radius on replication.

 0

 5

 10

 15

 20

 25

0.009 0.012 0.015 0.018

S
h

u
ff

le
 r

e
m

o
te

 r
e

a
d

s
 (

G
B

)

Distance threshold ε

UNI(R)
UNI(S)

LPiB
DIFF

ε-grid
Sedona

(a) S1 ⊲⊳ S2

 0

 5

 10

 15

 20

 25

0.009 0.012 0.015 0.018

S
h

u
ff

le
 r

e
m

o
te

 r
e

a
d

s
 (

G
B

)

Distance threshold ε

UNI(R)
UNI(S)

LPiB
DIFF

ε-grid
Sedona

(b) R1 ⊲⊳ S1

Figure 11: Effect of varying radius on shuffle remote reads.

 10

 100

 1000

 10000

0.009 0.012 0.015 0.018

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Distance threshold ε

UNI(R)
UNI(S)

LPiB
DIFF

ε-grid
Sedona

(a) S1 ⊲⊳ S2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.009 0.012 0.015 0.018

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Distance threshold ε

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

Sedona

(b) R1 ⊲⊳ S1

Figure 12: Effect of varying radius on execution time.

partitions from the QuadTree space partitioning are quite large.
However, as will be shown below, this has a negative impact on
performance. Complementary to this result, Table 4 reports the
join selectivity.

In Figures 11a and 11b, the size of data due to shuffled remote
reads is shown. In all cases, our algorithms require much less
data to be read/transferred over the network than UNI(R), UNI(S)
and 𝜖-grid. Sedona has the lowest shuffled remote data remote
reads.

Figures 12a and 12b show the execution time for the join for
the two data set combinations. In all cases, when 𝜖 is increased,
more time is required as the output size also increases. For the
synthetic sets, LPiB and DIFF outperform the competitors. The
difference in the performance of the best case of the competitors
and the proposed approaches is on average 18.6%. The respective
difference for the combination of the real with the synthetic sets
is 10.7%.

Notice that in all experiments Sedona requires almost one
order of magnitude more time compared to our algorithm. This
is the result of using large partitions that may reduce replication,
but increase the cost of join processing, thus having huge negative
impact on execution time.

7.2.2 Scalability with the size of data. In Figure 13, we study
the scalability of all algorithms for increased sizes of data. In all

473

S1 ⊲⊳ S2
Distance threshold 𝜖 0.009 0.012 0.015 0.018

Selectivity (%) 5.5·10-6 9.8·10-6 1.5·10-5 2.2·10-5
Join results 553M 984M 1.5B 2.2B
Data size x2 x4 x6 x8

Selectivity (%) 9.8·10-6 9.8·10-6 9.8·10-6 9.8·10-6
Join results 3.9B 15.8B 35.5B 63.1B

R1 ⊲⊳ S1
Distance threshold 𝜖 0.009 0.012 0.015 0.018

Selectivity (%) 1.3·10-5 2.4·10-5 3.8·10-5 5.5·10-5
Join results 1.3B 2.3B 3.6B 5.2B
R1 ⊲⊳ R2, Selectivity (%): 5.7·10-5, Join results: 2.3B

Table 4: Result set selectivity and join results.

1000

10000

100000

1x10
6

1x10
7

1x10
8

1x10
9

1x10
10

x2 x4 x6 x8

R
e

p
lic

a
ti
o

n
 (

#
o

b
je

c
ts

)

Data size

UNI(R)
UNI(S)

LPiB
DIFF

ε-grid

(a) Replication

0

10

20

30

40

50

60

70

80

x2 x4 x6 x8

S
h

u
ff
le

 r
e

m
o

te
 r

e
a

d
s
 (

G
B

)

Data size

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

(b) Shuffle remote reads

0

500

1000

1500

2000

2500

3000

3500

4000

x2 x4 x6 x8

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Data size

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

(c) Execution time

Figure 13: Effect of varying data set size for S1 ⊲⊳ S2.

cases, the performance gain of our algorithms is sustained, even
for larger data sets. It is noteworthy that the replicated objects for
LPiB/DIFF methods against the baselines, remain low with the
variation of the data size (Figure 13a). Also, the shuffled data in-
creases with a much smaller rate for our algorithms compared to
UNI(R) and UNI(S) (Figure 13b). This shows that our algorithms
can save more remote reads than the competitors for larger data
sets. In terms of execution time (Figure 13c), the difference in-
creases with larger data sets, showing that our algorithms are
more scalable than the competitors. The difference between the
performance of the best case of the baseline approaches and the
proposed approaches is 19.9%. respectively. Notice that the red
‘x’ in the figures indicates that 𝜖-grid did not finish its execution
due to an out of memory error, as a result of the high replication.

7.2.3 Construction time. Also, in Figure 13c, we use stacked
bars to split the execution time between construction (lower
part of the stacked bar) and join processing (upper part). The
construction time includes the time spent for our Algorithms 2, 3
and 4, as well as the time for data shuffling. Figure 13c shows that
(a) as we increase that size of the input data, most of the execution
time is spent on join processing, and (b) the construction time is
only slightly increased, although the cost of shuffling is included.
Therefore, the phase of construction is very efficient for both
LPiB and DIFF.

 0

 5

 10

 15

 20

 25

4 6 8 10

S
h

u
ff

le
 r

e
m

o
te

 r
e

a
d

s
 (

G
B

)

Number of nodes

UNI(R)
UNI(S)

LPiB
DIFF

ε-grid
Sedona

(a) Shuffle remote reads

 0

 200

 400

 600

 800

 1000

 1200

4 6 8 10

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Number of nodes

UNI(R)
UNI(S)

LPiB
DIFF

ε-grid
Sedona

(b) Execution time

Figure 14: Effect of varying the number of nodes (S1 ⊲⊳ S2).

 0

 50

 100

 150

 200

 250

2ε 3ε 4ε 5ε

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Grid resolution

LPiB
DIFF

Figure 15: Effect of varying the grid resolution (S1 ⊲⊳ S2).

7.2.4 Scalability with the number of nodes. Figure 14 shows
the performance on the synthetic data sets when varying the
number of nodes in the cluster. All algorithms perform better with
more executors, showing reduced execution time and a slight
increase on the shuffle remote reads. Note that the percentage
difference in execution time is larger when nodes are already
few, i.e., when 4 nodes are increased to 6, the drop percentage
is 30% on average, while when 8 nodes are increased to 10, the
respective percentage is between 13.5% and 17.5%.

7.2.5 Effect of varying the grid resolution. Figure 15 shows the
effect of varying the grid resolution from 2𝜖 (fine-grained) to 5𝜖
(coarse-grained) on the performance of our algorithm variants,
LPiB and DIFF, for the synthetic sets (𝑆1 ⊲⊳ 𝑆2). The results show
that as we increase the cell size, the average execution time
increases too. When the spatial extent of a cell is increased, a cell
contains more objects and this imposes extra cost per cell for the
join computation. This justifies the use of 2𝜖 as grid resolution, for
both LPiB and DIFF, as this setting achieves the best performance.

7.2.6 Varying the tuple size. Figures 16, 17 and 18 show the
effect of increasing the tuple size. In practice, spatial data sets also
have additional attributes besides the location information. Thus,
it is interesting to study the performance of join algorithms for
larger tuple sizes. In synthetic sets (Figures 16a and 16b), in the
combination of synthetic and real set (Figures 17a and 17b) and
in real sets (Figures 18a and 18b), the tuple size has a significant
impact on the execution time. Specifically, the addition of extra
fields worsens the performance for the competitor methods. This
is because more objects are replicated than in our algorithms,
and the extra attributes increase the cost of shuffling. Instead,
the LPiB and DIFF approaches remain at the same levels with
slight difference in shuffle remote reads and average execution
time for the different tuple size factors. In all cases, the 𝜖-grid
scores the greatest shuffle remote reads due to high replication
that reflects on its performance. Also, the join processing time of
each algorithm increases, because larger objects are processed.

The average percentage differences for each tuple size factor
among the best case competitor approach and the LPiB/DIFF

474

0

10

20

30

40

50

60

70

80

f1 f2 f3 f4

S
h

u
ff
le

 r
e

m
o

te
 r

e
a

d
s
 (

G
B

)

Tuple size factor

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

(a) Shuffle remote reads

0

100

200

300

400

500

600

700

800

f1 f2 f3 f4

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Tuple size factor

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

(b) Execution time

Figure 16: Effect of increasing tuple size (S1 ⊲⊳ S2).

0

10

20

30

40

50

60

70

80

f1 f2 f3 f4

S
h

u
ff
le

 r
e

m
o

te
 r

e
a

d
s
 (

G
B

)

Tuple size factor

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

(a) Shuffle remote reads

0

100

200

300

400

500

600

700

800

900

f1 f2 f3 f4

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Tuple size factor

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

(b) Execution time

Figure 17: Effect of increasing tuple size (R1 ⊲⊳ S1).

0

10

20

30

40

50

60

f1 f2 f3 f4

S
h

u
ff
le

 r
e

m
o

te
 r

e
a

d
s
 (

G
B

)

Tuple size factor

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

(a) Shuffle remote reads

1

10

100

1000

10000

f1 f2 f3 f4

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Tuple size factor

UNI(R)
UNI(S)

LPiB
DIFF
ε-grid

(b) Execution time

Figure 18: Effect of increasing tuple size (R2 ⊲⊳ R1).

Inclusion of extra attributes On join On post-processing
Method LPiB DIFF LPiB DIFF

Exec. time 255 246 727 772
Table 5: Execution time (in seconds) of LPiB and DIFF with
two types of inclusion of extra attributes for S1 ⊲⊳ S2.

approaches are 34.8% for the synthetic sets, 40.4% for the combi-
nation of real and synthetic sets, and 26.5% for the real sets. This
shows that the performance gain of our algorithms increases for
data sets with many non-spatial attributes.

We also tested an alternative solution for including the extra
attributes in the result set. Instead of including them to the tuples
when computing the join, we employ a post-processing step that
fetches and adds them to the result set. This is done by means
of two joins on the id of the tuples, between the two data sets
that contain the tuples with the extra attributes (R and S) and
the result pairs of the spatial join. Table 5 shows the execution
time for the default setup for the 𝑓1 factor. We observe that the
gain in performance is almost 3x greater when the attributes are
already included.

7.2.7 Duplicate-free and non duplicate-free assignment with
deduplication step. Table 6 shows the average execution time
for two variations of the LPiB and DIFF methods in the default
experimental setup. The two variations differ on the fact that the

Assignment Duplicate-free Non duplicate-free
(with deduplication)

Method LPiB DIFF LPiB DIFF
Exec. Time 170 169 1224 1245

Table 6: Execution time (in seconds) of LPiB and DIFF with
duplicate-free and non duplicate-free assignment (S1 ⊲⊳ S2).

Cell assignment to workers Hash-based LPT
Method LPiB DIFF LPiB DIFF

Exec. time (𝑆1 ⊲⊳ 𝑆2)x4 1056 1044 1005 995
Exec. time (𝑅2 ⊲⊳ 𝑅1) 212 211 198 203

Table 7: Execution time (in seconds) of LPiB and DIFF with
hash and LPT assignment for two combinations of data
sets.

one proceedswith duplicate-free assignment, while the other uses
a simplified algorithm that does produce duplicates. For the latter,
a deduplication step is incorporated as a distinct operator, after
the computation of the join. The distinct operator is performed
in parallel across the cluster, since collecting the data to the
driver is infeasible for really large outputs (in this setup, 985M
objects). We observe that applying the deduplication at the end
is much more costly (more than 7x) than using the duplicate-free
approach.

7.2.8 Effect of load balancing. Table 7 shows effect of the LPT
load balancing mechanism on the execution time of LPiB and
DIFF. For this purpose, we disable the use of LPT, thus the alter-
native configuration uses Spark’s default hash-based assignment
of partitions (cells) to workers. We observe that LPT achieves
slightly better performance. For the synthetic data sets the aver-
age gain in performance is 4.75%, while for the combination of
the synthetic with the real set, it is 5.2%. Notice that this largely
depends on the spatial skewness of input data. Essentially, when
the distribution of pairs of objects in cells is highly skewed, LPT
can perform the allocation of cells to workers in a more fair way,
thus resulting in more effective parallelization and improved
execution time.

8 CONCLUSIONS AND FUTUREWORK
In this paper we propose an approach for adaptive replication
of objects among workload partitions in order to process effi-
ciently spatial distance joins in parallel. Our work is based on a
graph-based framework that allows to keep track of local deci-
sions about replication, and leads to a correct and duplicate-free
results. The approach presents a substantial gain in performance
when compared to the PBSM algorithm variations and to Apache
Sedona, in which the replication occurs exclusively in one of the
data sets. In our future work, we plan to extend the abstraction
of the graph of agreements for other spatial objects, such as poly-
gons and polylines. We also intend to generalize our graph-based
abstraction for other partitioning schemes, such as QuadTrees.
Finally, deriving a theoretical cost model for our algorithms is of
interest.

ACKNOWLEDGEMENTS
This work was supported by the Horizon Europe R&I programme
EMERALDS under the GA No. 101093051, and by the CHOROL-
OGOS research project, funded by the Hellenic Foundation for
Research and Innovation (HFRI) and the General Secretariat for
Research and Technology (GSRT), under GA No. HFRI-FM17-81.

475

REFERENCES
[1] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong

Zhang, and Joel H. Saltz. 2013. Hadoop-GIS: A High Performance Spatial
Data Warehousing System over MapReduce. Proc. VLDB Endow. 6, 11 (2013),
1009–1020.

[2] Panagiotis Bouros and Nikos Mamoulis. 2019. Spatial joins: what’s next? ACM
SIGSPATIAL Special 11, 1 (2019), 13–21.

[3] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. 1996. Parallel
Processing of Spatial Joins Using R-trees. In Proc. of ICDE, Stanley Y. W. Su
(Ed.). IEEE Computer Society, 258–265.

[4] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proc. of OSDI, Eric A. Brewer and Peter Chen
(Eds.). USENIX Association, 137–150.

[5] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy andDuplicate
Detection in Spatial Join Processing. In Proc. of ICDE, David B. Lomet and
Gerhard Weikum (Eds.). 535–546.

[6] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In Proc. of ICDE, Johannes Gehrke, Wolfgang
Lehner, Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman (Eds.). 1352–
1363.

[7] Ahmed Eldawy and Mohamed F. Mokbel. 2016. The Era of Big Spatial Data: A
Survey. Found. Trends Databases 6, 3-4 (2016), 163–273.

[8] Francisco García-García, Antonio Corral, Luis Iribarne, and Michael Vassi-
lakopoulos. 2020. Improving Distance-Join Query processing with Voronoi-
Diagram based partitioning in SpatialHadoop. Future Gener. Comput. Syst. 111
(2020), 723–740.

[9] Francisco García-García, Antonio Corral, Luis Iribarne, and Michael Vassi-
lakopoulos. 2023. Efficient distributed algorithms for distance join queries in
spark-based spatial analytics systems. Int. J. Gen. Syst. 52, 3 (2023), 206–250.

[10] Francisco García-García, Antonio Corral, Luis Iribarne, Michael Vassilakopou-
los, and Yannis Manolopoulos. 2018. Efficient large-scale distance-based join
queries in SpatialHadoop. GeoInformatica 22, 2 (2018), 171–209.

[11] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman.

[12] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial
Join: The Data Matters!. In Proc. of EDBT, Volker Markl, Salvatore Orlando,
Bernhard Mitschang, Periklis Andritsos, Kai-Uwe Sattler, and Sebastian Breß
(Eds.). 462–465.

[13] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge
Join. In Proc. of SIGMOD, H. V. Jagadish and Inderpal Singh Mumick (Eds.).
ACM Press, 259–270.

[14] Jignesh M. Patel and David J. DeWitt. 2000. Clone join and shadow join: two
parallel spatial join algorithms. In Proc. of GIS, Ki-Joune Li, Kia Makki, Niki
Pissinou, and Siva Ravada (Eds.). 54–61.

[15] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and
Anastasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-
uniform data distributions. In Proc. of ICDE. 673–684.

[16] Tilemachos Pechlivanoglou, Mahmoud Alsaeed, and Manos Papagelis. 2020.
MRSweep: Distributed In-Memory Sweep-line for Scalable Object Intersection
Problems. In Proc. of DSAA, Geoffrey I. Webb, Zhongfei Zhang, Vincent S.
Tseng, Graham Williams, Michalis Vlachos, and Longbing Cao (Eds.). IEEE,
324–333.

[17] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In Proc. of SSDBM, Christian S.
Jensen, Hua Lu, Torben Bach Pedersen, Christian Thomsen, and Kristian Torp
(Eds.). 6:1–6:12.

[18] Thomas Seidl, Sergej Fries, and Brigitte Boden. 2013. MR-DSJ: Distance-Based
Self-Join for Large-Scale Vector Data Analysis with MapReduce. In Proc. of
BTW. 37–56.

[19] Darius Sidlauskas and Christian S. Jensen. 2014. Spatial Joins in Main Memory:
Implementation Matters! Proc. VLDB Endow. 8, 1 (2014), 97–100.

[20] MingJie Tang, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani, and
Walid G. Aref. 2016. LocationSpark: A Distributed In-Memory Data Manage-
ment System for Big Spatial Data. Proc. VLDB Endow. 9, 13 (2016), 1565–1568.

[21] Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Ter-
rovitis. 2019. Parallel In-Memory Evaluation of Spatial Joins. In Proc. of
SIGSPATIAL, Farnoush Banaei Kashani, Goce Trajcevski, Ralf Hartmut Güting,
Lars Kulik, and Shawn D. Newsam (Eds.). 516–519.

[22] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:
Efficient In-Memory Spatial Analytics. In Proc. of SIGMOD, Fatma Özcan,
Georgia Koutrika, and Sam Madden (Eds.). ACM, 1071–1085.

[23] Jie Yang and Satish Puri. 2020. Efficient Parallel and Adaptive Partitioning for
Load-balancing in Spatial Join. In Proc. of IPDPS. 810–820.

[24] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In Proc. of ICDE Workshops. 34–41.

[25] Jia Yu, JinxuanWu, andMohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In Proc. of SIGSPATIAL, Jie
Bao, Christian Sengstock, Mohammed Eunus Ali, Yan Huang, Michael Gertz,
Matthias Renz, and Jagan Sankaranarayanan (Eds.). 70:1–70:4.

[26] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proc. of
HotCloud, Erich M. Nahum and Dongyan Xu (Eds.). USENIX Association.

[27] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In Proc. of Cluster

Computing. 1–8.
[28] Xiaofang Zhou, David J. Abel, and David Truffet. 1997. Data Partitioning

for Parallel Spatial Join Processing. In Proc. of SSD, Michel Scholl and Agnès
Voisard (Eds.). 178–196.

476

