
Fantastic Tables and Where to Find Them:
Table Search in Semantic Data Lakes

Martin Pekár Christensen
Aalborg University
mpch@cs.aau.dk

Aristotelis Leventidis
Northeastern University

leventidis.a@northeastern.edu

Matteo Lissandrini
University of Verona

matteo.lissandrini@univr.it

Laura Di Rocco
Northeastern University

la.dirocco@northeastern.edu

Renée J. Miller
Northeastern University
miller@northeastern.edu

Katja Hose
Technische Universität Wien
katja.hose@tuwien.ac.at

ABSTRACT
In data lakes, one of the core challenges remains finding rele-
vant tables. We introduce the notion of semantic data lakes, i.e.,
repositories where datasets are linked to concepts and entities
described in a knowledge graph (KG). We formalize the problem
of semantic table search, i.e., retrieving tables containing informa-
tion semantically related to a given set of entities, and provide
the first formal definition of semantic relatedness of a dataset to
tuples of entities. Our solution offers the first general framework
to compute the semantic relevance of the contents of a table w.r.t.
entity tuples, as well as efficient algorithms (exploiting seman-
tic signals, such as entity types and embeddings) to scale the
semantic search to repositories with hundreds of thousands of
distinct tables. Our extensive experiments on both real-world and
synthetic benchmarks show that our approach is able to retrieve
more relevant tables (up to 5.4 times higher recall) in comparison
to existing methods while ensuring fast response times (up to 17
times faster with LSH).

1 INTRODUCTION
Data lakes are the state-of-the-art technology to collect het-
erogeneous datasets in large organizations in a flexible man-
ner [48]. However, the high level of complexity and diversity
in terms of data formats, schemas, and contents poses many
challenges [16, 59]1. This includes data discovery as used, for
instance, within data science workflows, where the task is to find
the “right” data to solve a given data science problem [15, 46].

For example, data scientists looking into analyzing a particular
phenomenon frequently need to identify all tables containing
relevant data. This requires focusing specifically on entity-centric
search, i.e., user queries that are composed of example entities of
interest [43, 47]. To support these and similar use cases, we need
to offer data discovery solutions that are able to track informa-
tion about entities, their relationships, and concepts of interest
across multiple tables and across the entire data lake. To tackle
this problem of finding the most relevant tables for a given set of
entities of interest, one can use (open or enterprise) knowledge
graphs (KGs) [50, 59, 60] as a key technology for modeling enti-
ties, relationships, and their occurrences in different datasets –
Figure 1a shows a simple example.

1While data lakes can contain more than tables, e.g., JSON files, in this work, we
focus specifically on table repositories with no predefined schemas.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Semantic relevance search consists of ranking a set of tables
by semantic relevance given an example set of tuples contain-
ing entities as input. This is different from keyword search, i.e.,
where tables are retrieved based only on the syntactic presence of
specific keywords. Specifically, a data discovery system should be
able to complement exact (keyword) matching by also returning
tables that are semantically relevant to the query without neces-
sarily containing any exact matches. This is also different from
query-by-table approaches that attempt to find relevant or union-
able/joinable tables with a possibly large query table [49, 58, 71].
Perhaps more relevant are query-by-example (QBE) or query-by-
target approaches which do not require large input tables, rather
only a few example tuples [9, 22, 31, 52, 65, 68, 69]. These ap-
proaches do not leverage the full knowledge graph as we propose
to do. Representation learning-based table search methods [61]
are also not suitable as they are not entity centric and thus are
limited in their understanding of the semantics of the entities in
a table. Figure 2 illustrates the relationships between the output
of all existing methods, and shows that tuple search by semantic
relevance is a generalization that includes subsets of other table
search task outputs.

Example 1.1. Consider a data lakeD storing tables {𝑇 1,𝑇 2,𝑇 3,
𝑇4,𝑇5} (Figure 1b) and their links to a KG (Figure 1a). Assume
a betting company is analyzing baseball teams and players to
cross-reference their performance. Given some baseball teams
of interest, an initial query would express an interest in baseball
players from these baseball teams, as in Figure 1c, to retrieve
tables to cross-reference their results. A search engine over D
then retrieves and ranks tables by semantic relevance that record
similar data w.r.t. the query. These tables describe baseball teams
or players, as well as player transfers between teams and results
in different games as context. The engine should also recognize
when information is less relevant or likely irrelevant, e.g., a list
of teams and player names but from different sports, even if the
teams are from the same cities as those in the query, is less rele-
vant. Figure 1b contains tables relevant to the query in Figure 1c.
Note that in exact matching, only tables containing keyword
matches are returned (𝑇3, 𝑇4, and 𝑇5). Furthermore, note that
the tables may not be unionable or joinable with the query.

Despite the importance of this data discovery task, existing
solutions for finding tables are mostly content-based [39, 67, 71]
or metadata-based [10, 28, 32, 68] (see Section 3 for more details).

In this paper, we propose a new way of searching ta-
bles in data lakes: Our approach leverages knowledge graphs,
which are now ubiquitous, especially within companies in the
form of Enterprise Knowledge graphs (EKG) [35, 50, 59, 60]. We
focus on semantic data lakes, which augment a data lake with
links between the contents of each dataset and the concepts in
a KG. Specifically, we identify entity mentions in the datasets

Series ISSN: 2367-2005 397 10.48786/edbt.2025.32

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.32

Query

Milwaukee Brewers season Mitch Stetter Aaron Heilman

Chicago Cubs season Micah Hoffpauir Ron Santo

Date Opponent Score Win

April 6 Astros 4-2 Zambrano

April 7 Astros 3-1 Cotts

April 8 Astros 4-1 Franco

T1

(a) Semantic data lake with tables linked to KG entities (c) Query to retrieve baseball players in different seasons

Level Team League Player

AA Los Angeles
Angels

Pacific Coast
League

Truck Hannah

A1 Birmingham
Barons

Southern
Association

Fresco
Thompson

B Portsmouth
Cubs

Piedmont
League

Dick Luckey

T4

Team BAL AST CWS

Baltimore 2-16 5-4 2-5

Astros 16-2 4-4 7-2

Chicago 4-5 4-4 8-10

T3

Season League Winner

2008 Major League
baseball

Chicago
Cubs

2009 Pacific Coast
League

Memphis
Redbirds

2010 Pacific Coast
League

Tacoma
Rainiers

T5Player G AB R

Tony Giarratano 6 18 0

Jason Bartlett 16 59 11

Pat Burrell 16 53 4

T2

(b) A data lake sample of baseball players, teams, and results

Figure 1: Semantic data lake

Semantic relevance

Figure 2: Relationship between table search methods’ output

and link only those mentions to the entities in the KG. Hence,
our approach considers KGs with only partial coverage over a data
lake, and we also show that we can retrieve relevant results even
with low entity linking coverage in a purely content-based manner,
making it applicable in data lakes with incomplete or inconsistent
metadata. Furthermore, our approach is useful in data discovery
and exploration, where the user, for example, wants to figure out
what data is available, even with small query tables as input.
Contributions.We formalize the components of a semantic data
lake and the task of table search in semantic data lakes (Section 2),
and discuss the gap in the state of the art (Section 3). We describe
a system called Thetis having the following contributions:
• To address the data discovery problem in semantic data lakes,
we introduce the first formalization of the table search task as
an example-driven query paradigm and we propose a complete
axiomatization of the semantic table relevance score to derive a
principled content-based dataset discovery solution (Section 4);
• We present a search framework to perform semantic table
search by proposing two concrete instantiations of a relevance
score, exploiting both taxonomic information as well as learned
semantic similarities as entity embeddings (Section 5);
• To handle scalability, we present a suite of optimizations to
our table search algorithm that exploits variations of locality-
sensitive hashing (LSH) to pre-filter irrelevant tables in the
search space (Section 6);

• We evaluate our semantic search algorithm against a novel,
real-world benchmark [40] of two corpora of Wikipedia ta-
bles [6, 8] to demonstrate the ability of our approach to support
information discovery tasks that go beyond traditional search
methods (Section 7). Furthermore, we evaluate the scalability
of our algorithm over GitTables [33] containing 864,478 tables,
two benchmarks created from Wikipedia Tables [40], and a
synthetic corpus of more than 1.7M tables. We show that our
semantic table search algorithm efficiently finds relevant tables
that complement keyword-based search.

2 PROBLEM FORMULATION
We present three core concepts: data lakes, knowledge graphs,
and semantic data lakes, i.e., data lakes linked to a reference
knowledge graph. Furthermore, we define semantic table search.

2.1 Data Lake
We define a data lakeD as a set of data files each in the form of a
table, i.e.,D={𝑇1,𝑇2, ...,𝑇𝑛} (see Figure 1b). Each table𝑇𝑖∈D con-
tains a set of tuples 𝑇𝑖={𝑡1, 𝑡2, ..., 𝑡𝑘 } (presented as rows) sharing
the same schema, i.e., described by the same set of attributes A𝑖 .

Each attribute of a tuple 𝑡 𝑗∈𝑇𝑖 is assigned a value from an
infinite countable set of valuesV (containing both numbers and
strings, plus a special value ⊥ for the null value). For instance,
considering 𝑡1 shown as the first row in table 𝑇2 (Figure 1b), the
value of the attribute Player for 𝑡1 is “Tony Giarratano”. Finally,
for simplicity, a specific attribute value in a tuple is also called
a cell and identified by the attribute (the column) and the tuple
identifier (the row).

In data lakes, it is commonly assumed that no information is
given w.r.t. referential constraint, such as foreign keys, between
attributes in two distinct tables [48]. Therefore, there is no explicit
semantic connection among values contained in distinct tables [48].

2.2 Knowledge Graphs
Knowledge Graphs (KGs) may model heterogeneous information
in many domains [41, 51, 59, 60, 60]. A KG is a labeled directed
graph𝐺 = ⟨N , E, 𝜆⟩ [18, 42, 45, 50], where entities, concepts, and

398

their attributes are modeled as nodes N , and the relationships
among them are modeled as edges E. Moreover, nodes and edges
are usually annotated with a set of labels, i.e., human readable
literals L by a mapping function 𝜆 : N ∪ E ↦→ L.

Note that a KG describes in a unified model both the entities of
interest (e.g., people) along with relevant attributes (e.g., age), as
well as their categorizations (e.g., types of profession, also called a
taxonomy). This allows for the modeling of complex connections
between many different types, entities, and concepts, e.g., a multi-
step path connecting a baseball player from one baseball team to
another player in another team.

2.3 Semantic Data Lake
There have been some proposals to integrate the tables in a data
lake to match the structure and content of reference KGs [3, 20,
23, 59]. Unfortunately, these solutions require both entity and
schema alignment, i.e., a reliable mapping between the schema
of the KG and the schema of each table in the data lake. To date,
existing solutions to perform this alignment automatically are
still in their infancy [67], and thus obtaining a semantic data lake
that applies this type of mapping requires a substantial manual
effort [60]. On the other hand, entity linking, i.e., the task of
matching entity mentions in tables to entities in KGs, is an easier
task with multiple effective automatic solutions [6, 41, 55, 64].
Hence, to allow effective data discovery, without the need for
costly and error-prone schema alignment techniques, we propose
to exploit only entity linking between values in tables and entities
in KGs, e.g., values like Tony Giarratano in 𝑇 2 is linked to entity
T. Giarratano in a KG.

The resulting integration of a data lake via a KG by only entity
linking constitutes a novel definition of a Semantic Data Lake:

Definition 2.1 (Semantic Data Lake). A Semantic Data Lake
is defined as (1) a data lake repository D={𝑇1,𝑇2, ...,𝑇𝑛}, (2) a
knowledge graph 𝐺 = ⟨N , E, 𝜆⟩, and a partial mapping function
Φ : D×A×V↦→N and its inverse to the power set of data lake
values Φ−1 : N↦→P(D×A×V).

In particular, we note that the two mapping functions map
only some of the values and entities in the KG and the data lake
tables. This allows our system to be robust and flexible even in the
case that the KG does not describe all the information contained
in the data lake, e.g., the KG may not contain some entities that
appear in some of the tables. This is particularly important since
requiring complete and exact mapping would greatly hinder the
ingestion of new tables in a dynamic data lake.

2.4 Problem Definition
We define semantic table search as the task of retrieving a ranked
list of tables that are semantically relevant to a given input query.
We assume as input a query consisting of a set of entity tuples
𝑄 :{𝑡1, 𝑡2, . . . ,𝑡𝑘 } where each entity tuple 𝑡𝑖 is a list of entities
from 𝐺 (the KG) of the form ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛⟩, with 𝑒𝑖∈N . Query
entities not in the KG are ignored. The semantic relevance score
(SemRel𝐺 (𝑄,𝑇)∈[0, 1]), given a user query𝑄 , assigns a relevance
score to each table𝑇 in the data lake depending on the relatedness
(computed within 𝐺 , between the entities in the query and the
entities in the table). For instance, such a function should be
able to provide a higher relevance score to tables describing
baseball players than to tables describing volleyball players when
comparing them to the query entity Ron Santo (Figure 1b).

Problem 2.2 (Semantic Table Search). Given a semantic
data lake ⟨D,𝐺,Φ⟩, and a set of entity tuples 𝑄 as input, extract

from D a ranked list of relevant tables describing entities seman-
tically related to 𝑄 according to their semantic relevance score
SemRel𝐺 (𝑄,𝑇), s.t., ∀𝑇∈D: SemRel𝐺 (𝑄,𝑇)>0.

Note that, given a query 𝑄 and a table 𝑇 , if the aggregate
relevance score SemRel(𝑄,𝑇) (in the following, SemRel for sim-
plicity) is zero, then we conclude the specific table is irrelevant
and should not be returned. It is possible that returning all ta-
bles where SemRel(𝑄,𝑇)>0 may result in a set that is too large.
Hence, without loss of generality, we return the top-𝑘 tables ac-
cording to SemRel. More specifically, we tackle the challenge
of defining an appropriate SemRel relevance score and devising
efficient algorithms to establish tables with the highest semantic
relevance score without computing scores for all tables in the
data lake at runtime.

3 RELATEDWORK
We consider the literature on exploratory settings where an analyst
needs to retrieve datasets potentially relevant to their project
from a data lake. Here, we focus on example-based approaches,
in which the user circumvents query languages using examples
of the information they require as input [43]. We distinguish
between (a) matching where the content of the target datasets
matches the content of the query; (b) augmenting, where the
target datasets provide additional attributes for the query tu-
ples or additional tuples with the same semantics; and (c) related
where the target data provides additional contextual informa-
tion w.r.t. the query. Among existing data discovery systems, we
identify semantic data lakes as an unexplored area, and scalable
semantic-aware search has not yet received sufficient attention.

3.1 Table Search in Data Lakes
Often, table search methods are based on standard informa-
tion retrieval techniques. The most common approach exploits
keyword search [4, 10, 12, 13, 56], where the user query is
matched against captions, file names, and metadata annota-
tions, an approach also used in the Google Dataset Search por-
tal [4, 10]. Unfortunately, relying on high-quality descriptive meta-
data represents a restrictive assumption. Other approaches per-
form query-by-table, where an example table is given as the
input query [9, 14, 17, 49, 52, 53, 57, 71]. With example tables as
queries, the table search task becomes a matter of relevance that
may be expressed in terms of (semantic) overlap in their contents.
For instance, approaches like LSH Ensemble [71], JOSIE [70],
MATE [24], and BareTQL [52] measure the overlap between col-
umn values as one of many signals, where higher overlap signifies
a higher relevance.

A related task is dataset augmentation, which aims to add
features, labels, or instances to a dataset [69]. ARDA [17] is a
proposed framework to evaluate the quality of the information
obtained through augmentation. Hence, given a specific predic-
tive model, it takes a dataset and a data repository as input and
outputs an augmented dataset such that training the predictive
model on this augmented dataset results in improved perfor-
mance. However, these approaches focus mainly on data lake val-
ues and only tangentially take into account external information
w.r.t. the semantics of the values mostly in terms of data types.

To account for heterogeneity in the representation of values,
many approaches [27, 36, 49, 52] go beyond simple value overlap
and relevance between tables using KG mappings and value,
tuple, or column embeddings. Some table search approaches [36,
49] also use some taxonomic information (WebIsA, YAGO, and

399

Table 1: Dataset search systems features: in terms of fulfilled (✔), partial (*), and missing (✗) properties to support semantic table search

Output Tables Searching technique
Method Query Type Augmenting Matching Related Metadata Content Semantic
Aurum [27] Keyword ✔ ✔ ✔ ✔ ✔ (*)
Auctus [13] Keyword ✔ ✔ ✗ ✔ ✗ ✗

BM25 [56] Keyword ✗ ✔ ✗ (*) ✔ ✗

Google Dataset Search [4, 10] Keyword ✗ ✔ ✗ ✔ ✗ ✗

OCTOPUS [12] Keyword ✗ ✔ ✗ ✔ ✔ ✗

ARDA [17] Generic table ✔ ✗ ✗ ✗ ✔ ✗

BareTQL [52] Generic table ✔ ✔ ✔ ✔ ✔ ✗

D3L [9] Generic table ✔ ✔ (*) ✔ ✔ (*)
DICE [27, 53] Generic table ✔ ✔ ✔ ✔ ✔ ✗

JOSIE [70] Generic table ✔ ✔ ✗ ✗ ✔ ✗

JUNEAU [69] Generic table ✔ ✗ (*) ✔ ✔ ✗

MATE [24] Generic table ✔ ✗ ✔ ✗ ✔ ✗

Proximity [2] Generic table ✗ ✔ ✗ ✔ ✔ ✗

QCR [57] Generic table ✔ ✔ ✗ ✗ ✔ ✗

SANTOS [36] Generic table ✔ ✔ (*) ✗ ✔ (*)
SEMPROP [14] Generic table ✔ ✔ ✔ ✔ ✔ (*)
Starmie [25] Generic table ✔ ✔ (*) ✗ ✔ (*)
Table Union [49] Generic table ✔ ✔ ✗ ✗ ✔ ✗

DS4DM/RapidMiner [30, 37, 38] Entity table ✔ ✔ ✗ ✔ ✔ ✗

S3D [29] Entity table ✔ ✔ ✗ ✔ ✔ (*)
TURL [19] Generic table ✔ ✗ ✗ ✗ ✔ ✗

Thetis (ours) Entity Tuples ✔ ✔ ✔ ✗ ✔ ✔

Freebase types) and KG properties as reference knowledge to
determine the relatedness of two sets of entities appearing in table
columns or the relatedness of two relationships (pair of columns).
For web tables, some machine learning approaches [19, 67, 68]
propose to exploit contextual information extracted from the web
pages in which they appear, e.g., text and heading in the page to
obtain a better high-level understanding of the contents of a table.
These approaches heavily rely on this contextual information and
on training complex machine learning models. Moreover, some
require the query to be compared to all instances in the repository,
making them inapplicable in a scalable data lake system.

TURL [19] is a representation learning approach designed for
table understanding through vectorized input queries and data
lake tables. It was not directly designed for table search, but it
can be employed for this task by computing vector similarities.
However, tables must be large enough to achieve high-quality
vector representations, limiting the effectiveness of small queries.

Many systems aim to find tables that are joinable with a query
table [9, 12, 24, 57, 70, 71]. This task requires ranking candidate
tables based on the syntactic overlap in the content of one ormore
columns or rows but does not account for any notion of semantic
similarity or topical relevance. Others do table union search [9, 25,
36, 49] which does not necessarily require any syntactic overlap
and can exploit semantic similarity in the data or in some cases
themetadata [9] to establishwhen two columns describe the same
domain of values. However, for table union search, the ranking
is designed to favor tables that are more structurally similar
having more columns and more relationships (or context) that
are shared with the query table. In semantic search, however, we
are not only interested in tables that union with our query table
(where the goal is to find additional tuples that expand a query
table by matching their schema). Hence, our semantic relevance
considers the strength of the semantic similarity rather than
structural similarity (having more columns or relationships in
common). Another approach for related table search also exploits

contextual data derived by static analysis of the usage of specific
tables in different programs (e.g., python notebooks) [69]. Hence,
such approaches point towards the importance of integrating
contextual information in the search task, but are limited in the
type of contextual information they adopt.

To best exploit the taxonomic information present in KGs,
some approaches explicitly assume that the data lake contains
only tables describing a set of entities (entity tables), so that
one column contains the entity identifiers and the remaining
columns are all interpreted as attributes of those entities [58].
Using this paradigm, systems like RapidMiner [30, 37, 38] and
S3D [29] can first perform a form of schema matching between
the columns of the table and the schema of the KG, and then use
this information to propose set of attributes that can explain joins
with other tables. Yet, these methods either do not fully exploit these
semantic resources, e.g., the structure and connectivity of the KGs,
or limit themselves to explicit one-hop-matching with attributes
expressed in the table.

In our work, we establish a new entity-centric semantic re-
latedness measure for generic entity tuples that do not require
matching any structural condition between tables (that they be
joinable or unionable). We summarize the features of existing
approaches in Table 1. Our method is the only one that accepts
generic entity tuples that considers both content and semantic
relationships to produce a relevance-based ranking of tables that
goes beyond structural matching retrieving also tables that con-
tain related entities without the need for any schema matching
or accurate metadata.

3.2 Semantic Data Lakes
Thanks to their flexibility and expressiveness, KGs have been
adopted in many organizations [35, 50]. A recent trend is that
of exploiting KGs in data lakes [3, 5, 23, 32, 44, 59]. This leads to
sophisticated approaches where the schema and contents of the
datasets in a data lake are linked to the entities and relationships

400

contained in a knowledge graph. Hence, in these approaches,
every piece of information is virtually mapped to statements in
the KG. This allows heterogeneous data to be accessed uniformly
through semantic queries (usually SPARQL) via schema mapping
and integration. While this approach achieves a high level of data
integration, it requires extensive manual mapping as well as data
cleaning efforts [60], which is in contrast with the principle that
a data lake should allow effortless addition of new datasets.

In contrast, our proposal is more flexible.We propose to identify
within each data lake dataset all mentions of entities from a
reference KG, and hence identify which pieces of the data contain
those mentions. This linking is performed automatically [6, 55].
Our approach does not require mapping the complete dataset
schema to KG relationships. Thus, we integrate a data lake with
a KG to obtain a Semantic Data Lake without manual curation.

Contrary to approaches like S3D [29], we allow for a wide
range of semantic similarities between entities, and we integrate
them transparently in a principled scoring function, while still
providing a fast search algorithm. This also sets apart our pro-
posal from approaches for web tables, like STR [66], where em-
beddings of tables are aggregated by complex machine learning
models requiring the computation of many-to-many matches in
a brute-force fashion.

3.3 Graph Relevance
Our system infers table relevance from a given entity relevance
metric provided, therefore it is explicitly designed to accommodate
any relevance measures that takes advantage of any information
encoded in the KG. There are many approaches that compute the
relevance within a graph depending on the task. Here, we focus
on semantic similarity metrics that can be converted to vector
operators, allowing for fast indexing and search. Hence, instanti-
ations of relevance measures can exploit entity attributes, such as
the sets of entity types and predicates, or vector representation
of entity embeddings.

We focus on the similarities that are most widely adopted:
similarity of types and learned entity similarity. The former ranks
entities that share similar types higher, the second extracts a
learned vector representation of all entities so that entities can
be compared in a learned high-dimensional space, also called an
entity embedding. Thus, we compare entities based on the Jaccard
similarity of their types [63] as well as the cosine similarity of
their embeddings [54]. In this paper, we experiment with Jaccard
of entity types and RDF2Vec embeddings constructed on the
entire KG structure.

4 SEMANTIC TABLE SEARCH
We formalize the semantic relevance of a table given the semantic
relevance score for entities and provide an axiomatization of the
properties that a semantic relevance score should satisfy.

4.1 Aggregating Semantic Relevance
The task of semantic table search relies on the definition of a se-
mantic relevance score, SemRel(𝑄,𝑇), between a query 𝑄 and a
table𝑇 . The query is composed of one or more entity tuples, and
the table is composed of one or more rows containing entity men-
tions. Since the relevance score is measured through 𝐺 , given a
table row,we only consider the entitymentions in it, i.e., extracted
by the mapping function Φ (see Definition 2.1). Therefore, rows
in a table are also treated as entity tuples. Consequently, to define
SemRel, we need to first define a semantic relevance score between

pairs of entity tuples 𝑡𝑖 , 𝑡 𝑗∈P(N). Given the set of all possible
tuples as the set P(N), i.e, the set of all the subsets of arbitrary
size of nodes N from the graph G, we require the instantiation
of a semantic relevance function SemRel:P(N)×P(N)↦→[0, 1].
For instance, given tuples 𝑡1:⟨Mitch Stetter, Milwaukee Brewers⟩,
𝑡2:⟨Ron Santo, Chicago Cubs⟩, and 𝑡3:⟨M. Streep, Actor⟩, this
function should be able to return a higher relevance score for
the pair (𝑡1, 𝑡2) than for the pair (𝑡1, 𝑡3). Note also that, since two
tuples can be of different sizes, i.e., contain a different number
of entities, SemRel may be asymmetric. Nonetheless, for consis-
tency, given the tuples 𝑡1 and 𝑡2, with 𝑡2⊂𝑡1 and |𝑡2 |< |𝑡1 |, it must
always hold that SemRel(𝑡1, 𝑡2)≤SemRel(𝑡2, 𝑡1). As an example,
given the entity tuples 𝑡1:⟨Mitch Stetter, Milwaukee Brewers⟩
and 𝑡2:⟨Chicago Cubs⟩, when 𝑡1 is considered as a query, we want
the relevance score to signal that 𝑡2 only partially matches the
type of information mentioned by 𝑡1, on the other hand, when 𝑡2
is considered as a query, 𝑡1 may be considered a perfect match.

It follows that, to define the semantic relevance between two
entity tuples 𝑡1, 𝑡2, SemRel needs to compare each entity in 𝑡1
with each entity in 𝑡2, e.g., to recognize that both tuples men-
tion companies. Therefore, we say that the concept of semantic
relevance between tuples relies on the notion of semantic simi-
larity between any two entities in 𝐺 . Consider for instance the
simplest case where we compare two tuples each containing just
one entity, i.e., 𝑡𝑖 :⟨𝑒𝑖 ⟩ and 𝑡 𝑗 :⟨𝑒 𝑗 ⟩. Here, we naturally consider
that the highest relevance score is necessarily that of an entity
compared to itself, while for non-identical entities, we assume
that through 𝐺 it is possible to determine how similar is the
semantic role in the database played by two entities. Given a
query tuple 𝑡𝑄 , a target tuple 𝑡𝑇 is relevant if for every entity in
𝑡𝑄 it contains exactly that entity or an entity that is semantically
similar to that. Therefore, we require the definition of the concept
of semantic similarity score 𝜎 :N×N↦→[0, 1], with 𝜎 (𝑒, 𝑒)=1. The
semantic similarity score between pairs of entities should satisfy
all properties of a metric. In the next section (Section 4.2), we
formalize the defining characteristics of such relevance score and
then how SemRel relates to 𝜎 .

Finally, given the semantic relevance score defined between
pairs of tuples, we define the SemRel score between a query 𝑄
and a table𝑇 as an aggregate score of the combined relevance for
each tuple in the query, 𝑡𝑖∈𝑄 , and each tuple in the target table,
𝑡 𝑗∈𝑇 , this is required since we need to compute a single table
score allowing ranking of the tables to satisfy Problem 2.2. While
there can be different instantiations for SemRel – and more can
be studied in the future – we study the final score either as the
average of the score within each tuple-to-tuple comparison or as
the average of the best match between query tuples and tuples
in the table. We show in our experimental evaluation (Section 7)
how the second interpretation leads to better results, so we use:

SemRel𝑀𝐴𝑋 (𝑄,𝑇):
∑
𝑡𝑖 ∈𝑄 max𝑡 𝑗 ∈𝑇 SemRel(𝑡𝑖 , 𝑡 𝑗)

|𝑄 | (1)

4.2 Axiomatization of Relevance
In the previous section, we described how the problem of seman-
tic table search is different from classical table search, e.g., used
for table augmentation, and requires the definition of an appro-
priate relevance score between entity tuples. Here, we follow a
principled approach and provide an axiomatization of the prop-
erties that such a score needs to satisfy. Based on those axioms,
we design our score.

401

Given a tuple 𝑡𝑄 :⟨𝑒1
𝑄 , ..., 𝑒

𝑚
𝑄 ⟩ from the input query 𝑄 (i.e.,

𝑡𝑄∈𝑄), and tuple 𝑡𝑇 :⟨𝑒1
𝑇 , ..., 𝑒

𝑛
𝑇 ⟩ from the table 𝑇∈D (i.e., 𝑡𝑇 ∈𝑇),

we define the concept of a relevant mapping from 𝑡𝑄 to 𝑡𝑇 as
a partial injective function2 𝜇𝑡𝑄 ,𝑡𝑇 :𝑡𝑄 ↩→𝑡𝑇 s.t. 𝜇𝑡𝑄 ,𝑡𝑇 (𝑒𝑖𝑄)=𝑒

𝑗
𝑇 iff

𝜎 (𝑒𝑖𝑄 , 𝑒
𝑗
𝑇)>0. Therefore, we identify four cases, namely:

(1) All entities in 𝑡𝑄 appear (separately) in 𝑡𝑇 , i.e., ∀𝑒𝑖𝑄∈𝑡𝑄 .

𝜇 (𝑒𝑖𝑄)≡𝑒𝑖𝑄 , this is called a total exact mapping denoted 𝑡𝑄
TE≈ 𝑡𝑇 .

(2) Some, but not all, entities in 𝑡𝑄 appear in 𝑡𝑇 , i.e., ∃𝑡 ′𝑄⊂𝑡𝑄
s.t. ∀𝑒𝑖𝑄∈𝑡 ′𝑄 . 𝜇 (𝑒𝑖𝑄)≡𝑒𝑖𝑄 , this is called a partial exact mapping

denoted 𝑡𝑄
PE≈ 𝑡𝑇 .

(3) For each entity 𝑒𝑖𝑄∈𝑡𝑄 there exist a mapping entity 𝑒
𝑗
𝑇 ∈𝑡𝑇 ,

i.e., ∀𝑒𝑖𝑄∈𝑡𝑄 . ∃𝑒 𝑗𝑇 ∈𝑡𝑇 s.t. 𝜇 (𝑒𝑖𝑄)=𝑒
𝑗
𝑡 and 𝜎 (𝑒𝑖𝑄 , 𝑒

𝑗
𝑇)>0, those

are called related entities. Since 𝜇 is injective, no two entities
in 𝑡𝑄 are mapped to the same entity in 𝑡𝑇 , this is called a total

related mapping denoted 𝑡𝑄
TR≈ 𝑡𝑇 .

(4) There exists a related mapping as defined above but just of
a subset of the entities in 𝑡𝑄 , this is called a partial related

mapping denoted 𝑡𝑄
PR≈ 𝑡𝑇 .

Consider the following tuples: 𝑡1:⟨Mitch Stetter,Milwaukee Brew-
ers⟩, 𝑡2:⟨Mitch Stetter, Milwaukee Brewers, Milwaukee⟩, 𝑡3:⟨Ron
Santo, Chicago Cubs⟩, 𝑡4:⟨Ron Santo, Chicago⟩, 𝑡5:⟨Milwaukee⟩.
The following holds: 𝑡1

TE≈ 𝑡2, 𝑡2PE≈ 𝑡1, 𝑡1TR≈ 𝑡3, 𝑡2PR≈ 𝑡4, and 𝑡1PR≈ 𝑡5.
When none of the above holds for a target tuple, we say that

that the target tuple 𝑡𝑇 is irrelevant to the query tuple 𝑡𝑄 and it
should not be returned. Additionally, we note that the definition
of total related mapping holds also for the case in which some of
the mapped entities in 𝑡𝑇 are exact mappings for the entities in
𝑡𝑄 . That is, if there exists a mapping such that all entities in 𝑡𝑄
are mapped (either through an exact or related mapping) to at
least one entity in 𝑡𝑇 , then we effectively consider this case as
a total related mapping (e.g., 𝑡4

TR≈ 𝑡2 from above). Based on the
four cases above, we identify a set of foundational axioms that
the semantic relevance score should satisfy given the type of
mapping between two tuples. Hence, given a query tuple 𝑡𝑄 and
two distinct target tuples 𝑡𝑇 1 and 𝑡𝑇 2, the following must hold:

Axiom 1. if it holds that 𝑡𝑄
TE≈𝑡𝑇 1 and 𝑡𝑄

TE
0𝑡𝑇 2 then it must

also hold that SemRel(𝑡𝑄 , 𝑡𝑇 1) >SemRel(𝑡𝑄 , 𝑡𝑇 2), i.e., total exact
mappings are the most relevant.

Axiom 2. if it holds that 𝑡𝑄
PE≈𝑡𝑇 1 and 𝑡𝑄

PE≈𝑡𝑇 2∨𝑡𝑄 PR≈𝑡𝑇 2 for the
same set or a subset of entities in 𝑡𝑄 , i.e., 𝑑𝑜𝑚(𝜇𝑇 2)⊆𝑑𝑜𝑚(𝜇𝑇 1),
then it must also hold that SemRel(𝑡𝑄 , 𝑡𝑇 1) ≥ SemRel(𝑡𝑄 , 𝑡𝑇 2),
i.e., larger partial exact mapping are more relevant then mappings
that involve only a subset of the entities.

Axiom 3. if it holds that∀𝑒𝑖∈𝑡𝑄 𝜎 (𝑒𝑖 , 𝜇𝑇 1 (𝑒𝑖)) >𝜎 (𝑒𝑖 , 𝜇𝑇 2 (𝑒𝑖)),
then it must also hold that SemRel(𝑡𝑄 , 𝑡𝑇 1) > SemRel(𝑡𝑄 , 𝑡𝑇 2), i.e.,
tuples with more related entities have a higher relevance score.

Next, we define the SemRel relevance score that satisfies all
the above axioms and an algorithm to compute such a score.
Later, in Section 6, we introduce an optimized algorithm able to
compute an approximate solution with performance guarantees.

5 SEMANTIC SEARCH ALGORITHM
Given the above axioms and the semantic similarity score 𝜎 , here
we first describe how to produce a mapping between a query and
the tuples in a table, then we describe how to effectively compute
the SemRel score for a pair of tuples, and finally, we describe an
exact algorithm to solve the problem of semantic table search.
The algorithm is illustrated in Figure 3.

5.1 Mapping the Query Tuple to a Table
As seen above, to identify the relevance score between a query en-
tity tuple 𝑡𝑄 and a target entity tuple 𝑡𝑇 (from a target table𝑇), the
first step is that of identifying a mapping 𝜇𝑄,𝑇 between the two.
Ideally, given the semantic similarity score 𝜎 , we define a map-
ping 𝜇𝑄,𝑇 such that the cumulative score

∑
𝑒𝑖 ∈𝑡𝑄 𝜎 (𝑒𝑖 , 𝜇𝑄,𝑇 (𝑒𝑖))

is maximized. Furthermore, given that the semantic relevance
will need to be aggregated over all tuples of the target table, as-
suming two tuples 𝑡1

𝑇 , and 𝑡
2
𝑇 from table 𝑇 , if we map entity 𝑒𝑖

from 𝑡𝑄 to entity 𝑒 𝑗 from 𝑡1
𝑇 , corresponding to attribute 𝐴∈A,

then when comparing 𝑡𝑄 to 𝑡2
𝑇 , we should also map 𝑒𝑖 to the

entity 𝑒𝑙 corresponding to 𝐴 for 𝑡2
𝑇 . That is, we map an entity

from the query to entities from the same column for all tuples in
the target table. Therefore, we need a mapping to a column in
a table that maximizes the total score SemRel for all entities in
that column. Moreover, we must ensure that each entity in the
query tuple is assigned to a different column in the target table.

Given table 𝑇 with cell values organized across columns
𝐶1, . . . ,𝐶𝑛 and rows 𝑅1, . . . , 𝑅𝑚 . Let 𝑡𝑄 denote a query tuple com-
posed of entities 𝑒1, . . . , 𝑒𝑘 . We define a column-relevance score
between a query entity 𝑒𝑖∈𝑡𝑄 , and column 𝐶 𝑗∈𝑇 as:

𝑠𝑐𝑜𝑟𝑒 (𝑒𝑖 ,𝐶 𝑗) =
∑︁
𝑒∈𝐶 𝑗

𝜎 (𝑒𝑖 , 𝑒)

Since we want the final score, summed across all query enti-
ties, to be maximized, we compute the relevance score for each
pair of query entity and table column to find the best mapping
function 𝜏 :𝑡𝑄 ↦→{𝐶1, ...,𝐶𝑛}. The information about the mapping
score from query entities to columns is represented in a matrix,
𝑆 , as follows:

𝑆 =
©­­
«
𝑠𝑐𝑜𝑟𝑒 (𝑒1,𝐶1) · · · 𝑠𝑐𝑜𝑟𝑒 (𝑒1,𝐶𝑛)

...
. . .

...
𝑠𝑐𝑜𝑟𝑒 (𝑒𝑘 ,𝐶1) · · · 𝑠𝑐𝑜𝑟𝑒 (𝑒𝑘 ,𝐶𝑛)

ª®®¬
Our goal is to find an assignment for each query entity to a unique
column such that the column relevance score is maximized under
the constraint that each entity must map to a different column.
The formalization of the optimization problem is the following

argmax
𝑋

𝑘∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑆𝑖 𝑗𝑋𝑖 𝑗

where the assignment is specified by 𝑋 which is a boolean
matrix, where 𝑋𝑖 𝑗=1 if and only if row 𝑖 is assigned to column
𝑗 , and where each row is assigned to exactly one column, and
each column is assigned to at most one row (i.e., in the matrix
𝑋 , there are exactly 𝑘 ones). This assignment problem can be
solved by the Hungarian Method [21]. This can be expressed as
permuting the rows and columns of a cost matrix C to maximize
its tracemin𝐿,𝑅 𝑇𝑟 (𝐿𝐶𝑅) where L and R are permutationmatrices.
The solution to the assignment problem will provide us with the
2We will write 𝜇𝑇 or 𝜇 instead of 𝜇𝑡𝑄 ,𝑡𝑇 to simplify notation.

402

Milwaukee Brewers
Chicago Cubs Micah Hoffpauir

Mitch Stetter Aaron Heilman
Ron Santo

Query

Los Angeles Angels
Birmingham Barons

Portsmouth Cubs

Pacific Coast League
Southern Association

Piedmont League

Truck Hannah
Fresco Thompson

Dick Luckey

Corpus 2. Aggregate entity-
centric similarities

1. 𝝁-column mapping

0.88
0.88

0.79
0.81

0.80
0.91

3. Weighted Euclidean
similarity scores

0.75
0.81

0.33

0.24

4. Final table score

0.78
Average

Target table

𝑡𝑄1,3

𝑡𝑄2,3

C1 C2 C3

Semantic Data Lake
Table Ranking

𝒕𝑸𝟏
𝒕𝑸𝟐

Figure 3: Semantic table search algorithm

mapping function 𝜏𝑄,𝑇 :𝑡𝑄 ↦→{𝐶1, ...,𝐶𝑛}. Therefore, to compute
𝜇𝑄,𝑇 , given the query tuple 𝑡𝑄∈𝑄 and target row 𝑡𝑇 ∈𝑇 , we map
each entity 𝑒 𝑗∈𝑡𝑄 to the entity 𝑒𝑘∈𝑡𝑇 where 𝑒𝑘=𝐶𝑘 (𝑡𝑇), i.e., the
entity corresponding to column 𝐶𝑘 in 𝑡𝑇 , with 𝐶𝑘=𝜏 (𝑒 𝑗).

The result of 𝜇𝑄,𝑇 is computed independently for each query
tuple. Thus, it is not required that all query tuples 𝑡𝑄∈𝑄 follow
the same schema, although this could be easily enforced. This
process is depicted in Region 1 of Figure 3, though for simplicity
both query entity tuples have the same column mapping.

5.2 The definition of the SemRel score
Here, we define the similarity measure that satisfies all the prop-
erties required by the SemRel score as defined above. Given the
query tuple 𝑡𝑄 :⟨𝑒1

𝑄 , ..., 𝑒
𝑚
𝑄 ⟩ (with |𝑡𝑄 |=𝑚) from the input query

𝑄 (i.e., 𝑡𝑄∈𝑄), and the target tuple 𝑡𝑇 :⟨𝑒1
𝑇 , ..., 𝑒

𝑛
𝑇 ⟩ from the table

𝑇∈D, we map the target tuple to an Euclidean space with the
number of dimensions equal to the number of entities in the query
tuple, i.e., R𝑚 . In this space, given a relevant mapping 𝜇:𝑡𝑄 ↦→𝑡𝑇 ,
each target tuple 𝑡𝑇 is mapped to a point 𝑝𝑇 :⟨𝑥1, ..., 𝑥𝑚⟩ with
coordinate 𝑥𝑖=𝜎 (𝑒𝑖𝑄 , 𝜇 (𝑒𝑖𝑄)). For the cases where there is no rele-
vant mapping in 𝑡𝑇 for an entity 𝑒𝑖𝑄∈𝑡𝑄 , i.e., 𝜇 (𝑒𝑖𝑄) is undefined, it
follows that 𝑥𝑖=0. This is depicted in Region 2 of Figure 3. Given
the mapping of each tuple in our space, we can then compute
the semantic relevance of each tuple as their euclidean distance D
from the perfect match, i.e., from the point corresponding to 𝑡𝑄
which will have coordinates 𝑥𝑖=1 𝑖∈[1,𝑚] (Region 3 of Figure 3).

Our observation is that the most relevant tuples are those
containing all the entities in the user query, i.e., those for which it
holds 𝑡𝑄

TE≈ 𝑡𝑇 (Axiom 1). These tuples will have scores𝜎 (𝑒𝑖𝑄 , 𝑒
𝑗
𝑇) =

1 for 𝑒 𝑗𝑇=𝜇 (𝑒𝑖𝑄). Then, combining Axiom 2 and 3, we notice that
the second best set of tuples is the set where the majority of the
tuples in 𝑡𝑇 are exact mapping of tuples in 𝑡𝑄 .

In the above definition, all the entities in a tuple contribute
for the final relevance score in the same way. However, the en-
tities in a query have different roles, i.e., some entities will be
more important than others in determining the relevance of a
given target tuple. For example, in a query like ⟨Mitch Stetter,
Milwaukee Brewers⟩, we can intuitively assume that the inter-
est of the user is primarily about baseball players, and the team
where they play to a lesser degree. Therefore, a tuple containing
only Milwaukee Brewers is intuitively less relevant than a tuple
containing only Mitch Stetter. To cope with this observation, we
propose an instantiation of SemRel able to capture the need for
differentiating the discriminate power of the entities in the user
query. To do so, we introduce the concept of informativeness of
an entity, i.e., I:N↦→[0, 1] that automatically assigns a weight to
the entities in the query based on entity frequency in the corpus.

Algorithm 1: Table Search

Input: D={𝑇1,𝑇2, ...,𝑇𝑛 };𝑄 :{𝑡𝑞1, 𝑡𝑞2, ...,𝑡𝑞𝑚 }
Input: I:N↦→[0, 1]; 𝜎 :N×N↦→[0, 1]
Output: Table Relevance scores ⟨𝑇𝑖 , 𝛼𝑖 ⟩∀𝑇𝑖 ∈D

1 tableScores← []
2 forall𝑇 ∈D do
3 qScores← []
4 forall 𝑡𝑞∈𝑄 do
5 columnMapping←hungarianMapping(𝑡𝑞,𝑇)
6 rScores← []
7 forall row∈𝑇 do
8 eScores← []
9 forall e∈𝑡𝑞 do
10 mappedToColumn←columnMapping[𝑒]
11 eScores[𝑒]←𝜎 (𝑒, row[mappedToColumn])
12 rScores[row]←eScores
13 aggScores←aggRowScores(rScores)

14 qScores[𝑡𝑞]←1/(
√︃∑

𝑒∈𝑡𝑞 I(𝑒) (1 − aggScores[𝑒])2 + 1)
15 tableScores [𝑇]←(∑𝑡𝑞∈𝑄qScores[𝑡𝑞])/|𝑄 |

Thus, we compute SemRel as a the weighted euclidean distance
as the following

DI (𝑝𝑄 , 𝑝𝑇) =
√︄ ∑︁

𝑖∈[1,𝑚]
I(𝑒𝑖𝑄) (1 − 𝑥𝑖)2 (2)

We convert theweighted Euclidean distance into a similarity score,
such that a score closer to 1 means a smaller Euclidean distance.

SemRel(𝑡𝑄 , 𝑡𝑇) =
1

DI (𝑝𝑄 , 𝑝𝑇) + 1 (3)

The final table score is the average of the weighted euclidean
distances (Region 4 of Figure 3).

5.3 Computing Semantic Relevance
To compute the final semantic relevance score of all tables in
the data lake, we follow the procedure described by Algorithm 1.
The algorithm receives as input the set of tables𝑇𝑖∈D, a query𝑄
consisting of a set of tuples 𝑡𝑄𝑖 ∈𝑄 , an entity weighing function 𝐼 ,
and an entity semantic similarity scoring function 𝜎 . The output
is then the value of SemRel for each data lake table.

In this work, we experiment with two alternative similarity
functions for entities. The first is derived from the Jaccard sim-
ilarity of the sets of entity types of two entities, the second is
the cosine similarity between pairs of entity embeddings. For the
former case, we assume two entities are similar if they share the
same set of entity types. In rich KGs, it is common for entities
to be annotated with multiple types at different levels of gran-
ularity, e.g., in DBpedia, Milwaukee Brewers is annotated both

403

as a sports team and as an organization. Hence, we adjust the
Jaccard similarity score such that we return a similarity of 1.0
when comparing an entity to itself, and otherwise, we return the
Jaccard similarity between the two sets of entity types capped at
0.95. Specifically, given T1 as the set of entity types for entity 𝑒𝑖 ,
we define our adjusted Jaccard similarity as:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑*(𝑒1, 𝑒2) =
{

1 if 𝑒1≡𝑒2
min(0.95, | T1∩T2 || T1∪T2 |) otherwise

(4)

The similarity based on entity types relies on the quality and
completeness of the ontology in the KG, but not on other con-
nections with other entities. An alternative similarity function is
based on embeddings. Entity embeddings, instead, are obtained
through a self-supervised machine learning approach that learns
a vector representation for every entity in the KG based on their
higher-order connections to other entities [7, 54]. Hence, each
entity is associated with a vector, and two entity vectors are sim-
ilar when the two corresponding entities have similar semantic
connections within the graph. In this model, given V𝑖 as the en-
tity embedding vector for 𝑒𝑖 , the semantic similarity 𝜎 (𝑒1, 𝑒2) is
computed as the cosine similarity between their vectors.

Note that our search framework and the optimization algorithm
are designed to generalize also to other similarity scores based ei-
ther on set similarities or vector similarities. For instance, one
can also compute the similarity between two entities based on
the set of predicates around them [47] or replace RDF2Vec with
other entity embedding approaches designed specifically for node
classification [1, 7]. We leave the exploration of alternative simi-
larities as future work.

The algorithm then computes the relevance score for all tables
as follows. For a table in the data lake, we compute a mapping
𝜏 :𝑡𝑄 ↦→{𝐶1, ...,𝐶𝑛} from each query entity to a table column using
the Hungarian Method, such that the summed similarity score
across all query entities is maximized (line 3). Then, we generate
a mapping from each query tuple to each table row (lines 7-
12). Here, we compute the semantic similarity score between
each entity in the query tuple 𝑒∈𝑡𝑄 and each entity in the target
table row 𝑒′∈𝑡𝑇 . This will result in a score for every row in the
table. Then, we aggregate all these scores to obtain the final
score for the entire table (line 13). We consider two types of
aggregation: maximal and average score. The maximal score
extracts the maximal semantic similarity score among all entities
mapped to the same query entity, the average score computes the
average similarity instead. Given the aggregated tuple relevance
score for 𝑡𝑄 , we compute the Euclidean distance from 𝑡𝑄 to the
point 𝑥𝑖 = 1 𝑖∈[1, |𝑡𝑄 |] which is converted to a distance similarity
score 0≤𝑠≤1, where 𝑠 closer to 1 means higher similarity (line
14). As described in the previous section, this allows weighing
the similarity based on the relative frequency of query entities in
the entire corpus. The final table relevance score is the average
of query tuple relevance scores (line 15).

The time complexity of Algorithm 1 is determined by the
mapping function 𝜇𝑇,𝑄 . Given the number of table rows 𝑅𝑇 , the
number of table columns 𝐶𝑇 , the number of query tuples 𝑅𝑄 ,
and the number of query entities per query tuple 𝐶𝑄 , the time
complexity is defined as O(𝑅𝑇𝐶𝑇𝑅𝑄𝐶𝑄). However, as the query
is usually small, the time complexity is in practice O(𝑅𝑇𝐶𝑇).

6 SEMANTIC SEARCH PREFILTERING
We now present a pre-filtering technique to reduce the set of
tables over which we need to compute the relevance score, given
that we are usually interested in only the top-K results, i.e.,
the most similar tables. To achieve this, we employ a Locality-
Sensitive Hashing (LSH) scheme, which groups similar items into
the same bucket. Specifically, we use the set of entity types or
entity embeddings as input to LSH such that similar entities are
hashed into the same buckets. Then, we retrieve the subset of
tables to rank based on the entities they contain. This results in
our Locality-Sensitive Entity-Index (LSEI) for tables.

6.1 Building Locality-Sensitive Indexes
The goal is to compute signatures of each entity. LSH requires as
input a vector representation for the entity to compute a reduced
signature for that vector. The signature is further divided into
bands. Each band is further hashed to find the corresponding
bucket for similar entities, hence each distinct band corresponds
to a distinct group of buckets, and within each group of buckets,
an entity appears only in one of them.
LSEI for Entity Types.When comparing entities based on their
types, we represent each type in the KG by a numeric index. We
mimic the idea of shingling in min-hashing for documents by
creating a bit vector of size |T |×|T | for an entity, where |T | is
the number of types, and flip bits to 1s in positions corresponding
to pairs of types, e.g., a pair of types with indices 24 and 48 have
index 2448 in the bit vector. We hash this bit vector by LSH into
an entity signature with a dimension equal to the number of
permutation vectors. Since some types are extremely frequent,
e.g., every entity has the type owl:Thing in DBpedia, we filter
away those types that appear in more than 50% of all tables in the
corpus, the idea being that a type that describes more than half of
the entities cannot be really informative. This percentage is cho-
sen based on observations from smaller experiments. Decreasing
this percentage leads to a decrease in prefiltering efficacy.
LSEI for Entity Embeddings. While traditional LSH schemes
for sets are based on the concept of random permutations, LSH
schemes for embeddings are based on the concept of random
projections [11]. Therefore, the signature dimension equals the
number of projection vectors, each dividing the space in a positive
and negative sub-space. Then, the entity signature is a bit vector,
where each 1 means that the dot product between the entity
embeddings vector and a given projection vector is positive.
Index Structure. An LSH index has several groups of buckets.
When inserting an entity, we split the signature into multiple
bands, one for each group of buckets. The size of the bands and
the number of permutation/projection vectors determine the
number of bucket groups, e.g., an LSH index using 32 permu-
tation/projection vectors and a band size of 8 has 4 bands and
thus 4 bucket groups. The number of buckets in each bucket
group is 2𝐵 , where 𝐵 is the band size. Therefore, large band sizes
result in a large number of buckets, each more likely to contain
only a few entities. This corresponds to a larger search space
reduction. However, a higher search space reduction also risks
loss of accuracy. Finally, for each entity in the LSEI, we maintain
a list of all the table identifiers in which that entity appears.

6.2 Locality-Sensitive Entity-Index
Prefiltering

Before executing our table search algorithm (Algorithm 1), we
search our LSH index using the entities in the input query to

404

Table 2: Benchmark statistics: # of tables (T), mean # of rows (R),
mean # of columns (C), and mean entity link coverage (Cov)

Queries Data Lake Tables
T C T R C Cov

WT 2015 100 3.4 238,038 35.1 5.8 27.7%
WT 2019 100 2.4 457,714 23.9 6.3 18.2%
GitTables 100 3.4 864,478 142.0 12.0 29.6%
Synthetic 100 3.4 1,732,328 9.6 5.8 34.8%

reduce the search space by prefiltering tables. All entities in the
query are individually used to search our LSH index, and the
resulting set of tables per query entity are merged into the new,
reduced search space. When searching in the LSH index with
a single entity, all entities in each matching bucket are merged
into one set of entities, and the tables these entities are linked
to are returned. Some tables may be found multiple times when
merging the found buckets of entities and their linked tables. This
gives the opportunity to further restrict the tables returned for a
single entity by implementing a voting strategy. That is, we treat
this intermediate result set as a bag of tables, i.e., maintaining
duplicates, and count the number of occurrences of a table in the
results set, so that only those tables that appear a certain amount
of times are returned.
Column aggregation. An alternative approach to compute en-
tity signatures that also saves space is by aggregating vector
representations of entities in the same column into one single
vector representation. When constructing this kind of LSH in-
dex using types, we merge all entity types from the entities in a
single table column into one unique set of types and compute a
signature of that column using this merged set of types. When
using embeddings, we compute the average embeddings vector
of all entities in a column.

We also note that the higher the number of query entities,
the higher the number of LSH lookups, which results in a larger
result set. Thus, we further optimize the LSH lookup by apply-
ing aggregation by column on the input query level in the same
way as described above for tables. This introduces a further ap-
proximation with the benefit of reducing the search cost since it
effectively treats queries composed of multiple entity tuples as if
they were 1-tuple queries.

7 EVALUATION
We evaluate the output quality and the scalability of our semantic
table search algorithm by implementing our approaches within a
prototype system: Thetis.We show that keyword search can only
find a limited number of tables that contain exact matches and
is not adequate for discovering relevant tables without matches.
Similarly, union- and join-based techniques do not address ade-
quately this task. We show that our prefiltering techniques with
LSH ensure scalability without sacrificing search quality. To this
end, we compare multiple system configurations and recommend
the most appropriate. We evaluate Thetis on queries of differ-
ent sizes and show that, although runtime is affected by larger
queries, Thetis can retrieve high-quality tables efficiently.

7.1 Experimental Setup
We compare Thetis to BM25 [56], a well-established keyword
search algorithm that has been used for table search [62, 66, 68].

We further compare to state-of-the-art unionability and joinabil-
ity approaches SANTOS [36], Starmie [25] and D3L [9], respec-
tively. We also compare against a deep-learning Table Repre-
sentation, TURL [19], by adapting it for our task. Using TURL’s
pre-trained model, we aggregate all contextualized vector rep-
resentations in each table to construct an embedding for each
table and query. Cosine similarity between the table and query
representations is used to rank the table search output. We do
not compare to other methods like Aurum [27] which rely on
value equality between similar attributes, something already cov-
ered by BM25, or heuristics that have already been proven less
effective than D3L and SANTOS. We also do not compare to
SemProp [14], as it is an extension to Aurum, and its repository
is outdated and non-operational. Furthermore, we also do not
compare against S3D [29], as the code is not publicly available
and RapidMiner [30, 37, 38] because the code is not working, and
the authors could not offer any help.

All of the components of our experimental setup are available
online as open-source 3. We use a snapshot of DBpedia from 2021
as our reference KG containing ∼31M nodes, ∼89M edges, 763
distinct types, and 10,051 distinct predicates, however, Thetis
works with any KG. Importantly, DBpedia has a range of coverage
on the data lakes we consider (see below) making it particularly
suitable for our evaluations. Evaluating Thetis on other public
KGs is beyond the scope of this work. Nonetheless, a typical
alternative would be WikiData, which showcases a rich vocabu-
lary of entity and relationship types that is slightly richer than
DBpedia’s, and with which we would expect a slightly higher
accuracy overall. We use RDF2Vec [54] to generate embeddings
on our reference KG. However, Thetis can accommodate any
set of entity embeddings. Experiments are conducted on a server
with 2TB of RAM and a 64-core CPU.
Data Lake Benchmarks. We evaluate Thetis over a real-
world, data discovery benchmark composed of two datasets from
Wikipedia tables (WT) in Wikipedia pages (WP) [40]. We denote
the two snapshots of Wikipedia tables as WT2015 and WT2019
from 2015 and 2019, respectively, which come with tuple queries
consisting of various numbers of tuples (see characteristics in
Table 2). In our evaluation, we have extracted a heterogeneous
set of 50 1- and 5-tuples queries of width of at least 3, where
the 1-tuple queries are contained in the 5-tuples queries. Note
that, of the eighteen approaches mentioned in Table 1, 5 of them
evaluate on less than 50K tables and 8 on less than 500K tables.
Moreover, the WT benchmarks provide entity links to DBpedia
and the problem of improving entity linking from tables to a KG
is orthogonal to our work, where there are already numerous
works tackling this problem [1, 6, 26]. These entity links can also
be provided for other public KGs through owl:sameAs relations.
The benchmarks come with ground truth rankings of tables con-
structed based on Wikipedia categories and navigational links.
In our experiments, unless specified otherwise, we focus first
on results over WT2015, which given the smaller size and the
highest coverage, i.e., the number of cells linked to a KG entity,
allows us to test more efficiently different settings. We use recall
to evaluate the correctness of the returned result set and Normal-
ized Discounted Cumulative Gain (NDCG) to evaluate the result
set rankings. We compute recall as the number of retrieved tables
that are in the top-𝑘 ground truth relevant tables according to
their Jaccard similarity to the query.

3https://github.com/EDAO-Project/TableSearch

405

1 Vote 3 Votes 1 Vote 3 Votes

1-
Tu

pl
e

5-
Tu

pl
e

(a) (b) (c) (e) (f)

(g) (h) (i) (k) (l)

Figure 4: NDCG at top-10 on WT2015. Comparing brute-force ap-
proaches for types/embeddings (STST/STSE), different configura-
tions of LSH prefiltering: (number of permutation/projection vec-
tors, band size), BM25 on text queries, and Starmie union search.

Top-200Top-100

1-
Tu

pl
e

5-
Tu

pl
e

R
ec

al
l

R
ec

al
l

Figure 5: Recall at top-100 and top-200, including BM25 comple-
mented with STS. STSTC/STSEC: Semantic tuple Search using
Types/Embeddings Complemented with BM25.

To test scalability, we experiment with the GitTables dataset,
since it contains 864,478 tables with an average number of
columns and rows much larger than WTs (Table 2). Note that Git-
Tables does not come with ground truth relevance annotations;
hence, we cannot use GitTables to evaluate NDCG or recall. We
additionally generate a synthetic dataset from WT2015 (called
Synthetic in Table 2). For each table, we randomly select some
rows and insert them into a new synthetic table in random order.
We used this method to generate 1,494,290 new tables which
we split into three corpora of different sizes: 500K, 1M, and all
1,494,290 tables. In each corpus, we include the original WTs,
resulting in corpora of 738,038, 1,238,038, and 1,732,328 tables.

We convert the query tuples into keyword queries for BM25
which we refer to as text queries. We extract the entire text
contents in each cell in a query and let those be keywords.

7.2 Semantic Table Search Quality
We evaluate Thetis against BM25, SANTOS, D3L, and TURL on
50 1-tuple and 50 5-tuple queries on WT2015. We focus on the ex-
act (i.e., without prefiltering) approaches: Semantic Table Search
using Types (STST) and using Embeddings (STSE). We compare
the NDCG scores (Figure 4) as well as the improvement in recall
separately and when using both techniques jointly (Figure 5).
Ranking Quality and Recall.

Comparing NDCG scores at top-10 (Figure 4: a and g), Thetis
shows a similar ranking quality, i.e., precision, to BM25 text

queries on both 1- and 5-tuple queries. This is due to BM25 effec-
tively finding the ground truth relevant tables containing exact
matches with the text queries, whereas Thetis finds a different
set of ground truth relevant tables that do not necessarily con-
tain exact matches. Using a larger KG, such as WikiData, would
expectedly result in a better performance of Thetis, as Wiki-
Data is more detailed and descriptive than DBpedia for many
entities. Union search with Starmie achieves worse performance
as relevant tables are often not unionable. The performance of
SANTOS and D3L as representative union and join search ap-
proaches, respectively, is even worse with NDCG scores ∼1000x
lower than Thetis and is therefore not plotted. Specifically, SAN-
TOS achieves an average NDCG score of 0.0001 for both 1- and
5-tuple queries, and D3L achieves 0.00006 and 0 for 1- and 5-tuple
queries, respectively. This is due to these methods not being
designed to take into account topical relevance, as described in
Section 3.1. Therefore, these methods are not able to rank ta-
bles according to semantic relevance, and thereby they fail to
properly rank relevant tables, as experiments show. However,
the improved performance of Starmie over SANTOS is due to its
ability to capture rich contextual semantic information within
tables using trained column encoders. Similarly, TURL achieves
average NDCG scores of 0.004 and 0.005 for the same queries, re-
spectively. However, TURL’s performance can reach 0.488 using
entire source tables. This reflects that TURL is not designed for
semantic search, but rather for table understanding.

Given the data discovery use case, it is important to evaluate
the recall to see how the methods allow for retrieval of tables
from the long tail. Thus, we compute top-100 and top-200 re-
sults (Figure 5) and measure the recall achieved by the methods.
Here, we see once again similar results across all methods. BM25
achieves a higher third quartile in NDCG scores, but the median
and mean are similar to our approach. It is important to note
that the results for 5-tuple queries have lower recall compared to
those for 1-tuple queries despite the increased informativeness
in 5-tuple queries. This is due to the 5-tuple queries becoming
easily over-specialized. The performance of STST and STSE in
NDCG and recall are similar. STST is beneficial when the set of
entity types is sufficiently fine-grained, whereas STSE depends
on the embedding quality. Moreover, STSE works well when the
taxonomy is less detailed, however, the embeddings are at times
not able to distinguish entities of the same type or domain, e.g.,
two countries or a country and its capital.

Despite the similar performance in NDCG and recall, the two
approaches find remarkably different subsets of relevant tables.
Specifically, we compute the difference between the top-100 re-
turned tables by BM25 and Thetis. The median size of the results
set difference is 66 and 80 tables for STST on 1- and 5-tuples
queries, respectively. The median is 100 for STSE on both 1- and
5-tuple queries. Hence, our semantic table search algorithm finds
a disjoint set of tables from BM25. We therefore study the ben-
efit of a Semantic Data Lake when combining Semantic Table
Search and BM25. We extracted the top 50% from each method,
merged the two result sets, and measured recall at top-100 and
200. We refer to these results as Semantic Table Search using
Types/Embeddings Complemented with BM25 (STSTC/STSEC).
Shown in Figure 5, STSTC/STSEC achieve a much higher recall.
Specifically, for top-100 on 1-tuple queries, the median recall is
improved by 9.1% compared to BM25text for both STSTC/STSEC.
On 5-tuple queries, recall is improved by 187.8% and 156.6% com-
pared to BM25text for STSTC/STSEC, respectively. For top-200,
recall improves by 18.5% and 25.0% on 1-tuple queries and by

406

Table 3: Runtime in seconds with LSH prefiltering by each LSH configuration on 1- and 5-tuples queries and 1 and 3 votes

1 Vote 3 Votes
STST STSE T(32, 8) T(128, 8) T(30, 10) E(32, 8) E(128, 8) E(30, 10) T(32, 8) T(128, 8) T(30, 10) E(32, 8) E(128, 8) E(30, 10)

1-Tuple 73.0 74.6 18.3 36.9 12.5 66.6 71.9 56.5 11.3 11.3 11.1 23.0 71.2 4.4
5-Tuples 242.0 337.9 1.2 1.8 1.5 85.2 83.4 64.9 1.1 1.2 1.1 36.1 80.5 6.4

Table 4: Search space reduction with LSH prefiltering by each LSH configuration on 1- and 5-tuples queries and 1 and 3 votes

1 Vote 3 Votes
T(32, 8) T(128, 8) T(30, 10) E(32, 8) E(128, 8) E(30, 10) T(32, 8) T(128, 8) T(30, 10) E(32, 8) E(128, 8) E(30, 10)

1-Tuple 83.0% 71.1% 88.6% 12.4% 0.01% 34.9% 89.4% 89.2% 89.4% 83.8% 8.3% 98.0%
5-Tuples 82.8% 61.4% 88.9% 11.8% 0.2% 33.1% 90.2% 89.6% 90.2% 82.5% 10.2% 97.6%

536.9% and 459.5% on 5-tuple queries for STSTC/STSEC, respec-
tively. Hence, complementing tables found by exact matching
with tables found by semantic relevance combines the best of
both worlds. There are many other methods to complement the
two approaches, such as using learning to rank, but we leave this
as future work. Furthermore, exact matching over metadata can
also be incorporated as a third signal, but only when metadata is
informative and consistent between tables.

Aggregating row scores. As mentioned in Section 5.3, in Algo-
rithm 1 line 13, we need to aggregate the SemRel scores across
rows for a given query tuple. We experiment with either picking
the maximum or the average of these scores across all table rows
per query tuple. Results on NDCG at top-10 (not reported due to
space limitations) show that aggregation via maximum provides
the best results, with up to 5x better NDCG scores on average, as
it better amplifies the relevance signal from the matching tuples.

7.3 Runtime Evaluations
We evaluate runtime on a Dell R7425 with 2TB or RAM, 64 AMD
7551 cores, and a 10TB HDD.

Table scoring.We study the computation cost of the mapping
function 𝜇𝑇,𝑄 (Section 5.3) and compare it to the total cost re-
quired to score a single table. We find that the total, average
runtimes of scoring a WT2015 table using 1- and 5-tuple queries
are 2.2ms and 8.6ms, respectively. Similarly, the average runtimes
of scoring a GitTable on the same queries are 3.8ms and 16.6ms,
respectively. On WT2015, for 1-tuple quieres, 63.7% and 58.6% of
runtime is spent computing 𝜇𝑇,𝑄 using types and embeddings,
respectively. On 5-tuple queries, these fractions are 74.5% and
67.3%. Similarly, on GitTables, 68.0% and 62.4% are spent on this
computation on 1-tuple queries, and 78.1% and 75.7% on 5-tuple
queries. Hence, the overall time spent for Algorithm 1 and the
cost of 𝜇𝑇,𝑄 are limited, even when dealing with larger tables.

LSH Configuration.We compare the effect of 6 different LSH
configurations when using entity types and embeddings. This
will inform the selection of our best configuration regarding the
tradeoff between runtime reduction and output quality. These
configurations are denoted by (𝑋,𝑌), where 𝑋 is the number
of permutation/projection vectors and 𝑌 is the band size. These
LSH configurations have been selected after testing various con-
figurations on a smaller subset of the corpus. We apply a voting
threshold, which indicates the frequency an entity must appear
in the result set of an LSH lookup. We compare the NDCG scores
obtained with prefiltering with these configurations (Figure 4 b, c,
h, i, e, f, k, and l) to our semantic table search without prefiltering
(Figure 4 a and g). All LSH configurations achieve equivalent
NDCG scores as our semantic table search algorithm without
prefiltering. Experimenting with table column aggregation, as

described in Section 6.2, did not provide any NDCG scores above
those in Figure 4.

Thetis’s search runtime is correlated with the number of
query tuples (Table 3), as each query tuple is compared to all
table rows. The runtime is also correlated to the search space
reduction achieved by each LSH configuration (Table 4): higher
reduction corresponds to faster response time. By comparing
Thetis’s runtime with LSH prefiltering with the 3 chosen LSH
configurations (Table 3), we see that the (30, 10)-configuration
slightly outperforms the other two configurations, as this con-
figuration has 4 times more buckets per bucket group than the
other two configurations. Therefore, each bucket contains fewer
tables. Furthermore, this configuration also has the lowest num-
ber of bucket groups leading to a lower number of buckets to
be merged into the final LSH result set. Finally, requiring 3 table
votes induces even faster runtime without decreasing NDCG. In
summary, our experiments show that the (30, 10)-configuration is
the best-performing LSH configuration on our dataset, as it pro-
vides the highest search space reduction while achieving similar
NDCG scores as our semantic table search algorithm without pre-
filtering, although the other configurations also achieve similarly
good performances. Therefore, for the remainder of this section,
we will only experiment with the (30, 10)-configuration, as this
configuration also has the best performance on other datasets.

We also evaluate a naive prefiltering technique using BM25
keyword search instead. On 1-tuple queries, NDCG decreased
by 18.1% compared to LSH using types and by 29.9% compared
to LSH using embeddings. On 5-tuple queries, NDCG decreased
by 13.3% and 13.4%, respectively. Hence, BM25 filters out many
relevant tables and is not a valid prefiltering method.

7.4 Experiments on Other Datasets
Synthetic Dataset. Using 0.7M tables, the runtimes on 1-tuple
queries are on average 20.7s using types and 56.2s using embed-
dings. These runtimes increase to 27.4s and 71.8s on 1.2M tables
and 29.9s and 85.1s on 1.7M tables. The same linear runtime in-
crease is observed using 5-tuple queries: 54.4s and 282.8s on 0.7M
tables, 73.4s and 343.4s on 1.2M tables, and 77.3s and 369.4s on
1.7M tables. The linear increase in runtime for each corpus size
is because the search space reduction percentage is stable on all
synthetic corpora. Runtimes using types are faster than using
embeddings due to LSH using types filtering out a larger fraction
of the search space: on average 91% prefiltered using types and
74% using embeddings.
Experiments on WT2019. We also evaluate Thetis on the
WT2019 dataset, a dataset with more tables and a significantly
lower entity link coverage. Thetis achieves average NDCG scores
of 0.55 using both types and embeddings on 1-tuple queries and
0.61 and 0.62 on 5-tuple queries. These scores are very similar

407

N
D
C
G

N
D
C
G

1-
Tu

pl
e

5-
Tu

pl
e

40%60%80%All 40%60%80%All

40%60%80%All 40%60%80%All

Figure 6: NDCG at top-10 when decreasing coverage

to those presented in Figure 4, showing that the accuracy of
Thetis is not greatly influence by a drop in coverage from 27.7%
to 18.2% (see Table 2). Since WT2019 is a larger dataset and the
search space reduction percentages are similar to those on the
WT2015 dataset, the runtimes are slower compared to WT2015.
The runtimes are at 26.2s and 35.1s on average using types and
embeddings on 1-tuple queries, respectively, and 95.4s and 189.0s
on 5-tuple queries.
Experiments on GitTables.We evaluate the runtime of Thetis
on GitTables consisting of larger tables, i.e, more rows and
columns (see Table 2). We do not evaluate the ranking quality on
this dataset, as it does not come with ground truth. Furthermore,
GitTables do not comewith entity link annotations. Therefore, we
construct Lucene indexes using the KG entity labels and perform
keyword search to link mentions to KG entities. The resulting
runtimes are 1.7s and 3.7s on 1-tuple queries and 2.2s and 14.9s
on 5-tuple queries. Therefore, the runtimes on GitTables are com-
parable to those on the corpora containing smaller tables, i.e.,
WT2015 and WT2019. This is due to the LSH prefiltering reduc-
ing the GitTables corpus by more than 98% for all queries, as the
table entities are more evenly distributed across the LSH buckets,
and hence, the LSH lookups are more selective. Thus, Thetis
effectively has to rank fewer tables than onWT2015 andWT2019.

7.5 Varying Entity Linking Coverage
Thetis is designed to exploit the contextual information offered
by a KG when entities in the tables are linked to it, while it
does not require a table to be fully linked. Here, we refer to link
coverage as the percentage of linked entities among all its cells.
Intuitively, the higher the coverage the higher the information we
can infer about the contents of a table. To maximize the coverage,
it is important that the target KG can describe all the important
entities in the data lake. Nonetheless, it is very common to test
open-domain KGs when trying to integrate data in data lakes [34].
In the experiments shown above, we have seen that even with
less than 30% of cells being linked to KG entities on average, our
approach is competitive in precision to BM25 while being able to
retrieve a large set of tables that were not retrieved otherwise. Thus,
even with partial overlap between the KG domain and the tables,
our approach is effective in retrieving relevant data.

We further experiment with different levels of table link cover-
age (Figure 6). Specifically, we retrieve top-1000 tables and keep

only tables with at most a given link coverage, e.g., only tables
with link coverage up to 60%. We then evaluate NDCG on the
top-10 of those retrieved tables. As expected, the tables become
increasingly more difficult to retrieve as entity link coverage de-
creases, e.g., we see a drop in performance with less than 40% of
entities linked to the KG. Yet, Thetis still retrieves relevant tables
that BM25 cannot retrieve. For 40% link coverage, the median
top-10 result set difference is 3 on 1-tuple queries using types
and 2 using embeddings. On 5-tuple queries, these numbers are
4 and 3, respectively. Further, there are still cases where, even
when not many entities are linked, the method can achieve up to
0.8 of NDCG as it can capitalize on the semantic information of
the few entities linked.

We also perform an experiment (not reported in the figures
due to space limitations), where we substitute the ground truth
entity links in WT15 with the predicted entity links retrieved
with a state-of-the-art entity linker (EMBLOOKUP [1]). Using
this entity linker, the mean linking coverage is only 20.3% (com-
pared to 27.7% on WT15) and the F1-score of the employed entity
linker is only 0.21. Despite this, Thetis achieves an NDCG score
of 0.14 using types and 𝑘 = 10 and 0.20 when using embeddings
for 1-tuple queries and 0.26 and 0.29 for 5-tuples queries using
types and embeddings, respectively. This performance is better
than the performance when decreasing the percentage of ground
truth entity links to at most 40% per table in Figure 6. Note that
the 20.3% is the mean coverage, whereas the 40% in Figure 6 is
an upper bound. Therefore, Thetis is still able to retrieve mean-
ingful results even when faced with poor entity linking quality.
Moreover, Thetis will directly benefit from future developments
in entity linking methods.

8 CONCLUSION AND FUTUREWORK
We have defined semantic data lakes and the semantic table search
task for which we have presented a solution Thetis. Thetis ex-
ploits a reference KG to facilitate entity-centric, exemplar query-
ing for semantically related tables. Thetis includes a search space
pre-filtering method that uses LSH to improve the runtime by
up to 17 times. Our experiments show that complementing key-
word search with Thetis allows one to find more relevant tables
improving recall by up to 5.4 times. In the future, we plan to
explore the impact of alternative embeddings and more advanced
structural graph embeddings. We will also experiment with al-
ternative similarity metrics to improve the results for the case of
over-specialized queries. We will also explore using a combina-
tion of similarity measures in Thetis, including complementing
BM25 with Thetis using both types and embeddings in a uni-
fied manner. Finally, incorporating available metadata as a third
signal in our relevance ranking is also a possibility to explore.

ACKNOWLEDGMENT
This research was partially funded by the Danish Council for In-
dependent Research (DFF) under grant agreement no. DFF-8048-
00051B, the EU’s H2020 research and innovation programme un-
der grant agreement No. 838216, and the Poul Due Jensen Fond.
Additional funding from NSF awards IIS-2107248, IIS-1956096,
and IIS-2325632.

408

REFERENCES
[1] Ghadeer Abuoda, Saravanan Thirumuruganathan, and Ashraf Aboulnaga.

2022. Accelerating Entity Lookups in KnowledgeGraphs Through Embeddings.
In 2022 IEEE 38th International Conference on Data Engineering (ICDE). 1111–
1123. https://doi.org/10.1109/ICDE53745.2022.00088

[2] Ayman Alserafi, Alberto Abelló, Oscar Romero, and Toon Calders. 2020. Keep-
ing the Data Lake in Form: Proximity Mining for Pre-filtering Schema Match-
ing. ACM Transactions on Information Systems (TOIS) (2020).

[3] Ada Bagozi, Devis Bianchini, Valeria De Antonellis, Massimiliano Garda, and
Michele Melchiori. 2019. Personalised Exploration Graphs on Semantic Data
Lakes. In On the Move to Meaningful Internet Systems: OTM 2019 Conferences -
Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes,
Greece, October 21-25, 2019, Proceedings (Lecture Notes in Computer Science),
Vol. 11877. Springer, 22–39. https://doi.org/10.1007/978-3-030-33246-4_2

[4] Omar Benjelloun, Shiyu Chen, and Natasha F. Noy. 2020. Google Dataset
Search by the Numbers. In The Semantic Web - ISWC 2020 - 19th International
Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings,
Part II (Lecture Notes in Computer Science), Vol. 12507. Springer, 667–682.
https://doi.org/10.1007/978-3-030-62466-8_41

[5] David Bernhauer, Martin Nečaskỳ, Petr Škoda, Jakub Klímek, and Tomáš
Skopal. 2022. Open dataset discovery using context-enhanced similarity
search. Knowledge and Information Systems (2022), 1–27.

[6] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015.
TabEL: Entity Linking inWeb Tables. In The SemanticWeb - ISWC 2015, Marcelo
Arenas, Oscar Corcho, Elena Simperl, Markus Strohmaier, Mathieu d’Aquin,
Kavitha Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin, Krishnaprasad
Thirunarayan, Krishnaprasad Thirunarayan, and Steffen Staab (Eds.). Springer
International Publishing, Cham, 425–441.

[7] Russa Biswas, Jan Portisch, Heiko Paulheim, Harald Sack, and Mehwish Alam.
2022. Entity Type Prediction Leveraging GraphWalks and Entity Descriptions.
In The Semantic Web – ISWC 2022, Ulrike Sattler, Aidan Hogan, Maria Keet,
Valentina Presutti, João Paulo A. Almeida, Hideaki Takeda, Pierre Monnin,
Giuseppe Pirrò, and Claudia d’Amato (Eds.). Springer International Publishing,
Cham, 392–410.

[8] Tobias Bleifuß, Leon Bornemann, Dmitri V. Kalashnikov, Felix Naumann,
and Divesh Srivastava. 2021. Structured Object Matching across Web Page
Revisions. In IEEE International Conference on Data Engineering (ICDE). 1284–
1295.

[9] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-
stantinou. 2020. Dataset Discovery in Data Lakes. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
IEEE, 709–720. https://doi.org/10.1109/ICDE48307.2020.00067

[10] Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google Dataset
Search: Building a Search Engine for Datasets in an Open Web Ecosystem.
In The World Wide Web Conference (WWW ’19). Association for Computing
Machinery, New York, NY, USA, 1365–1375. https://doi.org/10.1145/3308558.
3313685

[11] James Briggs. 2022. Faiss: The Missing Manual. Pinecone Systems, Inc. https:
//www.pinecone.io/learn/faiss/

[12] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova. 2009. Data
Integration for the Relational Web. PVLDB 2, 1 (2009), 1090–1101. http:
//www.vldb.org/pvldb/2/vldb09-576.pdf

[13] Sonia Castelo, Rémi Rampin, Aécio Santos, Aline Bessa, Fernando Chirigati,
and Juliana Freire. 2021. Auctus: A Dataset Search Engine for Data Discovery
and Augmentation. Proc. VLDB Endow. 14, 12 (oct 2021), 2791–2794. https:
//doi.org/10.14778/3476311.3476346

[14] Raul Castro Fernandez, Essam Mansour, Abdulhakim A. Qahtan, Ahmed El-
magarmid, Ihab Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker,
and Nan Tang. 2018. Seeping Semantics: Linking Datasets Using Word Em-
beddings for Data Discovery. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). 989–1000. https://doi.org/10.1109/ICDE.2018.00093

[15] Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. 2022.
Data Management for Machine Learning: A Survey. IEEE Transactions on
Knowledge and Data Engineering (2022), 1–1. https://doi.org/10.1109/TKDE.
2022.3148237

[16] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2020. Dataset search: a survey.
The VLDB Journal 29, 1 (2020), 251–272.

[17] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez,
Tim Kraska, and David Karger. 2020. ARDA: Automatic Relational Data
Augmentation for Machine Learning. Proc. VLDB Endow. 13, 9 (May 2020),
1373–1387.

[18] Dario Colazzo, François Goasdoué, Ioana Manolescu, and Alexandra Roatiş.
2014. RDF analytics: lenses over semantic graphs. In WWW. ACM, 467–478.

[19] Xiang Deng, Huan Sun, Alyssa Lees, YouWu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. 14, 3
(Nov. 2020), 307–319.

[20] Henrik Dibowski and Stefan Schmid. 2021. Using Knowledge Graphs to
Manage a Data Lake. INFORMATIK 2020 (2021).

[21] Jack R. Edmonds and Richard M. Karp. 1972. Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems. J. ACM 19, 2 (1972),
248–264. https://doi.org/10.1145/321694.321699

[22] Anshul Bhandari El Kindi Rezig, Anna Fariha, Benjamin Price, Allan Vanter-
pool, Andrew Bowne, Lindsey McEvoy, and Vijay Gadepally. [n.d.]. Examples

are All You Need: Iterative Data Discovery by Example in Data Lakes. ([n. d.]).
[23] Kemele M Endris, Philipp D Rohde, Maria-Esther Vidal, and Sören Auer. 2019.

Ontario: Federated Query Processing Against a Semantic Data Lake. In Inter-
national Conference on Database and Expert Systems Applications. Springer,
379–395.

[24] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2022.
MATE: Multi-Attribute Table Extraction. Proc. VLDB Endow. 15, 8 (apr 2022),
1684–1696. https://doi.org/10.14778/3529337.3529353

[25] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Reneé J. Miller. 2023.
Semantics-aware Dataset Discovery from Data Lakes with Contextualized
Column-based Representation Learning. Proc. VLDB Endow. 16, 7 (Aug. 2023),
14.

[26] Wenfei Fan, Liang Geng, Ruochun Jin, Ping Lu, Resul Tugay, and Wenyuan
Yu. 2022. Linking Entities across Relations and Graphs. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). 634–647. https://doi.
org/10.1109/ICDE53745.2022.00052

[27] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
1001–1012.

[28] Raul Castro Fernandez, Nan Tang, Mourad Ouzzani, Michael Stonebraker,
and Samuel Madden. 2019. Dataset-On-Demand: Automatic View Search and
Presentation for Data Discovery. arXiv preprint arXiv:1911.11876 (2019).

[29] Sainyam Galhotra and Udayan Khurana. 2020. Semantic Search over Struc-
tured Data. In CIKM ’20: The 29th ACM International Conference on Information
and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020. ACM,
3381–3384. https://doi.org/10.1145/3340531.3417426

[30] Anna Lisa Gentile, Sabrina Kirstein, Heiko Paulheim, and Christian Bizer.
2016. Extending rapidminer with data search and integration capabilities. In
European Semantic Web Conference. Springer, 167–171.

[31] Yue Gong, Zhiru Zhu, Sainyam Galhotra, and Raul Castro Fernandez. 2023.
Ver: View Discovery in the Wild. In ICDE. 503–516.

[32] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An Intelli-
gent Data Lake System. In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 2097–2100. https://doi.org/10.1145/2882903.2899389

[33] Madelon Hulsebos, Çağatay Demiralp, and Paul Groth. 2021. GitTables: A
Large-Scale Corpus of Relational Tables. arXiv preprint arXiv:2106.07258 (2021).
https://arxiv.org/abs/2106.07258

[34] Ihab F. Ilyas, JP Lacerda, Yunyao Li, Umar Farooq Minhas, Ali Mousavi, Jeffrey
Pound, Theodoros Rekatsinas, and Chiraag Sumanth. 2023. Growing and
Serving Large Open-Domain Knowledge Graphs. In Companion of the 2023
International Conference on Management of Data (SIGMOD ’23). Association
for Computing Machinery, New York, NY, USA, 253–259. https://doi.org/10.
1145/3555041.3589672

[35] Ihab F Ilyas, Theodoros Rekatsinas, Vishnu Konda, Jeffrey Pound, Xiaoguang
Qi, and Mohamed Soliman. 2022. Saga: A Platform for Continuous Construc-
tion and Serving of Knowledge At Scale. In Proceedings of the 2022 International
Conference on Management of Data. 2259–2272.

[36] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2022. SANTOS: Relationship-
based Semantic Table Union Search. In Proceedings of the 2023 International
Conference on Management of Data (SIGMOD ’23). Association for Computing
Machinery, New York, NY, USA, 15.

[37] Oliver Lehmberg and Christian Bizer. 2017. StitchingWeb Tables for Improving
Matching Quality. PVLDB 10, 11 (2017), 1502–1513.

[38] Oliver Lehmberg, Christian Bizer, and Alexander Brinkmann. 2017. WInte.r -
A Web Data Integration Framework. In Proceedings of the ISWC 2017 Posters &
Demonstrations and Industry Tracks co-located with 16th International Semantic
Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017
(CEUR Workshop Proceedings), Vol. 1963. CEUR-WS.org. http://ceur-ws.org/
Vol-1963/paper506.pdf

[39] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko
Paulheim, and Christian Bizer. 2015. The Mannheim Search Join Engine.
Journal of Web Semantics 35 (2015), 159 – 166. https://doi.org/10.1016/j.
websem.2015.05.001 Semantic Web Challenge 2014.

[40] Aristotelis Leventidis, Martin Pekár Christensen, Matteo Lissandrini, Laura
Di Rocco, Katja Hose, and Renée Miller. 2024. A Large Scale Test Corpus for
Semantic Table Search. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’24).
Association for Computing Machinery, New York, NY, USA, 2681–2690. https:
//doi.org/10.1145/3626772.3657877

[41] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating
and Searching Web Tables Using Entities, Types and Relationships. PVLDB 3,
1 (2010), 1338–1347. http://www.comp.nus.edu.sg/~vldb2010/proceedings/
files/papers/R118.pdf

[42] Matteo Lissandrini, Katja Hose, and Torben Bach Pedersen. 2023. Example-
Driven Exploratory Analytics over Knowledge Graphs. In EDBT. OpenPro-
ceedings.org, 105–117.

[43] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis.
2018. Data Exploration Using Example-Based Methods. Morgan & Claypool
Publishers.

409

[44] Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören
Auer, and Jens Lehmann. 2019. Squerall: Virtual ontology-based access to het-
erogeneous and large data sources. In International Semantic Web Conference.
Springer, 229–245.

[45] Frank Manola and Eric Miller (Eds.). 2004. RDF Primer. World Wide Web
Consortium. http://www.w3.org/TR/rdf-primer/

[46] Renée J. Miller. 2018. Open Data Integration. PVLDB 11, 12 (2018), 2130–2139.
https://doi.org/10.14778/3229863.3240491

[47] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.
2016. Exemplar queries: a new way of searching. The VLDB Journal 25 (2016),
741–765.

[48] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. PVLDB
12, 12 (Aug. 2019), 1986–1989. https://doi.org/10.14778/3352063.3352116

[49] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018. Table
union search on open data. Proceedings of the VLDB Endowment 11, 7 (2018),
813–825.

[50] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and
Jamie Taylor. 2019. Industry-scale knowledge graphs: Lessons and challenges.
ACM Queue 17, 2 (2019), 48–75.

[51] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. 2008. Linking Data to Ontologies. In
Journal on Data Semantics X. Springer Berlin Heidelberg, Berlin, Heidelberg,
133–173.

[52] Davood Rafiei, Harrison Fah, Thomas Lafrance, and Arash Dargahi Nobari.
2022. BareTQL: An Interactive System for Searching and Extraction of Open
Data Tables. In 27th International Conference on Intelligent User Interfaces (IUI
’22 Companion). Association for Computing Machinery, New York, NY, USA,
30–33. https://doi.org/10.1145/3490100.3516452

[53] El Kindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan Van-
terpool, Vijay Gadepally, and Michael Stonebraker. 2021. DICE: Data Dis-
covery by Example. Proc. VLDB Endow. 14, 12 (jul 2021), 2819–2822. https:
//doi.org/10.14778/3476311.3476353

[54] Petar Ristoski and Heiko Paulheim. 2016. Rdf2vec: Rdf graph embeddings for
data mining. In The Semantic Web–ISWC 2016: 15th International Semantic Web
Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part I 15. Springer,
498–514.

[55] Dominique Ritze and Christian Bizer. 2017. Matching Web Tables To DBpedia
- A Feature Utility Study. In Proceedings of the 20th International Conference on
Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017,
Volker Markl, Salvatore Orlando, Bernhard Mitschang, Periklis Andritsos,
Kai-Uwe Sattler, and Sebastian Breß (Eds.). OpenProceedings.org, 210–221.
https://doi.org/10.5441/002/edbt.2017.20

[56] Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance
framework: BM25 and beyond. Now Publishers Inc.

[57] Aécio Santos, Aline Bessa, Christopher Musco, and Juliana Freire. 2022. A
Sketch-based Index for Correlated Dataset Search. In 2022 IEEE 38th Interna-
tional Conference on Data Engineering (ICDE). 2928–2941. https://doi.org/10.
1109/ICDE53745.2022.00264

[58] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy, Hongrae Lee,
Fei Wu, Reynold Xin, and Cong Yu. 2012. Finding related tables. In SIGMOD.
817–828. https://doi.org/10.1145/2213836.2213962

[59] Stefan Schmid, Cory Henson, and Tuan Tran. 2019. Using Knowledge Graphs
to Search an Enterprise Data Lake. In European Semantic Web Conference.
Springer, 262–266.

[60] Juan F Sequeda, Willard J Briggs, Daniel P Miranker, and Wayne P Heide-
man. 2019. A Pay-as-you-go Methodology to Design and Build Enterprise
Knowledge Graphs from Relational Databases. In International Semantic Web
Conference. Springer, 526–545.

[61] Ibraheem Taha, Matteo Lissandrini, Alkis Simitsis, and Yannis Ioannidis. [n.d.].
A Study on Efficient Indexing for Table Search in Data Lakes. ([n. d.]).

[62] Mohamed Trabelsi, Zhiyu Chen, Shuo Zhang, Brian D. Davison, and Jeff Heflin.
2022. StruBERT: Structure-Aware BERT for Table Search and Matching. In
Proceedings of the ACM Web Conference 2022 (WWW ’22). Association for
Computing Machinery, New York, NY, USA, 442–451. https://doi.org/10.1145/
3485447.3511972

[63] Xu Wang, Zhisheng Huang, and Frank van Harmelen. 2020. Evaluating
Similarity Measures for Dataset Search. In International Conference on Web
Information Systems Engineering. Springer, 38–51.

[64] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. InfoGather: Entity Augmentation and Attribute Discovery by Holistic
Matching with Web Tables. In SIGMOD. 97–108. https://doi.org/10.1145/
2213836.2213848

[65] Junwen Yang, Yeye He, and Surajit Chaudhuri. 2021. Auto-Pipeline: Synthesize
Data Pipelines By-Target Using Reinforcement Learning and Search. Proc.
VLDB Endow. 14, 11 (2021), 2563–2575.

[66] Shuo Zhang and Krisztian Balog. 2018. Ad Hoc Table Retrieval using Semantic
Similarity. In Proceedings of the 2018WorldWideWeb Conference onWorldWide
Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine Champin,
Fabien L. Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM,
1553–1562. https://doi.org/10.1145/3178876.3186067

[67] Shuo Zhang and Krisztian Balog. 2020. Web Table Extraction, Retrieval,
and Augmentation: A Survey. ACM Transactions on Intelligent Systems and
Technology (TIST) 11, 2 (2020), 1–35.

[68] Shuo Zhang and Krisztian Balog. 2021. Semantic Table Retrieval Using Key-
word and Table Queries. ACM Trans. Web 15, 3, Article 11 (May 2021), 33 pages.
https://doi.org/10.1145/3441690

[69] Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for
Interactive Data Science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’20). Association for Computing
Machinery, New York, NY, USA, 1951–1966. https://doi.org/10.1145/3318464.
3389726

[70] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In Pro-
ceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM,
847–864. https://doi.org/10.1145/3299869.3300065

[71] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. PVLDB 9, 12 (2016), 1185–1196.
http://www.vldb.org/pvldb/vol9/p1185-zhu.pdf

410

