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ABSTRACT
In this work, we consider using deep learning models over a

collection of sets to replace traditional approaches utilized in

database systems. We propose solutions for data indexing, mem-

bership queries, and cardinality estimation. Unlike relational data,

learned models over sets need to be permutation invariant and

able to deal with variable set sizes. The proposed models are

based on the DeepSets architecture and include per-element com-

pression to achieve acceptable accuracy with modest model sizes.

We further suggest a hybrid structure with bounded error guar-

antees using guided learning to mitigate the inherent challenges

when working with set data. We outline challenges and opportu-

nities when dealing with set data and demonstrate the suitability

of the models through extensive experimental evaluation with

one synthetic and two real-world datasets.

1 INTRODUCTION
Recently, many approaches have suggested the improvement of

data structures for relational data by substituting or tuning them

with deep learning models. If data preprocessing and parame-

ter tuning are done right, learned models can provide several

benefits over traditional approaches. The prevailing research in

this area mainly focuses on learned models over structured data,

specifically relational datasets [9, 10, 14, 23].

In this paper, we address the problem of learning over sets

which, in contrast to relational data, requires models to be inde-

pendent of the order of the elements within a set and to support

sets of different sizes. Examples of set data include (flat) JSON

documents, DNA sequences, tagged resources like images, and

hashtags contained in Twitter tweets. Typical tasks over such

resources involve keyword queries and statistics computation,

particularly over subsets of the underlying sets. For instance,

keyword queries over a collection of hashtags are posed daily by

millions of users searching through trending topics to discover

new and relevant content. Performing analysis and gathering

statistics over such query logs can bring significant benefits for

data analysts which can directly use these insights to improve

the user experience. To support such tasks efficiently, we extend

the idea of using learned models for operating on sets and specif-

ically propose solutions for membership queries, indexing, and
cardinality estimation.

For example, consider the collection of four tweets (sets) of

hashtags shown in Figure 1. To determine the popularity of the

hashtags in the collection, one can create a learned model spe-

cialized in estimating the number of occurrences of the hashtag

subsets. For the given example query Q = {#pizza, #dinner },
the model answers that the query is present in three sets, i.e.,

T1, T3, and T4. As a different task, one can consider filtering

tweets depending on some particular hashtags. For answering
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Figure 1: Example for cardinality estimation over a sam-
ple collection of four sets of hashtags.

such membership queries, the approach will give information

about the presence or absence of the respective query. A model

can also be created to produce an estimate corresponding to the

position in the collection of sets where the query subset appears,

corresponding to a traditional index.

Working with a collection of sets leads to new challenges. Un-

like relational data, the nature of set data requires a different

approach than handling records of ordered elements. More pre-

cisely, models that operate on set data need to be permutation
invariant and to be able to deal with variable set sizes. Further-
more, when considering the problem of indexing a collection of

sets, another challenge emerges. The collection of sets is often

stored in an arbitrary order since an order over the sets cannot

be easily defined. Consequently, using any index structure over a

collection of sets has the task of mapping an item in an unordered

list, which is challenging, especially for a deep learning model.

Finally, creating deep learning models requires appropriate

training data. Related research in this field often assumes that

such training data is already gathered and sometimes even pro-

cessed before training the model. Intuitively, the presence of

training data largely facilitates the creation of well-tuned replace-

ment models. However, creating training data is not a straight-
forward task. This is especially apparent when working with

set data (and multidimensional data), as it is often required to

create combinations of the sets. Moreover, the problem of proper

training data generation increases with the collection size and

the maximal size of the sets.

To address the before mentioned problems and use the ben-

efits of deep learning models, we propose, explore, and test the

limits of learned approaches for replacing data structures when

working with a collection of sets. Our approach is based on the

DeepSets [24] architecture, which produces models that are per-

mutation invariant and can deal with variable set sizes. To create

models smaller than traditional data structures, we employ a

per-element compression strategy [1, 2]. Combining these two

techniques requires a modification of the DeepSets architecture

to preserve the permutation invariant property.

Furthermore, many indexing approaches work by finding a

position of a key in a sorted sequence. Handling keys that are not

previously sorted is challenging, and simple regression models

cannot solve this. Therefore, we propose a hybrid approach with
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an iterative training process to overcome the challenging learning

procedure. The hybrid structure incorporates a learned model

and a traditional structure, whose creation is guided by the learn-

ing error of the model. The hybrid structure has error-bounded

guarantees and can be used for the tasks of indexing and cardi-

nality estimation. Furthermore, multiple local errors are stored

to improve the search through the hybrid structure, binding the

sequential search to smaller ranges.

1.1 Problem Statement
We consider a collection S = [X1,X2, ...,XN ] of N sets, where

each set Xi = {x1, x2, . . . , xk } contains elements xi , where 1 ≤

k ≤ M andM is the number of unique elements appearing in the

sets of the collection. While S can contain duplicate sets, each

set Xi does not contain duplicate elements. A query q is given as

a subset of elements from any of the sets of S .
We consider three tasks, indexing sets for subset and equality

queries, cardinality estimation, and membership queries:

• The indexing task for a query set q is to determine the

first position i in S such that q is a subset of Xi .
• The cardinality card of query q is the number of sets Sq
in the collection in which the query set q appears.

• A membership query q answers whether the query set is

a subset of any of the sets in S , i.e., ∃Xi ∈ S : q ⊆ Xi .

1.2 Contributions and Outline
The main contributions of this paper are as follows:

(1) We formulate the problem of learning over a collection

of sets by using a learned supervised approach for the

tasks of indexing, cardinality estimation, and membership

queries involving any of the subsets of the considered sets

(Section 4).

(2) To create compact models, we utilize per-element com-

pression (Section 5).

(3) We propose a hybrid structure by guided learning and

outlier removal (Section 6), allowing the best possible ap-

plication of learned models for cardinality and indexing.

(4) We thoroughly analyze the approaches (Section 7) and

report the results of a comprehensive experimental study

over one synthetic and two real-world datasets (Section 8).

2 RELATEDWORK
Models over Sets:DeepSets [24] is a deep neural network where
the model’s input and output can be sets. Set Transformer [12] is

another architecture learning over sets. It is an attention-based

neural network consisting of an encoder and decoder, designed

to model interactions between elements in a set. In our work,

we use DeepSets due to the faster execution time and smaller

memory footprint required for replacing the data structures.

Learned Index Structures: Kraska et al. [10] first propose a

recursive learned model performing a regression task as a re-

placement of a B-Tree and a hash index. Following this idea,

multiple improvements suggest different architectures and mod-

els [7], discussing the possibility of updates [4] and proposing

learned models suitable for multidimensional data [3, 5]. Unlike

our approach, related work has an easier task as it leverages the

monotonic relation between the keys and their positions as it

either considers one-dimensional or metric multidimensional

data that can be ordered or scaled.

Learned Cardinality Estimation: Dutt et al. [6] use neural

networks and tree-based ensembles for selectivity estimation of

multidimensional range predicates. Woltmann et al. [21] suggest

a local-oriented approach to improve estimates. Naru [23] is an

unsupervised data-driven synopsis using deep autoregressive

models and a Monte Carlo integration technique called progres-

sive sampling. An extension of Naru is NeuroCard [22] which ad-

dresses join cardinality estimation in relational databases. Hasan

et al. [8], use autoregressive models and supervised models as

cardinality estimators. Others [11, 15, 16, 18] instead of estimat-

ing cardinalities focus on reinforcement learning for optimal plan

generation. Differently, LMKG [2] considers both supervised and

unsupervised models for cardinality estimation in knowledge

graphs. In this paper, we utilize the compression introduced for

LMKG to build our approaches for learning over sets.

The DeepSets architecture has also been previously used in

the task of cardinality estimation. Kipf et al. [9] create a multi-set

convolutional network, termed MSCN, for cardinality estima-

tion over relational data. In MSCN, the query representation

consists of multiple modules (sets), tables, joins, and predicates,

where for every module, a different DeepSet neural network is

used. Different from our work, they focus solely on relational

data and cardinality estimation. Similarly, Lu et al. [13] create

table summaries by using DeepSets per table to summarize over

rows, treating the row as an element in a set. Later, the summary,

which resembles a conditional autoencoder, is used to compute

the query cardinality. Unlike their work, we use DeepSets per

set and do not create a summary over multiple sets (table). Our

model directly predicts cardinalities and does not resemble a con-

ditional autoencoder. Furthermore, as MSCN, they focus solely

on cardinality estimation over relational data and we explore

different applications over sets.

Learned Bloom Filter: Kraska et al. [10] propose the Learned
Bloom Filter (LBF) as a replacement for traditional Bloom filters

(BF) for improved performance and memory savings, at the price

of losing updates and the introduction of false negatives. For a

query, the classification model computes the probability of the

presence or absence of the query. Sandwiched LBF [17] adds

another BF before the LBF to improve the performance. Vaidya

et al. [20] use multiple LBFs based on classification score seg-

ments. Neural Bloom Filter [19] uses memory-augmented neural

networks to work with input that arrives at high throughput.

Others [1, 14] extend the idea of LBF for multidimensional rela-

tional data. Although replacing indexes, cardinality estimators

and Bloom filters with their learned counterparts has been widely

researched, so far, the problems of indexing, answering member-

ship queries, and estimating cardinality over a collection of sets

have not been considered.

3 PRELIMINARIES
3.1 Why Relational Learned Models Fail?
Neural networks for sets and relational data are different be-

cause they operate on different inputs and require input-specific

architectures to model the relationships between the elements.

Consider the collection of sets: [{A,B,C}, {D}]. To adapt exist-

ing learned models over relational data, we have to first fix the
input size to the maximal set size and sort the sets according to

a prespecified order. This leads to creating as many embedding

matrices as the maximal set size, i.e., number of columns. For

the example collection, we need 3 embedding matrices, all con-

taining an embedding for the same elements (A,B,C,D) to be

able to represent each element at a different position. Because

the relational learned model has a fixed input size, to allow
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Figure 2: DeepSets architecturewherexi are set elements, e
is an embedding or an encoding, ϕ and ρ are suitable trans-
formations.

for variable set sizes, we have to introduce a special element

*. Thus, for every set, we have to learn over the combinations.

For {A,B,C} we need to learn over: {A,B,C}, {A,B, ∗}, {B,C, ∗},
{A,C, ∗}, {A, ∗, ∗}, {B, ∗, ∗}, {C, ∗, ∗}. Consider the sets {A,B, ∗}
and {B,A, ∗}. The relational learned model cannot recognize that

they are the same, as the elements appear at different positions.

A naive solution is to create all possible permutations (incl. *),

which is extremely challenging, even for smaller sets.

To solve the above-mentioned problems, we propose a so-

lution that works directly on sets by using and extending the

DeepSets architecture. DeepSets allows us to have a single shared

embedding, perceiving the elements as same no matter in which

position they appear. It further allows variable set sizes without

the need for a special element.

3.2 Permutation Invariant Architecture
In contrast to techniques operating on vectors with fixed dimen-

sions and fixed order, by definition, the size of a set or order of

the elements in a single set is not specified. Therefore, when con-

sidering a model over sets, the main requirements are handling

variable set sizes and learning a permutation invariant function f
that transforms an input X (set) into y. Consequently, the output
y should not be impacted by any different ordering of the same

elements in the input data, i.e., a single set.

One of the existingmodel architectures capable of dealing with

these requirements is the DeepSets [24] architecture. DeepSets

states that a function over a set X is a permutation invariant

function iff it can be decomposed in the form ρ(
∑
x ∈X ϕ(x)) and

the elements are from a countable universe. The functions ρ
and ϕ are suitable universal approximators that can be learned.

The architecture of DeepSets is depicted in Figure 2. Given a

set X , each element xi from X is independently embedded and

transformed into a representation ϕ(xi ). The embedding param-

eters are shared for all elements of the set. The independently

transformed elements are then aggregated with any permutation

invariant pooling operation, e.g., max, mean, sum, or log-sum-exp.

The shared embedding parameters, together with the permuta-

tion invariant function, produce the same output regardless of

the order of the elements in the input. The aggregated set repre-

sentation is then propagated to another neural network ρ that

considers interactions between elements, using further nonlinear

transformations. DeepSets naturally supports a variable num-

ber of elements in the set and is proven to be a universal set

approximator under specific conditions [24].

DeepSets stores a shared embedding for all elements in the col-

lection. The size of the embedding is impacted by the embedding

dimension and the number of elements. Therefore, having a large

number of elements greatly limits its application as a substitute

Table 1: DeepSet setting for the different tasks.

Task Model Type Activation Func. Output Loss

Index Regression Sigmoid Position Q-Error

Card. est. Regression Sigmoid Cardinality Q-Error

Bloom filter Classification Sigmoid Existence Binary Cross-Entr.

for traditional database structures, as the embedding matrices

will contribute to a large memory footprint.

The depicted set problem is termed a set-to-vector problem,

where we want to learn the probability of a vector y conditioned

on specific elements in the set, i.e., p(y |X ), not impacted by the

order of the elements in X . One common problem of this type

is point cloud classification. The set-to-vector problem is also

explored by other approaches, like Set Transformers [12]. Al-

though the Set Transformer has a slightly better accuracy than

the DeepSets model for some more complicated tasks, for simpler

tasks, they perform similarly. However, the DeepSets model is

superiorly faster and smaller, which is crucial when replacing

traditional data structures and is thus our architecture choice.

In the following, through the set-to-vector problem, we define

how to improve and create learned Bloom filters, index structures,

and cardinality estimators when dealing with set data and thor-

oughly discuss the advantages and the encountered challenges.

4 LEARNED DATA STRUCTURES FOR SETS
Data in the form of a collection of sets is widely present. Graph

network analysis often represents nodes and edges as sets. Social

media platforms represent user followers or the groups a user

belongs to as a set. E-commerce websites use sets to represent

products a customer has purchased, allowing recommendations

of other products. In machine learning and computer vision, an

image can be seen as a set of pixels, a video as a set of frames, or

a document as a set of words. Compactly storing and analyzing

sets is vital in all these scenarios.

We consider the set-to-vector problem in the form of two
model types applied to three database tasks, summarized in

Table 1. Depending on the output y, the set-to-vector problem
is formulated as a classification or regression problem. Both

models use the DeepSets architecture but differ in the final pre-

diction, loss function, and training data. We will consider the

regression model as a learned counterpart of a cardinality estima-

tor or an index because, for a given input, it predicts a real value
corresponding to cardinality or index position. A learned parallel to

the traditional Bloom filter is a classification model that returns
the probability that a particular element is present or absent in a
collection. In the following, we will show how DeepSets can be

used for these tasks.

4.1 Learned Set Index
We create a learned index structure over an unordered collection

of sets that can be used for two scenarios. The index structure

can answer equality queries where it will return the position i
of the query set q in the collection of sets. As a second search

type, the index structure can provide the first position i where
the query set q appears as a subset in the collection of sets S , i.e.,
q ⊆ S[i] ∧ ¬∃j,q ⊆ S[j] where j < i .

We use the DeepSets architecture, where the transformation

ρ (Figure 2) is a neural network having as input a permutation-

invariant representation of the set and outputs a real value cor-

responding to the set position. During training, the DeepSets
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model receives subsets of the original sets and target values y
corresponding to the position of the subsets in the collection

S . The position is log-transformed and scaled using the min-

imum and maximum observed positions during training, i.e.,

yi =
yi−min(y)

max (y)−min(y) . This makes it suitable for the sigmoid func-

tion f (x) = 1/(1 + e−x ) used as an output of the neural network.

The position of the first or last subset occurrence can be easily

generated by iterating through the collection of sets. For the

regression task, the chosen loss is a relation between the es-

timate and the actual position, also known as the q-error, i.e.,

q_error (y, ŷ) = max(ŷ/y,y/ŷ). Other losses, such as MSE and

MAE, can also be considered.

4.2 Learned Set Cardinality Estimation
We define the set-to-vector problem in terms of a cardinality

estimator, where given a query q representing a set of elements,

we predict an estimate of its cardinality in the collection of sets

S . More specifically, given a subset q, we estimate the number of

occurrences of the subset in the collection of sets S , i.e., |q ⊆ S[i]|
for 0 ≤ i < |S |.

The transformation ρ outputs a real value, representing the car-
dinality. At the time of training, the DeepSets model receives as

input subsets of the original sets and target values y correspond-

ing to their number of occurrences (cardinality). The cardinality

is log-transformed and scaled, with the minimum and maximum

cardinalities. Knowing that a superset always has a cardinality

equal to or smaller than that of the elements present inside it, the

maximum observed cardinality is easy to detect and is always

the largest cardinality of any individual element. As for the set

index, the model uses sigmoid as an activation function, and the

q-error as a loss function.

4.3 Learned Set Bloom Filter
We expand the idea of learned filters over a given collection of

sets S , where we answer a boolean membership query q, which
outputs whether a given set is a subset of any of the sets in S , i.e.,
∃i,q ⊆ S[i] for 0 ≤ i < |S |.

The model that performs a simple classification task mimics

the behavior of a Bloom filter. In the DeepSets model, ρ outputs

the probability of the presence or absence of the set. Therefore,

the learned Bloomfilter outputs whether a subset is present in any

of the sets while also likely filtering negative subsets. Let S be the

considered collection of sets. Sqpos denotes the collection of all

subsets present in S . Sqneд denotes the collection of subsets that

are not present in the sets of S . The training is performed over a

given set of queries Sq = {(sqi ,yi = 1)|sqi ∈ Sqpos } ∪ {(sqi ,yi =
0)|sqi ∈ Sqneд }, by minimizing the binary cross-entropy loss,

defined as follows: L =
∑
(sq ,y)∈Sq y log f (sq ) + (1 − y) log(1 −

f (sq )). As in related work, to solve the problem of false negatives,

we introduce a backup Bloom filter [10, 17].

5 COMPRESSED DEEPSETS
ARCHITECTURE

In the DeepSets architecture, the set elements are represented

through embeddings from a shared embeddingmatrix. Intuitively,

the embeddingmatrix scales with the number of distinct elements

in the collection of sets. When working with an extensive collec-

tion of sets having many distinct elements, the shared embedding

matrix will consume a large space, counteracting the memory
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Figure 3: Size comparison of embedding vs. Bloom fil-
ter for different embedding dimensions and false positive
rates.

benefit, especially in tasks that require replacing already com-

pact structures, such as the Bloom filter. To better understand

what this means, Figure 3 compares the size of the embedding

matrix to the size of the Bloom filter for different parameter set-

tings. The size of a Bloom filter depends on the false positive rate,

the number of elements to be inserted, and the hash functions

used. The size of an embedding matrix depends on the size of

the vocabulary and the embedding vector size. For example, for a

vocabulary of size 1000 elements and an embedding vector of size

100, the embedding matrix will be 1000× 100. As expected, as the

number of items increases, the size of both the embedding matrix

and the Bloom filter also increases. Based on Figure 3, using a

learned model with embeddings in its original state instead of a

Bloom filter does not bring any benefits since, as the number of

items increases, the Bloom filter always occupies less memory. If

we use the architecture without any modification, we lose one

critical advantage of the learned over the non-learned structures:

having less memory. In some situations, even when the DeepSet

model is used as a replacement for a B-Tree or a HashMap, the

memory benefits are negligible.

To createmore compactmodels, inspired by relatedwork [1,
2, 22, 23], we modify the architecture to include lossless input com-
pression per element. The details of the approach are presented

in Algorithm 1. To compress an element into ns subelements,

we rely on the compression technique introduced for the LMKG

framework [1, 2]. To perform the compression, first, the elements

of the sets need to be represented as integer values. When this is

fulfilled, initially, the maximal integer valuemaxv id from the el-

ements is determined. If the elements are split into ns = 2 subele-

ments, we calculate the divisor as svd =
⌈
ns
√
maxv id

⌉
. To com-

press an element xi from the setX , we divide the element with the

Algorithm 1 Compression of elements

1: function compress_elem_ns(elem, svd , ns)
2: elemc = elem; elemsc = []; i = 0

3: while i < (ns - 1) do
4: svq , svr = compress_elem(elemc , svd )
5: elemsc .append(svr )
6: elemc = svq ; i + +

7: elemsc .append(svq )
8: return elemsc
9: function compress_elem(elem, svd , ns)
10: svq = f loor (elem/svd )
11: svr = elem % svd
12: return svq , svr
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Figure 4: Compressed DeepSets architecture where xi are
set elements, svqi and svri are compressed elements for xi ,
e is an embedding or an encoding, ϕ and ρ are fitting trans-
formations.

divisor svd and obtain the quotient svqi and remainder svri (Algo-
rithm 1, Lines 9–12). Correspondingly, the compression of set X
of size k will result in (svq1 , svr1 ), (svq2 , svr2 ), ..., (svqk , svrk ). For
ns > 2, the same procedure is repeated until ns subelements are

created by always taking svqi as the next element to be divided

with the divisor (Algorithm 1, Lines 3–6). A detailed example

of the compression for ns = 2 and maxv id = 100 for the set

{91, 12, 23} is depicted in Figure 4.

We modify the DeepSets architecture as depicted in Figure 4.

Initially, every element from the set is decomposed into two

subelements, i.e., quotient svq and remainder svr . All quotients
share a single encoder, as do all the remainders. Every quotient

(remainder) is independently encoded (embedded). Each of the

independently transformed quotients is then concatenated with

the representation of their corresponding remainders. For the

example shown in Figure 4, this will result in (e(svq1 ), e(svr1 )),
(e(svq2 ), e(svr2 )), and (e(svq3 ), e(svr3 )).

Once concatenated, the pairs of elements are independently

forwarded to the transformation ϕ. The transformation is crucial

for capturing the interconnection between the two subelements.

If this part is omitted, then we consider two sets of indepen-

dent subelements, which leads to incorrect results and disrupts

the DeepSets model. The output is then forwarded to a permu-

tation invariant pooling operation, in this case, the sum, and

finally forwarded to the transformation ρ. The modified archi-

tecture provides one crucial benefit, and that is the reduction
of memory. This is because, instead of a large embedding ma-

trix mapping the elements to an n dimensional vector as in the

original DeepSets architecture, we decompose the elements into

subelements, resulting in multiple embedding matrices whose

sizes are drastically smaller than the initial one.

When considering the compression of relational data, columns

have a given order. In this case, once a column is split into sub-

columns, each subcolumn will be considered a separate feature.

That means subcolumns are independently embedded, concate-

nated, and forwarded for learning. The order of the subcolumns

itself imposes their interconnection. However, when working

with sets and considering the DeepSets architecture, we cannot

interpret every subelement as completely independent when we

perform a compression over elements in sets. Due to the permu-

tation invariance property of the model, such consideration of

the subelements will lead to incorrect results. Thus, to obtain

accurate results, we must preserve the interconnection between

the subelements while maintaining the permutation invariance.

For clarification, let us consider a set X with elements x1, x2
which are compressed to x1 = (svq1 , svr1 ) and x2 = (svq2 , svr2 )
and set Z with elements z1, z2, which are compressed to z1 =

(svq2 , svr1 ) and z2 = (svq1 , svr2 ), such that the set Z has not

been given to the model for training or has a completely differ-

ent estimate than X . The problem has now moved from a set

of elements towards a set of pairs. Because our primary goal is

to reduce the model size affected by the large element embed-

ding matrix, having an encoding for all pairs will not yield any

benefits since, still, the number of unique pairs is the same as

the number of unique elements before compression. Therefore,

all quotients (svq ) will be sent to one shared encoder and all

remainders (svr ) to another one. Thus, we have bounded the

size of the input dimension creating drastically smaller models.

Next, the individual encodings svqi need to be concatenated with
their respective svri encodings to preserve the original subele-

ment pairs. However, if we just apply a pooling operation, like

sum, on them, we still would not preserve the interconnection

between the quotients and the remainders. This is due to the

permutation invariance property of the model. In other words,

if the set X with elements x1 = (svq1 , svr1 ) and x2 = (svq2 , svr2 )
appeared, the model will assume that also set Z with elements

z1 = (svq2 , svr1 ) and z2 = (svq1 , svr2 ) has appeared since the sum
per dimension for x1 and x2 and z1 and z2 is equal. However,

once decomposed, the sets will have different elements, and the

model should have estimated a different value for Z . To capture
the interconnection between svq and svr , we forward them through
a transformation ϕ. Thus, we are certain that the sets X and Z
are considered as different.

Finally, to emphasize the importance of the compression, let

us revisit the initial motivation. Let us consider limiting the em-

bedding size of the original model to the smallest possible size,

i.e., embeddinд_size = 1. Additionally, we assume that there are

1000000 different elements in the set. The dimension of the em-

bedding matrix will be 1000000× 1. When using the compression

for ns = 2 subelements, we create two embedding matrices of

dimensions 1000×1 and 1001×1. Consequently, we substantially

reduce the required memory and make it possible to consider the

DeepSets model as a substitute for Bloom filters. The same re-

marks and conclusions hold if we consider the one-hot encoding.

The drastic reduction of memory from the compression comes

at the cost of introducing additional complexity in the model due

to the increased interconnection between the subelements that

needs to be detected by the neural network. In our experimental

evaluation, we show the trade-off between the model size and

the accuracy and discuss when it is beneficial to consider the

compressed model instead of the non-compressed one.

6 HYBRID STRUCTUREWITH ERROR
BOUNDS

Typically, learned index structures assume a monotonic corre-

lation between keys and their corresponding positions in the

dataset, which is possible by sorting the keys in a specific man-

ner. This advantage allows even small neural networks or simpler

models, such as regression or interpolation, to capture data in-

terdependencies efficiently. However, when considering more

complicated scenarios, such as mapping keys to positions that do

not preserve the monotonic relation, the complexity increases,

producing a significant accuracy error or requiring enormous

models, rendering the learned index impractical. These problems

naturally appear when working with set data since sorting the

keys and achieving an easier correlation is not possible.

To overcome these problems, we propose the use of guided
learning with outlier removal. The resulting hybrid structure
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Figure 5: Querying the hybrid architecture consisting of
an auxiliary structure, a learnedmodel, and error bounds.

incorporates a learned model and an additional structure for

storing the outliers. The inclusion of this auxiliary structure is

beneficial because deep learning models typically provide ap-

proximate results before being corrected by specific error bounds.

The benefits of the proposed structure are especially evident in

the case of learned Bloom filters, where the backup structure is

crucial for guaranteeing no false negatives. Backup structures

are also useful in the case of updates. They maintain the updates

until the retraining of the model is initiated. By incorporating an

additional structure, we implicitly allow the inclusion of updates

in our proposed approach.

Driven by the idea of solving the false negatives problem of

the learned Bloom filter with a backup structure, we explore

and suggest a generalization of an auxiliary structure beyond

the learned Bloom filters. This additional structure serves as a

correction strategy for remedying misestimates in learned esti-
mators and learned indices. The auxiliary structure can be any
traditional or learned structure already proven efficient in such

scenarios but lacks the benefit of a small memory consumption.

Thus, the hybrid architecture incorporates a learned model that

captures as most of the data as possible and an auxiliary structure

working on the data that creates a problem for the learned model.

Unlike the typical approach used in learned Bloom filters that

assumes an already trained model for which it calculates the

wrong estimates, we suggest an iterative guided training process

to exclude outliers. We observe that the iterative training process

and such exclusion of outliers allow us to apply the model as best

as possible to more complicated, difficult-to-learn distributions

under prespecified constraints, which balance out the memory

consumption and accuracy of the approach. Since in the hybrid

structure, the learning is affected by the data distribution, in

the best case, when the learning error is small, guided learning

renders only a learned model with prespecified error bounds and,

in the worst case, a non-learned index structure.

The process of outlier elimination requires several parameters.

Initially, themodel learns for several epochs until the function can

be estimated sufficiently. After a predefined number of epochs,

the error is calculated for each subset. All the outliers or subsets

whose prediction causes a larger error than a given threshold
are removed from the training process and placed into the outlier

structure. The threshold is guided by a defined error that we want

to reach and can be set manually or automatically. The automatic

setting is needed more for the indexing task, where we set the

error to always reach a q-error in the range of [1, 1.4], depending

on the dataset size. Since the goal is to achieve a small error,

depending on the requirements, it is possible to continue the

process in iterations. The whole process is tuned according to the

balance we want to achieve between the memory consumption

and the speed of the structure.

Algorithm 2 Search in the hybrid structure for indexing

1: function full_prediction(set ,min_val , ranдe_lenдth)
2: res = auxiliary_structure .search(set)
3: if res is None then
4: estq =model .predict(set)
5: r = ceil((estq −min_val)/(ranдe_lenдth + 1))
6: er = errors[r ]
7: res = search_in_ranдe(set, estq , estq − er , estq + er )

8: return res

For searching through the structure, we need to calculate the

maximal error produced by the model. The maximal error is the

maximal absolute error between the estimate and the real position

of the subset Xi , i.e., abs(estXi − posXi ) calculated for every Xi
in the collection of sets. This computation is necessary since the

model gives an estimate rather than the correct value. To guaran-

tee that we find the set Xi , we have to search within the specified

error bounds [estXi −max_error , estXi +max_error ]. However,
calculating single error bounds over the whole dataset will lead

to unnecessary scanning of large portions of the collection of sets.

Let us assume that the model always predicts accurate results for

the whole dataset except for one set X j . Although the accuracy

is almost perfect, during the search, the range boundaries will

be defined by the largest error encountered, which in this case

corresponds to the one for set X j . This will lead to unnecessary

scans and an increased execution time even though almost all the

points are accurately predicted. Therefore, to avoid unnecessary

scans, we calculate errors per equally sized ranges of the possible

predicted values and achieve a drastic reduction in the search

time. For the previous example, the large error produced by X j
will only impact the search for a small number of sets during

query time rather than the complete indexed collection.

The resulting architecture, depicted in Figure 5, includes the

learned model, the outlier backup structure, and the error bounds.

The details of the search algorithm are shown in Algorithm 2.

When querying, first, the auxiliary structure will be checked for

the existence of the query set (Algorithm 2, Line 2). If the query set

is not present, it will be forwarded to the model. The querying for

cardinality is less involved because it requires only the prediction

of the model. The index needs an additional local search around

the predicted position (Algorithm 2, Lines 5–7).When performing

an index search for query q, the range that needs to be searched is
defined by the estimated position estq and the local error bound,

calculated as er = errors[⌈(estq −min_val)/ranдe_lenдth + 1⌉].
The resulting search range is [estq − er , estq + er ]. The equality
search starts from estq and goes in both directions, whereas the

search for the first position starts from the left position [estq−er ].

7 CHALLENGES AND LIMITATIONS
When replacing traditional structures with learned models, we

can encounter challenging scenarios, such as processing com-

plex distributions that are difficult to learn, for which the model

will produce large errors. In such cases, the hybrid structure

will fall back to an auxiliary structure not having the benefits

of the learned model. Additionally, for some of the tasks, espe-

cially visible for larger sets, the creation of the training data can

be complicated. Finally, learned data components are sensitive

to changes in the data distribution. Recreating the models is

computationally expensive because the learned models already

incur a larger creation time than the traditional structures. In the
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following, we discuss the main challenges, addressing the data

preprocessing, the practical application of the approaches, and

the changes in the data distribution.

7.1 Training Data Creation and Practical
Application

7.1.1 Regression Model. While creating training data for the

regression model, subsets from the sets and their respective car-

dinalities or index positions need to be generated. When con-

sidering the indexing task, we have to generate the complete

dataset of subsets to guarantee that all subsets will be found. For

cardinality estimation, subset generation is required since often

the suggestion that a supervised model generalizes to unseen

queries can be conflicting.

When working with set data, one can typically observe that

many items are very infrequent or even appear only once. A

prominent example are Twitter tweets, where the hashtag fre-

quency distribution follows Zipf’s law. As a consequence, the

extracted subsets from such sets will have a skewed cardinality

distribution, as the presence of a rare element will result in super-

sets that are also infrequent, i.e., have a cardinality of 1. We can

make use of this information in the data generation. Therefore,

when dealing with larger sets, one can limit the generation of

all the training data if their subsets are already infrequent. For

the datasets in the experiments, we observed that subsets above

size six are already infrequent, and thus, we generate only the

subsets up to this size.

7.1.2 Classification Model. When considering traditional

Bloom filters, only the present elements need to be indexed by

the filter. Differently, the learned Bloom filter, in addition to the

positive training data, requires the negative training data, i.e.,

non-existing combinations of the existing set elements, to ensure

the false positive rate and no false negatives. The positive train-

ing data Sqpos consists of not only the existing sets but also all

the subsets of the present sets. The negative training data Sqneд
consists of sets whose elements co-occurrence is not present as a

subset in the given collection of sets.

Consequently, using the learned Bloom filter is most benefi-

cial when there are already existing negative training samples.

When they are not present in advance, the generation of neg-

ative training data is challenging as it has to provide enough

representative sets which are not a subset of the sets in the col-

lection. Although relatively trivial for one-dimensional data, in

the case of set or ordered multidimensional data, generating such

data is problematic since it creates a combinatorial problem. To

overcome this problem, and following the assumptions that the

queries are typically smaller than the maximal possible set size,

the learned Bloom filter can be restricted to capture subsets until

a predefined size. Even if this impacts the accuracy for larger sets,

restricting the space of possible negative training data provides

guarantees up to a specific set size.

Although the requirement of having negative training data

in addition to the positive data limits the use cases for learned

Bloom filters, it does not render them entirely useless. The model

can be used in cases where the negative training data is present

in advance, is gathered through time, or is small enough to be

generated entirely. For instance, when working on the detection

of malicious messages, the negative training data will contain the

malicious messages that should be filtered. In contrast, the posi-

tive training samples can be drawn from the existing messages

that already qualified as relevant.

Table 2: Datasets specification.

Datasets RW Tweets SD

Details n = 200k n = 1.5M n = 3M n = 1.9M n = 100k

Uniq. Elem. 30324 231954 346893 73618 5661

Max Card. 52905 638488 968112 513696 99280

Min/Max Set Size 2/8 2/8 2/8 1/> 10 6/7

7.2 Change in Data Distribution
Although static data is ideal for learned models, we next discuss

how incremental updates are handled. To decide if the accuracy of

the model is deteriorating, after a prespecified number of updates,

the accuracy is measured. If a significant drop in the accuracy is

detected, themodels are retrained.Whileminor updates are not of

high impact for the cardinality estimator and Bloom filter, for the

set index, this impacts the correctness of the approach. Therefore,

for the index task, updates can be handled by modifying the error

boundaries used to find each of the indexed sets. However, this

impacts the search time and will trigger the recreation of the

model. We directly benefit from the auxiliary structure in the

hybrid model by avoiding continuous retraining. Consider the

update {A,B} to {A,C} for the set index. The index position for

B and C in the sets will change. If the change is smaller than

the current error boundaries, everything stays the same. If the

new position is outside of the boundaries, the new subsets are

inserted into the auxiliary index. Upon searching, the auxiliary

index, already containing the updated version, is queried first.

After a considerable number of updates, the whole structure can

be rebuilt. When we want to avoid handling updates, i.e., prohibit

the rebuilding of the model, the structure will eventually fall back

entirely to the traditional index.

8 EXPERIMENTS
8.1 Experimental Setup
We implemented the models for our proposed approaches in

Keras
1
following the DeepSets implementation [24]. We have

performed the experiments on an NVidia GeForce RTX 2080 Ti

GPU. In the following, we investigate the performance of the

proposed learned data structures, and we report on experiments

for both the non-compressed and the compressed (Section 5)

models. For the evaluation, we varied the following parameters:

• the embedding size from 2, 4, 8, 16, to 32

• the number of neurons from 8, 16, 32 (Bloom filter and

indexing task) and 64, 128, to 256 (cardinality estimation)

• the number of layers from 1 to 2

Since increasing ns creates more complicated patterns between

the subelements that need to be learned, for the compressed

models, we use embeddings withns = 2 subelements. This setting

for ns already produces much smaller models than the original

one, with better accuracy and speed than models with larger ns .
Note that the learned Bloom filter, learned index, and the learned

cardinality estimator can be either non-compressed (LSM) or

compressed learned set models (CLSM). To improve the models’

performance by enabling them to efficiently handle outliers, for

the cardinality estimation and indexing task, we generate the

proposed hybrid structure using guided learning (-Hybrid). We

measure the accuracy of the subsets of the sets by estimating

the cardinality or index position. For each subset, we calculate

1
The source code and datasets are available at https://git.cs.uni-kl.de/dbis-public/

clsm/learning-over-sets-for-databases
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the q-error using the estimate and the real value and group the

results by result size. For the Bloom filter task, we measure the

binary accuracy. For the non-learned competitors, the accuracy

is one as they always return the exact result.

For all the considered tasks, the models are trained be-

tween 50 and 100 epochs. The training time in seconds per

epoch, grouped per dataset and task, i.e., cardinality, index-

ing and BF (without compression, with compression), is as fol-

lows: RW-200k: (2.6, 2.6), (2.7, 2.8), (7.3, 6.5); RW-1.5M: (14, 8),

(14.4, 8.3), (16, 10); RW-3M: (15, 8), (15.6, 9), (17, 11); Tweet:

(5.6, 5.2), (5.8, 5), (12, 11); SD: (2.4, 2.5), (4, 4.1), (2, 2).

8.1.1 Datasets. The experiments were performed over one
synthetic and two real-world datasets (cf. Table 2 for dataset

statistics). The Tweets dataset consists of hashtags from a tweets

excerpt that was gathered over a specific period of time through

the public Twitter API. The size of the excerpt is 50 GB. The (RW)

dataset consists of company server logs that contain information

about file accesses and user logins. Three alternate versions of

different sizes have been gathered on different days, containing

a different number of unique elements, with at most 8 elements

per set. The elements of this dataset are diverse, causing the

cardinality to follow a skewed distribution, with most of the

elements appearing only in a small number of sets. To test other

distributions of elements, we have created a synthetic dataset

(SD). SD is generated by randomly combining subsets of elements

up to a prespecified size (6–7 elements) to demonstrate the effects

of having fewer unique elements that appear often in different

sets. Since the RW and Tweets datasets have sets of different

sizes, we restrict SD to sets with similar sizes. With that, we also

show how the compression works when the number of unique

elements is smaller.

For the cardinality and indexing task, we generate all subsets of

the sets as training data. The index requires all possible subsets to

guarantee finding the actual position. The query workload for all

datasets is created using subsets of the original sets having both

few and many elements. For the Bloom filter task, the negative

data contains combinations of elements not appearing in the

original sets. However, creating all negative data is impossible.

For this reason, the used negative training data is only a subset

of the complete dataset.

8.1.2 Competitors. We modify traditional structures to fulfill

the permutation invariant property. To support sets, one can

either concatenate sorted elements and hash them or use a per-

mutation invariant hash function and index the combinations of

set elements. All the competitors are implemented in Python as

in-memory structures.

• Cardinality estimation task: Due to the permutation

invariance property, existing learned estimators for rela-

tional data cannot be applied. Thus, for this task, we create

combinations of the elements in the sets and store them

in a HashMap.

• Set index task:We use a B+ Tree, where as a key we use

a hash function over the set also allowing duplicate keys.

• Bloom filter task: We use the traditional Bloom filter

where we index all the combinations of present elements.

The creation time in seconds for the B+ Tree with branching fac-

tor 100 for the indexing task, the HashMap for the cardinality task,

and the traditional Bloom filter with an fp-rate of 0.1 per dataset

is as follows, RW-200k: (4.4, 1.5, 6.7); RW-1.5M: (39, 10, 44); RW-

3M: (63, 18, 74); Tweet: (8.3, 3.2, 15); SD: (5, 1.6, 2.7).
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Figure 6: Accuracy (q-error) per query result size for car-
dinality estimation task.

8.2 Cardinality Estimation Task
8.2.1 Accuracy. We next show the accuracy of the cardinality

estimation task by comparing the compressed estimator (CLSM)

against the non-compressed (LSM) one. We further analyze the

inclusion of an auxiliary structure that represents the hybrid

version of the estimators.

Compressed vs. Non-compressed: To measure the accuracy

when estimating cardinalities, we use the average q-error. The

larger the q-error, the more far-off the estimated cardinality is.

The results grouped by query result size ranges are shown in

Figure 6. The models for each dataset are trained with a similar

number of neurons and epochs. The outliers are removed at the

same epoch step.

When analyzing the results for the RW collection (Figures 6a,

6b, 6c), it is visible that CLSM produces slightly less accurate esti-

mations, evident for the larger datasets. However, for the outliers,

i.e., larger query result size ranges, CLSM sometimes outperforms

LSM. CLSM has mainly worse accuracy for the smaller query

result size ranges. The reason for this is the increased input com-

plexity which means that the model needs to learn many complex

interconnections between the subelements. This specifically oc-

curs in these ranges because most of the subset cardinalities

belong to them. When the dataset size and the number of unique

elements increase, both LSM and CLSM have a larger (worse)

average q-error. For the SD (Figure 6d) and the Tweets datasets
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Table 3: Memory consumption (MB) for cardinality esti-
mation task.

Datasets LSM LSM-Hybrid CLSM CLSM-Hybrid HashMap

RW-200k 3.817 4.917 0.079 1.079 32.644
RW-1.5M 29.021 37.721 0.156 8.456 249.263
RW-3M 43.388 61.588 0.182 17.082 429.891
Tweets 9.285 11.385 0.168 1.968 66.410
SD 0.791 1.791 0.119 1.119 30.123

Table 4: Execution time (ms) for cardinality estimation
task.

Datasets LSM LSM-Hybrid CLSM CLSM-Hybrid HashMap

RW-200k 0.08 0.053 0.09 0.07 0.00059
RW-1.5M 0.11 0.077 0.14 0.13 0.00054
RW-3M 0.19 0.180 0.20 0.19 0.00056
Tweets 0.179 0.168 0.20 0.19 0.00056
SD 0.174 0.163 0.196 0.183 0.00050

(Figure 6e), as for RW, CLSM has lower estimation accuracy than

LSM. The difference in the estimation accuracy is especially no-

ticeable for the higher ranges. When analyzing the estimation

results and considering the memory (Table 3), it is clear that for

SD, there is no need for compression since, without it, the model

is of acceptable size and produces better estimates. Thus, when

the number of unique elements is small, using a non-compressed

model has clear benefits.

Hybrid vs. Baseline: In the following, we will discuss the ben-

efits of having a hybrid structure for cardinality estimation. To

show the benefits, as depicted in Figure 6, for each estimator,

we also include the hybrid version (-Hybrid), constructed by re-

moving the outliers responsible for the errors larger than the

90 percentile error. The outliers are removed at the same epoch

step for both LSM and CLSM. Even removing a small number

of outliers improves the accuracy of the approach but results in

a slight increase in the memory footprint. In this scenario, the

auxiliary structure represents a HashMap; however, other more

compact structures can also be considered. When looking into

the results produced by the hybrid structure, we observe that

the accuracy drastically improves in all scenarios since the auxil-

iary structure produces exact results, and the model fits better

to the data without the outliers. LSM-Hybrid produces the best

results, followed by CLSM-Hybrid. CLSM generally produces

much smaller models (Table 3). Thus, CLSM-Hybrid is deemed the
best option when considering both accuracy and memory.

Comparison: Finally, we compare the learned set cardinality

estimator with a traditional estimator. As other approaches do

not work with sets, we store all the subsets from the sets together

with their cardinality. Intuitively, since the HashMap stores all

the possible subsets, the accuracy is always one. However, index-

ing all combinations occupies an enormous amount of memory

(Table 3), which renders the HashMap structure unsuitable in

many realistic applications.

8.2.2 Memory Consumption. We next show the memory con-

sumption of the learned cardinality estimation models both with

and without compression (Table 3), the hybrid structures with

the same thresholds as in the accuracy experiments, and the

HashMap when indexing all the possible combinations. From the

model, we extract the weights, and together with the auxiliary

structure, we store it in Python’s pickle format. We do the same

for the HashMap and report on the memory consumption of the

files. When the learned set model takes the role of a cardinality

estimator, both models are viable replacement options, each pro-

viding different benefits when considering the trade-off between

memory and accuracy. From the depicted results, it is evident that

the learned models are far smaller than the HashMap index. The

hybrid structure introduces a small overhead while producing a

much better accuracy.

8.2.3 Execution Time. To avoid the overhead from the used

framework when measuring the execution time of the queries, we
extract the weights from the model, and we do a pure numpy

model implementation. We execute the estimators over 10000

queries and report the average execution time per query. We

execute each query separately and not in batches to mimic the

behavior of a real query system, although this is a disadvantage

for the model. For the considered datasets and set sizes, we depict

the results in Table 4.

The overhead of the element compression is small, result-

ing in a difference of 0.001 ms. The compressed model also has

more complicated operations, such as the concatenation of the

subelement embeddings, which impacts the execution time. This

overhead is acceptable because of the size benefits of the com-

pressed version over the non-compressed one. In comparison, a

HashMap reaches a speed of around 0.0005 ms for each dataset,

as the set is directly retrieved from the map. The search time is

much faster than the models’ prediction; however, this comes at

the cost of a much higher memory footprint. The hybrid model,

both for LSM and CLSM, almost always improves the query time.

Thus, when a balance between the memory and the execution

time is needed, the hybrid model is the best option.

8.3 Set Index Task
8.3.1 Accuracy. As next, we show the performance of learn-

ing over sets when considering the indexing task. All models are

trained with a small number of neurons to allow for compact

memory and faster execution.

Hybrid vs. Baseline: In Table 5, we show the accuracy upon

comparing the two models using the average q-error and av-

erage absolute error when the outliers having an error above

the prespecified percentile are removed (row named Percentile
Threshold). To emphasize the importance of the hybrid structure,

we also include the No Removal version, which is the model with-

out using any auxiliary structure. When analyzing the hybrid

model, it is observable that for some datasets (RW-200k and RW-

3M), the model error is drastically reduced when only a small

number of the data is placed in a separate (outlier) structure.

Since the errors directly impact the number of sets that will be

examined around the predicted position, the hybrid structure

makes the model applicable in the indexing scenario. Although

we can remove the outliers, when we have a restricted memory

budget, the models cannot always learn each distribution to the

required accuracy. This is the case for RW-1.5M, having element

interconnections that do not follow specific patterns, where the

error is still large and results in an increased sequential search

for the index position. For such cases, the hybrid structure will

fall back to the auxiliary structure. For the smaller datasets, such

as SD, due to the small number of records, a learned index is not

required, as the B+ Tree already performs well.

Compressed vs. Non-compressed: We next look into the per-

formance of LSM versus CLSM and their suitability for the set

indexing task. For many datasets, the accuracy is similar for

both variants, keeping in mind that CLSM drastically reduces the
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Table 5: Accuracy (q-error/abs-error) for index task.

Errors Datasets LSM-Hybrid CLSM-Hybrid

Percentile

threshold

<50% <75% <90% <95% No Removal <50% <75% <90% <95% No Removal

Avg.

q-error

RW-200k 1.0012 1.0027 1.0050 1.0069 1.0538 1.0022 1.0050 1.0097 1.0155 1.0728

RW-1.5M 1.0872 1.2247 1.4175 1.5449 1.9821 1.2448 1.5492 1.8836 2.0846 2.7380

RW-3M 1.0041 1.0082 1.0162 1.0229 1.0651 1.0003 1.0005 1.001 1.0033 1.0203

Tweets 1.0128 1.0292 1.0548 1.0774 1.2118 1.0413 1.0938 1.1978 1.2863 1.6057

SD 1.2603 1.5509 1.8868 2.0891 2.6825 1.4177 1.8647 2.3709 2.6808 3.5656

Avg.

absolute

error

RW-200k 109.86 187.10 265.40 314.69 532.57 155.20 345.77 601.85 805.64 1654.40

RW-1.5M 25618.50 60855.56 106977.40 132363.49 170479.19 69128.51 129852.72 195271.46 227799.38 269449.98

RW-3M 6862.21 13748.58 29496.86 44187.90 72197.05 548.11 930.90 1749.29 5729.40 25262.81

Tweets 2211.97 5837.48 12459.96 17736.75 33232.34 7771.05 18041.04 31840.64 42417.40 70110.22

SD 2629.62 5384.69 8946.67 10983.82 13554.35 3630.74 6549.95 11299.99 13653.25 16407.14

Table 6: Impact of compression factor svd for index task
for Tweets dataset.

svd Full comp. 500 1000 5000 10000 No comp.

Accuracy (Q-error) 1.6 1.57 1.47 1.35 1.26 1.21
Memory (MB) 0.012 0.014 0.02 0.08 0.16 1.15
Training Time (s) 709 842 843 867 872 1071

Table 7: Memory consumption (MB) for index task.

Datasets LSM-Hybrid CLSM-Hybrid B+ Tree

Model/Aux .Str ./Err . Model/Aux .Str ./Err .

RW-200k 0.24 / 0.72 / 0.07 0.005 / 0.72 / 0.07 7.03
RW-3M 2.71 / 8.58 / 1.31 0.01 / 8.58 / 1.31 70.67
Tweets 2.3 / 5.05 / 0.59 0.02 / 5.04 / 0.59 12.33
SD 0.09 / 3.06 / 0.04 0.006 / 3.06 / 0.04 9.99

models’ size. However, as for the cardinality task, there is still

a decline in the accuracy when using the compressed version.

We would like to ideally have something in between these two

spectrums, i.e., lower memory like CLSM but better accuracy like

LSM. To achieve this, we can tune the compression factor svd . In
the optimal case, the compression factor svd is set to achieve

the maximal compression for a given ns . However, one can set

svd to be any number between the best-case compression or no

compression at all. To show the tunable compression, we depict

the accuracy for ns = 2 by varying svd between its optimal case

(most compression we can achieve) to no compression (Table 6).

Increasing svd provides us with more parameters capable of ex-

pressing the interconnections better, leading to better accuracy.

On the other hand, when increasing svd we also increase mem-

ory consumption. By tuning svd we can find a suitable sweet

spot between LSM and CLSM.

Comparison: Finally, as a competitor with the learned set index,

we consider a B+ Tree. As in the case of the cardinality estimation,

this index produces exact results. Therefore, the most relevant

part when comparing learned and non-learned approaches is

comparing the memory and the speed reached by the model with

the achieved accuracy.

8.3.2 Memory Consumption. When considering the model

as a replacement for a set index, we notice that the memory is

relatively small. However, we need more than just the model to

reach a small enough error to consider it as a direct replacement.

Therefore, we discuss the performance of the set index where

we only consider the hybrid version of the models with errors

specified per ranges of length 100. As error threshold percentiles,

Table 8: Execution time (ms) for index task.

Datasets LSM-Hybrid CLSM-Hybrid B+ Tree

RW-200k 0.36 0.31 0.004
RW-3M 4.02 5.4 0.006
Tweets 2.1 3.7 0.005
SD 4.02 4.4 0.004

we chose 90 for RW-200k and RW-3M, 60 for Tweets and 70 for

SD. As an outlier structure, we utilize a B+ Tree. The results

in Table 7 inform that the hybrid structure drastically reduces

space consumption. CLSM consumes the least amount of space,

often less than 1 MB. The error list (Err.), which is currently set

to range 100, also consumes a small amount of memory. It is

important to note that the memory can be further reduced by

increasing the range and storing fewer values. Naturally, this

will impact the accuracy and speed of the approach. As depicted,

most memory is consumed by the outlier structure (Aux.Str.).

The hybrid structure for the RW-1.5M dataset falls back to the

worst scenario, which is solely an auxiliary structure. For that

reason, it is not present in the results.

8.3.3 Execution Time. We execute the indices over 1000

queries and show the average query execution time (Table 8). For

the considered settings in Table 8, the hybrid structure results

in an average between 0.3 and 4 ms for perfectly tuned models.

For more complicated distributions where the model has to an-

swer for most of the subsets, but the error is large (such as the

RW-1.5M dataset), the local search can reach even 20 ms, which

is unacceptable. In such scenarios, the hybrid structure does not

reach the required accuracy and falls back to the worst case,

which is solely a traditional index structure. The hybrid index

is crucial when using a learned model for the task of indexing.

The model by itself generates enough error producing a large

execution time of around 4 ms for the smaller dataset and up to

100 ms for larger ones. Although using a larger embedding size

can improve the performance of a deep learning model, having

more embedding weights can lead to slower execution time and

higher computational costs.

To show the compression benefits during training, we analyze

the training time needed for 100 epochs by varying the compres-

sion factor svd for the Tweets dataset and depict the results in

Table 6. Unlike the query time, the training time is positively
impacted by the compression.

Local error vs. Global error: The larger execution time in the

learned set index is caused by the sequential search around the
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Table 9: Binary accuracy for Bloom filter task.

Datasets RW-200k RW-1.5M RW-3M Tweets SD

LSM 0.9999 0.9999 0.9999 0.9998 0.9998
CLSM 0.9968 0.9987 0.9996 0.9711 0.9970

estimated position to find the actual position of the query. Thus,

an essential improvement in the hybrid structure used for in-

dexing is the introduction of local errors. For instance, for the

RW-200k dataset, the maximal error is 171853. If we have the

range size for the local error set to 100, the search is improved by

now having an average error of 11901. By reducing the local error,

we examine fewer sets on average, which drastically reduces the

search time. In the basic case, the learned index will result in an

enormous execution time, rendering the model inefficient as a

possible replacement for the indexing structure. Intuitively, the

smaller the range, the better the prediction time, at the cost of a

slightly larger memory consumption.

8.4 Bloom Filter Task
8.4.1 Accuracy. To test the behavior of the models for replac-

ing Bloom filters, we create positive training data consisting of

subsets present in the given sets and a sample of negative sub-

sets consisting of combinations of elements not co-occurring

in the sets. As mentioned, the generation of the complete nega-

tive training data is not possible, and thus, the negative samples

are limited to a specific size. Both LSM and CLSM have embed-

dings of size two and two layers, each having eight neurons. We

chose a smaller model so both LSM and CLSM can compete with

the Bloom filter when considering the memory. In Table 9, we

show the binary accuracy after 50 epochs. It is observable that in

all scenarios, LSM and CLSM perform extremely well, reaching

an almost perfect accuracy. As for the before-mentioned tasks,

LSM is able to capture the element interdependencies better and,

thus, produce better accuracy. Intuitively, if we consider only
the training sets, both models perform exceptionally well.
However, since the complete negative training data cannot be

generated, the false positive rate cannot be bound. This is ex-

pected as we must create all subsets to ensure that the model can

correctly estimate them. Still, in scenarios where both negative

and positive training sets are present, a learned Bloom filter is

useful as it produces highly accurate results.

8.4.2 Memory Consumption. We next discuss the memory of

the learned models in the role of Bloom filters. The results from

the comparison are depicted in Table 10. Note that the struc-
ture of the learned Bloom filter includes a backup struc-
ture. The memory of each backup structure is negligible,
and it does not impact the comparison.We can see that the

learned non-compressed Bloom filter yields a much larger mem-

ory than any of the compressed Bloom filter variants. It is also

important to note that a larger number of neurons can some-

times lead to LSM being larger than a traditional Bloom filter.

Intuitively, this comes from the large embeddings that scale with

the number of unique elements in the dataset. In contrast, the

compressed learned Bloom filter reduces the large embedding

matrix and drastically reduces the input dimensions, leading to

enormous space benefits when considered as a replacement for

the traditional Bloom filter. This is even more visible for larger

datasets with many unique elements where the size of the com-

pressed Bloom filter is not impacted.

Table 10:Memory consumption (MB) for Bloomfilter task.

Datasets LSM CLSM BF

0.1 0.01 0.001

RW-200k 0.239 0.005 0.5 1.01 1.5

RW-1.5M 1.814 0.01 3.8 7.5 11.2

RW-3M 2.712 0.011 6.2 12.4 18.6

Tweets 0.577 0.006 0.9 1.8 2.7

SD 0.046 0.003 0.22 0.43 0.66

Table 11: Execution time (ms) for Bloom filter task.

Datasets LSM CLSM BF

0.1 0.01 0.001

RW-200k 0.035 0.043 0.006 0.008 0.009

RW-1.5M 0.033 0.044 0.007 0.008 0.009

RW-3M 0.04 0.05 0.007 0.008 0.009

Tweets 0.032 0.045 0.007 0.008 0.01

SD 0.034 0.044 0.006 0.007 0.008

(a) MAE sum up to 10 (b) MAE sum up to 100

Figure 7: Accuracy of digit summation with text.

8.4.3 Execution Time. Finally, we discuss the execution time

of LSM and CLSM when compared to a traditional Bloom filter.

The average query result times from the evaluation over 1000

queries are presented in Table 11. As for the previous tasks, we

can notice that the learned models do increase the execution time

when compared to a traditional Bloom filter. However, in this

case, since the task of classifying is easier, fewer neurons are

sufficient, resulting in a shorter execution time when compared

to the previous learned structures. When comparing LSM with

CLSM, the same trend holds. Due to the initial compression and

concatenation, contributing to a more complicated structure,

CLSM has an increase in execution time compared to LSM.

8.5 Compression Impact & System
Integration

8.5.1 Sum of Digits. To showcase the impact of compression,

we perform a comparison of the native DeepSets with the com-

pressed DeepSets using the experiment and the publicly available

implementation from the original paper [24]. The experiment

randomly samples a subset of maximum M = 10 digits to cre-

ate 100000 sets, with labels representing the sum of digits in

that set. The testing is performed over sums ofM digits, where

M = [5, 100] over 10000 samples. For our compressed version we

setns = 2 (largerns has similar performance). In addition, we also

include LSTM and GRU as competitors. All models have the same
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Figure 8: Impact of compression factor.

number of layers and embedding sizes and predict a scalar as

the sum of the digits given as input. The results after 100 epochs

are depicted in Figure 7. Based on the results depicted in Fig-

ure 7a, we can observe that both the default DeepSets model and

the compressed DeepSets model (CDeepsets) generalize much

better than LSTM and GRU and perform similarly for the task

where we sum digits in the range [1, 10]. However, performing a

compression over an embedding with 10 entries does not bring

significant memory benefits. As the compression impact is not

drastically visible for digits in the range [1, 10], unlike the orig-

inal implementation, we vary the numbers up to 100, and we

present the results in Figure 7b. The compressed version has the

same MAE as the non-compressed one for a smaller memory.

The memory of the compressed version is 0.035 KB, whereas the

memory for the original one is 0.053 KB. Although not depicted,

a similar trend can be observed in the accuracy when we increase

the numbers in the range [1, 1000], with an even more signifi-

cant difference in the memory, i.e., DeepSets occupies 0.404 KB,

whereas the compressed version is 0.052 KB. During training,

we can also notice that the compressed model learns faster and

converges faster than the non-compressed DeepSets. Note that

we previously mentioned that the compressed version increases

the model complexity and may impact the accuracy. Although

not visible in this simple use case, it was previously apparent for

more complex tasks such as cardinality estimation and indexing.

8.5.2 Impact of Compression Factor ns . The compression fac-

tor ns directly affects the memory footprint of the model, impact-

ing the ability for the models to be applied for various database

tasks. Therefore, it is essential to investigate how much the com-

pression factor ns has an impact on the input dimensions of the

model. The results are depicted in Figure 8. Based on the results,

it is evident that when increasing ns there is a drastic reduction
in the input dimensions. Naturally, when increasing ns , we af-
fect not only the size but also the accuracy of the models. Thus,

when considering both the memory and the accuracy, we suggest

setting ns to two or three.

8.5.3 System Integration. To demonstrate how our proposed

approaches behave in a real-world system, we have implemented

our cardinality estimator as a user-defined function in Post-

greSQL 13. We imported RW-3M in PostgreSQL as an hstore data

type that allows storing sets of key-value pairs as an attribute

value inside a table. In our case, the set elements represent keys.

For the evaluation, we considered 5000 queries. We depict the

results of exact COUNT queries with and without an index in

PostgreSQL and our cardinality estimator in Table 12. As previ-

ously claimed, CLSM drastically reduces the memory of the index

in PostgreSQL. Furthermore, we notice that CLSM tremendously

Table 12: Cardinality estimator in PostgreSQL (evaluation
performed over RW-3M).

PostgreSQL w/o Index PostgreSQL w/ Index CLSM

Avg. Exec. Time (ms) 295.5 1.78 1.26
Memory (MB) – 37.92 0.182
Build Time (s) – 29.9 400

speeds up the performance of PostgreSQL without an index and

outperforms the built-in hstore index. The model still preserves

the low prediction time, but the overhead comes from the data

transfer. This experiment further underpins the importance of

our proposed learned approaches over sets.

8.6 Lessons Learned
As we have observed from the experiments, depending on the

settings and the datasets used, every model can bring different

benefits. When comparing LSM against CLSM, we notice a de-

crease in accuracy but an enormous memory benefit, especially

in the presence of many elements. For cardinality estimation,

we can use both LSM and CLSM with and without an auxiliary

structure, depending on the needed trade-off between memory

and accuracy. Including an auxiliary structure improves accu-

racy when even a small number of outliers are removed. For

the indexing task, solely using the model produces enormous

errors, leading to large execution times. For that reason, the hy-

brid option is a necessity. Furthermore, the local range errors are

highly beneficial and produce a shorter execution time. There-

fore, the best options are both LSM-Hybrid and CLSM-Hybrid

with local range errors. Finally, for the membership task, since

the drastic space saving is a requirement to compete with the

traditional structure, CLSM is the best option. In conclusion, the

preferred option for most scenarios is the CLSM-Hybrid variant

since it always incurs negligible additional memory but achieves

drastically better estimation accuracy.

9 CONCLUSION AND FUTUREWORK
We addressed the problem of learning over sets for subset mem-

bership queries, indexing, and cardinality estimation. We put

forward models that use the permutation invariant architecture

DeepSets for handling sets. Since sets can consist of many unique

elements, we utilized a per-element lossless compression to cre-

ate models of practical size without substantially lowering their

accuracy. We appropriately extended the DeepSets architecture

while retaining the crucial permutation invariant property. We

proposed a hybrid structure incorporating a learned model and

an auxiliary structure for indexing and cardinality estimation in

challenging distributions. We analyzed the advantages and limi-

tations of the proposed models and performed a comprehensive

experimental evaluation that justifies our design decisions and

supports our claims.

As future work, the exploration of set-related problems can

be broadened by considering multi-set multi-membership query-

ing. This would include analysis of the preprocessing steps and

identification of an appropriate learned architecture.
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