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ABSTRACT
Meta uses MySQL to manage tens of petabytes of data for vari-
ous internal services including our largest database that serves
the social graph. In the past, we used a mix of MySQL’s semi-
synchronous and asynchronous replication protocols. We relied
on external processes for control plane operations, like failover
and cluster membership changes, to provide high availability and
fault tolerance. This systemwas complicated, prone to edge cases,
and hard to prove theoretically. Therefore, we decided to transi-
tion our MySQL replication stack to a proven consensus protocol,
namely Raft. In this paper we present MyRaft, a MySQL server
integrated with Raft. The integration was achieved through a
MySQL plugin, along with necessary modifications to MySQL
replication. In order to meet demands for low latency and high
availability in our production deployment, we made multiple
enhancements to Raft, e.g. FlexiRaft and Proxying.

We havemigrated a large portion of our deployment toMyRaft.
This has helped reduce MySQL failover time from one minute to
a few seconds, while still achieving low commit latency. In this
paper we describe how the integration was achieved to make
MySQL a natively fault-tolerant distributed database. We also
share our experience and insights from rolling out MyRaft at
scale.

1 INTRODUCTION
1.1 Motivation
Historically, RDBMSs like MySQL were built to run on a single
node. As the need for fault tolerance and high availability in-
creased, single node databases evolved to multi node distributed
systems. Starting in the early 2000s, several influential papers
on distributed systems were published, including the Google File
System [13], BigTable [9], Cassandra [17], and Spanner [12]. The
foundation of many of these systems was a consensus algorithm
like Paxos [18], which offers consistency even in the event of
failures.

At Meta, MySQL is the most commonly used OLTP database,
serving as the relational data store for services like the social
graph. Our MySQL deployments are geo-replicated for fault tol-
erance, high-availability and scalability. A cluster of replicated
MySQL servers and log-only entities (called logtailers) is called
a replicaset (Figure 1a). Each replicaset contains a set of shards
which map one-to-one to MySQL databases. Every replicaset
has a single primary instance (at a given time) that handles all

∗This work was conducted while Vinaykumar, Bartlomiej, Yash, Ritwik and Pushap
were employed at Meta Platforms

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

write transactions. These transactions are asynchronously repli-
cated to replicas using MySQL’s binary log [21]. Not all replicas
are capable of becoming the primary. We attach logtailers to
every primary-capable replica. Logtailers are special servers that
do not have a storage engine; they can only receive, store, and
send replication logs. MySQL’s semi-synchronous [1][36] replica-
tion protocol was previously used between the primary instance
and the logtailers. The logtailers send acknowledgement to the
primary after they have persisted the transactions in the local
storage. Typically, a primary has two logtailers attached to it, and
it waits for acknowledgement from at least one logtailer before
committing a transaction. This makes the transaction durable.
In case the primary is unavailable, the logtailers can help elect a
new primary.

These replication protocols do not provide support for control
plane operations, such as electing a new primary or managing
membership changes. These operations were handled by exter-
nal processes (henceforth called automation). Automation main-
tained the notion of a replicaset and handled everything from
membership changes to failure detection and primary election.
When current primary MySQL was not connectable, automa-
tion would orchestrate failover and promote another MySQL to
primary. However, the previous “presumed-dead” MySQL could
come back to accept writes, where we would have a split-brain.
To tackle this issue, we had a mechanism called “node fencing”, in
which automation disabled writes on the two logtailers of the old
primary. This needed additional safeguards like handling restarts,
quarantines and complex persistent locking, often leading to
corner-case. These automation processes would run on different
machines and used external locking to avoid race conditions, and
the order of operations would be critical for correctness. The
distributed setup made it difficult to accomplish this atomically.
Automation grew increasingly complex and difficult to main-
tain as the number of corner cases that needed to be addressed
increased over time, making debugging issues a challenge.

As we dealt with these issues, it became obvious that we
needed to bring the source of truth of replicaset membership
within the MySQL server, and serialize the data and control op-
erations in the same replicated log. Consensus algorithms have
been utilized in both industry and academia to drive the repli-
cated log, and distributed databases are usually built as a state
machine over transaction logs. Raft [20] is a consensus algorithm
known for its simplicity and ease of understanding. Additionally,
Raft is also a complete specification to build a replicated log,
with strong leader semantics. Raft provides algorithms for how
to replicate data, elect a leader and manage membership. Raft’s
popularity grew significantly and it became the most popular
consensus algorithm in industry, powering many datastores like
CockroachDB [4], MongoDB [41] and Yugabyte [11]. Due to its
properties of simplicity, understandability and completeness, we
chose Raft as the consensus algorithm to build MyRaft.
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(a) Prior topology of a replicaset
(b) Raft topology of a replicaset without Flexiraft (§4.1) and
Proxy (§4.2)

Figure 1: Replicaset topology

1.2 Contribution
In this paper we present several notable contributions. Firstly,
we have successfully integrated the Raft consensus protocol into
MySQL. This is a complex undertaking since tenured databases
like MySQL have many entrenched requirements and behaviors,
which do not necessarily line up with the clean separation of con-
cerns necessary for the commonly understood design of a repli-
cated state machine. Often, existing implementations have a very
tight coupling of the state machine (database) and the replicated
log. We have successfully preserved most of MySQL’s external
behavior with no impact to our services, and we have brought
the source of truth for leadership and membership management
into the MySQL server. We have achieved this integration by
making multiple changes to MySQL: (1) We built an abstract
layer to manage the well known MySQL binary log [21], which
is used as the replicated log in Raft; (2) We implemented various
hooks for MySQL to interact with Raft during a transaction’s
commit which enables us to commit a transaction only after it
has received consensus in Raft; (3) Whenever promotion happens
inside Raft, it orchestrates a sequence of steps through well de-
fined callbacks to transition MySQL primary to replica or replica
to primary. The above contributions can serve as a guide to build
replicated state machines on top of Raft. The set of orchestration
steps that helps automatic failover and membership changes can
be easily repurposed for any other replicated state machine or
legacy RDBMS.

As our MySQL replicas are distributed across multiple geo-
graphical regions, the standard Raft setup suffers from high com-
mit latency due to cross-region network latency. To solve this,
we also made important contributions to Raft by implementing
FlexiRaft [39], an algorithm for flexible commit quorums. With
FlexiRaft’s single region dynamic mode, a data commit quorum
only consists of the majority of the entities inside a single region,
by which we achieve low commit latencies. We also implemented
Proxying which reduces cross regional network bandwidth by
supporting a hierarchical tree network topology over a logical
star topology. Our evaluation shows that MyRaft has reduced
failover time by 24x while still achieving similar low commit
latencies, compared to the previous setup.

Lastly, we share our operational experience and lessons learned
while rolling out MyRaft to our fleet.

The rest of the paper describes important aspects of this
project. In §2, we give an overview of how Raft is overlaid on
a MySQL replicaset. In §3, we describe changes that we had to

make in MySQL server1 to integrate it with Raft. In §4, we de-
scribe improvements and contributions we made to kuduraft2,
the open source C++ Raft implementation which was extracted
from Apache Kudu [3]. Rolling out this big change needed care-
ful planning, testing and a staged release. In §5, we describe the
steps we took to rollout the new system safely and with minimal
downtime for our customers. In §6 we present key results from
our production deployment. We end the paper with listing some
related work in §7 and conclusion in §8.

2 RAFT TOPOLOGY AND MAIN
OPERATIONS

2.1 MyRaft Topology
As shown in Figure 1b, in MyRaft, all members of a replicaset
including logtailers are members of the Raft ring. Raft ring mem-
bers are either voters or non-voters. Voters participate in leader
elections by voting, while non-voters are passive entities that
receive logs but do not participate in elections. Replicaset mem-
bers have the following roles in Raft terminology, which can
dynamically change: the primary replica is the leader, primary
capable replicas are followers, non-voting replicas are learners,
and logtailers arewitnesses. Learners resemble followers, but they
do not participate in the voting process and cannot become a
leader. All logtailers are voters, but don’t have a storage engine.
This mapping is summarized in Table 1.

2.2 Main Operations in Raft
The key operations of Raft are data replication, graceful transfer
of leadership or promotion, failover and membership changes.

Data Replication: The client write goes to a primary which is
the Raft leader. The leader writes the transaction entry to its local
log and replicates the log entry by sending AppendEntries RPCs
to all members of the Raft ring. The transaction is considered
"consensus committed" after majority of the voters acknowledge
the log entry. It is then committed in the storage engine.

Promotion: During software upgrades and othermaintenance
operations, the current leader gracefully transfers leadership
(TransferLeadership) to one of the followers by first making sure
that the follower has all of the log entries and then triggering an
election on the follower.

Failover: The leader periodically sends heartbeats to all fol-
lowers. A follower automatically detects a dead leader due to
missed heartbeats, and runs elections to become the new leader.
1https://github.com/facebook/mysql-5.6
2https://github.com/facebook/kuduraft
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MyRaft
Role

Entity MyRaft State Machine
/ Database Role

MyRaft
Voter

Prior Setup Role w/ In-region
Logtailers

Database Read Write

Leader MySQL Primary Yes Primary Yes Yes Yes Yes
Follower MySQL Failover replica Yes Replica Yes Yes Yes No
Learner MySQL Non-failover replica No Replica No Yes Yes No
Witness Logtailer N/A Yes Semi-Sync Acker N/A No No No

Table 1: Roles in MyRaft compared to prior setup

A logtailer can also be elected as a temporary leader due to Raft’s
voting rules where the longest log wins. In that case, the logtailer
will TransferLeadership to a replica using a regular promotion.
During the failover process, the erstwhile leader is fenced off by
Raft’s term increment, and demotes to follower once it is able to
communicate with the replicaset again (by receiving AppendEn-
tries from the new leader or RequestVote RPC from a candidate
during voting).

Membership Changes: Membership changes are always ini-
tiated by automation. Automation may detect that a member
needs to be replaced for a variety of reasons, e.g. load balancing,
failure, maintenance, etc. It allocates and prepares a new member
and invokes an AddMember operation in Raft. The membership
change is deemed successful when committed in the log and
the new membership information is maintained in Raft. How-
ever as per the Raft specification, each individual member of the
replicaset uses the new membership list as soon as it writes the
change entry to its log. The principles of quorum intersection
guarantee the safety property. Quorum intersection is implicitly
achieved by allowing only one membership change at a time (a
single AddMember or a single RemoveMember).

3 INTEGRATIONWITH MYSQL
We chose Apache Kudu [3] instead of implementing the Raft
protocol ourselves because it is an industry proven, production
hardened C++ Raft implementation. Kudu has its own replicated
log format, while MySQL uses Binary Logs [21] for replication.
We have internal tools and services that depend on the binary
logs like our backup and restore service and downstream ser-
vices for change data capture (CDC) [37]. To preserve our MySQL
server’s external behavior as much as possible and to reduce the
burden of migrating to a new log format we decided to support
binary logs in MyRaft. Furthermore this decision would make
MyRaft simpler for rest of the MySQL community to use. MySQL
commands like SHOW BINARY LOGS [30], SHOW MASTER STATUS
[31], SHOW REPLICA STATUS [32], PURGE LOGS TO [25] and FLUSH
BINARY LOGS [24] continue to work in MyRaft. Some replication
commands like CHANGE MASTER TO [23], RESET MASTER [28]
and RESET REPLICA [29] were adjusted or disallowed because
these operations are handled by Raft. We also decided to preserve
Global Transaction Identifiers (GTIDs) [27] and all other meta-
data associated with them (like GTID sets). Additionally, every
transaction is assigned an OpID (Raft term and log index) by Raft.

In this section, we first describe the overall architecture of
MyRaft – Raft as a MySQL plugin in §3.1, followed by MySQL
relay-log and binlog (§3.2) and MySQL state change during Raft
role change (§3.3). We also explain how commit paths work in
MyRaft for the leader (§3.4) and follower (§3.5). More details about
Raft integration with MySQL log purging (§A.1) and MySQL
recovery (§A.2) are included in the appendix.

Figure 2: Interaction between MySQL server, plugin and
kuduraft

3.1 mysql_raft_repl: Raft as a MySQL Plugin
We implemented the state machine/database and Raft interaction
through a new MySQL plugin called mysql_raft_repl. The plugin
uses kuduraft as its Raft library. MySQL interfaces with the plugin
through the MySQL Plugin API (Figure 2). Similar APIs had been
used previously to implement the semi-synchronous protocol
[36] as well. For callbacks (Raft calling back into MySQL), we
created a separate API. The callback API from Raft to MySQL
server is used by Raft to orchestrate a set of steps to configure
MySQL as a primary (and then enabling client writes on it) on
promotion, and to configure the MySQL to replica (by starting
the applier thread and disabling client writes) on demotion. The
API is generic and other RDBMS systems can follow the design or
specialize their own handlers which would allow them to build a
Raft-driven replicated state machine.

Apart from the functionality of orchestrating promotion steps,
the mysql_raft_repl plugin also provides a helper for kuduraft to
read and write MySQL binary logs. Since kuduraft is a generic
Raft implementation, it is unable to natively read MySQL’s bi-
nary log files. Hence we enhanced kuduraft to have a log abstrac-
tion layer, and then specialized this abstraction for MySQL in
the plugin. This abstraction enables kuduraft to read and write
transactions from binary logs without having to worry about
its format. One instance where the log abstraction is utilized
is as follows: Consider the situation when a Raft follower has
significantly fallen behind the leader, such that the transaction it
needs to be sent are not present in the in-memory cache of the
Raft leader. In this case the Raft leader uses the log abstraction
to parse historical binary log files, present on the local disk, and
then invokes AppendEntries RPCs to send these transactions to
the follower.

3.2 Relay-Log and Binlog Modes
A MySQL instance has two kinds of replication log files, bin-
logs and relay-logs [34]. During asynchronous MySQL primary-
replica replication, the MySQL primary writes to its binlog us-
ing a pipeline of stages (described in §3.4) and then ships the
transactions to replicas (described in §3.5). A replica receives
the transactions in relay-logs and executes them using special
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threads [26] (henceforth called the applier or applier threads) that
use the same pipeline of stages to commit the transactions to the
database.

A MySQL primary uses the Raft plugin to write the transac-
tions into its binlog. The Raft leader also caches this transaction
into its in-memory cache and then initiates the AppendEntries
RPC to the followers. When the Raft follower receives the Ap-
pendEntries RPC, it unpacks the RPC payload and writes the
transaction to the Raft log, which is pointing to the relay-log of
MySQL. The write of a transaction to the log file always happens
via the Raft plugin. On the primary, MySQL uses the Raft plugin
to write the transaction to log file, while on follower the Raft
plugin writes the transaction to the log first and then informs
MySQL of the new entry. For this mechanism to work, the current
log file is kept up to date in Raft by MySQL. During a promo-
tion, an important part of the promotion orchestration process
is to rewire these registered files to match the correct persona
of MySQL (binlog or relay-log). As mentioned previously, these
personas are merely of relevance to the MySQL codebase, which
uses different replication logs during different parts of replication
(applier vs. the primary).

3.3 MySQL state change during Raft role
change

In a healthy Raft ring, the leader continues to replicate writes to
all the other members in the ring. In order to preserve authority
on the ring, the leader also sends heartbeats if there are no writes.
Failovers are initiated within Raft and can happen at any point in
time. Process crashes, host crashes, and networking failures are
common reasons for triggering a failover. Raft failovers happen
when successive heartbeat failures are detected, after which a
follower transitions to candidate and starts an election. During a
successful failover, Raft will undergo successful role transition
first. At this point the Raft role (leader or follower) of the member
will not match with the MySQL role (primary or replica). MySQL
will then have to be configured by Raft via the callbacks: the
state machine/database will be directed by Raft to switch into
the desired role, primary or replica.

Before getting elected, a new leader was a follower and its
MySQL was behaving like a replica. On transition to leader, the
Raft plugin orchestrates the transition of MySQL from a replica
to a primary via the following steps:

(1) Appending a No-Op event to the log to assert leadership
on the cluster and consensus-commit the tail of the log.

(2) Catching up and committing all transactions to the engine
up to the No-Op event using the applier.

(3) Rewiring the logs to switch from relay-log mode to binlog
mode.

(4) Allowing client writes on the primary.
(5) Updating the service discovery system about the change

of role to primary.

On the other side, the previous Raft leader, now a follower,
must be demoted to a MySQL replica. When the erstwhile leader
contacts the rest of the ring (or votes for a candidate at higher
term), it notices a change in term. At that point, Raft demotes the
member from a leader to a follower. Then Raft initiates the set of
orchestration steps to demote MySQL from primary to replica.
These steps involve:

(1) Aborting all in flight transactions (transactions that were
waiting for consensus commit). Since these transactions

are in prepared state in the storage engine, we can simply
perform a rollback online.

(2) Disabling client writes on the replica.
(3) Rewiring the logs on MySQL from binlog to relay-log

mode.
(4) In some conditions, there are pending transactions that

have not been consensus committed, Raft could truncate
the replicated log to remove transactions there were not
deemed consensus-committed, and through appropriate
callbacks, the GTIDs of the truncated transactions would
be removed from all GTID metadata.

(5) Starting the applier thread and pointing it to the appro-
priate starting point on the relay-log based on an online
recovery protocol, where the last transaction committed
in engine would be used to determine the starting cursor
for the applier.

3.4 Write Transaction on MySQL Primary
Figure 3 demonstrates at a high level the commit paths in MyRaft
for the leader and follower. Clients send their writes to a MySQL
primary. In a stable ring, the MySQL primary is also the Raft
leader. The transaction would first be prepared in the storage en-
gine (e.g. MyRocks or InnoDB). This would happen in the thread
of the client’s connection. The act of preparing the transaction
would involve interactions with the storage engine (e.g. writ-
ing prepare markers in the storage engine write ahead log). The
thread would acquire appropriate locks based on the isolation
level, and the writes would generate an in-memory binary log
payload for the transaction. The existing deployments run row
based replication (RBR) [35]. The transaction payload created
would be according to the mode [22] currently configured, e.g. all
the columns in the before-image of the row and the after-image of
the row in the database could be part of it. At the time of commit,
GTIDs would be assigned, and then Raft would assign an OpId
(term and index) to the log entry. A checksum is generated for the
transaction at this point, to detect corruptions later. Then Raft
compresses the transaction and stores it in its in-memory cache
and writes the uncompressed transaction to its log file. Once the
leader has written the transaction to its own log, the self-vote for
the log entry is given. Asynchronously Raft starts shipping the
transaction to other followers to get acknowledgements/votes
and reach "consensus commit".

The thread that is committing a transaction has three stages
in the pipeline. Each stage has its own mutex, and the set of
transactions that are grouped together move down each of the
three stages of the pipeline in tandem.

(1) Flush: The transactions are logged to the binlog via Raft.
(2) Wait forRaft ConsensusCommit: The thread is blocked

waiting for consensus commit on the last transaction in
the group. Raft reaches consensus commit when it gets ac-
knowledgements from a majority of the voters. Reaching
consensus commit unblocks the thread and it reaches the
final/third stage for this group.

(3) Storage EngineCommit: In this stage the prepared trans-
actions are durably committed to the engine. After engine
commit, the write query will finish and return success to
the client. The locks held by the transaction are released at
this point, allowing for subsequent, blocked transactions
to proceed.

On the Raft side, once "consensus commit" has been reached,
the commit marker is moved forward. Raft will piggyback the
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Figure 3: MyRaft Commit Path

commit marker (Opid of current commit) to followers in the next
AppendEntries RPC, so that they can also apply the transactions
to their database by proceeding in their applier threads.

3.5 Write Transaction on MySQL Replica
Upon receiving an AppendEntries RPC, a non-leader will append
the transaction to the log using the plugin and the log abstrac-
tion. This log file points to the relay-log file of the MySQL replica.
Once the new transaction has been appended, the Raft plugin
informs MySQL of the new log entry. It also signals the applier
thread, which picks up the transaction from the relay-log and
applies the transaction to the database. One notable difference
is that the applier is processing a binary log payload of RBR
events, and is much more efficient in applying the transaction.
The last event in a transaction payload is the COMMIT event.
This triggers the transaction to reach commit and it enters the
commit pipeline (similar to the primary). The commit pipeline
on the replica goes through the same three stages as a primary;
the first stage is the flush stage, where the transaction is written
to an applier’s log files; the second stage is the wait for consen-
sus commit stage, where it waits for Raft to reach that commit
marker; and the final stage is the engine commit phase, where the
transaction gets committed to the engine. The deployment does
not support chain replication and there are no more downstream
Raft entities. Hence, the applier’s log is a non-replicated local
log. One important design decision we made was to preserve
symmetry between the primary and the replica, and therefore
the transaction waits for consensus commit by consulting Raft in
the same way on both the primary and the replica. On the leader,
consensus commit is observed when the quorum votes have ar-
rived, while on the follower, consensus commit is observed when
the commit marker sent by the leader arrives.

4 IMPROVEMENTS TO RAFT
4.1 FlexiRaft
The Raft algorithm does not offer much flexibility in choosing
data commit quorums, which is important for latency-sensitive
applications. Both the leader election and data commit quorums
are defined as themajority of the votingmembers in the replicaset.
Even though this configuration provides algorithm simplicity, it
is unable to serve production workloads that require lower la-
tency and high throughput. A replicaset in our deployment might
have numerous replicas spread out across multiple geographical
regions. Seeking a majority vote from members situated in mul-
tiple geographical regions was prohibitive and easily became a
bottleneck for our workloads. Therefore, we added support for
configuring flexible quorums with Raft based on the needs of the
application.

Quorums in FlexiRaft are defined in terms of majorities within
disjoint groups of members in a replicaset. These groups are
constructed based on physical proximity, e.g. a geographical
region. If the data commit quorum was defined [14] as a majority
in any one of the geographical regions spanned by the replicaset,
the corresponding leader election quorumwould always require a
majority vote from every region, since the tail of the log could’ve
been present in any of those constituent regions.

This is not desirable from a fault tolerance perspective because
the disruption of any single geographical region would cause
leader elections to fail even if that region did not host any former
leaders.

The single region dynamic mode offered by FlexiRaft solves
the problem stated above by restricting both the data commit
and leader election quorums to a single region and is able to
offer latencies on the order of hundreds of microseconds. The
implementation maintains region-based watermarks (tracking
which log entries have been received by each member), allowing
the leader to reach consensus commit on a log entry as soon as
acknowledgements have been received from its in-region data
quorum (a self-vote from the leader and an acknowledgement
from one of the two in-region logtailers). As the name suggests,
each successful leader election leads to the data quorum shifting
to the next leader’s region dynamically. The desired quorum
intersection is achieved by keeping track of the last known leader
and voting history on each server.More details about themodified
algorithm are available in the FlexiRaft paper [39]. The election
safety, state machine safety, and leader completeness properties
are guaranteed similar to Raft [20] mandating the presence of
all previously committed entries in every future leader’s log.
The correctness of the protocol has been validated by a TLA+
specification [40].

In the above mode, there is a possibility of a rare event of the
leader’s full region suffering a network partition. The situation
rarely happens in production deployments due to power path
and networking redundancies in our datacenters. FlexiRaft al-
lows applications to chose their consistency vs latency tradeoffs,
and provides them with configurations to have single-region or
multi-region commit quorums. Our current deployments how-
ever primarily use the single-region commit quorum mode. Since
kuduraft does not implement automatic step down, the tail of
consensus committed entries might increase. In such a situation
we currently choose consistency over availability and wait for
the network partition to heal.

Another outcome of in-region quorums is that during leader
failure, the in-region logtailer could be elected as an intermedi-
ate leader due to the leader completeness property of Raft (the
logtailer tends to be the most-ahead member with the longest
log). In such a case, a graceful TransferLeadership is utilized to
elect a MySQL server as the new leader in a different region.

4.2 Raft Proxying
One requirements mismatch between the standard Raft protocol
and the pre-existing multi-region replication strategy we had
is the hub-and-spoke network architecture of Raft; The leader
node replicates data to each follower node directly. Since we
have multiple entities distributed across multiple regions in our
replication architecture (due to the presence of logtailers), to
minimize cross-region data transfer, and to prevent the leader
from becoming a hotspot [10], we extended Raft’s design to
support Proxying.
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Figure 4: Communication between Leader, Follower as
Proxy, and Follower as Destination

4.2.1 Design. We did not want to make significant logical
protocol changes for network optimization purposes, due to the
burden of proving the safety of those changes, as well as to keep
the changes to the original kuduraft implementation smaller. Our
design for Proxying keeps all replica log bookkeeping in the
leader, making it effectively standard Raft from a safety perspec-
tive.

We have added the ability for followers to proxy AppendEntries
requests from the leader to downstream nodes. In addition, Raft
AppendEntries messages were made to support a new type of
message called PROXY_OP, which carries request metadata but
no payload. At the final hop, when the message is about to be
delivered to the destination node, the final proxy node will recon-
stitute the payload from its own log, replacing the PROXY_OPwith
the actual log entry represented by the term and index (OpID)
specified in the message header (Figure 4).

If the proxy node does not have a local copy of the given
entry, it will wait for a configurable period for that message to be
available in its local log entry cache before degrading the proxied
replication message to a simple heartbeat to the downstream
follower, instead of the actual data. Either way, the response from
the downstream follower will then be proxied back upstream,
ultimately to the leader.

Due to the above blocking / waiting behavior, the leader does
not have to worry about specially ordering the transmission of
messages containing proxy requests and messages containing
a data payload. This optimizes for the common case where all
nodes are essentially caught up to the leader. Without the waiting
behavior, that case could easily degenerate to 2 or more RTTs
across the WAN to replicate ops from leader to remote logtailer.

Note that proxying only applies to data path replication, not
votes. Leader election voting continues to operate in a peer-to-
peer fashion, and is not proxied. Voting is a rare enough oc-
currence that the additional complexity is not justified for the
cross-region bandwidth savings.

4.2.2 Tradeoffs. One downside to this design is that there is
network overhead for control plane requests continuing to go
from the leader to all global followers. Our back-of-the-envelope
calculation says that proxying to a remote logtailer with the above
simple implementation of PROXY_OPs is 2-5% of the resource
burden of “vanilla” Raft on a per-connection basis, assuming
an average of 500 bytes of data per log entry. We believe that
the simplicity of the approach and compatibility with the Raft
protocol are worth this small overhead.

4.2.3 Failure handling. Sometimes, proxy nodes become un-
available. When this happens, the upstream node (typically the
leader) eventually detects their unavailability via health checks
and “routes around” them to directly access the next hop, until
they become healthy again or are replaced by the control plane
infrastructure.

4.3 Mock Elections
Leader elections are disruptive and can cause write unavailabil-
ity because leaders have to be quiesced (put into a read-only
mode) every time a leader election occurs. Raft pre-elections are
intended to mitigate this disruption, but are not sufficient for
TransferLeadership with FlexiRaft. A graceful TransferLeadership
in kuduraft does not run a Raft pre-election: the only criteria for
the election to start on the intended future leader is that it be fully
caught up to the current leader. FlexiRaft needs a region-based
commit quorum, so for a candidate to be elected it also needs
a majority of votes from its own region. At least two classes of
issues can create write unavailability in this scenario: (1) lagging
in-region logtailers can prevent a new leader from committing
any transactions until they "catch up" to the commit marker; (2)
server bugs can prevent a new leader from completing the promo-
tion process within MySQL. Since kuduraft does not implement
auto step down, a "stuck" leader can cause problems for a long
time.

In order to address these write availability issues, we added an
additional election stage called mock elections. A mock election
round is run before TransferLeadership begins, so clients don’t
see any downtime (user writes are not disallowed yet). The leader
captures a snapshot of its cursor and asks the remote member to
run a round of pre-election with this snapshot. This mimics the
act of queiescing the leader. The rules of voting were modified
to reject votes when a member is lagging in the same region as
candidate. In essence, the mock election acts as a simulated pre-
check to confirm that the remote member, with the support of
its region’s quorum, can win the election and properly function
as a leader afterward. This feature has eliminated situations of
availability loss, which were often caused by unhealthy logtailers
not being replaced quickly enough in the replicaset.

5 SAFE ROLLOUT OF RAFT
As MySQL is a critical service at Meta, it was necessary to main-
tain the availability and correctness of MySQL during Raft rollout.
In this section, we will discuss how we successfully rolled out
Raft without disruption to services.

5.1 Shadow Testing
We used a testing tool called MyShadow [19], which generates
a production-representative workload, and allows us to test ser-
vices in an isolated environment. In such a testing environment,
we leveraged two types of testing to reveal bugs and inefficiencies
early on. The first type of testing was failure injection testing,
where we constantly insert crashes into the current leader (trig-
gering failover). The second type of testing was functional testing,
where we constantly asked the current leader to gracefully trans-
fer leadership to another member, as well as constantly triggered
membership changes. For each type of testing, we repeated the
same test thousands times, during which latent bugs started to
reveal themselves. We also did similar crash recovery tests for
followers, learners, and witnesses.
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During testing, we continuously ran checks to ensure the cor-
rectness of the underlying MySQL database and MySQL binary
log. The checks were conducted in the form of checksum com-
parisons between the leader and followers, which is beyond the
scope of this publication. In addition, during the testing, we also
measured client-side downtime. The overall goal of such testing
is to exercise the critical code paths in a production-like envi-
ronment. We fixed any bugs or system design issues that would
prolong the downtime or cause correctness issues.

Lastly, in order to ensure that the downstream dependencies
were well tested, we included our change data capture (CDC) and
backup/recovery systems as part of the testing.

5.2 Rollout
For production rollout, we created a tool called enable-raft to or-
chestrate the transition from semi-sync to Raft. The tool consists
of several steps:

(1) Holding a distributed lock for the replicaset to prevent
other control plane operations from executing on the repli-
caset.

(2) Performing safety checks to determine whether the repli-
caset is suitable target. For example, we prevent enable-raft
from running on a replicaset that is undergoing mainte-
nance.

(3) Loading the plugin and setting the Raft-specific configu-
rations on each of the entities (MySQL and logtailer in-
stances).

(4) Stopping all writes from the client, making sure that all
replicas are caught up and consistent, and starting the Raft
bootstrap.

(5) Publishing the change of role to primary, as applicable, to
the service discovery system.

Once a leader is elected in Raft, the orchestration steps of Raft
ensure that client writes are enabled for the leader (§3.3). The
last step involves a small amount of write unavailability for the
replicaset (usually a few seconds).

The enable-raft tool was made robust over time and can roll
out Raft at scale in a very short period of time. We have used it
to safely roll out Raft to thousands of replicasets per day.

5.3 Quorum Fixer
As discussed in the previous sections, to optimize commit latency,
the data commit quorum in our FlexiRaft setup is usually small
(in the form of one MySQL and two logtailers). A "shattered quo-
rum" (loss of quorum) happens when a majority of the entities in
the data commit quorum (two out of three entities) are unhealthy,
which can cause a loss of write availability. Although the software
has been well-tested and hardened for production, failures can
still happen when running services at scale. The typical case is
when automation does not detect unhealthy instances/logtailers
in the ring and does not replace them quickly enough. This can
happen due to poor detection, worker queue overload, or a lack of
spare host capacity. A rarer case is correlated failures when mul-
tiple entities in the quorum go down at the same time. This does
not happen often, because the deployments try to isolate failure
domains (such as power and network) across critical entities of
the quorum, through careful placement decisions.

When incidents happen, tools need to be available to mitigate
such situations in production. We anticipated this, and hence
built Quorum Fixer. Quorum Fixer is a remediation tool authored
in Python which helps to restore the availability of the Raft ring

in the case of a shattered quorum. It operates as follows: (1) First,
the tool quiesces attempted writes on the Raft ring. (2) Next, it
performs out-of-band checks to determine which entity has the
longest log, therefore should be chosen as the next healthy leader.
(3) Then, it forcibly changes the quorum expectations for a leader
election inside Raft, so that the chosen entity can become a leader,
despite not winning enough votes. (4) Finally, after a successful
promotion, it resets the quorum expectations back to normal,
and the ring becomes healthy.

By default, Quorum Fixer runs in a safe, conservative mode,
but has configuration options to relax various safety constraints.
Most of the time, running it in its default conservative mode is
sufficient to restore write availability to a replicaset. Although
Quorum Fixer is an important tool for mitigating problems in
production, we made the decision to not run this tool automati-
cally. The main reason for this is that we want to identify and
root-cause all cases of shattered quorums and eliminate bugs
along the way, rather than have them be fixed by automation.

6 EVALUATION
This evaluation focuses on a performance comparison between
MySQL’s semi-synchronous / asynchronous replication (prior
setup) andMyRaft, and shows that MyRaft reduces failover down-
time by tenfold while maintaining similar commit latency and
throughput. The scalability of the MySQL deployment or com-
parison with other Raft implementations is not in the scope of
this paper.

6.1 Latency and Throughput
In our production deployment, clients did not notice any regres-
sion in commit latency and throughput. However, when pushed
to the limits we expected our prior setup to perform better than
MyRaft because Raft is a more complex protocol compared to
MySQL’s semi-synchronous and asynchronous replication.

We used an A/B test with a workload representing production
to compare MyRaft with our prior setup. We used a replicaset
topology where a primary had two logtailers in the same region,
five followers (with two logtailers each) and two learners. All
followers and learners were in different geographic regions. The
latency between clients and the primary was about 10ms.

Figure 5a shows a histogram of commit latency as observed
by the clients. While MyRaft shifts a little towards higher la-
tency, the average latency is very similar: 15758.4us for MyRaft
vs. 15626.8us for the prior setup, representing a 0.8% win for the
prior setup. Figure 5b compares the throughput between MyRaft
and the prior setup with unit time in the x-axis and number of
commits in the y-axis. The results showed no significant differ-
ence in throughput.

We also evaluated MyRaft using the sysbench OLTP write
benchmark [16] which has a much higher write rate compared
to our production deployment. To reduce the affect of client to
primary latency, we ran the sysbench clients on the samemachine
as the primary.

Figure 5c shows a histogram of commit latency for the sys-
bench workload. We observed that MyRaft has a higher latency
distribution: average latencywas 826.368us forMyRaft vs 811.178us
for the prior setup, which is about a 1.9% difference. Figure 5d
compares the throughput between MyRaft and the prior setup
by number of client threads using the same sysbench benchmark.
Up to 32 client threads, we observe similar throughput for both
MyRaft and the prior setup. At 128 client threads, both systems
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(a) Production latency (b) Production throughput (c) Sysbench latency (d) Sysbench throughput

Figure 5: Evaluation for MyRaft vs. Prior Setup

Mode Operation pct99 pct95 Median Avg
Semi-Sync Failover 180291 98012 55039 59133
Semi-Sync Promotion 1968 1676 897 956
Raft Failover 6632 5030 1887 2389
Raft Promotion 357 322 202 218

Table 2: MyRaft vs. Semi-sync Promotion Downtime (ms)

reach peak throughput, but MyRaft’s throughput is slightly lower
by approximately 3%.

In practice, the performance difference between MyRaft and
the prior setup is barely noticeable by clients, because most pro-
duction client traffic is handled by a cache layer called TAO [6].

6.2 Promotion and Failover Downtime
Table 2 shows a promotion downtime comparison betweenMyRaft
and the prior setup. We aggregated this table from production
metrics for 30 days. This evaluation demonstrated a marked im-
provement in promotion and failover times, with manual primary
promotions completing within an average of 200 milliseconds;
in the previous setup, the average was around 1 second. Dead
primary failover was completed in around 2 seconds on average,
which includes 1.5 seconds of failure detection time (owing to
the 500ms heartbeat configuration and the requirement of three
consecutive missed heartbeats to initiate an election). Dead pri-
mary failover took 59 seconds in the previous setup. Overall,
we saw a 4x improvement in manual promotion time and a 24x
improvement in dead primary failover time.

7 RELATEDWORK
Raft-based distributed databases: Well-established consensus
protocols like Paxos [18] and Raft [20] have become more and
more popular among databases. Popular Raft-based database sys-
tems include TiDB [15], MongoDB [42], CockroachDB [38], Po-
larDB [7][8], and Yugabyte [11]. There are two notable differences
between these systems and MyRaft: (1) Those database systems
are built from scratch with the Raft protocol as a replication layer,
while MyRaft was implemented with the goal of integrating with
MySQL as a plugin. (2) To the best our knowledge, MyRaft made
multiple innovative enhancements to the vanilla Raft consensus
protocol that do not exist in previous work. Such improvements
include Flexiraft (§4.1), Proxying (§4.2), and mock elections (§4.3).
MongoDB [42] revised the Raft protocol to support pull-based
data synchronization so that Raft followers could pull data from
any Raft follower. MyRaft adopted a different approach by using

Proxying to reduce inter-datacenter traffic without modification
to the existing Raft consensus protocol.

Highly available MySQL: MySQL’s Group Replication [33]
solution, which was made available with MySQL version 5.7, has
similar end goals as MyRaft. Similar to MyRaft, it aims to make
MySQL a true distributed, self-managed database. Group Replica-
tion is based on Mencius [5] and was built to primarily support
multi-primary setups. Its strong leader and single primary sup-
port was not ready when MyRaft started. It also did not support
flexible quorums like FlexiRaft, which are required for in-region
quorums. Xenon [2] is a MySQL cluster management tool that
leverages an out-of-band heartbeat to detect primary failure and
conducts automatic failover based on MySQL GTIDs. The idea
is similar to the prior setup, where failure detection and failover
are orchestrated by automation. In MyRaft, we have integrated
the Raft consensus protocol into the MySQL server itself.

8 CONCLUSION
In this paper, we have presented MyRaft, a MySQL database inte-
grated with the Raft consensus protocol. We have made MySQL
a natively fault-tolerant database with strong correctness guar-
antees. In order to meet the workload requirements at Meta, we
implemented FlexiRaft to reduce commit latency and Proxying
to reduce cross-datacenter traffic. Our production experience has
shown that MyRaft reduces failover time by tenfold, while still
achieving performance comparable MySQL with semi-sync repli-
cation. Retrofitting a consensus algorithm onto a legacy RDBMS
revealed a set of challenges that had to be systematically over-
come. Careful planning, monitoring, accompanying automation,
and mitigations were required to be in place to make the rollout
of Raft at scale possible.
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A INTEGRATIONWITH MYSQL (EXTRA)
A.1 Rotation and Purging of Logs
MySQL binary log files need to be rotated so that they don’t
grow too large in size. This is done by calling FLUSH BINARY
LOGS [24] on the MySQL instance. In MySQL Raft we made the
decision that we wanted to keep the Raft replicated log files
identical across the replicaset. This was done for simplicity and
maintaining the strong invariant of log equality. As such, rotate
events generated on the primary are replicated by Raft. On the
primary, log rotation is initiated by external automation by calling
FLUSH BINARY LOGS while monitoring the size of the last binlog
file (by executing SHOW BINARY LOGS [30] in a monitoring loop).
FLUSH BINARY LOGS enters the commit pipeline, generates a
Rotate event, and uses Raft to get it consensus committed. Rotate
events will have an OpID stamped by Raft. Once the rotate event
reaches consensus commit, the current binlog file is closed and a
new file is opened. The previous-GTID-set of the last file is added
to the the header of the next file. The index file that maintains
the list of log files is also updated with the new file.

On the followers, the rotate event is written to current relay-
log on AppendEntries, and then the follower stops accepting any
new transactions until the commit marker of the rotate event
arrives. Once that arrives, Raft calls into MySQL to rotate the
relay-log file. Rotation closes the current file, opens a new file,
updates the index, and updates the previous-GTID set in the
header of the next file. At that point, the log files on both the
leader and follower are identical and can be exactly compared.
The reason we need to wait for consensus commit before rotation
is because there is a system guarantee that log truncation won’t
happen after consensus commit and there is no possibility of
truncating a file that is already rotated. A rotated file has only
consensus committed events.

Purging is the deletion of old binary log files and the removal
of them from the log index. This frees up space on the host.
Purging is a local decision because every host can have a different
allocation for how much disk it has for binlogs. As such, there
is no replicated event generated for purging. In Raft, we have
heuristics to prevent purging of files before they are shipped out
of region. This prevents purging logs too soon, as severely lagging
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out-of-region replicas might request older logs from the primary.
Raft maintains watermarks per region, so making this decision is
easy. MySQL will only purge a binary log file by consulting Raft.
Purging removes entries from the index file for logs.

A.2 Recovery
Changes had to be made to crash recovery to make it seamlessly
work with Raft. Crashes can happen at any time in the lifetime of
a transaction and hence the protocol has to ensure consistency
of members. Here are some important insights on how we made
it work.

(1) Transaction was not written to binlog: In this case the
in-memory transaction payload (still in MySQL process
memory as an in-memory buffer) would be lost and the
prepared transaction in the storage engine would be rolled
back on process restart. Since there was no extra uncom-
mitted transaction in the Raft log, no reconciliation with
other members must be done.

(2) Transaction was written to binlog but never reached
other members: On crash recovery, prepared transac-
tions in the storage engine will be rolled back (since the
engine had not reached commit). Raft will go through
failover and a new leader will be elected. The leader elec-
tion will happen according to the longest log rules of Raft
and the leader election quorum rules of Raft. Per FlexiRaft,
the new leader would get votes from the logtailers in the
region of the erstwhile leader (the previous leader’s data
quorum). The new leader will not have this transaction
in its log because the transaction never arrived outside
the erstwhile leader’s process. The new leader will now
gain authority by pushing a No-Op event. When the erst-
while leader rejoins the replicaset, the transaction will be
truncated from its log. It should be noted that after crash
recovery a member always is in follower mode and there-
fore the truncation happens while it is a replica (relay log
persona). When the truncation happens, the GTID sets
are adjusted. The truncated GTID is removed and can be
reused later (so that there are no holes).

(3) Transaction was written to binlog and reached the
next leader, previous leader crashed before commit-
ting to engine: Similar to 2 above, the prepared trans-
action in the engine would be rolled back. The erstwhile
leader would join the Raft replicaset as a follower. In this
case the new leader will have this transaction in its binlog
and hence no truncation will happen, since the logs will
match. When the commit marker is sent by the new leader,
the transaction would be reapplied again from scratch in
the applier thread. The erstwhile leader has demoted to
follower in Raft and demoted to replica in MySQL, and the
plugin has started the applier threads during orchestration
of promotion, and has done the proper cursor positioning
for the applier thread to continue.
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