O

proceedings

Shapley Values for Explanation in Two-sided Matching
Applications

Suraj Shetiya
University of Texas at Arlington
suraj.shetiya@mavs.uta.edu

Abolfazl Asudeh

University of Illinois Chicago
asudeh@uic.edu

ABSTRACT

In this paper, we initiate research in explaining matchings. In
particular, we consider the large-scale two-sided matching appli-
cations where preferences of the users are specified as (ranking)
functions over a set of attributes and matching recommendations
are derived as top-k. We consider multiple natural explanation
questions, concerning the users of these systems. Observing the
competitive nature of these environments, we propose multiple
Shapley-based approaches for explanation. Besides exact algo-
rithms, we propose a sampling-based approximation algorithm
with provable guarantees to overcome the combinatorial complex-
ity of the exact Shapley computation. Our extensive experiments
on real-world and synthetic data sets validate the usefulness
of our proposal and confirm the efficiency and accuracy of our
algorithms.

1 INTRODUCTION

Beyond its traditional use [1-3], matching has been a core func-
tionality of many of the modern two-sided online platforms [4-
6], including dating applications such as Tinder, OkCupid, and
Bumble!, employment-oriented platforms such as Linkedin,
Indeed, and Zip—Recruiterz, and many more. The two-sided
matching platforms provide matching recommendations between
two types of stakeholders (users). To better explain the match-
ings, let us consider Example 1.1 as a running example across the
paper.

Example 1.1. (Part 1) Consider a two-sided employment-
matching application with two types of users, namely job candi-
dates and human resource (HR) users. The application provides
matching recommendations to both users, candidates and HRs.
For example, a HR who looks at potential candidates for inter-
view (either directly or indirectly) specifies a set of criteria and
their preferences. Then the application returns a set of poten-
tial job candidates to the HR. It similarly finds matching job
opportunities for the candidates.

Matching in two-sided platforms can be modeled as a bipartite
graph® where users on one side are matched to the users on
the other side. For instance, Figure 1 illustrates Example 1.1 as a
bipartite graph, where job candidates and HRs are specified as
Ltinder.com; okcupid.com; bumble.com
2linkedin.com; indeed.com; ziprecruiter.com
3As we shall explain in § 5, matching has many different formulations, properties,

and applications. In this paper, our scope is limited only to bipartite many-many
matching for two-sided online platforms.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

584

Ian P. Swift
University of Illinois Chicago
iswift2@uic.edu

Gautam Das
University of Texas at Arlington
gdas@cse.uta.edu

red and blue nodes, respectively, while an edge t; — t; means
that ¢; has been recommended as a match for ¢;. Application
usually identifies the list of potential matches for each user (called
match list in this paper) based on their “individual preferences”.
While classic matching problems assume that each party explicitly
specifies their preference as a ranking over the entire set on the
other side, this assumption is not feasible for modern matching
applications, simply due to their numerous number of users,
the short attention span of users, and in some cases privacy
considerations. As a result, the preferences are instead implicitly
specified. That is, every user is associated with a set of attributes,
and the preference of each user is defined as a function over
the attributes of the other-side parties. Preference functions are
either learned or specified by the users. Matching application
uses the user’s preference function to shortlist a limited list of
candidates (the top-k).

Lack of adequate explanations in these systems is a major
issue where the users who are impacted by the decision may be
interested to know more insights about the matching and why
they (or others) do or do-not appear in certain match lists. To
further elaborate on this, let us continue with Example 1.1.

ExampLE 1.1. (Part 2) Looking back at Example 1.1-Part 1, sup-
pose four attributes are considered for matching: Python, R, PHP,
and Javascript. Each candidate has a skill level for each of these at-
tributes, as does each HR, describing the nature of the job. Addition-
ally, each Candidate and HR has an importance weight associated
with each attribute, forming their preference as a linear function,
while k = 2. Suppose candidate t3 wants an explanation based
on their matchings , which were either disappointing or pleasing.
Currently the system provides no explanation for any of the four
scenarios below, for which t3 may be interested in transparency:

(1) t3 was disappointed to not make it to the top-2 of HR tz9. An
explanation would provide value to t3.

(2) t3 was happy they made it into the top-2 of HR t19. t3 is eager
to know as to what sets them apart from the rest.

(3) Top-2 of t3 consisted of {t19, t20 }. An explanation for why these
HRs are good recommendations would be useful.

(4) Candidate t3 made it into the top-2 of HRs t14, t19. t3 wants to
know why they made it into these specific top-2s.

The lack of answers for these questions prevents TRANSPARENCY for
Candidate t3.

In this work, we create a framework to provide explanations to
various queries which are commonly encountered by the users of
two-sided matching applications. To the best of our knowledge,
this is the first paper in explaining matchings. In particular, we
observe that top-k (ranking) problem is inherently competitive.
As a result, the outcome (score) of a preference function is not
enough to realize if a user appears in a match list or not. What

10.48786/edbt.2024.50

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.50

Candidates

‘:'Vt7174f ‘:"t7176“:‘ \/trlrl\b \'trlrg“:‘ \'trlrg) \'trl;z,\\
 HRs S
Figure 1: Sample bipartite graph for Example 1.1

(tiz) (t19) (t20) (t17)
NGO 2N NG i

Python | R PHP JS

Candidate Attribute Values 2 2 1 1

HR Attribute Values 3 2 0 2
HR Ranking Weights 011 | 044 | 033 | 0.11
Shapley Values 0.25 0.91 | -0.08 | -0.08

Table 2: The generated explanation for why Candidate t3
is in the Top-K of HR t19

Python | R | PHP |]S

Candidate Attribute Values 2 2 1 1
Candidate Ranking Weights 0.84 | 0.02 | 0.06 | 0.08
Shapley Values 0.61 0.28 | 0.0 | 0.11

Python R PHP |]S

Candidate Attribute Values 2 2 1 1

HR Attribute Values 2 2 0 3
HR Ranking Weights 0.11 0.11 | 0.67 | 0.11
Shapley Values 0 -0.16 | 0.83 | 0.33

Table 1: The generated explanation for why Candidate 3 is
not in the Top-K of HR #y

matters in these settings is the relative position (rank) of a user
with respect to other users who “compete” for the top-k posi-
tions. Such competitive environments are naturally explainable
by Shapley values [7] — a game theory concept that identifies
the contribution of each player (each attribute in our context)
for deriving an outcome (e.g., a top-k match list). Shapley values
have been proven repeatedly to solve explainability problems
across different contexts [8-10].

Based on this observation, we consider Shapley values as the
core of our system for our explanations. We consider a set of pos-
sible explanation queries, and provide Shapely-based approaches
to answer them. Exact computation of Shapley values is a com-
binatorially hard problem, requiring algorithms that are expo-
nential to the number of players. On the other hand, users might
find accurate approximation of the values appropriate for expla-
nation. Therefore, we propose a sampling-based approximation
algorithm with provable guarantees on run-time and approxima-
tion error. Our system enables explanations as demonstrated in
Example 1.1 (Part 3).

ExAMPLE 1.1. (Part 3) Using Shapley-based methods, we generate
an explanation for each of the previous queries. These explanations
take the form of a value for each of the skills and other features
on which the matching is generated. A high value indicates that
the feature was largely responsible for each of the four cases. The
individual can then be provided with a general explanation as to
what about them resulted in the various outcomes.

(1) (From Table 1) t3 is informed that they failed to be matched
to HR tp9 because they were not a good match with their PHP
skills. However, based on their R skills alone, they would have
been a good match for the job.

(2) (From Table 2) t3 can be told that the reason they were in the
top-2 of HR t19 is because they were an excellent match on R
skills. They can also be informed that their Python skills were
less but still beneficial towards the matching as well.

(3) (From Table 3) Top-2 of t3 consisted of {t19,t20}. They are in-
formed that this is largely because of the Python requirements
of the HRs, and less so because of the R and JavaScript require-
ments.

Table 3: The generated explanation for why Candidate 3’s
Top-K looks the way it does.

Python | R | PHP | JS
Candidate Attribute Values 2 2 1 1

Shapley Values 048 | 023 033 | 0.15
Table 4: The generated explanation for why Candidate #3
appears in the Top-Ks of the specific HRs

(4) (From Table 4) Candidate t3 is provided the information that
they made it into the Top-2 of HRs t14, t19 because of their
Python skills first, then their PHP skills, then their R skills, and
finally their JavaScript skills, with each contributing slightly
less than the previous.

Summary of contributions. In summary, our contributions are
as follows:

o In this paper, we initiate a study of a novel problem - that of
providing explanations for matching and top-k recommenda-
tion systems. To the best of our knowledge, this paper is the
first to study explanation for matching.

o We propose four explainability problems on the top-k matching
model which help in providing transparency to the system and
white boxing the blackbox function.

o Considering the competitive nature of our matching problem,
we propose a Shapley-based approach to explain the queries
and provide run time analysis for each of the problems. We
show the need for alternate methods, as the run time is bound
exponentially by the number of dimensions.

e We propose a sampling based approach to compute approxi-
mate Shapley values and prove guarantees on the trade-offs
between number of samples and error rate. We adapt Ker-
nelSHAP as a practical heuristic to our problem.

o Extensive experimental analysis are provided for the various
query settings and error guarantees, and our methods are eval-
uated in the real world via a user study.

2 PRELIMINARIES

Data model: We consider a dataset D with a Boolean attribute
for matching (blue and red), d numeric or categorical attributes
A = {A;1---Ag}. The dataset D consists of n entities #1 to ty,
with a sizeable number of blues and reds. We use the notation
ti[j] to refer to the value of the attribute A; for the entity ¢;.
Similarly, we use t;[m] to refer to the type of t;, i.e. the value of
the Boolean matching attribute on ;. The values in the dataset
D (numeric or categorical represent the scores of each entity for
various attributes, which are used in the matching process.

Note on distinct attributes for blues and reds: Our data model
uses the same set of attributes for both the blue and red entities.

585

All the concepts and techniques defined later in the paper can
be easily modified to work with a data-model where the blue
entities have a different set of attributes (d;) compared to the
red (d attributes). For the sake of simplicity, our data model
is defined with symmetric attributes for both the blue and red
entities.

Ranking functions: Each entity t; € D is associated with a
ranking (aka preference or scoring) function that maps any given
entity to a real valued score f : R? — R*. The ranking func-
tion is used to express the preference of an entity during the
matching process. As a hard criteria for matching, an entity
with blue matching attribute only wants to match with an en-
tity with red matching attribute and vice-versa. For instance, job
recruiters (blue) and job seekers (red) are trying to match in a
job matching scenario. The list of ranking functions F consists
of n ranking functions corresponding to each of the entities. An
entity t;’s ranking function is referred to as f; throughout the
paper. Some widely used types of ranking functions are linear,
nearest-neighbor, and monotonic [11]. The techniques proposed
in this paper are agnostic to the choice of ranking function. In
this paper, the time taken to compute a score by the ranking
function is referred to as C. An important requirement for the
ranking functions we consider in this paper is the masking prop-
erty. That is, given a ranking function, one can tune the function
not to consider masked attributes when computing the scores.
Masking is usually possible (including in linear, nearest-neighbor,
and monotonic functions) by setting the values of the masked
attributes as zero or null across all entities. That is, given an
attribute A; to mask, one can set t;[j] = 0,V#; € D. The set of
attributes M which are set to 0s (or nulls) are known as masked
attributes. The purpose of the masking function is to generate
the outcome of a subset of non-masked attributes. Please note
that in case of categorical attributes, the ranking function must
be able to handle null values. In later sections, we explain the
importance of the masking property for explanations.

Match list: As there are a large number of entities, any entity
would like to see a small relevant set of entities as a potential
match. Ranking functions are used to rank all the entities in
the dataset belonging to the opposite matching attribute. In this
work, top-k entries are shown for each entity using the rank
of the entities as potential match. That is, given the ranking
function f; for an entity ¢;, scores are assigned to all the entities
{tj € D | tj[m] # ti[m]} using f;. Those entities are then ranked
and the top-k are chosen to be shown to t;.

These top-k entries, known as a match list, are used to ex-
press the recommendations for matching. We denote a match
list by [;, such that each list consists of k entities. Given an en-
tity t;, let fl.k represent the score for the k'h ranked entity using
the scoring function f;. Given an entity ¢;,the match list can be
mathematically expressed as,

L={t; | fi(ty) = fX and tj[m] # t:[m]} s.t. L=k

When a mask M is applied to obtain the top-k, the match list
is represented as [;(M). Note that the value of k depends on the
application and is not restricted to a fixed value for any individual.
Without loss of generality, in this paper we assume a consistent
k across all entities’ ranking functions.

586

2.1 Problem definition

Our objective in this paper is to increase responsibility in matching
systems by providing individuals with explanations about the
matching and further information regarding why the matches
occurred the way they did. The matching model for which expla-
nations are being provided is called the “Top-k matching model”,
which is formally defined as:

Definition 2.1 (Top-k matching model). Given a dataset of enti-
ties D, an integer k and ranking function for each of the entities,
determine the match lists of each of the entities using the top-k
from the ranked list.

When match list [; is provided for a problem instance, it may
not be clear how the various attributes contributed to the out-
come.To solve this problem, an explanation is provided which
identifies the role of different attributes in producing the out-
come.

Definition 2.2 (Explanation). Given an output of a function
y = f(A1, Az, ...Ag), determine the impact on producing the
overall value y of each attribute A; when A; is included as a
parameter.

We now transition into explainability problems which help in
making the system transparent.

2.1.1 Point Queries. The first two types of explanations are
when an entity queries about their presence or absence from
another entity’s match list. This type of explanation is simply
called a "point query".

In Example 1.1, Candidate #3 finds that they are not present
in t20’s match list. In such a scenario, 3 would want an expla-
nation for: why t3 is not present in tzo’s match list? Such a prob-
lem/scenario where Candidate 3 would like an explanation for
why they were not present in #2¢’s list, can be formally defined
as follows:

PQ-NotMaATcH : Given a dataset D and entities t; and
tj determine the contribution of attributes Ay, ..., Ay int;
not appearing in match list of t;.

Conversely, again using Example 1.1, Candidate ¢3 may also be
interested in what factors were responsible for them to be present
in the match list of HR #19. In this scenario, the Candidate, seeking
to understand the scenario, might request for an explanation as
to: why t3 is present in t19°s match list? Formally,

PQ-MaTcH :
determine the contribution of attributes Ay, . .
pearing in match list of t;.

Given a dataset D and entities t; and t;
., Aq totj ap-

The next two queries deal with set based properties and hence,
we term these as Set queries.

2.1.2 Set queries. A different type of query that Candidate #3
from Example 1.1 might ask pertains to the match list. The can-
didate ¢3 might also be curious, based on their ranking function
f3, why the match list I3 was generated some way, either because
they are happy or disappointed with the list that was provided
to them. Formally, the query, why does an entity’s match list look
a certain way, can be formulated as,

SQ-SINGLE : Given a dataset D and an entity t; with
a match list of l;, determine the contribution of attributes
A1, ..., Aq tot;’s match list looking like I;.

Finally, in addition to point queries and understanding their
own ranking, Candidate ¢3 from Example 1.1 may be concerned
with the outcome of being ranked by others. Particularly, they
may be interested in what attributes about them influence the
set of match lists in which they appear.

Such an explanation can help Candidate ¢3 understand the fac-
tors responsible for their current matches, for both cases where
they are either pleased or displeased with the results. If Candi-
date t3 is overall displeased with the HRs who match with them,
knowing what attributes are responsible for this outcome can
be informative. Equally, if they are consistently pleased with
the HRs with whom they match, knowing the attributes that
contribute to this outcome can provide insight into what went
right. Formally, the problem to determine factors that influence
an entity appearing in the match list of other entities is defined
as:

SQ-MULTIPLE : Given a dataset D and an entity t; from
the match list of a set of T entities, determine the contribution
of attributes Ay, ..., Ag for t; appearing in the match lists
of T entities.

3 SHAPLEY VALUE BASED SOLUTION

We start this section with discussing why Shapley values are
suitable for explaining top-k and bipartite matching problems,
followed by an overview of Shapley technique. Next, we show
the transformation of our problem to Shapley, and discuss its scal-
ability issue for higher dimensions. Then, we propose a sampling-
based approximation technique with provable guarantees. We
conclude the section by adapting KernelSHAP as a practical
heuristic to solve our problem.

3.1 Why Shapley?

Scoring and ranking functions have been well-studied topics,
while a major focus has been on explaining scoring functions.
Even though there are similarities between scoring and ranking,
their underlying requirements bring out drastic differences [12].
The score of an entity only depends on the (attributes) of the
entity itself. On the other hand, the rank of an entity depends not
only on its attribute values, but also on the attribute values of
the other entities in the dataset. Consider an entity ¢ in a dataset
D. f(t) assigns a score to t. However, to find out the rank of ¢,
one first needs to compute f(t’) for every entity in D, and then
find the position of ¢ in the sorted list of entities based on f.

Because our problem is based on ranking, methods for scoring
are no longer applicable for many queries. For example, in a
(score-based) classification task, the attribute with the highest
weight in the scoring function would be the most impactful.
However, in a ranking problem, the score values are important
only in comparison with the score of other entities. As a result, it
is not enough if the score of an entity is high; what matters is that
it is higher than other entities in the dataset. In this situation, an
attribute A; with a low weight in the scoring function can become
important if dataset entities have a high variance on it. This is
because the ranking is determined by competition between the
entities, which is not captured simply by the score on a single
entity. Let us illustrate this with Example 3.1.

Example 3.1. (Part 1) Consider a sample dataset D with 3 at-
tributes A = {A1, A2, A3} and 5 entities, shown in Table 5. The
entities belong to the same matching group. Let the scoring func-
tion for an entity belonging to the opposite group be the linear
function f(#;) = 5¢;[1] + 4t;[2] + ¢;[3]. For this example, let the

587

151 17 t3 |71 s weights
Aq 10 1.2 9 9.5 10.1 5
Ay 1 1.1 1.2 1.5 1.8 4
As 8 15 32 1 24 1

[f(t:) [62] 254 [818545817 [|
Table 5: (Example 3.1) A sample dataset D with three
attributes A1, Ay and As, and 5 entities.

value of k be equal to 2. The linear ranking function scores the
entities tq, to, t3, t4 and t5 with scores 62, 25.4, 81.8, 54.5, and
81.7, respectively. The entities ranked by their scores are t3, t3,
t1, t4 and ty. Hence, the match list looks like {ts, t5} after the
ranking function is applied. By looking at the entities, the entity
whose ranking function is used for ranking might question why
is t1 not in the top-k?

An explanation model based on scoring functions would em-
phasize on weights of the given query entity to obtain the con-
tribution of the different attributes. The weights for A;(5) is the
highest, followed by A2(4) and A3(1). Looking at these weights, a
scoring based explanation approach would conclude that either
of A or Az might be responsible for the query result. But upon
masking attributes {A;1}, {Az2} or {A;1, A2} and re-ranking one
can observe that t3 and t5 are always scored higher than #;. On
the other hand upon masking attribute {As}, one can see that #;
enters the match list. This illustrates the combinatorial feature
importance in explaining ranking.

Note on normalization: A common technique used to handle
disproportionate scores is normalization. For the example above,
we illustrate that attributes with high-weights post normalization
does not answer our query correctly. For our scenario, one could
normalize each attribute A; using t[i] /max;, where max; repre-
sents the maximum value for attribute A;. Attributes A1, A2 and
As can be normalized by dividing each of the tuples values for the
corresponding attributes by 10.1, 1.8 and 32. As we have scaled
the attributes using normalization, the weights for the scoring
functions also need to be adjusted by multiplying by 10.1, 1.8 and
32 respectively. Thus, the scaled weights from the normalization
process are < 50.5, 7.2, 24 >. As the contribution of each attribute
in the Shapley function have remained same, the normalization
process did not change the Shapley scores. Yet, attribute A; at-
tribute has a higher weight than As. The high weight on A; still
produces an improper explanation for our scenario.

Since ranking is based on the competition between entities, it
is natural to map our problem using coalitional game theory. In a
coalitional game, different players of a coalition in a competitive
game compete for utility. Accordingly, we utilize coalitional game
theory to capture the importance of different attributes.

Shapley value [7] is a concept in coalitional game theory which
allows one to compute the importance of each of the players in
the game to the outcome. Each game contains a set of n players
and a utility function v : 2" — R, which determines the worth
of the subset of players. Note that the utility of an empty set of
players is 0, v(0) = 0 as the value represents the worth of an
empty set (0) of players. The average contribution by each of
the players to the outcome of the game can be defined for each
player i as the Shapley value Sh;. Shapley value for the game is
given by,

)

" XeSym(N)

Sh; (v(Pref Ui) —o(Pre))) (1)

where Sym(N) represents the Symmetric group of set N, and
PrelX represents the players preceding i in permutation X. Equa-
tion 1 captures the marginal increase in contribution of a player
i to its predecessors in permutation X.

An alternate form of Equation 1 can be used to compute the
Shapley values. For a given subset S of players, there exist |S|!(n—
|S| — 1)! permutations each of which have the same utility value
whose re-computation is avoided when using the alternate form
given below,

|S[t(n — IS - 1)

! .
Sh; = o (v(SU{i}) —o(9))

SCN\{i}

()

Even though the formula is helpful in reducing the complexity
from n! to 2", the computation is still exponential. Accordingly,
in practice, as the number of attributes grow this process tends
to become infeasible.

3.2 Mapping Shapley value to matching

In Example 3.1, we argued that ideas such as using attribute-
weights in the scoring function may not be effective for explain-
ing top-k matchings. Alternatively, we propose to map attributes
{A1, Az, - -+ , Ay} as players of a coalitional game, compute the
contribution of each attribute using the concept of Shapley values,
and use these values to explain matchings. Indeed, an attribute’s
contribution is query dependent. That is, for different explainabil-
ity queries, its contribution may vary from one query to the other.
For instance, in Example 1.1, the contribution of the attribute
(skill) Java for the query “why is t3 in the match list of t19” is
different from “why is t3 not in the match list of tz”.

We design a utility function v based on the query, which takes
in a set of attributes S C A and maps it to a utility score which
is a real value R (ie. v : 2¢ — R). Fora given subset S, the
masked attributes are the attributes that are absent in S (i.e.
M = A\S). Due to this operation, our technique expects the
ranking function to support masking. We provide design details
of the utility function for different queries in § 3.3.

3.3 Shapley value in matching

One of our contributions is to transform each of our explanation
problems to Shapley value computation problem and define a
utility function over the set of attributes. This section provides
the details for the Shapley value based approach applied to the
four types of explainability queries defined in § 2.1.

3.3.1 PQ-NotMartcH. Consider the scenario when a dataset
of entities D and two entities ¢; and t; are provided for a query
type of PQ-NotMaTtcH. The attributes (players) responsible for
tj not appearing in t;’s match list would be valued high.

To reflect this we define a value function that returns a 1 (0
resp.) based on if an the entity ¢;’s absence (presence resp.) in
t;’s match list [; for a subset of attributes S. In this case, the set
of attributes has contributed to a failed match and hence a value
(reward) of 1. On the flip side, the utility function returns 0 if
tj is present in [; for a given subset of attributes S. To explain
further with Example 1.1 (1), the utility function would return 1
if t3 was not present in I and 0 otherwise. Assuming [is the
match list computed based on strictly the attributes in set S, the
utility function v can thus be defined as,

U(S):{O’ ifS=0ort; El;k

3
1, iftj¢l})

588

For Example 1.1 question (1), and the query PQ-NoTMATCH,
the results are shown in Table 1. The exact algorithm generated
the Shapley values 0, -0.16, 0.83, and 0.33 for the attributes Python,
R, PHP, and JS respectively. As discussed earlier, this shows that
PHP is the largest contributor to why Candidate t3 was not in
HR #39’s match list. Additionally, since Python has a negative
value, the candidate’s Python skill would cause the individual to
appear in the match list.

3.3.2 PQ-MartcH. The next explainability query which can be
calculated using Shapley value is the second query PQ-MATCH.
A similar approach that we have seen so far can be extended to
this scenario.

In the PQ-MaTcH utility function, a value of 1 (reward) is
returned if ¢; is present in t;’s match list [; for a given subset
of attributes S. Alternatively, v returns 0 if ¢; is absent from t;’s
match list [; for a subset of attributes S, as in this case S has
not contributed to a successful match. Again, [is the match list
computed based on strictly the attributes in set S. To illustrate
this with Example 1.1 (2), the utility function v would return 1
if t3 was present in [j, and 0 otherwise. Utility function v for
PQ-MaTcH can thus be defined as,

u(S) = {

Continuing with Example 1.1 question (2), the results for PQ-
MATCH can be seen in Table 2. The exact algorithm generated
the Shapley values 0.25, 0.91, -0.08, and -0.08 for the attributes
Python, R, PHP, and JS respectively. By far the largest contributor
to Candidate t3 being in HR #19’s match list is the candidate’s
R skills. Additionally, both PHP and JS can be seen as having a
negative value, negatively impacting Candidate t3 being in the
match list.

0, ifS=0ort;¢l}
1, iftjel;‘

©

3.3.3 SQ-SingLE. Utility functions for queries based on match
lists explain more complicated problems than the previous two
queries. This is due to these queries use differences in the match
list, instead of presence or absence from the match list.

Consider the scenario where a dataset of entities D and an
entity t; with a match list of /; are provided for the query type
of SQ-SINGLE. The utility function must capture the similarity of
the computed top-k match list for the set of attributes S, l;‘ , with
match lists for the full set of attributes A, I;. As the explanation
relies on the top-k items, /;, and its similarity with l;.k , we can
use the Jaccard similarity between these two sets as the utility
function. The Jaccard similarity is a value between 0 and 1. The
value 0 indicates that the sets share no common elements and 1
indicates that the sets [; and [} are identical. To further explain
with Example 1.1 (3), v is the Jaccard similarity of the match list
of entity t3 (I3{t19, t20}) with [5. The utility function v can be

expressed as,
ifS=0
0(S) =

otherwise

0,
L)
ISAR

®)

Again, with Example 1.1 question (3), the results for SQ-SINGLE are

shown in Table 3. The exact algorithm generated the Shapley
values 0.61, 0.28, 0.0, and 0.11 for the attributes Python, R, PHP,
and JS respectively. The largest contributor to Candidate #3’s
match list being the way it was, is the Python requirement of the
HRs, however to a lesser degree the R requirements contributed,
and even lesser, the JS requirements contributed.

It is worth noting that our Shapley function does not distin-
guish the order/rank of the entities within the (top-k) match-list,
ie., it treats them as a set. Therefore, it uses Jaccard similarity, the
metric for computing set similarities. But if the order of the items
within the top-k is important, value function needs to account
for any change within the ranking of the match-list.

3.34 SQ-MuctipLE. A similar approach of using Jaccard sim-
ilarity can be used to find the contribution of each attribute for
the SQ-MuLtIPLE problem. Consider the scenario when a dataset
D and an entity ¢; is provided. The entity t; is present in the
match list of T C O entities. For a subset S C A of attributes,
let T* be the set of entities in whose match list ¢; is present for
the attributes S. The utility function represents the similarity
between the set T* and T.

A similarity of 0 indicates there are no shared elements be-
tween the two match lists, where a similarity of 1 indicates that
the sets are identical. A smaller value indicates a smaller inter-
section or a higher union, and a larger value indicates a larger
union or a smaller intersection. From the running Example 1.1 (4),
the set of entities whose match list consist of t3 is T = {t14, t19}.
Hence, the function v for this case would compute the Jaccard
similarity between {t14, t19} and T* for a subset of attributes
S C A. The value function v can be expressed as,

0, ifS=0

o(S) =14 1, ifS#0 & [TUT*| =0 (6)
|TNT*| herwi
[TOT | otherwise

Finally, for Example 1.1 question (4), the results for SQ-MULTIPLE are

shown in Table 4. The exact algorithm generated the Shapley
values 0.483, 0.233, 0.333, and 0.15 for the attributes Python, R,
PHP, and JS respectively. All of the candidates skills contributed
somewhat, but Python, PHP, R, and JS contributed in descending
order of importance.

Having mapped Shapley values to the top-k matchings, we
can now explain matchings using the attribute contributions, as
shown in Example 3.1 (Part 2).

ExaMmpLE 3.1. (Part 2) Looking at Table 5, the Shapley values
of {A1, Az, As} for the query “why is t; not in the top-k?” are
computes as {—0.16, 0.33, 0.83}, using Equation 5. The high Shapley
value of attribute As indicates that As can explain the query the
most. The impact of attribute A3 is partially seen empirically when
we remove the attribute. Removal of As’s impact on the linear
ranking function is reflected in the new scores the entities get, t1,
t2, 13, t4 and ts get a score of 54 , 10.4, 49.8, 53.5, 57.7 respectively.
These scores show that the entity ty is present in the match list when
k = 2 when As is removed, thus confirming its relative contribution.

3.3.5 Time complexity analysis. Theorem 3.2 shows the time
taken to compute the exact Shapley value is exponential to the
number of attributes for all the four queries, making Exact Shap-
ley value computation impractical when d is not small.

THEOREM 3.2. Given a dataset D with ranking functions F
with the other parameters for PQ-NoTtMATcH, PQ-MATcH, SQ-
SINGLE and SQ-MULTIPLE, computing the exact Shapley value takes
exponential time to number of the players (attributes).

Proor. Computation of exact Shapley values using Equation 2
relies on computing the utility function efficiently over all subsets
of A. We analyse the running time of each of the value functions
of the 4 problems and prove that the exponential nature arises
solely from Shapley value computation from Equation 2. As noted

589

in § 2, we denote the amount of time taken by the ranking func-
tion as C.

PQ-NotMarca: Consider a dataset D and entities (; and ¢;). The
value function used for PQ-NoTMATCH is given in Equation 3.
Given a subset of attributes S C A, the time taken to recompute
the ranking function for an entity is C. As there are n entities,
the function v takes nC time to obtain the scores for all entities.
Obtaining the top-k (match list [) can be efficiently performed
using the selection algorithm which takes a total of O(n) time.
Checking if the entity ¢; is present in the match list takes k time.
Hence, total time taken by function v is O(nC) for a given subset
S.

PQ-Matca: Computation of the value function is similar to the
computation of PQ-NorMatchHand hence consumes O (nC) time.
SQ-SINGLE: Consider a dataset D and entity ¢; with match list
I; when using all attributes A. The Shapley value function for
SQ-SINGLE is given in Equation 5. The set based value function
relies on Jaccard similarity between sets [; and [} to obtain a
value. Hence, the first step is similar to PQ-NoTrMatcH and PQ-
MartcH problems, i.e. computation of I}

The Jaccard similarity computation can be efficiently per-
formed by sorting the match lists [; and [}, followed by per-
forming simultaneous linear scans on [; and " to obtain both the
intersection and union. This step consumes a total of O (k log (k))
time. Hence, the total time consumed is O(nC + k log (k))
SQ-MurtipLE: Consider a dataset D and entity t; which is present
in the match list of entities T when using all attributes A. The
Shapley value function for SQ-SINGLE is given in Equation 6.
Given a subset of attributes S, T* can be obtained by first com-
puting match list l;f for all n entities and checking which ones
contain t;.

The computation of l}f and checking if #; is present in l;f (ti €
l]*f) for a single entity consumes O(nC) as seen above. As there

are n entities, obtaining T* consumes a total of O(n?C) time.
Additionally, to compute the Jaccard similarity, (i) need to sort
both T and T, (ii) perform simultaneous scans on T and T* to
obtain both intersection and union, and (iii) obtain the ratio.
Steps (i) and (ii) consume O(nlog (n)) time and (iii) consumes
O(nlog (n)) time. Hence, the overall time consumed is O (n?C).

The Shapley value computation for each of the four cases
relies on generating all subsets of the set of attributes A. As there
are d attributes, generating the sets consumes a total of d 24
time. Hence, the Shapley computation for all the four queries is
exponential in d, the number of attributes A. O

Note on limitations of Shapley based method: Kumar et
al. [13] have shown certain limitations of Shapley-based meth-
ods while explaining machine learning models. During mask-
ing, these methods are shown to sample out-of-distribution data
points which can affect the Shapley explanation model and create
undesirable output. Matching-based applications are not subject
to similar problems like machine learning models, as the whole
process of top-k and bipartite matching is based on competition.
These processes are less subject to changes in scores and instead
rely on ranking between items. Nevertheless, we would like to
note our dependence on the scoring functions to handle the NULL
values generated during masking. Additionally, we would like to
note that explanations generated from Shapley-based methods
are not actionable and must be used as a means to whitebox the
blackbox function.

Designing Shapley value function for other queries: Intu-
itively, the design of the value function needs to capture the

nature of the query. We illustrate this with modifications to ex-
isting value functions when the queries are modified.

Let us consider the scenario of simultaneous matching. Con-
sider the explainability query, find the attributes responsible for t;
being present in t;’s match list and t; being present int;’s match list
simultaneously. While this query is similar to PQ-MAtcH, value
function needs to reward only when both the PQ-MATcH events
occur simulataneously i.e. t; € [T and t; € I Based on this, the
value function can be defined as follows.

U(S):{O, ifS:(Z)or(tmEl;fortjel;‘)

1,

Let us now consider a scenario when the order within the
top-k match list is important to the query. Consider the scenario
when the entity ¢; wants to be near the top of t;’s match list.
Let us assume that the ranking process is modified to provide
a ordered list of k entities instead of a set. With a little abuse
of notation, let l;f be the ordered match list of t; and p;‘ be the
location of entity t; in I%. If t; was located at position 1 in [%, the
value function needs to reward with a score of 1, otherwise the
location p; would define the reward. Based on the position p;}
the value function is,

0,
U(S) = pi-1
-,

3.4 Approximate sampling based approach

otherwise

iszQ)ortiél;f

otherwise

The prohibitive nature of the exact Shapley value algorithm has
spurred research into approximate methods. Sampling based
methods have been proposed to obtain approximate Shapley val-
ues. In this paper, we use the sampling based on permutations of
attributes. Based on [14], the mean of the marginal contributions
for each attribute A; over the entire symmetric group Sym(A) is
equivalent to the corresponding Shapley value Sh;. To approx-
imate the value Sh;, instead of calculating all members of the
symmetric group, ¢ members of the Sym(A) are sampled. The
estimated Shapley value for attribute A; resulting from the sam-
ples is referred as Sh; throughout the paper. The expected value
of a random sample from the uniform distribution is equivalent
to the mean of that distribution such that Ex[SAhi] = Sh;.

A randomized approximation algorithm based on the sampling
of permutations for computing the explanation queries is defined
as follows. Initially, random sampling is performed to select g
permutations from Sym(A). With Sh; set to 0, Sh; is increased by
é X (v(PreiX UA;) — U(PrelX)) for each sampled permutation X.

The value Shy, is the approximate Shapley value for attribute A;.

Sample size, q: The randomized approximate algorithm can
be demonstrated to show that by varying g and specifying an
approximation bound a, an error rate of € can be satisfied such
that Pr(|SAhi — Shij| < &) > 1 — €. We prove in Theorem 3.3 that
a for a given value of approximation bound « and error rate €,
there exists a fixed samples size ¢ which satisfies Pr(|5Ahi —Shi| <
a) > 1 — € for our queries.

THEOREM 3.3. Given an approximation bound a and error rate

M random permutation members of the
a

€, sampling q >
symmetric group, ensures that the inequalityPr(|SAhl— =Shi| < a) >

1 — € is satisfied for all four problems.

ProoF. We prove this theorem using Hoeffding’s inequal-
ity [15]. First, we prove for the four queries that each random

590

variable Z; varies within the range of Z; € [—1, 1]. The random
variable Z; in each of the four problems refers to the Shapley
value function for the sampled permutation. We obtain the in-
equality by applying Hoeffding’s inequality.

For the queries PQ-NoTMaTcHand PQ-MATcH, the random
variable is the difference between the Shapley value function
when attribute A; is added to permutation X i.e. Z; = (v (Prel.X U
Aj) — U(PrelX)). Hence, the random variable Z; can take values
—1, 0 or 1 based on how the Shapley value function changed.

For the set-similarity based problems SQ-SiNnGLEand SQ-MULTIPLE
Z; is the difference between the Jaccard similarity for the random
permutation U(PrelX UA;) and U(PrelX). Hence, Z; for these two
problems is a continuous variable between —1 and 1. As we have
seen, in all four problems the random variable Z; varies between
—1and 1. Applying Hoeffding’s inequality with b = 1 and a = —1

2

—qa

we get, P <|5Ah,~ —Shi| > (x) < 2¢7z < 4. Restructuring the

above equation and representing g in terms of « and € we get,

S 2log (2/€)
22—

Hence, proved.

3.5 KernelSHAP

Another technique to approximate Shapley values is SHAP [10].
SHAP proposes a linear model to explain black box machine learn-
ing model-prediction for a given input data point. KernelSHAP is
a generalised SHAP approximation technique proposed by Lun-
deberg et. al. [10]. The technique is built on top of LIME [16] to
approximate Shapley values. KernelSHAP provides the parame-
ters to be set in the optimisation function of LIME such that the
linear model finds the Shapley values. To the best of our knowl-
edge, KernelSHAP does not inherently provide any guarantees
on sample size unlike the sampling approach, but empirically
performs better.

4 EXPERIMENTS

We conduct extensive experiments on real-world and synthetic
data to validate our proposal and to evaluate the performance of
our algorithms. In the following, after discussing the experiment
set up, we provide proof of concept experiments that focus on
validating our results. Finally, the empirical evaluation of the
different techniques is presented.

4.1 Experiments setup

4.1.1 Datasets. Matching datasets involving real-world en-
tities are often not publicly available due to privacy concerns.
Hence, in our experiments we considered two publicly-available
real-world datasets, along with 12 configurations of synthetic
datasets.

e Job candidates dataset (real world dataset)*: 390 candidates
were parsed from 22 columns, including 18 numerical columns,
3 categorical columns, and 1 set based column. Values for
numerical columns were normalized to be a value between 0
and 1. To generate HR entities, uniform random values were
selected for each column from the set of possible values for
that column in the candidate dataset.

e Graduate admissions dataset[17](real world dataset): The dataset
consists of application details of 500 students to the graduate

“https://www.kaggle.com/datasets/saikrishna20/candidates-list

program. There are a total of 6 numerical features and a cate-
gorical feature. Each data point in the dataset also a dependant
variable, chance of admit, which is a score between 0 and 1.

o Synthetic dataset: There are many parameters that can be var-
ied when generating the datasets. We have used 3 main factors,
probability distribution, correlation between the attributes, and
the number of attributes. Since our experimental study aims to
assess our method across different settings, we generate mul-
tiple datasets for each setting and aggregate results for each
setting. For the probability distribution, we consider Uniform
and Zipfian distributions. Linear and non-linear ranking func-
tions; correlated, anti-correlated, and independent attributes
were used to ensure variety of data in our experiments. For
each of these 12 settings, 10 datasets were generated bringing
the total to 120 datasets. Each dataset consists of 1000 items
each with 9 dimensions.

4.1.2 Hardware and Platform. All our experiments were per-
formed on a work station with a Core i9 Intel X-series 3.5 GHz
machine running Linux Ubuntu with 128 GB of DDR4 RAM. The
algorithms were implemented in Python 3°.

4.1.3 Ranking function. As the ranking / preference functions
were not available for the real world datasets, we generated n
linear ranking functions. The ranking functions are based on
proximity to the candidate’s skills/ HR’s requirements. For syn-
thetic dataset, we have used both linear and non-linear ranking
functions. For non-linear ranking functions, weighted squares
of the attributes have been used to rank the entities. In the user
study, the ranking function used for contrasting LIME and Shap-
ley values explanations is learned using machine learning models
based on the other features using AutoML which is then used to
predict the chance of admit.

4.1.4 Algorithms Evaluated. We have implemented the brute
force Shapley value algorithm and the approximate Shapley value
algorithms. We use the KernelSHAP library from github by Lund-
berg .

As baselines to compare against, we use the weight based
algorithm described in § 3.1 and an attribute based baseline. The
attribute based baseline ranks each of the attributes individually
for a given query. More specifically, for a query we mask the
set of attributes such that only one attribute is unmasked. We
measure the effect of the individual attributes and then rank these
attributes. For the PQ-NoTMAtcH (PQ-MATCH resp.) query, we
use the highest (least resp.) rank achieved by the entity when only
using a single attribute as a measure to compare all attributes and
rank them. As SQ-SINGLE and SQ-MULTIPLE queries are set based
queries, we use the Jaccard similarity measure instead to rank
the attributes. The comparison for these baselines is provided in
§4.2.2.

4.1.5 Dataset details for Example 1.1. In this subsection, we
provide details for the dataset in Example 1.1. The Example 1.1
dataset consists of 20 entities with 4 attributes, Python, R, PHP
and JS. These 20 entities are a part of the Candidates real world
dataset discussed in § 4.1 of the paper.

The Candidates entities are t;
As any HR entity would like to find candidates whose skills are
similar to that of the job requirement, a weighted k-nearest neigh-
bor function with #; distance is used. The distance function can

5Code can be accessed at https://github.com/UIC-InDeXLab/ExplainMatchTopK
Shttps://github.com/slundberg/shap

.-+ tjpand the HRs are t11 - - - tg0.

591

‘_ Sampling approach I KernelSHAP ‘

PQ-Match PQ-NotMatch
006f| | 0.06
0.04 0.04
0.02 l l] l 0.02
_ 0 0
O 2 (O 2 O MmO O 2 O O L 5O
2 PR OLPE PP P & PP PP
L SQ-Single SQ-Multiple
0.04 0.01
0.03
0.02 0.005
0 0
O 0 (O O O O O o (O b O o O
PO FP LR PP P SO PP PSP P
Samples

Figure 2: Error variations in sampling-based ap-
proach and KernelSHAP

be mathematically written as, f;(t) = ;l':l wj [t [j]1 = t[j]] The
equation above obtains the distance between the requirement
and hence smaller distance is preferred.

Note that we have normalized each attribute between the
values [0, 1]. The normalization for an attribute A; is performed
for any entity ¢; using, t;[j] = %
find the minimum and maximum values for attribute A; in the
dataset D.

where min and max

4.2 Proof of Concept

As our first set of experiments, we provide results to validate our
proposal for explaining match lists using Shapley values. In par-
ticular, we first present a case study, discussing the explanations
for specific cases in detail. Then, we provide an experiment to
demonstrate the effectiveness of Shapley values for explanation.

4.2.1 Case Study. We begin our proof of concept experiments
by a case study to illustrate the usefulness of our explanations.
Aligned with our running example (Example 1.1), we select a
user from our experiments on job-candidates dataset, and discuss
the generated explanation in detail. Approximate Shapley values
produced using the sampling algorithm for PQ-NoTMATCH are
shown in Table 6. Among their programming skills, the largest
contributors to this result were R, React.js and CSS with Shap-
ley values of 0.09, 0.09, and 0.085. In each of these cases, the can-
didate performed poorly on these skills while HR ranked these
skills fairly highly relative to other programming skills. The low-
est Shapley among programming skills value was Python, where
the individual had the maximum score, but the weight was also
the lowest relative to all skills. Overall, the highest Shapley value
was for the Candidate’s Master of Science degree, indicating
that this degree (as opposed to another one) was the main reason
the candidate was not placed on the match list. Finally, the overall
lowest weights were their performances in grade 12, 10, and post
grad, with scores of -0.05, -0.05 and -0.02. Negative Shapley values
indicate that these skills worked against the candidate not being
in the match list, and can be seen as skills that if evaluated solely
on, the individual would appear in the match list. An explanation
may appear as:

"You were not matched with this HR largely due to your degree
in Master of Science. Among your programming skills, the

Candiate Values HR Function Shapley Values

Python 1.0 0.002 0.0

R 0.0 0.005 0.09
Deep Learning 0.333 0.005 0.025
PHP 0.667 0.007 0.05
MySQL 0.667 0.007 0.075
HTML 0.667 0.007 0.035
CSS 0.0 0.005 0.085
JavaScript 0.667 0.005 0.065
AJAX 0.0 0.005 0.06
Bootstrap 0.0 0.006 0.07
MongoDB 0.0 0.005 0.045
Node.js 0.0 0.003 0.045
Reactjs 0.0 0.005 0.09
Performance_PG | 0.791 0.06 -0.02
Performance_UG | 0.7 0.06 0.015
Performance_12 1.0 0.06 -0.05
Performance_10 1.0 0.120 -0.05
Other Skills [S; tgao;tr}:;zres] 00769 0.065
Degree Master of Science 0.0769 0.21
Stream Computer Science 0.0769 0.05
Grad Year 2018 0.307 0.04
Current City Bangalore 0.0769 0.005

Table 6: Candidate values, HR rankings, and PQ-
NorMarcH Shapley values.

company would like to see more skill in R, CSS, and React.js
specifically. The company was overall pleased with your
Grade 10, Grade 12, and Post-grad Performance, but
considering all factors, they did not want to match with you
at this time."

Please note that the Shapley value explanation does not pro-
vide a direction for improvement. An intuitive way of thinking
about this is that Shapley values does not perturb the numeric
or categorical values to measure its impact, instead it looks at
the impact that an attribute has as a whole. Hence, our model is
not aware about which direction is preferred or how an attribute
needs to be perturbed.

4.2.2 Effectiveness of Shapley values for explainability. For our
first experiment, we empirically measure the effectiveness of the
approximate algorithm in capturing the Shapley values. Given an
explainability query, the brute force algorithm produces the exact
Shapley values. Since our goal is to capture the exact Shapley
values as accurately as possible, we compare these values with
the results of various methods. To do this, we considered the top
ranked attribute for each algorithm.

In this experiment, we measure the effectiveness of three meth-
ods in explaining the query. These methods are the Shapley values
by sampling, the attribute with the highest weight (Section 3.1),
and the attribute evaluated on the query function independently.

The datasets for this experiment consists of twelve settings on
synthetic data. The settings are each combination of distribution,
feature correlation types and scoring function type, i.e. {uniform,
Zipfian distribution} x { independent, correlated or anti-correlated
features } x { linear, non-linear scoring functions}. For each of
these settings, ten trials were run with k = 5 and the results
were recorded. For each experiment, highest rated attribute was
removed and the output compared for its impact on the query. For
the sampling based approximate Shapley value sample size (q) of
900 was used. KernelSHAP obtains the same result as sampling
based technique with lesser number of samples.

The results are tabulated in Table 7. The results show that ap-
proximate method produced the same output as brute-force in 119
out of the 120 trials. The other methods performed consistently
at best equal but generally worse across all queries. Measuring

592

by weight performed almost always better than attribute based
baseline. However, measuring by weight still often failed. It had a
particularly low accuracy for PQ-NoTrMaTcH. Additionally, since
weight based approach is not possible for SQ-MULTIPLE, it was
considered to be an insufficient method for computing the highest
Shapley value.

4.2.3 User study. In this experiment, we conduct a user study
to validate our methods. The participants for this user study in-
cluded working professionals - data analysts, software engineers,
and graduate students. A total of 35 people took the user study.
The first step of the user study was a quality control step to
understand the participants knowledge and confidence in the
answers. Among the 35 participants 28 participants showed suf-
ficient knowledge in the control step. Hence, the answers of the
remaining 7 participants were disregarded from the user study.

The goal of the user study is to assess the participant’s pref-
erence between LIME and Shapley. The user study consisted of
two scenarios and a question related to each scenario.

The first scenario was based on Example 3.1. Participants were
provided with the scoring function 541 + 4A; + A3 and told that
ts was not selected during the selection process. Participants
were provided the explanations from LIME and Shapley value
and were asked to select among the two. For the explanation
for LIME, we perturb the scores of tuple t5 and create a new
Boolean variable which measures if ¢5 is present in the top-k or
not (k = 1). Based on the new dataset, LIME produces an expla-
nation by weighing each of the attributes. In order to explain the
meaning of LIME to the user we provide the following statement.
“Increasing/Decreasing [FEATURE] by [X] unit contributes [Y] units
to ts not being in the top-k, when all other feature values remain
fixed". The corresponding explanation for Shapley values is, “The
score of [FEATURE] contributed [X] to t5 not being in the top-k
compared to the average prediction for the dataset." Among the 28
participants 18 chose Shapley values and the remaining 10 chose
LIME.

For the second scenario, we use the graduate admissions dataset.
The scoring function for the graduate admissions dataset was
learned using auto-sklearn which generated a ensemble model.
We chose a candidate who did not qualify among the top-k but
was very close to the k" candidate. Similar to the previous sce-
nario, particpants were given a choice between two explanations
- LIME and Shapley value. Among the 28 participants, 16 voted
in favor of Shapley and 12 in favor of LIME.

While the votes for the second scenario is close between LIME
and Shapley to conclude a clear preference among the partici-
pants, for the first scenario the participants preferred the expla-
nation generated by Shapley to be more favorable than LIME.

4.3 Performance Evaluation

Next, we evaluate the approximation error and runtime of sampling-
based and KernelSHAP v.s. exact Shapley values.

4.3.1 Impact of sampling size on error. Approximate sampling-
based approach and KernelSHAP provide us with a trade-off
between error and time-consumed. As the number of samples in-
creases, the error in Shapley-value decreases, but time increases.
We measure the impact of sample size on error and time con-
sumed.

In this experiment, the number of samples that we use for
the approximate Shapley value algorithm and KernelSHAP are
varied and the runtime and error are measured. Match list size, k,

Distribution ~ Correlation Function APX-Q1 APX-Q2 APX-Q3 APX-Q4 WT-Q1 WT-Q2 WT-Q3 SCR-Q1 SCR-Q2 SCR-Q3 SCR-Q4
Uniform Correlated Linear 1.0 1.0 1.0 1.0 0.9 0.7 1.0 0.2 0.6 0.1 0.1
Uniform Correlated Non-Linear | 1.0 1.0 1.0 1.0 1.0 0.5 0.9 0.5 5 0.3 0.1
Uniform Anti-Correlated Linear 1.0 1.0 1.0 1.0 8 0.7 1.0 0.5 0.7 0.1 0.2
Uniform Anti-Correlated Non-Linear | 1.0 1.0 1.0 1.0 1.0 0.4 1.0 0.1 0.4 0.3 0.1
Uniform Independent Linear 1.0 1.0 1.0 1.0 1.0 0.6 1.0 04 0.7 0.3 0.4
Uniform Independent Non-Linear | 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.2 0.5 0.5 0.2
Zipfian Correlated Linear 1.0 1.0 1.0 1.0 0.7 0.8 0.9 0.5 0.8 0.1 0.4
Zipfian Correlated Non-Linear | 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.2 0.6 0.2 0.2
Zipfian Anti-Correlated Linear 1.0 1.0 1.0 1.0 0.6 0.9 0.8 0.3 0.5 0.8 0.3
Zipfian Anti-Correlated Non-Linear | 1.0 1.0 1.0 1.0 0.9 0.5 0.7 0.8 0.2 0.0 0.8
Zipfian Independent Linear 1.0 1.0 1.0 0.9 0.8 0.8 0.9 0.2 0.8 0.1 0.1
Zipfian Independent Non-Linear | 1.0 1.0 1.0 1.0 1.0 0.6 1.0 0.3 0.6 0.2 0.3

Table 7: The success measure of four methods in computing the same top value as Brute Force; APX=Approximate,
WT=Weight, SCR=Attribute Score; and the four queries, Q1-Q4. For Q4, WT could not be used.

Functions weights A

Python | R | PHP | JS | Python | R | PHP | JS
t1 0.83 0.03 | 0.1 | 0.03 0 0.67 | 0.67 | 0.67
2 0.33 0.11 | 0.22 | 0.33 1 0.33 0 0
13 0.84 0.02 | 0.06 | 0.08 0.67 0.67 | 0.33 | 0.33
14 0.09 0.09 | 0.64 | 0.18 0.67 0.67 | 0.67 0
ts 0.29 0.14 | 0.14 | 043 0.67 0 0 0
te 0 0 0 0.99 0.67 0 0.67 0
t7 0 0.97 | 0.01 | 0.02 0.67 0 0.67 | 0.67
tg 0.68 0.05 | 0.05 | 0.23 0.33 0 0.67 | 0.67
tg 0.17 0.17 | 0.17 | 0.50 0.67 0 0 0.67
t10 0.12 0.04 | 0.12 | 0.71 0.67 0 0 0.33
1 0 0.23 | 0.18 | 0.59 0 1 1 1
t12 0 0 1 | 0.00 0 067 | 1 1
113 0.2 0.3 0.4 | 0.10 1 0.33 0 1
114 0.29 0.14 | 043 | 0.14 0 1 0.33 1
15 0.01 0.01 | 0.09 | 0.89 0 1 0.67 0
16 0.7 0.1 0.1 | 0.10 0 0 0 0
t17 0 0 0.98 | 0.01 0 0 0 1
18 0 0 1 0.00 0.33 1 0.67 1
t19 0.11 0.44 | 033 | 0.11 1 0.67 0 0.67
t20 0.11 0.11 | 0.67 | 0.11 0.67 0.67 0 1

Table 8: Sample dataset used in Example 1.1. The
function weights for the 20 entities are also present
as columns within the table.

is set to 5 for these experiments. Samples for the sampling based
algorithm are chosen uniformly, with the sample size varying
from 25 to 250 in increments of 25. For this experiment, we
consider both, the synthetic datasets and the real world dataset.
In each experiment setting, we also run the brute force algorithm
to obtain exact Shapley values to measure against. For each of
the configurations, we aggregate (average) the error across the d
attributes and compute the standard deviation of the errors. The
measured average error in Shapley values and standard deviation
of the average errors are plotted in Figure 2 for the Candidates
dataset. The time consumed by KernelSHAP and sampling based
approach are comparable and far better than the brute force.

Among the two approximate techniques, KernelSHAP outper-
formed the sampling based approach with a similar number of
samples as can be seen from the figure. Even though sampling
based technique provides us with guarantees on error rate, prac-
tically KernelSHAP has a faster convergence rate which can be
seen in the smaller variations in the error bars compared to the
sampling based approach. Similar results can also be seen for the
synthetic dataset with linear (Figure 4) and non-linear functions
(Figure 3) .

993

I AC Zipf Sampling C Zipf Sampling
I Ac Zipf KernelSHAP I C Zipf KernelSHAP

I | Zipf Sampling
| Zipf KernelSHAP

PQ-Match PQ-NotMatch
0.04 0.08
0.03 0.06
0.02 0.04 l
0.01 l 0.02 I I I
ol I I T o
5] 50 100 150 200 250 50 100 150 200 250
o
W] SQ-Single SQ-Multiple
0.02 0.04f_
0.015 0.03
0.01 0.02
0.005 l I 001 I]'I I II
o L& 0 I
50 100 150 200 250 50 100 150 200 250
Samples

Figure 3: Error variations in sampling-based ap-
proach and KernelSHAP when varying number of
samples for synthetic dataset with non-linear rank-
ing functions

I AC Zipf Sampling C Zipf Sampling
I Ac Zipf KernelSHAP I C Zipf KernelSHAP

[N | Zipf Sampling
| Zipf KernelSHAP

PQ-Match PQ-NotMatch
0.06 Q — Q
0.06
0.04 - .
0.04
1% ESslI 11 |
S 50 100 150 200 250 50 100 150 200 250
<
W] SQ-Single SQ-Multiple
T - T 0.06
0.015
0.04
0.01
0.005 ; l 002 I
0 0 1
50 100 150 200 250 50 100 150 200 250
Samples

Figure 4: Error variations in sampling-based ap-
proach and KernelSHAP when varying number of
samples for synthetic dataset with linear ranking
functions

4.3.2 Impact of dimensions on time taken and error. In this
experiment, we generate synthetic datasets with varying the
number of dimensions in the dataset. For each of the datasets
we run the exact Shapley approach, sampling based approach

—— Exact 10-11] —— Sampling
150 Sampling - KernelSHAP

L3012

—— KernelSHAP T
o
“ -13
u110
o
S10-14
=
£10
uw

10—16
o 25 50 75 100 125 4 6 8 10

Number dimensions

Number dimensions

(a) Time taken by the different (b) Measuring error for approxi-
Shapley approaches when vary- mate methods when varying the
ing the number of dimensions number of dimensions

and KernelSHAP. Sampling based approach and KernelSHAP
both use 100 samples in this experiment. For this experiment,
we vary the number of dimensions from 4 to 128. We measure
the amount of time taken and error of the Shapley values by the
Exact, Sampling-based Approximate and KernelSHAP. As the
Shapley values is a vector, the error is measured as the £, norm of
difference between the Shapley values of Exact and approximate
methods. We limit the time of each configuration to 10 minutes.
As the Exact approach consumes exponential amount of time
with respect to d, computing the Exact Shapley values for larger
dimensions is expensive.

Figure 5a shows the time consumed by Exact, Sampling and
KernelSHAP as we vary the number of dimensions. Due to the 10
minute time limit on each configuration of this experiment, the
expensive Exact approach exceeds the time limits for d > 11. For
similar number of samples, KernelSHAP and Sampling consumes
similar amount of time, with Sampling consuming slightly lesser
amount of time. The error incurred during the computation of
Sampling and KernelSHAP is shown in Figure 5b. As can be seen,
KernelSHAP outperforms Sampling based technique in terms
of error. While the plots for KernelSHAP and Sampling seem to
overlap as the number of dimensions increases, the values for
larger dimensions also show that KernelSHAP slightly performs
better than Sampling based technique.

5 RELATED WORK

Matching and applications. Matching plays a critical role
in the allocation of resources based on supply and demand like
matching a region to medical needs [18], ecosystem services are
matched based on changing land use [1], public health needs
are matched by health insurance plans [2]. Matching systems
rely on different mechanisms to capture preferences the users.
Traditionally, these preferences are explicitly specified [19-22].

Explicitly specified matching relies on capturing preference
lists from both the parties and then create a stable matching
under specific conditions. Based on game theory, Gale and Shap-
ley [23] designed a mathematical framework to attain stable
matching and applied it to stable marriage and college admission.
Such matching where one party is matched only to one other
party is known as stable marriage [24-26]. Similarly, many-to-
one stable matching exists with applications such as: hospitals
provide employment to many doctors [27] or student-project al-
locations [28] which was formalized by Roth and Sotomayor [29].
Many-to-many stable matching relies on matching many sup-
ply parties to many demand parties, which has applications in
D2D-enabled cellular networks [20, 30], collaborator recommen-
dations [31]. While there has been extensive work on explicit
matching, to the best of our knowledge there has not been any
explain-ability work in these fields.

594

Often, specifying the complete preference list is prohibitive in
big data applications [32]. In such cases, the preference can be ob-
tained via different means. In case of a search engine, users inter-
act with the search engine to express their query until they reach
their desired result (web-page). Traditionally TF-IDF [33, 34] and
Latent Semantic Analysis [35, 36] based approaches were pro-
posed to solve this problem. Recently, vector representation based
approaches [37, 38] convert words into vector form and then use
this embedded space representation to process the query. Another
type of application where implicit preference is seen is user-item
recommendation systems like Amazon’, Netflix®. In user-item
recommendation systems, items are recommended with prior
interactions of the user with their systems. Numerous techniques
like collaborative filtering [39], matrix factorisation [40], auto
encoder based representations [41, 42] have been proposed to
solve the problem. While some of these works have explanations
built within the system [43, 44], to the best of our knowledge
we are the first to work on explanations in bipartite matching
scenarios.

Explainability in top-k and ranking. Ranking functions
are popular for solving multi-criteria optimization. While ranking
functions have been studied for many years, study of explainabil-
ity in ranking has been a recent trend. Verma et al. [45] explain
queries based on a sampling approach in the neighbourhood of
the query. Gale and Marian explore the topic of explaining rank-
ing in multiple papers. First, in their 2019 paper [46] they assign
scores to various attributes based on whether the items in the top-
k for all methods are in the top-k for a particular attribute. They
also demonstrate that the explanation for a ranking can be used
to adjust a ranking function such that attributes are contributing
to the amount required. The main difference between their work
and ours is that they use this as an explanation for ranking. Top-k
is similar but independent from ranking, and additionally our
matching are bipartite. The difference is further shown by the
fact that these algorithms cannot be easily modified to work for
our queries. Next in 2020 [47], Gale and Marian expand upon
their initial observations by also considering the weight of dif-
ferent parameters, and considering multiple metrics for the type
of ranking produced by the function, namely disparity and di-
versity. Diversity and disparity in ranking has also been studied
by works like [48]. Additionally, some work has been done on
responsible ranking function design [48, 49], where the objective
is to minimally change the weights in a ranking function to make
the generated rankings (top-k) fair and stable.

Why not questions over database queries answer why a cer-
tain tuple was not present in the database query output. They
were first studied by Chapman and Jagadish [50] followed by a
rich field of work known as why or why-not provenance [51-55].
While why-not query tries to explain why a tuple is not present in
the query result, our problem looks at a black-box matching sys-
tem. The notion of why not was extended to top-k queries by He
et. al. [56] where the problem is to find why a certain tuple is not
present in the given top-k query. They also propose an approach
to modify the query slightly such that the query data-point is
present in the top-k query. Gao et. al. [57] propose the problem of
why not for reverse top-k queries and also propose modifications
to accommodate the point into the top-k. The notion of why-not
was further extended by Chen et. al. [58] to why not yet where
the potential solution included modifying the query weights, or

7https://www.amazon.com/
8https://www.netflix.com/

k slightly to include the query tuple in the top-k. However, there
are two fundamental ways in which our work differs from this
body of work. All these papers assume (a) linear ranking func-
tions, and (b) the functions themselves are “white boxes”, i..e, the
weights are known. In contrast, our paper focuses on black box
ranking functions, and moreover, these functions do not have to
be linear. All we assume is that the attributes in our functions
can be masked to observe how their behavior changes. Islam et.
al [59] propose the problem of answering why-not queries over
reverse skyline and dynamic skyline queries. A key difference
between our work and [59] is that skyline can be used to find
the top-1 over the set of monotone functions. While for a tuple
to appear in the skyline it suffices to be in the top-1 of one (any)
of the functions in the set, we are interested in a specific (query)
function. Additionally, the notion of match list in matching deals
with top-k.

Shapley values for explanations. Shapley values were in-
troduced by Gale Shapley [7] to determine the contribution of
each player to the success of the overall coalition. Shapley values
have also been applied to the problem of explanations with a
great degree of success. Here, the contribution of the various fea-
tures to the overall prediction are calculated as Shapley values,
and the Shapley values are used to explain the task [60]. Several
notable contributions have been made to this. Strumbelj et al. [9]
devise a Monte Carlo sampling technique for explaining models,
in order to avoid the exponential nature of exact Shapley value
computation. Lundberg et al. [10] mapped the notion of Shapley
values to the problem of model interpretability, introducing SHAP
and specifically KernelSHAP which allows for regression-based,
model agnostic computation of SHAP values. Lundberg et al. ex-
pand upon this notion in 2018 [61] with the TreeSHAP method,
which is capable of computing SHAP values for tree based mod-
els in polynomial time. While these methods have been studied
extensively in machine learning, the problem of explainability in
bipartite matching is novel. Kumar et al. [13] have shown certain
limitations of Shapley-based methods while explaining machine
learning models. The limitations highlighted during the process
include (i) out-of-distribution points generated during the mask-
ing process, (ii) explanations generated using Shapley are not
actionable. We emphasise that bipartite matching is not subject
to similar problems due to competition. Nevertheless, we have
added a note about improper handling of NULL values during
masking process.

6 FINAL REMARKS

The concept of match list is modelled on real world matching
websites and applications. Some more practical models may in-
clude more complex scenarios which can extend to more data
types like non-binary matching values, matching preferences
that extend to multiple matching values, probabilistic modelling
of preference functions. While we present four different explain-
ability queries that may be encountered in real life, there may be
many more of these queries which may be of interest. We con-
sider both these extensions important, and an avenue for future
work.

While the model we propose is based on the real world, one
might also want to consider other theoretical models of matching,
like a complete ranked list by each individual instead of ranking
functions. These lists could then be used in a stable marriage
algorithm to produce a matching. Such alternate models which
may be of theoretical interest can be considered as alternate

595

models and present an opportunity for a thorough theoretical
analysis.

7 ACKNOWLEDGEMENTS

The work of Gautam Das was supported in part by grants NSF
2107296 and NSF 2008602 from the National Science Foundation.
The work of Abolfazl Asudeh was supported in part by grant
NSF 2107290 from the National Science Foundation.

REFERENCES

[1] Sibyl Hanna Brunner, Robert Huber, and Adrienne Grét-Regamey. A backcast-
ing approach for matching regional ecosystem services supply and demand.
Environmental Modelling & Software, 75:439-458, 2016.

Robert D. Lieberthal. Matching Supply and Demand, pages 145-171. Springer
International Publishing, Cham, 2016.

Klaasjan Visscher, Peter Stegmaier, Andrea Damm, Robin Hamaker-Taylor,
Atte Harjanne, and Raffaele Giordano. Matching supply and demand: A
typology of climate services. Climate Services, 17:100136, 2020.

Anjan Goswami, Fares Hedayati, and Prasant Mohapatra. Recommendation
systems for markets with two sided preferences. In 2014 13th International
Conference on Machine Learning and Applications, pages 282-287. IEEE, 2014.
Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P Gummadi, and
Abhijnan Chakraborty. Fairrec: Two-sided fairness for personalized recom-
mendations in two-sided platforms. In Proceedings of the web conference 2020,
pages 1194-1204, 2020.

Laurent Muzellec, Sébastien Ronteau, and Mary Lambkin. Two-sided inter-
net platforms: A business model lifecycle perspective. Industrial Marketing
Management, 45:139-150, 2015.

Lloyd S. Shapley. A value for n-person games, page 31-40. Cambridge Univer-
sity Press, 1988.

Dominik Janzing, Lenon Minorics, and Patrick Blobaum. Feature relevance
quantification in explainable ai: A causal problem. In International Conference
on artificial intelligence and statistics, pages 2907-2916. PMLR, 2020.

Erik Strumbelj and Igor Kononenko. Explaining prediction models and in-
dividual predictions with feature contributions. Knowledge and information
systems, 41(3):647-665, 2014.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. Advances in neural information processing systems, 30, 2017.
Abolfazl Asudeh, Nan Zhang, and Gautam Das. Query reranking as a service.
Proceedings of the VLDB Endowment, 9(11):888-899, 2016.

Abolfazl Asudeh and HV Jagadish. Fairly evaluating and scoring items in a
data set. Proceedings of the VLDB Endowment, 13(12):3445-3448, 2020.

I Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, and
Sorelle Friedler. Problems with shapley-value-based explanations as feature
importance measures. In International Conference on Machine Learning, pages
5491-5500. PMLR, 2020.

Shaheen S Fatima, Michael Wooldridge, and Nicholas R Jennings. A linear ap-
proximation method for the shapley value. Artificial Intelligence, 172(14):1673-
1699, 2008.

Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. In The collected works of Wassily Hoeffding, pages 409-426. Springer,
1994.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust
you?" explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining,
pages 1135-1144, 2016.

Mohan S Acharya, Asfia Armaan, and Aneeta S Antony. A comparison of
regression models for prediction of graduate admissions. In 2019 international
conference on computational intelligence in data science (ICCIDS), pages 1-5.
IEEE, 2019.

Haiyan Shao, Cheng Jin, Jing Xu, Yexi Zhong, and Bing Xu. Supply-demand
matching of medical services at a city level under the background of hierar-
chical diagnosis and treatment-based on didi chuxing data in haikou, china.
BMC Health Services Research, 22(1):1-12, 2022.

Yeon-Koo Che, Jinwoo Kim, and Fuhito Kojima. Stable matching in large
economies. Econometrica, 87(1):65-110, 2019.

Tom Hoé8ler, Philipp Schulz, Eduard A Jorswieck, Meryem Simsek, and Ger-
hard P Fettweis. Stable matching for wireless urllc in multi-cellular, multi-user
systems. IEEE Transactions on Communications, 68(8):5228-5241, 2020.

Atila Abdulkadiroglu and Tayfun S6nmez. Matching markets: Theory and
practice. Advances in Economics and Econometrics, 1:3-47, 2013.

Rustamdjan Hakimov and Dorothea Kiibler. Experiments on matching mar-
kets: A survey. Technical report, WZB Discussion Paper, 2019.

David Gale and Lloyd S Shapley. College admissions and the stability of
marriage. The American Mathematical Monthly, 69(1):9-15, 1962.

Alvin E Roth and Marilda Sotomayor. Two-sided matching. Handbook of game
theory with economic applications, 1:485-541, 1992.

Gary S Becker. A theory of marriage: Part i. Journal of Political economy,
81(4):813-846, 1973.

Theodore C Bergstrom and Mark Bagnoli. Courtship as a waiting game.
Journal of political economy, 101(1):185-202, 1993.

(2]
(3]

(4]

&

[10]

[11

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
[23]
[24]

[25

[26]

[27

[28

[29]

[30

[31]

[32

[33]

(34

[35

[36]

[37]

[38

[39]

[40

[41

[42]

Natsumi Shimada, Natsuki Yamazaki, and Yuichi Takano. Multi-objective opti-
mization models for many-to-one matching problems. Journal of Information
Processing, 28:406-412, 2020.

David J Abraham, Robert W Irving, and David F Manlove. Two algorithms
for the student-project allocation problem. Journal of discrete algorithms,
5(1):73-90, 2007.

Alvin E Roth and Marilda Sotomayor. The college admissions problem revis-
ited. Econometrica: Journal of the Econometric Society, pages 559-570, 1989.
Shenshen Qian, Bowen Wang, Song Li, Yanjing Sun, Yi Yu, and Jingjing Wang.
Many-to-many matching for social-aware minimized redundancy caching in
d2d-enabled cellular networks. Computer Networks, 175:107249, 2020.
Xiangjie Kong, Linyan Wen, Jing Ren, Mingliang Hou, Minghao Zhang, Kang
Liu, and Feng Xia. Many-to-many collaborator recommendation based on
matching markets theory. In 2019 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf
on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), pages 109-114. IEEE, 2019.
Jing Ren, Feng Xia, Xiangtai Chen, Jiaying Liu, Mingliang Hou, Ahsan Shehzad,
Nargiz Sultanova, and Xiangjie Kong. Matching algorithms: fundamentals,
applications and challenges. IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, 5(3):332-350, 2021.

Juan Ramos et al. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
volume 242, pages 29-48. Citeseer, 2003.

Gerard Salton and Christopher Buckley. Term-weighting approaches in au-
tomatic text retrieval. Information processing & management, 24(5):513-523,
1988.

Susan T Dumais et al. Latent semantic analysis. Annu. Rev. Inf. Sci. Technol.,
38(1):188-230, 2004.

Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and development
in information retrieval, pages 50-57, 1999.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. Learning deep structured semantic models for web search using click-
through data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, pages 2333-2338, 2013.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. A
latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM international conference on conference
on information and knowledge management, pages 101-110, 2014.

Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering
techniques. Advances in artificial intelligence, 2009, 2009.

Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. Regularizing
matrix factorization with user and item embeddings for recommendation.
In Proceedings of the 27th ACM international conference on information and
knowledge management, pages 687-696, 2018.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Au-
torec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
international conference on World Wide Web, pages 111-112, 2015.

Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collaborative
denoising auto-encoders for top-n recommender systems. In Proceedings of

596

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]
[57]

[58

[59]

[60]
[61]

the ninth ACM international conference on web search and data mining, pages
153-162, 2016.

David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with
self-explaining neural networks. Advances in neural information processing
systems, 31, 2018.

Stefano Teso. Toward faithful explanatory active learning with self-explainable
neural nets. In Proceedings of the Workshop on Interactive Adaptive Learning
(IAL 2019), pages 4-16. CEUR Workshop Proceedings, 2019.

Manisha Verma and Debasis Ganguly. Lirme: locally interpretable ranking
model explanation. In Proceedings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pages 1281-1284,
2019.

Abraham Gale and Amélie Marian. Metrics for explainable ranking functions.
In Proceedings of the 2nd International Workshop on ExplainAble Recommenda-
tion and Search (EARS 2019), 2019.

Abraham Gale and Amélie Marian. Explaining monotonic ranking functions.
Proceedings of the VLDB Endowment, 14(4):640-652, 2020.

Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das. Designing
fair ranking schemes. In Proceedings of the 2019 International Conference on
Management of Data, pages 1259-1276, 2019.

Abolfazl Asudeh, HV Jagadish, Gerome Miklau, and Julia Stoyanovich. On
obtaining stable rankings. Proceedings of the VLDB Endowment, 12(3), 2018.
Adriane Chapman and HV Jagadish. Why not? In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data, pages 523-534,
2009.

Seokki Lee, Bertram Ludéscher, and Boris Glavic. ~Approximate sum-
maries for why and why-not provenance (extended version). arXiv preprint
arXiv:2002.00084, 2020.

Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Sri-
vastava. Interpretable and informative explanations of outcomes. Proceedings
of the VLDB Endowment, 8(1):61-72, 2014.

Kareem El Gebaly, Guoyao Feng, Lukasz Golab, Flip Korn, and Divesh Srivas-
tava. Explanation tables. Sat, 5:14, 2018.

Sudeepa Roy and Dan Suciu. A formal approach to finding explanations
for database queries. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 1579-1590, 2014.

Eugene Wu and Samuel Madden. Scorpion: Explaining away outliers in
aggregate queries. 2013.

Zhian He and Eric Lo. Answering why-not questions on top-k queries. IEEE
Transactions on Knowledge and Data Engineering, 26(6):1300-1315, 2012.
Yunjun Gao, Qing Liu, Gang Chen, Baihua Zheng, and Linlin Zhou. Answering
why-not questions on reverse top-k queries. 2015.

Zixuan Chen, Panagiotis Manolios, and Mirek Riedewald. Why not yet: Fix-
ing a top-k ranking that is not fair to individuals. Proceedings of the VLDB
Endowment, 16(9):2377-2390, 2023.

Md Saiful Islam, Rui Zhou, and Chengfei Liu. On answering why-not questions
in reverse skyline queries. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 973-984. IEEE, 2013.

C. Molnar. Interpretable Machine Learning. Lulu.com, 2020.

Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized
feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888, 2018.

