
Performance Analysis of Distributed GPU-Accelerated
Task-Based Workflows

Marcos N. L. Carvalho∗
marcos.nogueira@upc.edu
UPC, Barcelona, Spain

NKUA & Athena RC, Athens, Greece

Anna Queralt
anna.queralt@upc.edu

Universitat Politècnica de Catalunya
Barcelona, Spain

Oscar Romero
oscar.romero@upc.edu

Universitat Politècnica de Catalunya
Barcelona, Spain

Alkis Simitsis
alkis@athenarc.gr

Athena Research Center
Athens, Greece

Cristian Tatu
cristian.tatu@bsc.es

Barcelona Supercomputing Center
Barcelona, Spain

Rosa M. Badia
rosa.m.badia@bsc.es

Barcelona Supercomputing Center
Barcelona, Spain

ABSTRACT
We present an empirical approach to identify the key factors af-
fecting the execution performance of task-based workflows on a
High Performance Computing (HPC) infrastructure composed of
heterogeneous CPU-GPU clusters. Our results reveal that the ex-
ecution performance in distributed GPU-accelerated task-based
workflows highly depends on several interrelated factors regard-
ing the task algorithm, dataset, resources, and system employed.
In addition, our analysis identifies key correlations among these
factors, presents novel observations, and offers guidelines toward
designing an automated method to handle task-based workflows
in modern, high-compute capacity, CPU-GPU engines.

1 INTRODUCTION
Data Science (DS) pipelines are essential for many software sys-
tems today. Such pipelines are composed of multiple processing
stages that perform different tasks to move data from one stage
to a next stage [7]. The relationship between these stages cre-
ates complex workflows, where data preparation, training and
evaluation of Machine Learning (ML) models are just examples
of processing that is frequently done over big datasets. To pro-
cess large amounts of data efficiently, distributed and parallel
applications are required and task-based workflows provide a high-
level programming abstraction to develop such applications [55].
High Performance Computing (HPC) clusters are being widely
used to process DS workloads because of the massive parallelism
enabled by distributed architectures [54]. In addition, improve-
ments in the hardware industry have increased the popularity of
accelerators, such as graphic processing units (GPUs), making
modern distributed infrastructures even more heterogeneous [2].
This evolution has led to distributed GPU-accelerated task-based
workflows [6], which provide massive processing power to users
by leveraging both task-level parallelism of distributed CPUs
and thread-level parallelism of GPUs. In this context, tasks are
distributed and processed in parallel in CPUs and each task, in-
ternally, has its threads parallelized by GPUs.

Considering the performance of such workflows, we face three
core challenges: (i) Ad hoc design: Lacking concrete guidelines

∗The author pursues a joint PhD degree under the auspices of DEDS (No 955895),
a Horizon 2020 MSCA ITN, and he is co-affiliated with Universitat Politècnica
de Catalunya in Spain, Athena Research Center and National and Kapodistrian
University of Athens (a degree awarding institute for Athena R.C.) in Greece.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

and optimization heuristics, the workflow developer often resorts
to intuition to assign tasks to GPU accelerators. And oftentimes,
due to the huge design space of execution parameters (a.k.a.
factors), the developer might exhaustively rerun representative
workloads in order to identify efficient execution settings [10].
In practice, even expert developers spend a considerable amount
of time searching for appropriate, but often sub-optimal, settings.
(ii) Resource wastage: Finding fitting settings results into efficient
resource usage. On the other hand, a poor combination of execu-
tion parameters leads to load imbalance and waste of resources.
For example, a non desirable situation would be to keep the
CPUs busy while the GPUs stay idle during workflow processing.
(iii) Complexity: Previous studies of the problem have focused
on individual factors that could affect execution performance,
such as block size, dataset input size, etc. In our study, we argue
and show that this is not sufficient, as in real-world scenarios
the workflow execution performance is typically affected by a
combination of factors.

To motivate the discussion, consider the following example
that attempts to improve the performance of a task-based work-
flow using GPU accelerators. The workflow represents a CPU-
based and a GPU-accelerated version of a distributed implemen-
tation of the K-means algorithm1. In this experiment, we consider
single task (on 1 CPU core and 1 GPU device) and parallel tasks
(on all CPU cores and GPU devices) execution. Generally, task
processing involves data computation, represented by the task
user code, and data movement (we detail these in Section 3.3).
Figure 1 shows the execution performance at different task pro-
cessing stages: (i) For a single task, a 5.69x speedup of GPU over
CPU is achieved when only the parallel fraction of a task user
code is considered; this is the fraction of the task user code where
threads can be parallelized on a GPU. (ii) The speedup, again for
a single task, is reduced to 1.24x when the total execution of the
task user code is considered; this includes the CPU-GPU com-
munication overhead and the serial (i.e., non-parallel) fraction of
the task as well. (iii) Interestingly, for parallel tasks execution (i.e.
all tasks being distributed and processed in parallel), we observe
that the overall performance of GPUs is worse than CPUs (-1.20x
speedup). Arguably, as a partial analysis of the performance of
GPUs vs. CPUs in distributed task-based workflows may produce
misleading or incomplete results, we need to conduct a more
thorough and principled analysis. And this exactly is the goal of
our work.

To efficiently run distributed task-based workflows, we need to
identify and characterize the factors affecting the performance at

1 The experiment involves a 10 GB dataset processed by 256 tasks distributed on a
cluster with 128 CPU cores and 32 GPU devices. For more details, see Section 4.

Experiments & Analyses Paper

Series ISSN: 2367-2005 690 10.48786/edbt.2024.59

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.59

-1.20x
speedup

1.24x
speedup

5.69x
speedup

Figure 1: Performance of distributed K-means at different
processing stages on CPUs and GPUs

all task processing stages, as those presented in Figure 1. Earlier
work has identified a number of factors affecting the performance
of heterogeneous CPU-GPU processing in a multitude of scenar-
ios, as illustrated in Figure 2. Different performance limitations
arise depending on the infrastructure used, such as single, server
machines and compute clusters.

On a single machine, the main limitations are CPU-GPU data
transfer bottleneck and device speedup. Given a task user code,
a potential mitigation technique to overcome CPU-GPU com-
munication would be to increase computation on GPUs using
techniques such as staged pipeline and zero-copy [60]. The more
computation, the higher the device speedup. The amount of com-
putation in a task heavily depends on its arithmetic intensity,
i.e., the number of math operations divided by number of bytes
read [10, 45], and the task granularity, i.e., the amount of data to
process [78]. However, tasks may involve parallel fraction pro-
cessing that exploits thread-level parallelism on GPUs, and serial
fraction processing executed on CPUs. Hence, the parallel frac-
tion processing within tasks is a key factor to consider in order
to fully utilize GPUs, as it defines the abundance of thread-level
parallelism [22]. Earlier work has studied the issues of CPU-GPU
communication and parallel fraction independently, but has not
considered both problems in tandem, exactly as it happens in
real settings.

On compute clusters, tasks are distributed and processed in
parallel on multiple nodes, thus, scaling out task-level paral-
lelism [72] and providing memory robustness [62] to GPUs by
breaking the input dataset into chunks. Such an infrastructure
adds non-negligible overheads, including storage I/O [27, 38, 69,
70], network I/O [6, 26, 34, 78], and task scheduling [2, 25].

Regardless of the infrastructure used, task granularity is fre-
quently considered as a key performance factor. However, in-
creasing task granularity alone is not always the best strategy to
improve the performance of distributed task-based workflows, as
it increases thread-level parallelism at the cost of reducing task-
level parallelism, which in turn leads to load imbalance between
CPUs and GPUs. Our empirical analysis reveals that the perfor-
mance of distributed GPU-accelerated task-based workflows is a
result of many interrelated factors involving, beside task gran-
ularity, CPU-GPU data transfer, task parallel fraction, storage
I/O, network I/O, task scheduling, etc. We argue that focusing
on a single factor separately (e.g. increasing task granularity to
maximize device speedup) as the current related work suggests,

leads to sub-optimal designs. On the other hand, combining mul-
tiple performance factors (e.g. multi-level parallelism) to optimize
task-based workflows in heterogeneous CPU-GPU, distributed
environments involves a non trivial design complexity, which
makes this a quite challenging problem. The literature misses a
detailed performance analysis to characterize the performance
of task-based workflows and study how to balance thread-level
and task-level parallelism to maximize resource utilization.

Our contributions. We present a systematic performance
analysis of task-based workflows and make the following contri-
butions:
• A systematic analysis of thread-level parallelism; our results
reveal that the gains provided by GPUs are highly affected
by the parallel fraction processing within tasks.

• A systematic analysis of task-level parallelism; our results
reveal that depending on the task granularity, scheduling
policy, and storage architecture used, system overheads can
be significantly high, dominating the total execution time
and eliminating the potential gain of GPU processing.

• A method to identify what are the factors affecting the per-
formance of task-based workflows, how these relate to each
other and to the algorithms, datasets, resources, and dis-
tributed execution system employed; our results indicate that
certain execution parameters are highly correlated with the
performance of task-based workflows and can be considered
as key factors.

• We present novel observations and offer guidelines toward
designing an automated method to handle task-based work-
flows in modern, high compute capacity, CPU-GPU engines.

Structure. The rest of the paper is organized as follows. Sec-
tion 2 presents the related work. Sections 3 and 4 describe back-
ground concepts and the method used in our analysis, respec-
tively. Section 5 presents our experimental analysis, and Section 6
concludes the paper.

2 RELATEDWORK
The literature about heterogeneous CPU-GPU processing is wide
and several approaches have been proposed to improve the per-
formance of CPU-GPU processing. In Figure 2, we present a
classification of the state of the art on CPU-GPU processing and
highlight in red the related work that is within the scope of our
analysis.

In particular, the related work on heterogeneous CPU-GPU has
focused on frameworks [27, 31, 71], libraries [20, 56, 66], sched-
ulers [10, 25, 30], cost-based models [10, 53, 62], programming
models [3, 34, 69], and benchmarks [14, 78]. Previous perfor-
mance analysis studies focused on specific applications like deep
learning models, ETL processes, image classification, and query
performance [9, 10, 29, 32, 42, 63]. Our study targets generic task-
based workflows in CPU-GPU environments, follows a bottom-
up analysis from thread-level to task-level parallelism, and con-
siders a multiplicity of factors affecting workflow performance.

Previous works have also explored different ways to use GPUs,
for example, as the primary processor [27, 62], as an accelera-
tor [73, 78] or in the context of heterogeneous CPU-GPU pro-
cessing [32, 59, 69, 71]. Regarding the application field, several
papers have demonstrated interesting results by using GPUs to
accelerate database query processing [10, 32, 62, 71] and data-
intensive analytics applications with task-based workflows [2, 3,
9, 29, 42, 78], dataflows [15, 57], and graph processing [39, 76].

691

CPU-GPU Processing

GPU Usage GPU
Integration Application Level of

Analysis

Primary
Processor
[27, 62]

Accelerator
[73, 78]

Heterog.
CPU-GPU

[32, 59, 69, 71]

Integrated
[33, 35, 75]

Dedicated Database
[10, 32, 62, 71]

Analytics Instruction
[10, 64, 69]

Task
[32, 62, 71]

DAG
[27, 39]

Infrastructure
Data-intensive Applications

Single Machine Cluster
Task-based Workflows

[2, 3, 9, 29, 42, 78]
Dataflows
[15, 57]

Graph Processing
[39, 76]

CPU-GPU
Data Transfer

[11, 32, 33, 36, 59, 60, 71]

Device
Speedup
[9, 16]

Storage I/O
[27, 38, 69, 70]

Network I/O
[6, 26, 34, 78]

Task
Scheduling

[2, 25]

Figure 2: A taxonomy for CPU-GPU processing (the scope of our study is highlighted in red text)

Our focus is on analyzing the impact of GPUs on task-based
workflows, which are nowadays commonly used in various appli-
cations, such as data science pipelines. Different levels of analysis
can be found in the literature, spanning instruction-level opti-
mization [10, 64, 69], task-level [32, 62, 71] and distributed acyclic
graph (DAG) evaluation [27, 39].

Some approaches investigate using integrated GPUs [33, 35,
75]. However, the majority of previous work considers dedicated
GPUs due to the higher processing capacity compared to in-
tegrated GPUs [60]. Depending on the infrastructure used, i.e.
single machine or cluster, different limitations may arise for ded-
icated GPUs.

Limitations on single server machine. One of the main limita-
tions reported in the literature about the performance of het-
erogeneous CPU-GPU processing is the data transfer bottle-
neck [11, 32, 33, 36, 59, 60, 71]. This bottleneck has been stud-
ied extensively and several techniques have been proposed to
alleviate it. The techniques include overlapping transfer with
execution, data compression, approximation, caching, data local-
ity, single-pass algorithms, heterogeneous execution and faster
system bus [60]. Some studies have also proposed increasing the
amount of data to process (i.e., task granularity) as much as the
GPU memory supports in order to increase the throughput and
the device speedup [9, 16].

However, recent publications have demonstrated that this
strategy is not always the best option to improve the performance
of heterogeneous CPU-GPU environments [32, 61]. Additionally,
the parallel fraction processing within a task is a factor that can
limit performance as much as the CPU-GPU communication. A
theoretical analysis of the parallel fraction is done in [53], but
there is no empirical study about it in the literature. Moreover,
no previous work has evaluated the impact that these limitations
all together may cause in the performance of GPU-accelerated
tasks. Our study reveals that it is worth using GPUs when parallel
fraction processing time is large enough to overcome not only
CPU-GPU processing time, but also serial fraction processing
time.

Limitations on cluster deployment. Distributed environments
enable scaling out task processing over several nodes at the cost of
adding potential bottlenecks, such as data storage I/O [27, 38, 69,
70], network I/O [6, 26, 34, 78], and task scheduling overheads [2,

25]. Although these are relevant limitations to consider when
assessing the performance of parallel task processing, there is no
study on how to tune task granularity to balance task-level and
thread-level parallelism and smooth such overheads. In addition,
there is no work showing how the scheduling policy used and
the storage architecture (i.e. local or shared disk) may affect these
overheads.

Our study shows that such factors must be considered in tan-
dem in order to distribute tasks efficiently on available CPU cores
while at the same time utilizing GPUs. To the best of our knowl-
edge, ours is the first study to relate multiple factors to the exe-
cution performance of distributed GPU-accelerated task-based
workflows. In the past, other works have considered multiple fac-
tors but not all together and not for distributed GPU-accelerated
workflows [2, 6].

3 PRELIMINARIES
Several systems facilitate the development and execution of par-
allel applications on distributed infrastructures (e.g, clusters,
clouds, containerized platforms) such as Apache Spark [74] and
COMPSs [4]. They all share a similar flow. The developer sub-
mits an application (e.g., matrix multiplication, K-means, neural
network, etc.) to such a system, which then generates a Directed
Acyclic Graph (DAG) based on the data dependencies between its
tasks (e.g., math operations, such as dot product, blocked matrix
multiplication, etc.). The system handles parallelism and distri-
bution of tasks by scheduling and allocating resources to execute
the tasks in heterogeneous processors (e.g., CPU or GPU) of a
cluster. Furthermore, the required data to process the tasks is
accessed through a storage architecture. Although HPC architec-
tures typically decouple processing from storage using shared
disks, the option of using local disks is also available. An overview
of a typical distributed task-based workflow processing system
is illustrated in Figure 3. Next, we describe the core components
of such a system and set the basis of our analysis.

3.1 DAG creation
In distributed GPU-accelerated task-based workflows, an applica-
tion is broken into small manageable parts defined as tasks. Each
task takes an input data, perform some calculation over it, and

692

Code
Sequential

Parallel

Distributed System

(1) Code
submission

(2) DAG creation

Cluster Resources

Processing Storage
Node 0

core core

core core

CPU
...

GPU

Node N

core core

core core

CPU

GPU

(3) Task scheduling
and

resource allocation

DAG

Local Disk

Disk

...

Disk

Node 0 Node N

Shared Disk

DiskNetwork

(4) Task
execution

(5) Data access

PCIe PCIe

Runtime System

Task parallelization

Ta
sk

 d
ep

en
de

nc
y

Figure 3: An overview of a distributed task-based workflow processing system

return an output to be used by the subsequent dependent tasks,
if any. When an application code is sent to a processing system
(e.g., COMPSs), the data dependencies between tasks are automat-
ically identified and an execution DAG is generated, composing
an execution workflow. In this DAG, the vertices represent tasks
and the edges represent dependencies. The shape of the DAG
reveals key characteristics of task processing. In particular, the
width of the DAG shows the degree of parallelism (i.e., #parallel
tasks generated) and the height of the DAG shows the degree of
task dependency.

3.2 Task scheduling
The system runtime schedules the tasks of a DAG that are free
of dependencies on the available resources. In general, various
scheduling policies are typically available prioritizing aspects,
such as task generation order and data locality. Depending on the
scheduler selected, the parallel task execution time may vary due
to scheduling overheads, which may be low (e.g., for prioritizing
task generation) or high (e.g., when considering data locality).

3.3 Task execution
Figure 4 shows an abstract illustration of the typical processing
stages of a task, namely the task user code that relates to data
computation, and serialization and deserialization that relate to
data movement. The task user code might be serial (i.e., runs
single-threaded) and/or parallel (i.e., multi-threaded). A serial
task only contains serial code. A partially parallel task contains
both serial and parallel code fractions, and a fully parallel task
only parallel code. Besides data computation, the user code also
includes inter/intra-CPU, inter/intra-GPU, and CPU-GPU com-
munication functionality. For the scope of this work, here we
only consider CPU-GPU communication; i.e., the overhead to
move data between CPUs and GPUs over a bus.

There are two levels of parallelism in task execution: thread-
level parallelism and task-level parallelism.

Thread-level parallelism. This takes place in the parallel frac-
tion of a task user code. Although thread parallelism is feasi-
ble in CPUs (e.g., internally multi-threaded or parallelized with
OpenMP [46]), several frameworks recommend assigning a task
to a single CPU to avoid CPU over-subscription and hence, lever-
age full task parallelism in CPUs. Our initial micro-benchmarks
corroborate this practice, but we plan to investigate this further
in future work. Hence, we consider that serial tasks are assigned
to CPUs, and partially or fully parallel tasks to GPUs, which accel-
erate them with thread parallelism. Note, that a GPU-accelerated
task is not assigned directly to a GPU; it is first processed in a

Deserialization Serial fraction Serialization

Task user code

Parallel
tasks

(a) Serial task

Deserialization Serial
fraction SerializationParallel

fraction
CPU-GPU

Comm.

Task user code

Parallel
tasks

(b) Partially parallel task

Deserialization SerializationParallel fraction CPU-GPU
Comm.

Task user code

Parallel
tasks

(c) Fully parallel task

Figure 4: Abstract task processing stages

CPU core to deserialize data, then a GPU executes the parallel
code, and the result is sent to a CPU core to serialize the output.

Task-level parallelism. Multiple tasks can be executed in paral-
lel. The degree of task parallelism is affected by task dependencies
and available resources. Independent tasks are processed in paral-
lel on available CPU cores in the cluster. Tasks with dependencies
are processed sequentially, as soon as the execution of their de-
pendencies has finished. Task parallelism is limited by the amount
of available GPU devices in the cluster. Since cluster nodes typi-
cally have fewer GPU devices than CPU cores, GPU-accelerated
tasks have lower degree of task parallelism. For example, in a
cluster containing 128 CPU cores and 32 GPU devices, we can
execute in parallel a maximum of 128 CPU-based tasks and only
32 GPU-accelerated tasks. Still, although GPU-accelerated tasks
reap reduced benefits from task parallelism, they achieve con-
siderable speedups due to thread parallelism. And this creates a
critical trade-off between thread-level and task-level parallelism.

3.4 Data access
Some tasks may need to read from and write data to a storage de-
vice (e.g., disk or memory), which results to storage I/O and data
transfer overheads e.g., due to data deserialization and serializa-
tion, respectively. The overhead varies depending on the storage
architecture. For example, with local disks the data is accessed

693

Grid G(k x l), 8 blocks (4x2)

Task 1

Task 2

Task 3

Task 4

Input dataset D(i x j), 64 elements (8 x 8)

Row-wise chunking

Blocks B(m x n), 8 elements (2x4)

Grid G(k x l), 8 blocks (4x2)

Task 5

Task 6

Task 7

Task 8

Task 1

Task 2

Task 3

Task 4

Hybrid row-wise and
column-wise chunking

Figure 5: Example data partitioning and task paralleliza-
tion

locally without having a communication overhead. With shared
disks, processing and storage are decoupled and the data is ac-
cessed from a shared file system accessible from all nodes of the
network, which however (from a performance perspective) adds
considerable communication overhead due to network latency,
resource contention, etc.

3.5 Programming model
Without loss of generality, in our analysis, we consider that the in-
put data is in the form of a matrix. This is in accordance with typ-
ical applications in parallel programming and popular libraries,
such as CUDA [44] and dislib [17].

The processing system splits the input dataset (here, matrix)
into blocks. And the blocks are typically organized in grids (e.g.,
ds_array in dislib, grid in CUDA, etc.). Figure 5 shows an ex-
ample partitioning scheme for an input dataset comprising 64
elements in an 8x8 matrix. Assuming a block size of 8 elements
organized in 4 columns and 2 rows, the grid will contain 8 blocks.
Depending on the application (e.g., an algorithm), a chunking
policy determines how to organize the blocks of a grid and assign
them to tasks (task parallelism). We refer to task granularity as
the blocks of the grid assigned to a single task. Blocks sent to
GPU for processing are further chunked to get parallelized at a
thread level (thread parallelism) using specialized libraries (e.g.,
CuPy for CUDA [20]).

Note that most systems do not provide a direct way to control
how many tasks are spawned. Still we can achieve this indirectly
by tuning the block size, which is determined by the developer.
In our experiments, we set the task granularity to one block per
grid to control the exact number of tasks get spawned (see also
Section 4.4.4). Therefore, large blocks result into coarse-grained
tasks and small blocks result into fine-grained tasks.

Formally, let 𝑫𝑖× 𝑗 be the input dataset with 𝑖 rows and 𝑗

columns, 𝑩𝑚×𝑛 be a block, and 𝑮𝑘×𝑙 be a grid with 𝑘 blocks per
row and 𝑙 blocks per column. The size of 𝑫𝑖× 𝑗 (i.e., 𝑖 × 𝑗) gives
the total number of elements of the input dataset to be processed,
the size of 𝑮𝑘×𝑙 (i.e., 𝑘 × 𝑙) gives the grid dimension (i.e., the total
number of blocks per grid) and the size of 𝑩𝑚×𝑛 (i.e.,𝑚×𝑛) gives
the block dimension (i.e. the total number of elements per block).
The relationship between these sizes is described by Eq. (1):

𝑖 = 𝑘 ×𝑚, 𝑗 = 𝑙 × 𝑛, (1)

To define a grid, the block dimension should be specified in
the application. Thus, assuming that 𝑫𝑖× 𝑗 and 𝑩𝑚×𝑛 are given,
Eq. (1) can be rewritten as Eq. (2):

𝑘 =
𝑖

𝑚
, 𝑙 =

𝑗

𝑛
, (2)

Note that 𝑘 and 𝑙 are inversely proportional to𝑚 and 𝑛, respec-
tively. This relationship reveals a trade-off between task-level
and thread-level parallelism. The larger the block dimension, the
smaller the grid dimension, which increases the task granularity
(and, hence, thread parallelism, as now the block contains more
elements to process) and reduces the number of generated tasks
(and, hence, task parallelism). On the contrary, the smaller the
block dimension, the larger the grid dimension, which minimizes
the degree of thread parallelism and maximizes the degree of task
parallelism. Consequently, these relationships are key to achieve
a balanced degree of task-level and thread-level parallelism. How-
ever, there are two constraints. First, the memory size of a block
must fit in the memory of a processor to avoid undesirable effects;
e.g., out-of-memory (OOM) errors. Second, the block dimension
(𝑘 × 𝑙) cannot be greater than the input dataset dimension (𝑖 × 𝑗).

4 OUR ANALYSIS METHOD
Increasing task granularity is not the only strategy to improve
performance of distributed GPU-accelerated task-based work-
flows. We argue that additional factors should also be considered.
To validate our hypothesis we conduct a performance analysis
adopting the systematic method proposed by Jain [28].

4.1 Evaluated algorithms
We consider task-based workflows that represent data-intensive
applications and run on a heterogeneous CPU-GPU cluster with
dedicated GPUs. A task-based performance analysis relates to
how the low-level tasks in each algorithm are processed by a
distributed system. From this aspect, the algorithm’s logic is
orthogonal to how the underlying tasks implementing it (we
don’t measure how these tasks are produced) are being processed
(this is what we measure in our analysis). In this setting, the
parallel fraction of the user code is of paramount importance
to task-based analysis (see also Section 5). Hence, our criterion
to choose representative algorithms is the level of parallelism
employed in each algorithm.

To this end, we consider two families of algorithms based
on how they perform data computation in the task user code
employing serial and/or parallel processing fractions (see Sec-
tion 3.3): (a) Fully parallelizable algorithms involve fully parallel
tasks whose user code can be fully parallelized in a GPU device
(see Figure 4c). And (b) Partially parallelizable algorithms involve
partially parallel tasks whose user code contains both serial and
parallel fractions (see Figure 4b). In our analysis, we employ
two representative algorithms of each family: an algorithm from
family (a) that involves only parallel task execution vs. one from
family (b) that has a low ratio of parallel / serial code in its task ex-
ecution. For the first case, we useMatrix Multiplication (Matmul),
which fulfills our criterion and is also a fundamental operation
in many ML/DL techniques, including LLMs, PCA, SVD, linear
regression, etc. For the second case, we use K-means, another
widely used and easy to understand algorithm, whose ratio of
parallel / serial code is low and hinders its parallel execution.
Note that any other fully parallelizable (in the first case) or par-
tially parallelizable (in the second case) algorithm would also be
applicable to our analysis.

694

For these algorithms, we investigate when it is beneficial to
use CPU and/or GPU acceleration taking advantage of thread and
task parallelism yielded by key factors related to the algorithms,
datasets, resources, and the distributed system employed.

4.2 Evaluated metrics
First, we consider metrics related to task execution according to
its processing stages: task user code and (de-)serialization. These
can be used to perform a head-to-head comparison between CPU-
based and GPU-accelerated tasks leaving aside other overheads,
such as storage I/O, network I/O, and task scheduling.

Task user code metrics. We report these metrics aggregated
per task type; i.e., tasks running the same code are aggregated
together.
• Serial fraction execution time: average time per task to process
the serial fraction of the user code.

• Parallel fraction execution time: average time per task to pro-
cess the parallel fraction of the user code.

• CPU-GPU communication time: average time per task tomove
data from CPU to GPU or vice versa.

• User code execution time: average time per task user code; i.e.,
summary of serial fraction, parallel fraction, and CPU-GPU
communication times.

Data movement overheads.We report the data serialization and
deserialization times grouped by CPU core for all task types.
• Deserialization time: average time per CPU core to read data
from storage (e.g., disk) and load it to main memory.

• Serialization time: average time per CPU core to write data
from main memory to storage.

Task level metrics. These metrics are computed per DAG level,
i.e., for tasks that are in the same level in the DAG.
• Parallel task execution time: average time per algorithm iter-
ation to run in parallel tasks placed in the same level in the
DAG, considering all overheads related to data movement.

Figure 6 shows example DAGs generated by PyCOMPSs [68]
for the two algorithms we consider: K-means and Matrix Multi-
plication (Matmul). For the task user code metrics we compute
the average time per task of the same task type in the algorithm.
Hence, for Matmul there are two tasks matmul_func (blue nodes
in Figure 6b) and add_func (white nodes in Figure 6b). The data
movement metrics are computed per CPU core involving all tasks
(blue and white). And the parallel task execution time is com-
puted per each level in the DAG (e.g., all blue nodes, the four
white, the two white, etc.). This classification of metrics help us
scrutinize thread and task parallelism in Section 5.

4.3 Evaluated factors
Each variable that affects measured performance (i.e., the out-
come of an experiment) and has several alternatives is called
a factor [28]. In our analysis, we measure the metrics detailed
earlier by varying the factors explained in this section.

Table 1 presents a list of factors that affect the performance of
task-based workflows. The list originates from experimentation,
our experience, and our interviews with the team developed the
distributed system COMPSs [4]. Some of these factors have been
studied before (see Section 2), but never all together.

We classify the factors into four dimensions, namely task al-
gorithm, dataset, resources, and system employed. Each factor
further affects a number of parameters. For example, when we
vary the block dimension, then parameters such as block size,

main

1

d3v1 (2) d4v1

2

d8v1 (2) d4v1

3

d12v1 (2) d4v1

4

d16v1 (2) d4v1

sync

5

d5v2 d9v2 d13v2 d17v2

d18v2

6

d20v1 (2) d21v1

7

d24v1 (2) d21v1

8

d27v1 (2) d21v1

9

d30v1 (2) d21v1

sync

10

d22v2 d25v2 d28v2 d31v2

d32v2

11

d34v1 (2) d35v1

12

d38v1 (2) d35v1

13

d41v1 (2) d35v1

14

d44v1 (2) d35v1

sync

15

d36v2 d39v2 d42v2 d45v2

d46v2

(a) DAG for K-means, grid dimension 4x1, 3 iterations

main

barrier

1

d1v1 d1v1

2

d3v1 d4v1

3

d6v1 d7v1

4

d9v1 d10v1

8

d1v1 d3v1

9

d3v1 d16v1

10

d6v1 d18v1

11

d9v1 d20v1

15

d1v1 d6v1

16

d3v1 d26v1

17

d6v1 d28v1

18

d9v1 d30v1

22

d1v1 d9v1

23

d3v1 d36v1

24

d6v1 d38v1

25

d9v1 d40v1

29

d4v1 d1v1

30

d16v1 d4v1

31

d26v1 d7v1

32

d36v1 d10v1

36

d4v1 d3v1

37

d16v1 d16v1

38

d26v1 d18v1

39

d36v1 d20v1

43

d4v1 d6v1

44

d16v1 d26v1

45

d26v1 d28v1

46

d36v1 d30v1

50

d4v1 d9v1

51

d16v1 d36v1

52

d26v1 d38v1

53

d36v1 d40v1

57

d7v1 d1v1

58

d18v1 d4v1

59

d28v1 d7v1

60

d38v1 d10v1

64

d7v1 d3v1

65

d18v1 d16v1

66

d28v1 d18v1

67

d38v1 d20v1

71

d7v1 d6v1

72

d18v1 d26v1

73

d28v1 d28v1

74

d38v1 d30v1

78

d7v1 d9v1

79

d18v1 d36v1

80

d28v1 d38v1

81

d38v1 d40v1

85

d10v1 d1v1

86

d20v1 d4v1

87

d30v1 d7v1

88

d40v1 d10v1

92

d10v1 d3v1

93

d20v1 d16v1

94

d30v1 d18v1

95

d40v1 d20v1

99

d10v1 d6v1

100

d20v1 d26v1

101

d30v1 d28v1

102

d40v1 d30v1

106

d10v1 d9v1

107

d20v1 d36v1

108

d30v1 d38v1

109

d40v1 d40v1

barrier

5

d2v2 d5v2

6

d8v2 d11v2

7

d12v2 d13v2

12

d15v2 d17v2

13

d19v2 d21v2

14

d22v2 d23v2

19

d25v2 d27v2

20

d29v2 d31v2

21

d32v2 d33v2

26

d35v2 d37v2

27

d39v2 d41v2

28

d42v2 d43v2

33

d45v2 d46v2

34

d47v2 d48v2

35

d49v2 d50v2

40

d52v2 d53v2

41

d54v2 d55v2

42

d56v2 d57v2

47

d59v2 d60v2

48

d61v2 d62v2

49

d63v2 d64v2

54

d66v2 d67v2

55

d68v2 d69v2

56

d70v2 d71v2

61

d73v2 d74v2

62

d75v2 d76v2

63

d77v2 d78v2

68

d80v2 d81v2

69

d82v2 d83v2

70

d84v2 d85v2

75

d87v2 d88v2

76

d89v2 d90v2

77

d91v2 d92v2

82

d94v2 d95v2

83

d96v2 d97v2

84

d98v2 d99v2

89

d101v2 d102v2

90

d103v2 d104v2

91

d105v2 d106v2

96

d108v2 d109v2

97

d110v2 d111v2

98

d112v2 d113v2

103

d115v2 d116v2

104

d117v2 d118v2

105

d119v2 d120v2

110

d122v2 d123v2

111

d124v2 d125v2

112

d126v2 d127v2

dislib.data.array._matmul_func

dislib.data.array._add_func

(b) DAG for Matmul, grid dimension 4x4

Figure 6: DAGs of partially & fully parallelizable algo-
rithms

grid dimension, and DAG shape are affected. We also consider
an algorithm-specific parameter to study the computational com-
plexity of tasks, e.g., the number of clusters in K-means. It is
worth noting, that some presumably relevant parameters are
determined from the factors and therefore, they are not directly
included in our experiments; e.g., task dependencies may be ex-
tracted from the input algorithm, the block dimension determines
the DAG shape, etc. Finally, we consider as future work other
resource parameters, such as #GPU devices, RAM and GPU mem-
ory size, CPU-GPU bus throughput, and disk throughput. Our
experiments indicate that the factors reported here are sufficient
to detect relevant trends.

4.4 Experimental setup
4.4.1 Cluster configuration. We employed the Minotauro Sys-

tem, an HPC cluster hosted at BSC [13]. We used 8 out of the
38 nodes totally available. Each node has 16 CPU cores (Intel
Xeon E5-2630 with 128 GB of RAM) and 4 GPU devices (NVIDIA
K80, each with 12 GB of memory, using PCIe 3.0 for CPU-GPU
interconnect). Hence, at most 128 tasks can be parallelized by
CPUs and 32 by GPUs.

4.4.2 Distributed system. Our tested distribution system is
PyCOMPSs (v.3.0) [68]. We experimented with two of its schedul-
ing policies [12], one considering the task generation order and
another one based on data locality. We also experimented with
both local and shared disk storage running General Parallel File
System (GPFS), which is commonly used in HPC environments.

4.4.3 Scripts. The software bits to run our analysis can be
found in our public code repo2. We employ Python’s perfor-
mance counter [51] to measure serial fraction execution, parallel
2https://github.com/mnlcarv/Performance-Analysis-of-Distributed-GPU-
Accelerated-Task-Based-Workflows.git

695

Table 1: Factors and parameters

Dimension Factors Parameters

Task
algorithm

a) block dimension∗ ∥†‡§,
b) computational
complexity∥ ,
c) parallel fraction∥ , and
d) algorithm-specific
parameter∥

a) block size,
grid dimension, and
DAG shape
b) -
c) -
d) -

Dataset e) dataset dimension∗ ∥†‡§ e) dataset size

Resources

f) processor type
(i.e., CPU or GPU)∥ , and
g) storage
architecture†

f) maximum #CPU cores
available depending
on the processor type
g) -

System h) scheduling policy‡§ h) -

System functions affected: Device Speedup (∥); Storage I/O (†);
Network I/O (‡); CPU-GPU Data Transfer (∗); Task Scheduling (§)

fraction execution (only for CPU-based tasks), CPU-GPU commu-
nication, and parallel task execution times. Since GPU executions
run asynchronously with respect to CPU executions, we used
CUDA events [21] to measure the parallel fraction execution
for GPU-accelerated tasks. We used Paraver [48] to collect data
deserialization and serialization times from traces automatically
generated by PyCOMPSs runtime.

4.4.4 Algorithms. We used the K-means and Matmul imple-
mentations from dislib library (version 0.6.4) [17, 23], a distributed
version of the scikit-learn library [47]. The algorithms used have
the following GPU-accelerated tasks and computational complex-
ities:

Matmul: matmul_func: 𝑂 (𝑁 3) and add_func: 𝑂 (𝑁), where 𝑁
is the order of the block (these two tasks share a dependency as
well).

K-means: partial_sum: 𝑂 (𝑀𝑁𝐾2), where 𝑀 and 𝑁 are the
number of rows (i.e., samples) and columns (i.e., features) in a
block, respectively, and 𝐾 is the number of clusters.

The Matmul tasksmatmul_func and add_func have fully paral-
lel user code. The K-means task partial_sum has partially parallel
user code. The two algorithms use different chunking strate-
gies. Matmul chunks the datasets into rows and columns, while
K-means chunks the dataset into rows. As result, they yield dif-
ferently shaped DAGs as shown in Figure 6. The Matmul DAG is
wide and shallow, which implies a high level of task parallelism.
The K-means DAG is narrow and deep, resulting in a low degree
of task parallelism and a high level of task dependencies. As dis-
cussed in Section 3.5, to control the number of tasks generated
in all executions we assign exactly one block per grid per task.
Matmul implementation guarantees such task granularity by de-
fault, but in K-means we enforce it by setting the number of grid
columns to 1.

4.4.5 Datasets. We generated synthetic datasets in the form
of NumPy array with random float64 (double precision) values.
To ensure reproducibility across multiple executions, we used a
fixed random state value. We varied the dataset sizes to ensure
that each algorithm tested reaches the GPU memory limits. As
we discussed, varying the block size leads to different grid dimen-
sions and hence, different (but predicable) number of tasks and
task granularities. Smaller blocks generate a large number of fine-
grained tasks, whereas larger blocks generate a small number
of coarse-grained tasks. And this allows us to stress the cluster

resources for various scenarios of thread and task parallelism.
Specifically, we used the following sizing scenarios:
• Matmul: two datasets: 8 GB, 32K x 32K (1024M elements) and
32 GB, 64K x 64K (4B elements), and five grid dimensions:
1x1, 2x2, 4x4, 8x8, 16x16.

• K-means: two datasets: 10 GB, 12.5M samples x 100 features
(1250M elements) and 100 GB, 125M samples x 100 features
(12.5B elements), and nine grid dimensions: 1x1, 2x1, 4x1,
8x1, 16x1, 32x1, 64x1, 128x1, 256x1.

5 EXPERIMENTS
Our analysis spans four main experiments: (a) an end-to-end
performance analysis, (b) profiling task user code processing, (c)
profiling parallel task processing, and (d) conducting a correlation
analysis of all the factors considered.

Section 5.1 presents an end-to-end performance evaluation
considering all system functions affected, i.e., CPU-GPU data
transfer, limited device speedup, storage I/O, network I/O and
scheduling overhead. Besides the costly CPU-GPU communica-
tion, task serial fraction may also cause a significant limitation
in device speedup. As expected, data (de-)serialization dominates
storage I/O and represents a critical bottleneck in distributed
environments.

Next, we follow a bottom-up approach to analyze performance
from thread-level to task-level parallelism. Section 5.2 discusses
the gains obtained by GPUs due to thread parallelism by testing
different task workloads with different computational complex-
ities. For a focused evaluation, we study the overheads caused
by CPU-GPU communication and serial fraction processing. Sec-
tion 5.3 extends the previous analysis by considering storage
I/O, network I/O, and scheduling overheads caused by task dis-
tribution. For this experiment, we compare the execution times
between CPUs and GPUs over different combination of storage
architectures and scheduling policies. Section 5.4 presents a cor-
relation analysis of all relevant factors, summarizing our findings
and discussing relevant trends identified in our study. Finally, a
discussion about the generalizability of our approach is provided
in Section 5.5.

Unless otherwise stated, in the experiments we use the exper-
imental setup presented in Section 4.4 with the 8 GB and 10 GB
datasets for Matmul and K-means, respectively, shared disk as
storage architecture, and task generation order as a scheduling
policy. We ran each experiment six times and discarded the first
run to avoid fluctuations due to warm up processing, such as
loading required modules, compile the GPU kernel, etc.

5.1 End-to-end analysis
Figure 7 presents an end-to-end performance analysis for Matmul
(Figure 7a) and K-means (Figure 7b). The analysis shows how
factors, such as task computational complexity of each algorithm,
block dimension (represented by block size and grid dimension in
X-axis), and processor type (CPU or GPU) affect performancemet-
rics, such as GPU speedup over CPU (top charts), execution times
(bottom charts), parallel fraction (P. Frac - green line), CPU-GPU
communication and serial fraction (blue line), and data serializa-
tion/deserialization (orange line). The left charts refer to the 8
GB and 10 GB datasets, and the right charts to the larger datasets
32 GB and 100 GB for Matmul and K-means, respectively.

(blue line), and data serialization/deserialitzation (red line).
Previous studies allude to CPU-GPU communication and (lack

of) memory being limiting factors in GPU acceleration [60]. Our

696

GPU OOM

GPU OOM

GPU
OOM

GPU
OOM

(a) Matmul, 8GB left and 32GB right

GPU
OOM

GPU
OOM

(b) K-means, 10GB left and 100GB right

Figure 7: End-to-end performance analysis

experiments corroborate this hypothesis. Speedups obtained in
the parallel fraction scale with the block size. However, Figure 7
shows that GPUs’ memory limitations eventually lead to out-of-
memory errors for large task granularities. Similarly, the user
code speedup is affected by the block size. Consider for example
Matmul on the 8 GB dataset. In fine-grained tasks, communica-
tion dominates the parallel fraction computation and the user
code speedup decreases on average about 35% compared to the
parallel fraction speedup. The decrease is smaller for coarse-
grained tasks (e.g., 20% in block size 2048 MB), as computation
dominates communication. The same trend holds for both algo-
rithms in all datasets tested. This result is aligned with a typical
performance optimization strategy that suggests increasing the
volume of data to process for improving GPU throughput [32].
However, Figure 7 reveals that this strategy is not always effec-
tive when considering serial fraction processing and data (de-
)serialization.

5.1.1 Serial fraction processing. Figure 7b shows that user
code speedups do not change significantly with the block size.
In partially parallelizable algorithms, these speedups suffer from
serial processing and CPU-GPU communication that dominate
the parallel fraction for all block sizes. Moreover, both serial and
parallel fractions scale with the block size in similar proportions.
Hence, the gain obtained by GPUs in the parallel fraction are

0

10

20

G
P
U

 S
p
e
e
d

u
p
 o

v
e
r

C
P
U

matmul_func
Usr. Code

add_func

32 128 512 2048 8192
Block size MB

10 3

10 1

101

103

A
v
e
ra

g
e
 T

im
e
 p

e
r

T
a
sk

 (
s) P. Frac. CPU P. Frac. GPU CPU-GPU Comm.

32 128 512 2048
Block size MB

GPU
OOM

GPU
OOM

Figure 8: Task computational complexity in Matmul

diminished by the cost of serial processing, resulting in marginal
speedups for all block sizes.

5.1.2 Data (de-)serialization. Figure 7 shows that the speedups
of parallel tasks are largely affected by data (de-)serialization.
An excess of fine-grained tasks saturates the nodes with more
tasks than available CPU cores and the disk with an abundance
of read/write processes. On the other hand, a small number of
coarse-grained tasks do not fully utilize the available CPU cores
in the cluster and increase the data volume per read/write pro-
cesses, thus, increasing the cost of (de-)serialization that cannot
be parallelized. Figure 7 shows that the maximumGPU speedup is
obtainedwhen themaximumparallelism in data (de)-serialization
is achieved; i.e., when the number of tasks is equal to the number
of available CPU cores. It is also worth noting that for small block
sizes the parallel task GPU speedup over CPU is negative due to
the relatively considerable communication and data movement
overheads. For larger block sizes, these overheads are amortized
with the increased task parallelism and hence, GPU speedup
turns positive as we reach the maximum task parallelism (32
tasks in our settings).

5.1.3 Dataset size. Figures 7 shows that the same trends hold
for both smaller (left charts) and larger (right charts) datasets. In
fact, as the dataset size increases, there is also an increase in GPU
speedup (on avg ∼5x) for parallel fraction and user code, whilst
for parallel task the difference is negligible. Note that for the
large datasets (32 GB for Matmul and 100 GB for K-means) our
analysis is limited by the available GPU memory, which is 12 GB
in our settings. We explain this in more detail in Section 5.3. This
limitation does not allow testing block sizes larger than 2MB (4x4
grid size) in Matmul and 6 MB (16x1 grid size) in K-means due to
the GPU memory size needed to handle larger blocks along with
the intermediate results produced in each algorithm.

Summary. Higher task granularity does not always achieve
higher GPU speedups over CPU, mainly due to serial processing,
CPU-GPU communication, and data (de-)serialization overheads.
Our findings are as follows.
• Observation O1: User code speedups are not affected sig-
nificantly by block size when parallel processing gains are
diminished by the serial processing and CPU-GPU commu-
nication costs.

697

0

2

4

6

8

G
P
U

 S
p
e
e
d
u

p
 o

v
e
r

C
P
U

10 clusters
Usr. Code

100 clusters 1000 clusters

39 78
156

313
625

1250
2500

5000
10000

Block size MB

10 3

10 1

101

103

A
v
e
ra

g
e
 T

im
e
 p

e
r

T
a
sk

 (
s) P. Frac. CPU S. Frac. GPU P. Frac. GPU S. Frac. GPU CPU-GPU Comm.

39 78
156

313
625

1250
2500

5000
10000

Block size MB

39 78
156

313
625

1250
2500

5000
10000

Block size MB

GPU
OOM GPU OOM

CPU
GPU
OOM

GPU
OOM GPU OOM

CPU
GPU
OOM

(a) Varying clusters, dataset size 10GB, K-means (b) Varying data skew, Matmul 2GB, K-means 1GB, 10 clusters

Figure 9: The effect of (a) algorithm-specific parameter (#clusters) in K-means and (b) data skew in Matmul and K-means

• Observation O2: Parallel task speedups do not increase
significantly for coarse-grained tasks, but can significantly
improve when data (de-)serialization is fully parallelized us-
ing all available CPU cores.

5.2 Profiling task user code processing
In this experiment, we investigate how task algorithm factors
affect the task user code metrics. In particular, we explore the
effect of (a) the computational complexities of matmul_func and
add_func tasks in Matmul, (b) the algorithm-specific parameter,
which in this experiment is the number of clusters (#clusters) in
K-means, and (c) data skew in Matmul and K-means.

5.2.1 Computational complexity. We use Matmul that com-
prises two types of tasks with different computational complex-
ities, namely matmul_func and add_func. Figure 8 shows how
factors such as task computational complexity, block dimension
(represented by block size in X-axis), and processor type affect
performance metrics such as the user code GPU speedup over
CPU (top charts), and execution times (bottom charts) related to
the parallel fraction (green line) and CPU-GPU communication
(purple line). Note that for the maximum task granularity (8192
MB) the matrix is multiplied in a single matmul_func task and
no add_func task is needed (the reason we skip this value in
Figure 8).

Figure 8 shows that the parallel fraction execution time inmat-
mul_func dominates CPU-GPU communication times in most
cases. Consequently, speedups scale with block size and increase
as high as 21x. However, Figure 8 shows that this pattern does not
repeat in add_func because communication dominates parallel
fraction computation in all block sizes, resulting in performance
degradation of GPUs compared to CPUs. This happens because
the computational complexity of add_func is two orders of mag-
nitude less than the computational complexity of matmul_func.
Therefore, the parallel fraction in add_func is too small to benefit
from the massive thread parallelism provided by GPUs.

5.2.2 Algorithm-specific parameter. K-means has a single task,
partial_sum, whose computational complexity is affected by an
algorithm-specific parameter: #clusters. Figure 9a shows how
factors such as task computational complexity with 10, 100, and
1000 clusters, respectively, block dimension (represented by block
size in X-axis), parallel fraction and processor type affect per-
formance metrics such as the user code speedup of GPU over
CPU (top charts) and execution times (bottom charts) related to

the parallel fraction (green line), serial fraction (yellow line), and
CPU-GPU communication (purple line).

For 10 clusters, the computational complexity is so low that the
parallel fraction execution time is less than the serial fraction and
CPU-GPU communication times, resulting in marginal speedups
(no more than 1.5x). For 100 clusters, the computational complex-
ity is higher, making the parallel fraction execution time greater
than the CPU-GPU communication time, but still less than the
serial fraction execution time. In this case, the speedups are in-
creased in about two times over the scenario with 10 clusters.
Finally, for 1000 clusters, the parallel fraction keeps dominating
the CPU-GPU communication, but the gap between the serial
and parallel fraction execution times is reduced. Therefore, the
speedups are up to 7x higher than in the scenario with 10 clusters.
Note that the speedups keep scaling with #clusters until GPU’s
memory capacity is reached (OOM). Figure 9a shows that the
speedups do not scale with the block size. This happens because
the effect of #clusters dominates the effect of block dimension
in the computational complexity of partial_sum task. And this is
expected as #clusters has a quadratic impact in the computational
complexity of partial_sum, while block dimension has a linear
impact (see also Section 4.4.4).

5.2.3 Data Skew. Next, we investigate how data skew may
affect our analysis. We generated two skewed datasets of size:
2 GB (16K x 16K, 256M elements) for Matmul, and 1 GB (1.25M
samples x 100 features) for K-means. For doing so, we adapted
the uniform distribution of the NumPy random routine [43] to
move 50% of the elements to certain regions of the distribution
forcing groups of elements in the dataset. Figure 9b compares
the CPU (top charts) and GPU (bottom charts) task user code
execution time in Matmul (left charts) and K-means (right charts)
for the uniform (0% skew) and skewed datasets. We observe that
data skew does not affect the task user code execution time. Our
analysis also indicates similar performance for the fine-grained
stages of parallel and serial fraction, CPU-GPU communication,
and parallel task (the respective charts are omitted due to space
considerations). This result is expected as the algorithms tested
do not process differently tasks involving uniform or skewed
data. In general, we believe that data skew might have an impact
in certain pipelines that exploit data distribution in a special
manner; how this could affect processing in GPUs is an excellent
topic for future work.

698

32 (1
6 x 16)

128 (8
 x 8)

512 (4
 x 4)

2048 (2
 x 2)

8192 (1
 x 1)

Block size MB (Grid Dimension)

0

500

1000

1500

2000

2500

P
.

T
a
sk

s
A

v
e
ra

g
e
 T

im
e
 (

s) Local disk, task generation order

CPU GPU

32 (1
6 x 16)

128 (8
 x 8)

512 (4
 x 4)

2048 (2
 x 2)

8192 (1
 x 1)

Local disk, data locality

32 (1
6 x 16)

128 (8
 x 8)

512 (4
 x 4)

2048 (2
 x 2)

8192 (1
 x 1)

Shared disk, task generation order

32 (1
6 x 16)

128 (8
 x 8)

512 (4
 x 4)

2048 (2
 x 2)

8192 (1
 x 1)

Shared disk, data locality

GPU
OOM

GPU
OOM

GPU
OOM

GPU
OOM

(a) Matmul, dataset size 8GB

39 (256 x 1)

78 (128 x 1)

156 (64 x 1)

313 (32 x 1)

625 (16 x 1)

1250 (8 x 1)

2500 (4 x 1)

5000 (2 x 1)

10000 (1 x 1)

Block size MB (Grid Dimension)

0

100

200

P.
Ta

sk
s A

ve
ra

ge
 T

im
e

(s
) Local disk, task generation order

CPU GPU

39 (256 x 1)

78 (128 x 1)

156 (64 x 1)

313 (32 x 1)

625 (16 x 1)

1250 (8 x 1)

2500 (4 x 1)

5000 (2 x 1)

10000 (1 x 1)

Local disk, data locality

39 (256 x 1)

78 (128 x 1)

156 (64 x 1)

313 (32 x 1)

625 (16 x 1)

1250 (8 x 1)

2500 (4 x 1)

5000 (2 x 1)

10000 (1 x 1)

Shared disk, task generation order

39 (256 x 1)

78 (128 x 1)

156 (64 x 1)

313 (32 x 1)

625 (16 x 1)

1250 (8 x 1)

2500 (4 x 1)

5000 (2 x 1)

10000 (1 x 1)

Shared disk, data locality

(b) K-means, dataset size 10GB, 10 clusters

Figure 10: The effects of storage architecture and scheduling policy on Matmul and K-means

Summary. The challenge at the task user code processing
stage is to balance serial and parallel processing, and CPU-GPU
communication to maximize GPU speedups. Our findings are as
follows.

• Observation O3: In tasks with low computational complex-
ity, increasing task granularity does not increase significantly
GPU speedups over CPU.

• Observation O4: GPU speedups over CPU are largely af-
fected by algorithm-specific parameters when the effect of
these parameters dominates the effect of task computational
complexity.

5.3 Profiling parallel task processing
So far, we focused on the task user code processing without con-
sidering the side-effects caused by data access and distribution,
such as storage I/O, network I/O, and task scheduling overheads.
Here, we expand the analysis to study task distribution on CPUs
and GPUs across different combinations of storage architectures
and schedulers. In this context, Figures 10a and 10b show how
factors such as block dimension (represented by block size and
grid dimension in X-axis), task computational complexity and
parallel fraction of Matmul and K-means, processor type (CPU
or GPU), storage architecture (local or shared disk), scheduling
policy (data locality or task generation order) affect the parallel
task execution time (Y-axis) performance metric.

Figures 10a and 10b show that changing the scheduling policy
from task generation order to data locality does not result in
significant changes in the execution times of CPUs and GPUs in
local disk storage architecture. Since data access is simplified in
local disk (i.e. data is accessed directly from the node’s disks), task
scheduling adds minimum overhead. And overall, execution on
the local storage is faster than the shared storage (see Section 3.4).

However, the execution time in shared disk is more sensitive
to changes in the scheduling policy than local disk, as depicted
in Figures 10a and 10b. In this case, data access is more complex,
as data is accessible from a shared file system across a shared
network. As a result, changes in the scheduling policy are more
evident in shared disk. This effect is more noticeable in K-means

than in Matmul, as K-means tasks have lower computational com-
plexity. Hence, K-means is affected more by scheduling overhead
and the execution times gaps between CPUs and GPUs are more
evident when changing the scheduling policy.

Two additional observations are worth noting in these charts.
First, time increases for larger block sizes as task parallelism is
not fully leveraged in coarse-grained tasks. However, it drops for
the maximum block size, because in this case there is neither task
distribution (only a single task is generated) nor any overhead
caused by it. Second, Matmul requires memory equal to three
times the block size (each task has two blocks inputs and one
block output). Since the GPU device we use has 12 GB of memory,
it runs out of memory for the maximum block size because then
each task requires 24 GB (3 x 8192 MB) of memory.

SummaryWhen tasks are distributed and processed in par-
allel, the execution time increases in both CPUs and GPUs due
to the effects of storage I/O, network I/O, and scheduling over-
heads. The combination of different storage architectures and
scheduling policies results in different execution performance
gains between CPU and GPU. Our findings are as follows.
• ObservationO5:When using local disks, variations in sched-
uling policy do not affect much the difference in execution
time in CPUs and GPUs.

• Observation O6: When using shared disks, variations in
scheduling policy affect differently the execution time in CPUs
and GPUs for tasks with low computational complexity.

5.4 Correlation Analysis
In this section, we investigate how the parallel execution time
metric and all the factors and parameters listed in Table 1 are
correlated. Considering both factors and parameters as features,
we have a mix of categorical and numerical data. The categorical
features are processor type, storage architecture, and scheduling
policy, and we use one-hot encoding to transform them into
numerical data. We use the Spearman rank correlation [65] to
measure the relationship between two features. We opted for
this statistical measure, because of its robustness to potential
non-linear relationships between the features. Naturally, other
measures could be used as well.

699

Paralle
l ta

sk exec. ti
me

Block siz
e

Grid
 dim

ensio
n

Paralle
l fr

acti
on

Algorith
m-sp

ecifi
c param.

Computatio
nal complexity

DAG m
axim

um width

DAG m
axim

um height

Dataset s
ize CPU

GPU

Shared disk
 st

orage

Local d
isk

 st
orage

Task gen. o
rder s

chedulin
g

Data lo
ca

lity
 sc

hedulin
g

Parallel task exec. time

Block size

Grid dimension

Parallel fraction

Algorithm-specific param.

Computational complexity

DAG maximum width

DAG maximum height

Dataset size

CPU

GPU

Shared disk storage

Local disk storage

Task gen. order scheduling

Data locality scheduling

1.000 0.398 -0.136 0.377 0.263 0.499 -0.005 -0.407 -0.009 0.066 -0.066 0.194 -0.194 -0.065 0.065

0.398 1.000 -0.778 -0.223 0.036 0.600 -0.772 -0.056 0.468 0.087 -0.087 -0.197 0.197 -0.197 0.197

-0.136 -0.778 1.000 0.124 0.137 -0.367 0.961 0.213 0.010 -0.076 0.076 -0.014 0.014 -0.014 0.014

0.377 -0.223 0.124 1.000 0.532 0.279 0.284 -0.633 -0.553 0.460 -0.460 0.041 -0.041 0.049 -0.049

0.263 0.036 0.137 0.532 1.000 0.836 0.137 0.288 0.130 -0.130 -0.095 0.095 -0.095 0.095

0.499 0.600 -0.367 0.279 0.836 1.000 -0.331 -0.239 0.294 0.132 -0.132 -0.187 0.187 -0.187 0.187

-0.005 -0.772 0.961 0.284 0.137 -0.331 1.000 0.001 -0.143 -0.081 0.081 -0.006 0.006 -0.006 0.006

-0.407 -0.056 0.213 -0.633 -0.239 0.001 1.000 0.570 -0.022 0.022 -0.039 0.039 -0.039 0.039

-0.009 0.468 0.010 -0.553 0.288 0.294 -0.143 0.570 1.000 0.021 -0.021 -0.261 0.261 -0.261 0.261

0.066 0.087 -0.076 0.460 0.130 0.132 -0.081 -0.022 0.021 1.000 -1.000 -0.012 0.012 -0.012 0.012

-0.066 -0.087 0.076 -0.460 -0.130 -0.132 0.081 0.022 -0.021 -1.000 1.000 0.012 -0.012 0.012 -0.012

0.194 -0.197 -0.014 0.041 -0.095 -0.187 -0.006 -0.039 -0.261 -0.012 0.012 1.000 -1.000 0.425 -0.425

-0.194 0.197 0.014 -0.041 0.095 0.187 0.006 0.039 0.261 0.012 -0.012 -1.000 1.000 -0.425 0.425

-0.065 -0.197 -0.014 0.049 -0.095 -0.187 -0.006 -0.039 -0.261 -0.012 0.012 0.425 -0.425 1.000 -1.000

0.065 0.197 0.014 -0.049 0.095 0.187 0.006 0.039 0.261 0.012 -0.012 -0.425 0.425 -1.000 1.000
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Task Algorithm

Dataset

Resource

System

Figure 11: Correlation matrix of key features

To enrich the diversity of datasets sizes, we supplemented
the experiments presented so far with additional experiments
involving smaller datasets for each algorithm: 128 MB (4000
x 4000) for Matmul and 100 MB (125000 X 100) for K-means.
For the new experiments, we follow the same analysis method
presented in Section 4 using shared disk storage architecture
and task generation order scheduling policy. Hence, in total the
dataset used in the correlation analysis contains 192 samples,
each having a unique combination of factors, parameters, and
parallel task execution times.

Figure 11 shows a correlation matrix of the parallel task exe-
cution time and the features related to task algorithm, dataset,
resource, and system employed. The values in the correlation
matrix range from -1 to 1, where positive (negative) values mean
that two features increase in the same (opposite) direction. The
absolute value reveals the strength of the correlation, where 0
means no correlation and 1 means absolute correlation. Note that
we do not compute correlation for the DAG maximum height
and the algorithm-specific parameter, as in our experiments we
always use the same values for these features.

5.4.1 Verifying observations O1-O6. Figure 11 shows the fol-
lowing trends that reinforce the observations O1-O6.

O1. There is a positive correlation (about 0.4) between parallel
task execution time and the task parallel fraction. Asmentioned in
O1, the task parallel fraction plays an important role in increasing
the speedups of GPUs, being as important as block size, which
also has a similar positive correlation value with the execution
time.

O2. DAG maximum width has the weakest correlation with
execution time (-0.005). This trend highlights the challenge to
balance the levels of task and thread parallelism. As the DAG
gets wider, the task-level parallelism increases and the thread-
level parallelism decreases. O2 states that the non-linear behavior
of data (de-)serialization is the main cause of this imbalance in
parallelism.

O3. Task computational complexity is the feature with the
strongest correlation with execution time (about 0.5), showing

that the more complex the task is, the more time is required to
process it. This trend is directly related to O3.

O4. The algorithm-specific parameter has significant positive
correlation with task computational complexity (over 0.8) and
execution time (about 0.3), reinforcing the observation O4. Ad-
ditionally, we observe that algorithm-specific parameter has a
correlation of about 0.5 with task parallel fraction. Hence, appro-
priately tuning the algorithm (application) is critical for paral-
lelism and as a consequence for workflow performance.

O5 and O6. Storage architecture shows a correlation with the
execution time: positive for shared disk (about 0.2) and negative
for local disk (about -0.2). This is another indication that shared
disk has higher latency than local disk. Changing the storage
architecture results in different latency for data (de-)serialization.
However, the correlation of scheduling policy with execution
time is weaker (-0.065 for task generation order and 0.065 for data
locality). Thus, changes in the scheduling policy do not result in
significant variations in execution time. These trends are well
aligned with observations O5 and O6.

5.4.2 Additional findings. The correlation matrix presented
in Figure 11 also reveals additional interesting trends.

(a) The block size has a much stronger correlation with execu-
tion time than dataset size. Thus, regardless of the dataset size,
selecting an appropriate block size is a key step to process tasks
efficiently.

(b) The high correlation of block size with grid dimension and
DAG maximum width reinforces the trade-off between thread
and task parallelism discussed exhaustively in this paper.

(c) Shared disk correlates positively with task generation order
scheduler (over 0.4) and local disk correlates positively with data
locality scheduler (over 0.4), revealing scheduling preferences
depending on the storage architecture. This fits nicely the idea
of the schedulers too; e.g., data locality for local disk.

(d) The negative correlation between processor type (i.e. CPU
or GPU) and task parallel fraction shows that when GPUs are
used, the parallel fraction is reduced because this fraction is
executed considerably faster in GPUs than in CPUs.

700

32 128 512 2048 8192
Block size MB

0

5

10

15

20

25

GP
U

Sp
ee

du
p

ov
er

 C
PU Usr. Code

32 128 512 2048 8192
Block size MB

10 2

100

102

104

Av
g.

 T
im

e
pe

r T
as

k
(s

)

P. Frac. CPU
P. Frac. GPU
CPU-GPU Comm.

Figure 12: Analysis of task user code in Matmul FMA

(e) Theweak correlation between processor type and execution
time (0.066 for CPU and -0.066 for GPU) explainswhy the decision
of choosing CPUs or GPUs to process tasks is non-obvious.

The additional insights provided by the correlation analysis
confirm our hypothesis that to efficiently run GPU-accelerated
task-based workflows, we should consider a combination of pa-
rameters related to task algorithm, dataset, resources, and system
employed. However, selecting an appropriate combination of
parameters that justifies the use of GPUs is a non-trivial task
because of the complex non-linear relationships between these
parameters. Overall, our experiments presented empirical evi-
dence that naive heuristics and cost-based models do not suffice
to tackle this problem.

5.4.3 Toward automated design. Our findings and observa-
tions could serve as guidelines toward designing an automated
method to handle task-basedworkflows inmodern, high-compute
capacity, CPU-GPU engines. Tuning such a multiplicity of factors
while taking into account our findings is a complex design prob-
lem, especially considering its non-linear nature. One potentially
fruitful direction would be put learning models into play and
investigate how they could identify and predict non-linear trends,
as for example, the ideal block size to maximize the efficiency of
each processor, the level of task computational complexity and
parallel fraction that would make GPUs shine, etc.

5.5 Generalizability
Here, we discuss how our method could be generalized to addi-
tional algorithms, architectures, and processing systems.

5.5.1 Algorithms. Given the multitude of the factors consid-
ered in our analysis, working with two representative algorithms
allows us to focus on the space of design options and identify the
relevant factors and overheads involved. Extending the analysis
to additional algorithms and implementations, which is part of
our future work, would give us more data points between the
two extreme cases considered here, namely fully and partially
parallelizable algorithms, which presumably could help transi-
tion the focus of the work from “getting insights” to “propose
actions”, e.g., devise a method to decide when it is worth ex-
ploiting GPUs based on the ratio of parallel / serial code in an
algorithm. Towards this end, we conducted an experiment with
another implementation of Matmul, the Fused Multiply Add ma-
trix multiplication (Matmul FMA) [18]. Figure 12 shows the GPU
speedup and the average time per task employing the same pa-
rameters used in the experiment with the dislib implementation
of Matmul (Figure 8). The results follow the same trends observed
in Figure 8 with respect to user code speedup, parallel fraction,
and CPU-GPU communication times.

5.5.2 Architectures. GPUs have a core execution model: sev-
eral threads execute the same instructions with different data (i.e.,

Single Instruction, Multiple Thread – SIMT) [60]. CPU-GPU com-
munication varies depending on the GPU integration architecture.
Integrated GPUs share RAM with CPUs and therefore CPU-GPU
communication is eliminated. Oppositely, the memory of dedi-
cated GPUs is decoupled from RAM requiring CPU-GPU commu-
nication [60, 70]. Examples of hardware features available in mod-
ern GPUs to mitigate (but not eliminate) CPU-GPU communica-
tion include: faster bus interconnects (e.g. NVLink, CXL) [36, 60],
shared memory between GPUs [24, 40], GPU direct memory ac-
cess to disk [41, 52], and GPU cache [8, 10, 27, 37, 40, 41, 52, 58, 77].
As our work focuses on dedicated GPUs (see also Figure 2), con-
sidering a wider variety of GPU vendors and models would result
into the same challenges (e.g., CPU-GPU communication over-
head and GPU memory capacity), arguably, without changing
our findings related to the key factors and parameters to con-
sider. Hence, as our resources are limited, we chose to include
in our analysis one of the most popular and well-adopted GPU
architectures; i.e. dedicated NVIDIA GPUs using PCIe as bus
interconnect [60]. For other GPU vendors, we could work simi-
larly; for example, CuPy [50] supports AMD GPUs (ROCm) [1].
We believe that the trends we show are good indications of the
practical overheads met in alternative architectures, at least at
the task-level analysis.

5.5.3 Processing systems. In our analysis, we employed a very
common distributed architecture used by data scientists, namely
COMPSs, a highly scalable system that follows a typical master-
worker architecture [19]. However, our process pipeline described
in Section 3 is equivalent to how other popular distributed sys-
tems (e.g., Spark [67], Parla [31]) operate: work in batches, gen-
erate a DAG, assign tasks to multiple nodes, and then on each
node deserialize data, execute the code in parallel or serial, seri-
alize the data, etc. As a case in point, data (de-)serialization has
been widely reported as a bottleneck in several systems including
COMPSs [49] and Spark [5, 27, 38].

6 CONCLUSIONS AND FUTUREWORK
In our analysis, we investigated the wide range of performance
gains obtained by GPUs in distributed task-based workflows run-
ning on HPC clusters. Understanding the key factors affecting
the performance of task-based workflows is essential to under-
stand not only how to maximize the gains of GPUs, but also
when is worth using these accelerators. Our empirical analysis
reveals that tuning task granularity alone is not sufficient to run
task-based workflows efficiently. On the contrary, achieving rea-
sonably good performance is a result of tuning a multiplicity
of interrelated factors associated with task algorithm, dataset,
resources, and system employed. Finally, we also discussed that
our findings open up several interesting questions and directions
for future research.

ACKNOWLEDGMENTS
Thiswork has been partially supported byDEDS (H2020-MSCAITN-
2020) with grant agreement No. 955895, the EU-HORIZON pro-
gramme CREXDATA under GA.101092749, the EU-HORIZON
programme FAIR-CORE4EOSC under GA.101057264, the EU-
HORIZON programme EXTREMEXP under GA.101093164, the
Spanish Government projects PID2019-107255GB and PID2020-
117191RB-I00 / AEI/10.13039/501100011033 andMCIN/AEI /10.13039
/501100011033 (CEX2021-001148-S), and by the Departament de
Recerca i Universitats de la Generalitat de Catalunya (2021 SGR
00412, MPiEDist).

701

REFERENCES
[1] AMD. 2023. AMD ROCm Software. https://www.amd.com/en/products/

software/rocm.html
[2] Ramon Amela, Cristian Ramon-Cortes, Jorge Ejarque, Javier Conejero, and

Rosa M Badia. 2018. Executing linear algebra kernels in heterogeneous dis-
tributed infrastructures with PyCOMPSs. Oil & Gas Science and Technology–
Revue d’IFP Energies nouvelles 73 (2018), 47.

[3] M Usman Ashraf, Fathy Alburaei Eassa, Aiiad Ahmad Albeshri, and Abdullah
Algarni. 2018. Performance and power efficient massive parallel computational
model for HPC heterogeneous exascale systems. IEEE Access 6 (2018), 23095–
23107.

[4] Rosa M Badia, Javier Conejero, Carlos Diaz, Jorge Ejarque, Daniele Lezzi,
Francesc Lordan, Cristian Ramon-Cortes, and Raul Sirvent. 2015. Comp
superscalar, an interoperable programming framework. SoftwareX 3 (2015),
32–36.

[5] Lorenzo Baldacci and Matteo Golfarelli. 2018. A cost model for SPARK SQL.
IEEE Transactions on Knowledge and Data Engineering 31, 5 (2018), 819–832.

[6] Tal Ben-Nun, Todd Gamblin, Daisy S Hollman, Hari Krishnan, and Chris J
Newburn. 2020. Workflows are the new applications: Challenges in perfor-
mance, portability, and productivity. In 2020 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). IEEE, 57–69.

[7] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The art and
practice of data science pipelines: A comprehensive study of data science
pipelines in theory, in-the-small, and in-the-large. In Proceedings of the 44th
International Conference on Software Engineering. 2091–2103.

[8] Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust query pro-
cessing in co-processor-accelerated databases. In Proceedings of the 2016 Inter-
national Conference on Management of Data. 1891–1906.

[9] Ebubekir Buber and DIRI Banu. 2018. Performance analysis and CPU vs GPU
comparison for deep learning. In 2018 6th International Conference on Control
Engineering & Information Technology (CEIT). IEEE, 1–6.

[10] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim.
2023. Revisiting Query Performance in GPU Database Systems. arXiv preprint
arXiv:2302.00734 (2023).

[11] Juan M Cebrian, Baldomero Imbernón, Jesús Soto, and José M Cecilia. 2021.
Evaluation of Clustering Algorithms on HPC Platforms. Mathematics 9, 17
(2021), 2156.

[12] Barcelona Supercomputing Center. 2023. COMPSs Schedulers.
https://compss-doc.readthedocs.io/en/3.0/Sections/03_Execution_
Environments/01_Scheduling.html

[13] Barcelona Supercomputing Center. 2023. Minotauro System Overview. https:
//bsc.es/supportkc/docs/Minotauro/overview/

[14] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer,
Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for
heterogeneous computing. In 2009 IEEE international symposium on workload
characterization (IISWC). Ieee, 44–54.

[15] Zhenhua Chen, Jielong Xu, Jian Tang, Kevin Kwiat, and Charles Kamhoua.
2015. G-Storm: GPU-enabled high-throughput online data processing in Storm.
In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 307–312.

[16] Zhenhua Chen, Jielong Xu, Jian Tang, Kevin A Kwiat, Charles Alexandre
Kamhoua, and Chonggang Wang. 2016. GPU-accelerated high-throughput
online stream data processing. IEEE Transactions on Big Data 4, 2 (2016),
191–202.

[17] Javier Álvarez Cid-Fuentes, Salvi Solà, Pol Álvarez, Alfred Castro-Ginard, and
Rosa M Badia. 2019. dislib: Large scale high performance machine learning
in python. In 2019 15th International Conference on eScience (eScience). IEEE,
96–105.

[18] COMPSs. 2023. Fused Multiply Add algorithm in COMPSs. https:
//compss-doc.readthedocs.io/en/stable/Sections/07_Sample_Applications/
02_Python/04_Matmul.html

[19] Javier Conejero, Sandra Corella, Rosa M Badia, and Jesus Labarta. 2018. Task-
based programming in COMPSs to converge from HPC to big data. The
International Journal of High Performance Computing Applications 32, 1 (2018),
45–60.

[20] CuPy. 2023. NumPy/SciPy-compatible Array Library for GPU-accelerated Com-
puting with Python. https://cupy.dev/

[21] CuPy. 2023. Performance Best Practices. https://docs.cupy.dev/en/stable/user_
guide/performance.html

[22] Steven Dalton, Luke Olson, and Nathan Bell. 2015. Optimizing sparse ma-
trix—matrix multiplication for the gpu. ACM Transactions on Mathematical
Software (TOMS) 41, 4 (2015), 1–20.

[23] Dislib. 2023. Distributed computing library implemented over PyCOMPSs
programming model for HPC. https://github.com/bsc-wdc/dislib/tree/
gpu-support

[24] Nitin A Gawande, Jeff A Daily, Charles Siegel, Nathan R Tallent, and Abhinav
Vishnu. 2020. Scaling deep learning workloads: Nvidia dgx-1/pascal and intel
knights landing. Future Generation Computer Systems 108 (2020), 1162–1172.

[25] Nathan Grinsztajn, Olivier Beaumont, Emmanuel Jeannot, and Philippe Preux.
2021. Readys: A reinforcement learning based strategy for heterogeneous dy-
namic scheduling. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 70–81.

[26] TorstenHoefler, Salvatore Di Girolamo, Konstantin Taranov, Ryan EGrant, and
Ron Brightwell. 2017. sPIN: High-performance streaming Processing in the
Network. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. 1–16.
[27] Sumin Hong, Woohyuk Choi, and Won-Ki Jeong. 2017. GPU in-memory

processing using spark for iterative computation. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID).
IEEE, 31–41.

[28] Raj Jain. 1990. The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. john wiley &
sons.

[29] Anusha Jayasimhan and P Pabitha. 2022. A comparison between CPU and
GPU for image classification using Convolutional Neural Networks. In 2022
International Conference on Communication, Computing and Internet of Things
(IC3IoT). IEEE, 1–4.

[30] Yasir Noman Khalid, Muhammad Aleem, Usman Ahmed, Muhammad Arshad
Islam, and Muhammad Azhar Iqbal. 2019. Troodon: A machine-learning based
load-balancing application scheduler for CPU–GPU system. J. Parallel and
Distrib. Comput. 132 (2019), 79–94.

[31] Hochan Lee, William Ruys, Ian Henriksen, Arthur Peters, Yineng Yan, Sean
Stephens, Bozhi You, Henrique Fingler, Martin Burtscher, Milos Gligoric, et al.
2022. Parla: A python orchestration system for heterogeneous architectures.
In SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–15.

[32] Suyeon Lee and Sungyong Park. 2021. Performance analysis of big data
ETL process over CPU-GPU heterogeneous architectures. In 2021 IEEE 37th
International Conference on Data Engineering Workshops (ICDEW). IEEE, 42–
47.

[33] Jiesong Liu, Feng Zhang, Hourun Li, Dalin Wang, Weitao Wan, Xiaokun Fang,
Jidong Zhai, and Xiaoyong Du. 2022. Exploring Query Processing on CPU-
GPU Integrated Edge Device. IEEE Transactions on Parallel and Distributed
Systems 33, 12 (2022), 4057–4070.

[34] Fengshun Lu, Junqiang Song, Fukang Yin, and Xiaoqian Zhu. 2012. Per-
formance evaluation of hybrid programming patterns for large CPU/GPU
heterogeneous clusters. Computer physics communications 183, 6 (2012), 1172–
1181.

[35] Hua Luan and Yan Fu. 2021. Accelerating group-by and aggregation on
heterogeneous CPU-GPU platforms. In The International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery. Springer, 980–990.

[36] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump up the volume: Processing large data on GPUs with fast inter-
connects. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 1633–1649.

[37] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2022. Triton join: efficiently scaling to a large join state on GPUs with fast in-
terconnects. In Proceedings of the 2022 International Conference on Management
of Data. 1017–1032.

[38] Dieudonne Manzi and David Tompkins. 2016. Exploring GPU acceleration
of apache spark. In 2016 IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 222–223.

[39] Marcelo K Moori, Hiago Mayk G de A Rocha, Matheus A Silva, Janaina
Schwarzrock, Arthur F Lorenzon, and Antonio Carlos S Beck. 2023. Au-
tomatic CPU-GPU Allocation for Graph Execution. In 2023 31st Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP). IEEE, 27–34.

[40] ShinMorishima andHiroki Matsutani. 2017. Distributed in-GPU data cache for
document-oriented data store via PCIe over 10 Gbit ethernet. In Euro-Par 2016:
Parallel Processing Workshops: Euro-Par 2016 International Workshops, Grenoble,
France, August 24-26, 2016, Revised Selected Papers 22. Springer, 41–55.

[41] Hamish Nicholson, Aunn Raza, Periklis Chrysogelos, and Anastasia Aila-
maki. 2023. HetCache: Synergising NVMe Storage and GPU-acceleration for
Memory-Efficient Analytics. CIDR. www. cidrdb. org (2023).

[42] S Nishanth, Manu S Rao, BM Sagar, T Padmashree, and NK Cauvery. 2022.
Performance of CPUs and GPUs on Deep Learning Models For Heterogeneous
Datasets. In 2022 6th International Conference on Electronics, Communication
and Aerospace Technology. IEEE, 978–985.

[43] NumPy. 2023. NumPy Random routine. https://numpy.org/doc/stable/
reference/random/generated/numpy.random.random.html

[44] NVIDIA. 2023. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit
[45] NVIDIA. 2023. GPU Performance Background User’s Guide. https://docs.

nvidia.com/deeplearning/performance/dl-performance-gpu-background/
index.html

[46] OpenMP. 2023. The OpenMP API specification for parallel programming. https:
//www.openmp.org

[47] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python.
the Journal of machine Learning research 12 (2011), 2825–2830.

[48] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. 1995. Paraver:
A tool to visualize and analyze parallel code. In Proceedings of WoTUG-18:
transputer and occam developments, Vol. 44. 17–31.

[49] Lucas M Ponce, Daniele Lezzi, Rosa M Badia, and Dorgival Guedes. 2019.
Extension of a Task-based model to Functional programming. In 2019 31st
International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). IEEE, 64–71.

[50] PyPi.org. 2023. CuPy ROCm. https://pypi.org/project/cupy-rocm-5-0
[51] Python. 2023. time — Time access and conversions. https://docs.python.org/3/

library/time.html

702

[52] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna
Masood, Jeongmin Park, Jinjun Xiong, CJ Newburn, Dmitri Vainbrand, I-Hsin
Chung, et al. 2023. GPU-Initiated On-Demand High-Throughput Storage
Access in the BaM System Architecture. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 325–339.

[53] Ashur Rafiev, Mohammed AN Al-Hayanni, Fei Xia, Rishad Shafik, Alexander
Romanovsky, and Alex Yakovlev. 2018. Speedup and power scaling models for
heterogeneous many-core systems. IEEE Transactions on Multi-scale computing
systems 4, 3 (2018), 436–449.

[54] Guillem Ramirez-Gargallo, Marta Garcia-Gasulla, and Filippo Mantovani. 2019.
TensorFlow on state-of-the-art HPC clusters: a machine learning use case.
In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 526–533.

[55] Cristian Ramon-Cortes, Pol Alvarez, Francesc Lordan, Javier Alvarez, Jorge
Ejarque, and Rosa M Badia. 2021. A survey on the Distributed Computing
stack. Computer Science Review 42 (2021), 100422.

[56] RAPIDS. 2023. GPU Accelerated Data Science. https://rapids.ai/
[57] M Mazhar Rathore, Hojae Son, Awais Ahmad, Anand Paul, and Gwanggil

Jeon. 2018. Real-time big data stream processing using GPU with spark over
hadoop ecosystem. International Journal of Parallel Programming 46 (2018),
630–646.

[58] Syed Mohammad Aunn Raza, Periklis Chrysogelos, Panagiotis Sioulas,
Vladimir Indjic, Angelos Christos Anadiotis, and Anastasia Ailamaki. 2020.
GPU-accelerated data management under the test of time. In Online proceed-
ings of the 10th Conference on Innovative Data Systems Research (CIDR).

[59] Christoph Riesinger, Arash Bakhtiari, Martin Schreiber, Philipp Neumann,
and Hans-Joachim Bungartz. 2017. A holistic scalable implementation ap-
proach of the lattice Boltzmann method for CPU/GPU heterogeneous clusters.
Computation 5, 4 (2017), 48.

[60] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. 2022. Query processing
on heterogeneous CPU/GPU systems. ACM Computing Surveys (CSUR) 55, 1
(2022), 1–38.

[61] Maximilian E Schüle, Harald Lang, Maximilian Springer, Alfons Kemper,
Thomas Neumann, and Stephan Günnemann. 2022. Recursive SQL and GPU-
support for in-database machine learning. Distributed and Parallel Databases
40, 2-3 (2022), 205–259.

[62] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A study of the
fundamental performance characteristics of GPUs and CPUs for database
analytics. In Proceedings of the 2020 ACM SIGMOD international conference on
Management of data. 1617–1632.

[63] Alkis Simitsis, Spiros Skiadopoulos, and Panos Vassiliadis. 2023. The History,
Present, and Future of ETL Technology. In Proceedings of the 25th International
Workshop on Design, Optimization, Languages and Analytical Processing of Big
Data (DOLAP). 3–12.

[64] Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja Ap-
puswamy, and Anastasia Ailamaki. 2019. Hardware-conscious hash-joins on
gpus. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 698–709.

[65] Charles Spearman. 1961. The proof and measurement of association between
two things. (1961).

[66] Young-Kyoon Suh, Junyoung An, Byungchul Tak, and Gap-Joo Na. 2022. A
Comprehensive Empirical Study of Query Performance Across GPU DBMSes.

Proceedings of the ACM on Measurement and Analysis of Computing Systems 6,
1 (2022), 1–29.

[67] Shanjiang Tang, Bingsheng He, Ce Yu, Yusen Li, and Kun Li. 2020. A survey
on spark ecosystem: Big data processing infrastructure, machine learning,
and applications. IEEE Transactions on Knowledge and Data Engineering 34, 1
(2020), 71–91.

[68] Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M Badia,
Jordi Torres, Toni Cortes, and Jesús Labarta. 2017. PyCOMPSs: Parallel compu-
tational workflows in Python. The International Journal of High Performance
Computing Applications 31, 1 (2017), 66–82.

[69] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven
Swanson. 2018. Morpheus: Exploring the potential of near-data processing
for creating application objects in heterogeneous computing. ACM SIGOPS
Operating Systems Review 52, 1 (2018), 71–83.

[70] Maria Xekalaki, Juan Fumero, Athanasios Stratikopoulos, Katerina Doka,
Christos Katsakioris, Constantinos Bitsakos, Nectarios Koziris, and Christos
Kotselidis. 2022. Enabling Transparent Acceleration of Big Data Frameworks
Using Heterogeneous Hardware. Proceedings of the VLDB Endowment 15, 13
(2022), 3869–3882.

[71] Bobbi W Yogatama, Weiwei Gong, and Xiangyao Yu. 2022. Orchestrating data
placement and query execution in heterogeneous CPU-GPU DBMS. Proceed-
ings of the VLDB Endowment 15, 11 (2022), 2491–2503.

[72] Yuan Yuan, Meisam Fathi Salmi, Yin Huai, Kaibo Wang, Rubao Lee, and
Xiaodong Zhang. 2016. Spark-GPU: An accelerated in-memory data processing
engine on clusters. In 2016 IEEE International Conference on Big Data (Big Data).
IEEE, 273–283.

[73] Eleni Tzirita Zacharatou, Harish Doraiswamy, Anastasia Ailamaki, Cláudio T
Silva, and Juliana Freire. 2017. GPU rasterization for real-time spatial aggrega-
tion over arbitrary polygons. Proceedings of the VLDB Endowment 11, 3 (2017),
352–365.

[74] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica.
2012. Resilient Distributed Datasets: A {Fault-Tolerant} Abstraction for
{In-Memory} Cluster Computing. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). 15–28.

[75] Feng Zhang, Chenyang Zhang, Lin Yang, Shuhao Zhang, Bingsheng He, Wei
Lu, and Xiaoyong Du. 2021. Fine-grained multi-query stream processing on
integrated architectures. IEEE Transactions on Parallel and Distributed Systems
32, 9 (2021), 2303–2320.

[76] Tao Zhang, Jingjie Zhang, Wei Shu, Min-You Wu, and Xiaoyao Liang. 2015.
Efficient graph computation on hybrid CPU and GPU systems. The Journal of
Supercomputing 71 (2015), 1563–1586.

[77] Xin Zhang, Yanyan Shen, Yingxia Shao, and Lei Chen. 2023. DUCATI: A
Dual-Cache Training System for Graph Neural Networks on Giant Graphs
with the GPU. Proceedings of the ACM on Management of Data 1, 2 (2023),
1–24.

[78] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Ja-
yarajan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko.
2018. Benchmarking and analyzing deep neural network training. In 2018
IEEE International Symposium on Workload Characterization (IISWC). IEEE,
88–100.

703

