
Crayfish: Navigating the Labyrinth of Machine Learning
Inference in Stream Processing Systems

Sonia Horchidan
KTH Royal Institute of Technology

sfhor@kth.se

Po Hao Chen
Brown University
pch@brown.edu

Emmanouil Kritharakis
Boston University
ekrithar@bu.edu

Paris Carbone
KTH Royal Institute of Technology

parisc@kth.se

Vasiliki Kalavri
Boston University
vkalavri@bu.edu

ABSTRACT
As Machine Learning predictions are increasingly being used
in business analytics pipelines, integrating stream processing
with model serving has become a common data engineering task.
Despite their synergies, separate software stacks typically handle
streaming analytics and model serving. Systems for data stream
management do not support ML inference out-of-the-box, while
model-serving frameworks have limited functionality for con-
tinuous data transformations, windowing, and other streaming
tasks. As a result, developers are left with a design space dilemma
whose trade-offs are not well understood. This paper presents
Crayfish, an extensible benchmarking framework that facili-
tates designing and executing comprehensive evaluation studies
of streaming inference pipelines. We demonstrate the capabilities
of Crayfish by studying four data processing systems, three
embedded libraries, three external serving frameworks, and two
pre-trained models. Our results prove the necessity of a stan-
dardized benchmarking framework and show that (1) even for
serving tools in the same category, the performance can vary
greatly and, sometimes, defy intuition, (2) GPU accelerators can
show compelling improvements for the serving task, but the im-
provement varies across tools, and (3) serving alternatives can
achieve significantly different performance, depending on the
stream processors they are integrated with.

1 INTRODUCTION
A plethora of data management issues in Machine Learning
(ML) application scenarios have recently concerned our com-
munity [32, 41], including data cleaning and quality verifica-
tion [31, 40, 44, 47], in-database learning [35, 55], optimizing ML
over relational data [7, 34], learning on private data [21, 27], and
model tuning and lifecycle management [1, 37], among others.
Nonetheless, little attention has been paid to the intricacies in-
volved in the rising use of ML applications on streaming data.
Existing studies have merely focused on model training in this
context [36]; yet, the fundamental complexities of combining
data stream processing technologies with ML inference tools
have been greatly overlooked. In this paper, we review the state
of affairs in streaming ML inference and study the problem of
model serving within data stream processing pipelines.

Despite growing needs for integrating ML predictions into
online analytics pipelines [2, 8, 17], no canonical methodology
exists today for developing such applications. On one hand, mod-
ern stream processing systems (SPSs), such as Apache Flink [9]

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

R
ay

 S
er

ve

…R
ay

 

TF
-S

er
vi

ng

To
rc

hS
er

ve

S
av

ed
M

od
el

O
N

N
X

D
L4

J

S
pa

rk
 S

S
K

af
ka

 S
tre

am
s

A
pa

ch
e 

Fl
in

k

Output Operator D
at

a 
Pr

oc
es

so
r

Embedded 
Serving

External

Serving

Pre-trained

Model

FFNN

ResNet50

Scoring Operator

Input Operator

Output 
Consumer

Input 
ProducerKafka Input Topic

Kafka Output Topic Metrics 
Analysis

Load Apply

Load Apply

User-Configurable User-Defined

Figure 1: Crayfish Overview.

and Kafka Streams [43], provide advanced functionality for on-
line data transformations, aggregation, and windowing but lack
native support for model lifecycle management and hardware
acceleration (e.g., GPU, SIMD), which is paramount when dealing
with frequent vectorized ML operations [53]. On the other hand,
ML serving frameworks, such as TensorFlow Serving [39] and
TorchServe [11], offer limited features for data transformations
and have no support for streaming computations. As a result,
developers are left with two main design choices whose trade-
offs are not well understood. They can embed ML models into
stream processing operators to enable the creation of end-to-end
pipelines but with high engineering and maintenance costs for
inference-critical features such as autoscaling, model version-
ing, and hardware acceleration. Alternatively, they can instruct
the SPS to forward inference requests to external serving frame-
works at the cost of increased complexity, additional resources,
and potentially weaker fault-tolerance guarantees.

Unfortunately, evaluating these alternative design choices is
not straightforward, as users need to develop, deploy, and test
multiple combinations of complex tools to find the most suit-
able solution for their use case. The different architectures of
existing SPSs and the obscure performance characteristics of the
serving approaches only exacerbate the problem. For instance,
even though most modern SPS designs have converged to com-
mon dataflow programming abstractions [3, 6], their underlying
execution engines vary considerably in the way they handle
batching, asynchronous requests, backpressure, and state man-
agement [14, 20, 51]. Understanding the performance trade-offs
between embedded and external model serving designs is also
challenging without extensive experimentation. Embedding mod-
els in a streaming operator enables local inference calls but re-
quires interoperability libraries, such as DeepLearning4j [30] and
ONNX (Open Neural Network Exchange) [16, 28], which rely
on performance-costly foreign function interfaces. Conversely,
external serving frameworks expose models via REST-like APIs

Experiments & Analyses Paper

 

 

Series ISSN: 2367-2005 676 10.48786/edbt.2024.58

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.58


that may also introduce overheads. Existing performance stud-
ies and benchmarking tools have only considered data stream
workloads and ML serving in isolation.

Our paper addresses this problem by proposing Crayfish, a
new benchmark framework for the systematic evaluation of ML
inference in stream processing systems, and presents the first
comprehensive experimental study conducted using Crayfish.
Further, Crayfish can serve as testing grounds during the model
fine-tuning phase, such that performance metrics can be opti-
mized together with accuracy measurements. Figure 1 shows
an overview of Crayfish’s capabilities. We carefully design the
framework to be extensible so developers can easily integrate
their SPS, serving tool, and pre-trained model of choice. At the
moment of writing, Crayfish already supports: (1) four popular
(stream) data processing systems, namely Apache Flink, Apache
Spark, Kafka Streams, and Ray, (2) three interoperability libraries
(ONNX, DL4J, and SavedModel), and (3) three external serving
tools (TensorFlow Serving, TorchServe, and Ray Serve). Moreover,
we provide a complete toolkit for automating the deployment of
Crayfish in the cloud and quickly assessing performance results,
including data connectors and generators, model loaders, Docker
containers, and a metrics collection component. We release the
Crayfish’s source code alongside the setup and evaluation con-
figuration details as open source1.

Our contributions.We introduce Crayfish in §3. Next, in §4,
we design and conduct the first quantitative analysis of popu-
lar tools for serving pre-trained ML models in production-level
stream processing frameworks and present the results in §5,
where we provide an in-depth analysis of the trade-offs of the
chosen methods. Following the description of our systematic
evaluation, we discuss the implications of the takeaways with
respect to the data management problems incurred by the task
of streaming model serving in §6. Furthermore, in §7, we list the
features worth adopting when designing new streaming systems
that enable ML inference and highlight open research challenges.

Summary of major findings. The key findings of our experi-
mental study can be summarized as follows:
• There is significant performance variation among serving
frameworks of the same type (i.e., embedded and external) for
the same SPS.

• There is no clear performance dichotomy between embedded
and external approaches for the same SPS. That is, external
serving can achieve lower latency than embedded designs
under some conditions.

• All examined configurations experience benefits from GPU
acceleration during inference, albeit to varying extents.

• A given serving framework may exhibit considerably different
performance depending on the SPS it is integrated with.

2 INFERENCE FOR STREAM PROCESSORS
This section identifies the options available to integrate model-
serving tasks into SPSs. Furthermore, we motivate the necessity
of a standardized benchmarking tool.

2.1 Embedded and External Serving
Preliminary research described two dominant directions formodel
serving when interfacing with event-based stream processing
systems based on the available integration layer type [25]: em-
bedded and external serving. These alternatives cover many use

1https://github.com/soniahorchidan/crayfish23

Apache Flink

Spark Structured Streaming

Kafka Streams

Ray

Beam

Trill

Samza

Hazelcast Jet

Azure Stream Analytics

Storm

Google Dataflow …

Stream Processors

TorchServe

TF Serving

BentoMLSeldon

Triton

…

External ML

ONNX DL4J

SavedModel

CoreMLCaffe2

DJL

…

Embedded ML

FFNN

ResNet50 VGG19

MobileNet

DenseNet

AlexNet

ImageNet …

Pre- trained Models×

×

×

×

Figure 2: Example of configuration alternatives to compare per-
formance when serving image classification models over data
streams.

cases and can serve as building blocks for complex scenarios. By
studying these two alternatives in isolation, practitioners can
gain valuable insights to inform the design of complex, more
intricate use cases and deployment pipelines.

Embedded serving lets the stream processor manage the entire
model serving lifecycle. Typically, the pre-trained model is loaded
into the managed state of an operator in the system and the
inference runs embedded in the same process as the hosting SPS.
However, an interoperability library (such as the ones described
in §3.4.2) is required to address the potential incompatibility
between stream processors and pre-trained models, since the
former are commonly implemented using JVM-based languages.
This library should provide primitives for model loading and
inference, whereas the SPS is responsible for providing auxiliary
production features such as scalability and monitoring.

External serving approaches delegate model serving operations
to a dedicated inference service executed as a standalone process.
The stream processor submits input data points over the network
to the inference service and receives the output of the inference
typically via a REST API. Managing and scaling the inference life-
cycle is, therefore, operated by the specialized inference service.
We delve into external serving approaches in §3.4.3.

2.2 Motivation
The motivation behind the need for a benchmarking framework
is two-fold. Firstly, it is unfeasible to test all possible combina-
tions of stream processors and serving alternatives for a set of
pre-trained models, yet essential to determine the optimal perfor-
mance. Secondly, fine-tuning a given ML model to strike a good
balance between accuracy and expected latency is challenging
but is essential in many real-world applications. We now discuss
the two motivating scenarios.

2.2.1 Possible Combinations. A configuration includes select-
ing an SPS and a model serving tool of choice. Given a number
of pre-trained models 𝑀 to use, the possible configurations can
be 𝑆𝑃 × (𝐸 +𝑋 ) ×𝑀 where 𝑆𝑃 is the number of available stream
processors, 𝐸 is the number of embedded serving tools, and 𝑋

is the number of considered external servers. Consider the ex-
ample in Figure 2, which shows the streaming configurations for
serving a number of popular image classification models with
roughly 12 candidate stream processors, 6 embedded machine
learning (ML) libraries, and 5 external tools. This amounts to a
staggering 924 performance tests to integrate and implement,
which is nearly infeasible in terms of engineering complexity.
Designing accurate benchmarking software is challenging for
most system developers, especially when several systems are

677



Input 
Producer

Data 
Processor

Output 
Consumer

Kafka 
Cluster

Generate CDB
Read 

CDB 

Write 

Scored

CDB Read Kafka Messages

Write (start, end)

Data sample: 

Prediction: NULL

Start Time: 167

Receive Data and 

Assign Timestamp

End Time: 215

Kafka Message
Data sample: 

Prediction: [0.9, 0.1]

Start Time: 167

1
2

3

4

5

6

Figure 3: Crayfish data generation and timestamps recording. CDB
Stands for CrayfishDataBatch.

involved in the process. In this case, a benchmarking framework
can help quickly identify the most suitable combination of tools,
given a set of latency/throughput constraints.

2.2.2 The latency-accuracy trade-off. In situations demanding
real-time predictions for critical decision-making, such as many
Internet of Things (IoT) applications, the challenge lies in finding
the right balance between ensuring accurate predictions and
meeting stringent low latency requirements [5]. The standard ML
training process has traditionally prioritized the pursuit of peak
accuracy, often sidelining considerations related to latency until
the model preparation phase is completed. Here, a benchmarking
framework can close the gap by simulating the target production
environment and quantifying the expected inference latency.
Such a tool can empower data scientists to efficiently iterate
and fine-tune their models, ensuring that they not only achieve
accuracy benchmarks but also conform to latency constraints.

3 THE CRAYFISH FRAMEWORK
The Crayfish framework is designed to provide a standardized
way to evaluate and compare the performance of different serving
configurations deployed in a chosen stream processing system
in terms of metrics such as latency, throughput, and scalability.
Similarly to the literature, the serving logic in Crayfish is defined
as a function determined solely by the inputs and the chosen
pre-trained model [33]. This section describes the design and
implementation details of Crayfish.

3.1 Architecture
Figure 1 shows the main components of Crayfish. All mea-
surements in Crayfish are orchestrated using an event-based
execution, from an input to an output message log. To facili-
tate this, Crayfish makes use of an input workload producer
component, which feeds event streams to a data processor com-
ponent through a message broker. The data processor contains
all system-specific implementations of model serving, including
a selection of serving alternative configurations covering both
embedded and external inference arrangements and pre-trained
models. All scored entries arrive at an output consumer com-
ponent through the message broker where Crayfish logs all
performance measurements.

Each benchmark in Crayfish is composed of discrete units
of computation, representing fixed batches of scoring requests.
A CrayfishDataBatch contains a batch of data points alongside
the creation timestamp, which is used in computing end-to-end
latencies. The latency computation process is described in detail
in §3.3. Crayfish uses JSON serialization throughout the data
pipeline for simplicity and flexibility.

The input producer component can be configured to (1) gen-
erate synthetic input streams according to user-defined specifi-
cations or (2) read real datasets. The configurable input rate is

Table 1: Configuration parameters for Crayfish experiments.

Notation Description
isz Shape of the input data points generated.
bsz The number of data points generated in one event.
ir Constant input rate used in the data generation (events/s).
bd Burst Duration (s)†.
tbb Time Between Bursts (s)†.
mp Number of workers used for inference.
† Configured only for input rate generation with periodic bursts.

designed to simulate workloads with constant rate or periodic
bursts. The description of these parameters is included in Table 1.
The input producer writes each generated CrayfishDataBatch to
the Kafka Input Topic as one batch at a time.

Next, the data processor component refers to the combination
of the stream processor and serving tool chosen for the bench-
mark, which is also referred to as the system under test (SUT)
throughout this paper. For extensibility, the data processor in
Crayfish uses an adapter pattern, allowing for system-specific
implementation for each of its operators. There are three main
operators: an input operator (i.e., source) for data reads, a scoring
operator that performs inference, and an output operator (i.e.,
the sink) for data writes. The embedded server allows to load and
apply the pre-trained model via an interoperability library, while
the external server provides abstractions for HTTP/gRPC-based
requests to specialized serving microservices.

The output consumer component defines a Kafka consumer
responsible for reading the data from the Kafka Output Topic and
extracting the end-to-end latency per CrayfishDataBatch. When
the experiments are completed, the metrics analyzer component
can be invoked to produce performance statistics.

The SUT’s components are user-defined. Therefore, we show-
case Crayfish’ capabilities by implementing adaptors for a list
of stream processors and serving alternatives.

3.2 Core Abstractions
Crayfish provides a set of core programming abstractions to
extend the benchmark with more systems and libraries of choice.
These interfaces are depicted in Figure 1 as user-defined com-
ponents. Furthermore, the system can be configured to test pre-
trained models of choice (shown as user-configurable in Figure 1).
Stream Processors: Crayfish provides an interface to extend
the framework functionalitywith streaming frameworks of choice.
Any event-based system that can declare its computation as a
Directed Acyclic Graph (DAG) fulfills the requirements of the
Crayfish processor. The main operators are the following: 1)
I : inputOp implements the stream ingestion logic from a Kafka
topic. 2) S/E: scoringOp takes the output of inputOp as input and
executes the serving logic via a flatmap-like operation. Crayfish
treats embedded (S) and external serving separately (E), allowing
for the stream processor to specify different behavior for each. 3)
O: The outputOp method should accept the scored data points
as input and write data to Kafka topics. Furthermore, given that
Crayfish aims to evaluate scalability considerations, any sys-
tem implementation of the core abstraction must specify how to
establish the parallelism of the streaming computation.
Serving Tools & Models: To ensure compatibility with the
new serving tools, Crayfish expects libraries to provide the im-
plementation of two methods: load, which specifies how the
pre-trained model is to be loaded into memory, and apply, which
obtains a prediction, given a CrayfishDataBatch object and a
model. Loading a pre-trained model and performing inference

678



Apache Flink
Em

be
dd

ed
Ex

te
rn

al
Spark Structured Streaming RayKafka Streams

I S O
I S O
I S O

EEE

TorchServe/TF-Serving

I S O
I S O
I S O

I S O
I S O
I S O

TorchServe/TF-Serving

I S O
I S O
I OS

EEE

I S O

I S O

I S O

I S O

S
E

Ray Serve

HTTP

I S O

I S O

I S O
gRPCgRPC

Pre-trained model Embedded model (DL4J/ONNX/SavedModel) SPS Operator Actor

I S O

TorchServe/TF-Serving

EEE

gRPC

Figure 4: An illustrative overview of all dataflow system task configurations for model serving across systems, depicting how the Crayfish
tasks are arranged (I: input, S:serving, E: external serving, O:output, model placement).

given input data of a predefined type are minimal functionalities
typically part of any model-serving interface. Most existing ap-
plications adhere to these assumptions; therefore, the provided
abstractions do not hinder the applicability of Crayfish to other
serving tools. Finally, to support models other than the default
ones in Crayfish, users can indicate the format and location of
any stored model they wish to test via configuration files.

For concrete examples of how to extend Crayfish with ad-
ditional SPSs, model serving tools, and pre-trained models, we
invite the readers to consult our public repository.

3.3 Metrics Collection
In this section, we outline Crayfish’s metrics collection process,
which is depicted in Figure 3. When evaluating the performance
of streaming tasks, throughput and end-to-end latency are tra-
ditionally used as the primary metrics. Crayfish records two
timestamps for each (batch of) generated data point(s). The first
timestamp is the start time, which is defined as the local clock
time of the generation and is recorded by the input producer
component. This timestamp is recorded prior to the data being
written to the Kafka Input Topic (Step 1 ). The second timestamp
is the end time and is collected on the Kafka side per message
(Step 5 ). This timestamp is the local time of the broker when the
message is appended to the output topic (Kafka’s LogAppendTime
configuration). By using these two timestamps, which are per-
sistently written in step (Step 6 ), Crayfish computes the time
spent by the Crayfish data batch in the system.

3.4 Supported Frameworks and Libraries
Crayfish currently supports a non-exhaustive list of tools and
frameworks curated to cover various applications and simulta-
neously showcase that the benchmark is general and extensible.
This section discusses tools, configurations, and implementation
details, which are also depicted in Figure 4. In total, Crayfish
supports at the moment four stream processors, three embedded
libraries, three external ones, and two pre-trained models. The
number of combinations tested in our evaluation goes up to 48.

3.4.1 Stream Processing Systems. SPSs are systems purpose-
fully designed to ingest, transform, and apply computations on
events that get ingested continuously. In Crayfish, SPSs are
different implementations of the data processor component.

Apache Flink. Apache Flink [9] is a full-fledged distributed
stream processing engine for continuous data processing. The

Flink adapter in Crayfish follows closely the interface described
by the data processor component. The DAG comprises three op-
erators: a Kafka source, a map operator responsible for model
scoring, and a Kafka sink. In the case of embedded serving, the
map operator loads the pre-trained model in memory using an
interoperability library before the streaming job begins. For ex-
ternal serving, the scoring operator sends gRPC requests to an
external endpoint and waits for the prediction. We chose Apache
Flink as a representative push-pull event-based SPS, which, by
default, enables the push-based mechanism. Therefore, data is
pushed to the streaming engine as soon as it becomes avail-
able. Moreover, as depicted in Figure 4, Flink employs processing
pipelining techniques by overlapping the processing of multiple
stages to minimize the time taken for data to flow through each
step of the DAG. As shown in the figure, scaling up in Apache
Flink can be achieved by setting the default parallelism of the
DAG, which involves assigning a copy of the dataflow graph to
each available worker, which processes a partition/shard of the
stream. Alternatively, one can set the operator-level parallelism,
which assigns individual operator tasks of the dataflow graph
to workers, providing more granular control over the resources
allocated to each stage.

Kafka Streams. Kafka Streams [43] is a Java library provided
by the Apache Kafka project designed for stream processing
computations. Therefore, it uses Kafka topics as the communi-
cation channels between different stages of the streaming appli-
cation. Similarly to Flink, the Kafka Streams Crayfish adapter
is built as a graph of three chained operators. The source and
sink act as Kafka consumers and producers, respectively. We use
a transform operator to load the model into memory at initial-
ization time and perform the scoring, which operates similarly
to the corresponding Flink operator described above. We chose
Kafka Streams as a representative pull-based event-based system,
where events need to go through the whole processing DAG
before requesting a new one for ingestion, as can be noted in
Figure 4. Kafka Streams achieves vertical scalability by increasing
the number of partitions on the stream application topics.

Spark Structured Streaming. Spark Structured Streaming (Spark
SS) [4] offers stream processing capabilities on top of Apache
Spark’s SQL engine. Unlike the two frameworks described above,
Spark SS’s computation unit is a micro-batch, a difference noted
in Figure 4. At the moment of writing this paper, Spark SS also

679



offers a continuous processing alternative meant to offer event-
based processing. However, since this feature is experimental [45],
we decided to employ the micro-batch operation mode. The Spark
SS Crayfish adapter implements the three interface methods
similar to the Flink and Kafka Streams adapters by using special-
ized abstractions for interfacing with the Kafka topics and a map
operator for scoring. Spark SS operates on data in micro-batches;
therefore, scaling up involves parallelizing the execution of each
micro-batch. This consists of splitting ingested data batches into
chunks and executing them sequentially by multiple workers.
We set the job trigger interval to the minimum possible and use
the default append mode configuration to minimize overheads.
By default, Spark SS adopts a push-based ingestion policy similar
to the one described above for Apache Flink.

3.4.2 Interoperability Libraries. In this section, we will dis-
cuss the specific libraries that were integrated by Crayfish’s
serving tool configuration capabilities. All the serving tools offer
APIs for loading and applying the model, thus offering a one-
to-one mapping to the interface methods of the CrayfishModel
interface. General-purpose interoperability libraries such as Py4J
or Jython were not considered for this purpose, as they are not
specifically designed for model scoring.

DeepLearning4j. The DeepLearning4j (DL4J) [30] library offers
capabilities beyond the scope of inference, as it is built for end-
to-end deep learning solutions on the JVM. However, for this
study, we test the Keras model import functionality using the
models stored in H5 format. DeepLearning4j was selected for
comparison due to a tight Java integration.

ONNX. The goal of the Open Neural Network Exchange (ONNX)
is to offer a standard format to represent ML models across differ-
ent frameworks [16]. We use the ONNX Runtime in conjunction
with models stored in native ONNX format. ONNX was chosen
for this study due to its extensive interoperability capabilities.

SavedModel.TensorFlow’s solution for the platform-independent
deployment of TensorFlow models, SavedModel [50] is a file for-
mat and serialization protocol for TensorFlow models. We se-
lected SavedModel as a specialized embedded serving tool that
optimizes for one specific format.

3.4.3 Specialized Frameworks. Specialized serving services
are tools that wrap pre-trained models into microservices and
feature REST-like APIs for model inference, management, ver-
sioning, and monitoring in production environments. When used
together with SPSs, the latter only require knowledge about the
endpoint exposed for inference but are oblivious to ML inference
lifecycle changes, such as scaling up or down or model changes.
We chose the TensorFlow and PyTorch specialized solutions for
this study due to their popularity in the ML community.

TensorFlow Serving. TensorFlow’s specialized solution that
offers a cloud-based or on-prem system for serving ML models,
TensorFlow Serving [39] exposes both REST and gRPC APIs for
interacting with the served models, facilitating integration with
client applications written in different programming languages.
We used the gRPC API in this study, as depicted in Figure 4. Scal-
ing up the deployment was implemented by setting the maximum
number of threads that can be used to process events concur-
rently. TensorFlow Serving’s inference uses models saved in the
SavedModel format.

TorchServe. The PyTorch alternative to TensorFlow Serving,
TorchServe [11] features similar functionalities and APIs as the

former. Distinctively, it allows users to write additional wrapper
code for the inference through Python handlers. TorchServe can
serve models obtained with different frameworks and libraries,
such as PyTorch, TensorFlow, ONNX, or scikit-learn. We used
native PyTorch models and the gRPC API for this study, as per
Figure 4. Scaling up was achieved by adjusting the number of
worker processes used for inference.

3.4.4 Actor-Based Systems. So far, we have considered only
stream processing systems. However, we also chose to include
Ray, a general-purpose, Python-based distributed computing
framework that can supportML-powered applications at scale [38].
Contrary to the SPSs described in §3.4.1, Ray is based on the actor
programming paradigm. We implement the Ray adapter using
Ray actors for operators to build a processing pipeline reminis-
cent of the dataflow graphs used in SPSs. As a result, the Ray
implementation includes an input actor type that consumes data
from Kafka topics, a scoring actor type, and an output actor type
that writes data to the output topic. In the case of embedded
serving, the scoring actor loads a pre-trained model and applies
it to new events. As Ray is a Python-based system, no interoper-
ability library is required to interface with the pre-trained models.
Scaling up is handled by spawning actors of each type manually.
Regarding external serving, we let the scoring actor handle the
HTTP-based communication with an external serving service.
Particularly, Ray features Ray Serve, a dedicated library for exter-
nal model serving [49], which will be employed in our analysis.
Figure 4 illustrates the two deployment schemes for Ray.

Ray Serve. Ray Serve enables developers to create and deploy
highly scalable, high-performance ML models [49]. Similar to the
external serving tools described in §3.4.3, Ray Serve allows users
to send inference queries over HTTP. We used this API, and not
gRPC for Ray Serve, because the support for the latter is marked
as experimental in the documentation [48]. Vertical scalability is
achieved by increasing the number of execution replicas.

3.5 Design Decisions
This section provides an overview and discussion of the core de-
cisions regarding the benchmark’s assumptions and architecture.

Model Storage. External serving alternatives manage the model
storage through the microservice responsible for the inference
task. In contrast, for embedded alternatives, Crayfish stores the
model in memory for several reasons. First, we standardize the
comparison among different stream processors since each system
may handle persistent storage differently. This study does not aim
to compare stream processors in terms of state I/O. Secondly, state
management in SPSs usually targets persisting intermediate com-
putation results for recovery and reconfiguration. Since we as-
sume models are immutable and only used for inference, there is
no need to pay the overhead of using the state management layer.

Producer-level Batching. Crayfish operates on batches of
data points as units of computation (i.e., the CrayfishDataBatch)
throughout the whole pipeline to avoid introducing extra over-
heads into the latency of the stream processors. This implies that
the stream processor of choice will process a Crayfish batch
as a single event. Therefore, another layer of batching may be
applied at the level of the stream processor. We consider this
choice equitable because we are solely interested in measuring
the performance of the inference; thus, we limit the functionality
of the data processor to this task.

680



Table 2: Specifications for the pre-trained models.

FNN ResNet50
Input Size 28 x 28 224 x 224 x 3
Output Size 10x1 1000x1

Parameters Number 28 K 23 M

Model
Size

ONNX 113 KB 97 MB
SavedModel 508 KB 101 MB

Torch 115 KB 98 MB
H5 133 KB 98 MB

SUT Separation.We adopt an approach similar to Karimov et
al. [29] and separate the benchmarking driver from the SUT to
provide a level playing field, as various SPSs may have distinct
definitions of latency and throughput. To this end, Crayfishmea-
sures the start and end times at the data generator and message
broker components, outside the scope of the inference adapters.
This design decision ensures that the measurements collection
logic is decoupled from the logic of the adapters, therefore guar-
anteeing the correctness of the measurements regardless of user-
defined behavior. The Crayfish users can, therefore, implement
new adapters by focusing solely on the inference task while the
framework handles measurements. In our experiments, we opted
to execute the components on separate machines. We ensured
that the same hosts were re-used across experiments, that they
are located in the same LAN, and feature adequate clock synchro-
nization using network time protocol services of GCP (Google
Cloud Platform) with sub-millisecond accuracy (detailed in §4.2).

MessageBrokers.Wehave designed our benchmarkwithApache
Kafka as a publish-subscribe messaging system for two reasons:
(1) to decouple the input generation and measurements analysis
from the SUT, and (2) to closely imitate real-world situations
where such systems are commonly used and require persistent
and reliable input sources. This decision aligns with decisions
found in the literature [52]. Before performing our experiments,
we verify that our Kafka deployment and configuration do not
create a bottleneck by confirming that the maximum arrival rate
of our experiments can be achieved by the Kafka cluster.

Fair Resource Allocation for Inference. When scaling up,
more resources are allocated to the SUT to observe its ability to
handle larger workloads. The embedded inference task is per-
formed by the streaming operator thread; there is no control
over its allocated resources, and the parallelism can only be set
at the level of the serving stage of the pipeline. Accordingly,
the resources available to the embedded inference cannot be as-
signed in isolation to ensure a one-to-one comparison with the
external approaches. When comparing embedded and external
alternatives, there is no guarantee that provisioning the embed-
ded option with the same total resources used by the SPS and the
external serving tool would yield comparable results. Defining
"equivalent amounts" is non-trivial since, contrary to external
serving tools, embedded serving tools share their resources with
the SPS, thus, leading to unfair comparisons. For this reason, our
experiments provide more resources in total for the SUT running
external serving than the embedded alternatives. Crayfish is a
suitable tool to investigate this problem; however, extensively
evaluating the space goes beyond the scope of this paper.

4 EVALUATION METHODOLOGY
We have conducted an extensive experimental analysis of the
frameworks and model serving tools supported by Crayfish.

The evaluation serves as a showcase of the capabilities of the
benchmarking framework. Specifically, we structured section §5
to answer the following research questions.
RQ1: For a given SPS, how do different serving tools compare in
terms of latency and throughput or different input rates?
RQ2: How does GPU acceleration influence the end-to-end la-
tency of the serving task on streaming data?
RQ3: How do modern SPSs differ in terms of both features and
performance with respect to model inference?

4.1 Workload Design
The benchmarking process is carried out on a per-experiment
basis. The configuration parameters can be found in Table 1. We
designed three pre-configured workload scenarios focused on
throughput and latency, respectively. First, the open loop scenario
is meant to measure the SUT throughput accurately. The pro-
ducer sends requests at a predefined fixed input rate (which can
be configured). This way, we identify the maximum rate that
can be handled by the processor (i.e., sustainable throughput).
Furthermore, we monitor the performance of the SUT under
high input rates and increasing allocated resources, which, in
Crayfish, are controlled by the mp parameter. Next, the closed
loop scenario records the SUT latency under low input rates,
such that the end-to-end latency is dominated by the inference
time. The aim is to measure the inference latency per batch under
optimal circumstances while minimizing any additional delays.
Lastly, we monitor the performance of the SUT when it comes
to periodic bursts of data that exceed the sustainable throughput
(ST) of the given configuration. We test the ability of the SUT to
recover by measuring the time interval required for the latency
to stabilize after a burst. The generator produces input at 110%
of the ST during the bursts and at 70% otherwise.

Machine Learning Task. The examples presented in this study
are derived from traditional image classification tasks. However,
as the focus is on the inference phase, the evaluation is inde-
pendent of the specific ML model or task. As detailed in §3.2,
Crayfish can be expanded to explore different ML models, pro-
vided they follow the consistent inference pattern of having one
input operator, one scoring operator, and one output operator.
This setup covers a wide variety of ML tasks.

Synthetic Input Data.We opted for using synthetic data across
all experiments, although Crayfish is configurable to read real
datasets from files stored on disk. The latency of the inference
task depends on the size of input events and the model, with data
content being irrelevant, thus justifying the decision. Moreover,
the data distribution does not impact the results of this study, as
inputs are uniformly partitioned across workers. Therefore, our
results are relevant for real datasets where the size of the data
point matches the dimensions we set for the synthetic data. The
data generator is general enough to cover a wide range of ML
models, as it produces tensor-like data of user-defined size and
shape. If the user aims to test, for instance, the performance of
their Convolutional Neural Network (CNN), they can configure
the framework to generate 2D or 3D data points, as we did in
our evaluation. Similarly, for testing Recurrent Neural Networks
(RNN), the generator can be configured to yield sequence-like ran-
dom data. Autoencoders can also be benchmarkedwith Crayfish
to test the performance of producing compact representations.
We perform experiments with both constant and bursty rates to
stress the SUT, as well as analyze its performance under condi-
tions mimicking realistic scenarios.

681



Table 3: Stream Processor Configuration Parameters.

Stream Processor Parameter Value

Apache Flink
1.15.2

JobManager count 1
TaskManager count 1
JobManager Memory 2 GB
TaskManager Memory 120 GB

TaskManager Task Slots count 60

Spark Structured
Streaming

3.3.2

Driver Count 1
Executor Instances Count 1

Driver Memory 8 GB†
Executor Memory 120 GB
Executor Cores 60

Kafka Streams
3.2.3

Instances Count 1
Java Memory 120 GB

† The Spark Structured Streaming Driver has more memory allocated to mitigate
Out Of Memory errors.

Pre-trained Models. We choose two diverse image classifica-
tion models to showcase the impact of factors that can influence
the performance of the serving approaches, such as model size
and input/output sizes. The first model, FFNN, is trained on the
Fashion MNIST dataset [54] and is the smallest in our study,
having 28K parameters. The input data is represented as images
of size 28x28, and the output is a vector of 10 elements, repre-
senting the probabilities of the image belonging to one of ten
classes. FFNN is a fully-connected neural network with three
hidden layers, each consisting of 32 neurons and utilizing a ReLU
activation function. ResNet50, on the other hand, is trained on
the ImageNet dataset [15], accepts 224x224x3 images as input,
and outputs vectors of probabilities for 1000 classes. ResNet50’s
network architecture contains 23M parameters and is defined in
its corresponding paper [22]. We implemented all models using
TensorFlow or PyTorch and converted them into the formats
chosen for this study. The chosen models are outlined in Table 2.

4.2 Environment
We conducted experiments using a cluster of 9 VMs deployed
on Google Cloud Platform (GCP). Each Crayfish component
runs on a separate machine. The SPS is deployed on a single VM
throughout our evaluation; nonetheless, the design of Crayfish
does not limit the data processor to single-node deployments and
can, therefore, be used to evaluate its performance on a cluster.
The network bandwidth is 1 Gbps, and the machines are syn-
chronized using Google’s internal NTP service. The average ping
time to send one packet as large as one FFNN input data point
(3 KB) is 0.945 ms, whereas to send 64 KB is 1.565 ms. All the
VMs were equipped with Intel(R) Xeon(R) CPU @ 2.20GHz
processors and had the following specifications: (1) the 4 Kafka
Brokers had 4 vCPUs and 15 GB RAM each, (2) the VM running
Zookeeper had 2 vCPUs and 8 GB RAM, (3) the input producer
VM was configured with 4 vCPUs and 15 GB RAM, (4) the VM
running the data processor component had 64 vCPUs and 240
GB RAM, and (5) the VM running the external serving service
has 16 vCPUs and 60 GB RAM. We equip the data processor and
external serving VMs with NVIDIA T4 GPUs for the experiments
testing inference enabled by hardware acceleration.

We generate 1M measurements per experiment. However, in
the interest of time and due to the large number of tested combi-
nations, we also set a timeout of 15 minutes, which sets a hard
limit for the termination frame of each experiment. We discarded
the first 25% of the measurements to eliminate the impact of

system warmup. We run each experiment twice and report the
averages and standard deviations.

4.3 SUT Configuration
The systems and frameworks were evaluated mostly with their
default configurations to provide a fair comparison. Performance
optimization and tuning are highly dependent on the use case
and are, therefore, outside the scope of this work. However, we
level the field by allocating roughly the same resources for each
SPS and scoring alternative.
Resources. For the Kafka cluster, we created 32 partitions per
topic and used LogAppendTime to measure the end timestamp
of the inference task. We tested the maximum throughput of
a no-op inference task using this configuration to ensure that
the Kafka cluster did not hinder our throughput measurements.
We also increased the maximum request size to 50 MB to enable
sending large messages for the latency experiments. All of the
stream processors run on one compute node. Each streaming
framework had equal resources allocated, with the task executors
getting a total of 120 GB and 60 cores. We run Apache Flink and
Spark Structured Streaming in cluster mode. Flink is configured
with one Job Manager and one Task Manager. Spark Structured
Streaming uses a similar configuration. Kafka Streams also runs
with one instance. The configurations are listed in Table 3.
Scaling up.We set the default parallelism for Flink, Kafka Streams,
and Spark Structured Streaming according to the𝑚𝑝 parameter
of each experiment. As for Ray, to simulate a similar set-up, we
manually spawn 𝑚𝑝 input actors, 𝑚𝑝 scoring actors, and 𝑚𝑝

output actors and forward the data using a one-to-one mapping
from one actor to the next.
Hardware Acceleration.We used the default model-level op-
timizations and configurations for the serving tools, except for
inference CPU parallelization, where we used one thread for
inter- and intra-operator parallelism in all embedded and ex-
ternal serving tools that supported this optimization. For some
experiments, we enable GPU-based processing.
Network Calls. All external calls were executed as blocking for
all SPSs. We decided not to use Apache Flink’s asynchronous I/O
operations [19] for external serving to ensure a fair comparison
with the other stream processors that do not offer native support.
As detailed in §3.4, gRPC was used for communication between
the SPS and the external model servers in all experiments, except
in the case of Ray Serve, where we used HTTP.

5 EXPERIMENTAL RESULTS
We now present the results of our evaluation. We showcase a
selection of stream processors and serving tool combinations and
discuss the most interesting insights. The throughput measure-
ments are expressed in events per second, where one event can
contain a batch, while the latency is measured in milliseconds.

5.1 Comparing Serving Alternatives
To address RQ1, we assess the performance of the selected infer-
ence tools. We use Apache Flink as the host SPS.

5.1.1 Throughput. The inference results for the FFNN and
ResNet50 models are presented in Table 4. The embedded mod-
els exhibit significantly superior throughput, with ONNX and
SavedModel achieving a throughput of more than 1200 events per
second for the FFNN model. Among the tested external serving
approaches, TF-Serving performs better than TorchServe, main-
taining an input rate of 617 req/s, almost three times higher. We

682



Table 4: Throughput comparison of the serving tools using Apache Flink as stream processor of choice (𝑏𝑠𝑧 = 1 events/s,𝑚𝑝 = 1). (e) stands
for embedded, while (x) represents external alternatives.

Model FFNN ResNet50
Model Server DL4J (e) ONNX (e) SavedModel (e) TorchServe (x) TF-Serving (x) ONNX (e) TorchServe (x) TF-Serving (x)

Throughput (events/s) 787.53 1373.07 1289.68 225.09 617.2 2.85 0.91 2.62

102

103

la
te

nc
y

dl4j
onnx

savedmodel
torchserve

tf-serving

32 128 512
Batch Size

0

250

st
de

v

Figure 5: End-to-end request latency average measurements
(ms/batch) for Apache Flink and increasing batch sizes using the
FFNN model (𝑖𝑟 = 1 event/s,𝑚𝑝 = 1).

0

5000

10000

th
ro

ug
hp

ut

dl4j
onnx

savedmodel
torchserve

tf-serving

2 4 8 16 32
Scoring Parallelism

0

2500

st
de

v

Figure 6: Vertical scalability results measured in requests/sec for
the considered model serving tools using Apache Flink as SPS and
FFNN as the pre-trained model (𝑖𝑟 = 30k events/s, 𝑏𝑠𝑧 = 1).

0

10

20

th
ro

ug
hp

ut

onnx torchserve tf-serving

2 4 8 16 32
Scoring Parallelism

0.0
2.5

st
de

v

Figure 7: Vertical scalability results of considered model scoring
alternatives using Apache Flink as SPS and ResNet50 as the pre-
trained model (𝑖𝑟 = 256 events/s, 𝑏𝑠𝑧 = 1).

attribute this to the off-the-shelf usage of CPU optimizations, as
also noted in the literature [25]. Next, of note, the performance
variation across serving tools of the same type is significant.
For instance, DL4J’s measured throughput is 42.6% lower than
SavedModel. Furthermore, the gap in performance between TF-
Serving and DL4J is below 200 events per second, hinting that
a highly optimized external server can achieve comparable re-
sults to embedded options. Contrary to intuition, the embedded

100 150 200 250 300 350 400 450 500
0.25
0.00
0.25

ev
en

ts
/s

ec

Sustainable
Throughput

Target Throughput

100 150 200 250 300 350 400 450 500
0

20000

la
te

nc
y

onnx

100 150 200 250 300 350 400 450 500
Time (sec)

0

20000

la
te

nc
y

tf-serving
run#1
run#2

Figure 8: Bursty workload results of considered model scoring al-
ternatives using Apache Flink as SPS and FFNN as the pre-trained
model (𝑏𝑠𝑧 = 1, 𝑚𝑝 = 1, 𝑏𝑑 = 30s, 𝑡𝑏𝑏 = 120s). Performance is
shown for the first 3 bursts of the run, excluding the warmup.

options outperform the external servers, despite having the in-
ference computation share the same resources as the stream
processor. Next, we compare the throughput of a selection of
serving alternatives using the ResNet50 model. In contrast, the
results show that less than 3 events per second can be sustained
for all the evaluated serving tools. Additionally, we highlight that
ONNX sustains an ingestion rate similar to TF-Serving; therefore,
the choice between embedded and external in this case is not
straightforward when serving large models.

5.1.2 Latency. We now evaluate the end-to-end latency for
increasing input sizes in the closed-loop scenario for the FFNN
model. As before, the performance of a single inference task is
assessed, and thus, the default parallelism in Flink is set to 1. The
latencies of serving batch sizes up to 512 are presented in Fig-
ure 5. The embedded options demonstrate similar performance
outcomes, with end-to-end serving latencies. Surprisingly, in the
case of external serving, the latency achieved by TF-Serving is
comparable to the embedded alternatives and, in some cases,
even lower. For instance, TF-Serving exhibits an average infer-
ence latency of 191 milliseconds for 𝑏𝑠𝑧 = 128, while DL4J and
SavedModel show respective latencies of 229 ms and 188 ms.
This finding enforces the conclusion that, despite hosting it on a
remote machine, which requires extra communication calls, an
optimized external server can deliver lower latencies than storing
and loading the model in memory close to the stream processor.
Lastly, we observe that the standard deviation obtained among
the runs is higher for larger batch sizes, but the latency remains
stable for batch sizes 32 and 126.

5.1.3 Scaling Up. Figures 6 and 7 present the outcomes of
scaling up the inference task for the FFNN and ResNet50 models,
respectively. We first analyze the results of the former model.
DL4J attains a maximum throughput of 2.8k events per second for
parallelism 8. At best, ONNX achieves a maximum throughput of
up to 13.6k events/s with𝑚𝑝 = 16. SavedModel’s best through-
put is also achieved at parallelism 16, at 10.4k events/s. Next,

683



Table 5: Throughput comparison for the FFNN model and the tested SPSs (𝑏𝑠𝑧 = 1 req/s,𝑚𝑝 = 1). (e) stands for embedded, while (x)
represents external alternatives.

Stream Processor Apache Flink Kafka Streams Spark Structured
Streaming Ray

Model Server ONNX (e) TF-Serving (x) ONNX (e) TF-Serving (x) ONNX (e) TF-Serving (x) ONNX (e) TF-Serving (x)
Throughput (events/s) 1373.07 617.2 2054.21 702.12 4044.99 3924.49 157.4 122.44

onnx tf-serving
0

2000

4000

la
te

nc
y

cpu
gpu

Figure 9: End-to-end latency comparison for Apache Flink and
the ResNet50 model (𝑖𝑟 = 0.2 events/s,𝑚𝑝 = 1, 𝑏𝑠𝑧 = 8).

we focus on the external servers. TF-Serving attains a maximum
throughput of 9.8k events per second among the external options,
while TorchServe’s performance peaks at 2.8k events/s. Interest-
ingly, TF-Serving surpasses DL4J in our tests. We also notice that
the tools achieve maximum arrival rates at different threading
options. Both ONNX and TF-Serving leverage data-parallel ex-
ecution in Flink and scale up to parallelism 16, while DL4J stops
scaling up after parallelism 8. This trend is not followed by exter-
nal tools, whose performance consistently increases when adding
more resources to the inference task, showing that sharing re-
sources between stream processing and model inference can be
detrimental to scalability. Lastly, the embedded tools showcase
higher standard deviation among different runs, especially for
high parallelism levels. Distinctively, SavedModel showed a stan-
dard deviation of around 2300 events per second with parallelism
16. We now discuss the scalability capabilities with respect to the
inference of the ResNet50model. ONNX and TorchServe show the
same behaviors as observed for the FFNN model. However, in this
case, TensorFlow Serving shows negligible performance increases
when scaling up. Although TorchServe is outperformed by TF
Serving in low-resource scenarios, it surpasses its direct competi-
tor after parallelism 8. We also note that ONNX obtains the maxi-
mum standard deviation noted at parallelism 16 but is negligible.

5.1.4 Periodic Bursts. In this section, we investigate the im-
pact of bursty workloads on various serving tools, focusing specif-
ically on ONNX and TensorFlow Serving as representative re-
spective examples. Our analysis targets serving frameworks since
the performance of stream processors in similar scenarios has
been assessed in previous studies [52]. We test the systems under
bursts of 30 seconds that stress the SUT, with 2-minute windows
in between having target throughput lower than the sustainable
throughput measured in §5.1. Figure 8 illustrates the observed
behavior of the systems for the two runs tested. The best recov-
ery time achieved by the systems is 41.37 seconds for ONNX
and 34.16 for TensorFlow Serving, showcasing the potential of
the latter to recover faster after bursts. However, we note sig-
nificant variations in performance between consecutive bursts,
especially for the external approach, in all our runs. The average
recovery time found for ONNX across runs was 46.52 seconds,
while TensorFlow Serving recovered on average in 56.15 sec-
onds. Therefore, our experiment shows that TensorFlow Serving
can recover faster than ONNX but shows higher variation from
one recovery to the next, whereas ONNX demonstrates a com-
paratively more stable performance trend. A deeper analysis is
required to understand the reasons behind this behavior.

Takeaways:
(1) The performance difference between different serving tools in the

same category is significant.
(2) ONNX achieves the highest throughput and lowest inference latency,

followed closely by SavedModel.
(3) Despite being an external serving tool, TensorFlow Serving can

be faster than some embedded alternatives.
(4) Embedded options face scalability challenges, as they share re-

sources with the SPS.
(5) Larger models narrow the performance gap among serving tools.
(6) TensorFlow Serving recovers faster than ONNX in bursty workloads

but with higher variation.

5.2 GPU Acceleration
We now present the results of the experiments targeting RQ2.
We show the results of enabling GPU acceleration for ONNX
and TensorFlow Serving and compare them against their CPU-
only alternative. We will refer to these as onnx-cpu, onnx-gpu,
tf-serving-cpu, and tf-serving-gpu. To ensure meaningful
comparisons, we focused on testing ResNet50 model, which is
the biggest in our study and accepts larger inputs, to simulate a
scenario where the data transfer overhead to the GPU is justified.
We use Flink as the SPS of choice and use the same closed loop
experiment design: we set the input rate to emit one event every
5 seconds, the default parallelism to 1, and the batch size to 8.

Our findings, depicted in Figure 9, reveal an improvement
of 16.4% for ONNX in terms of latency per batch, going from
3698ms for onnx-cpu to 3089 for onnx-gpu. When it comes to
the external server, TensorFlow Serving achieved a reduction in
inference latency of 24.1%, from an average of 3974ms to 3016ms,
hinting that specialized ML serving tools could potentially show
more benefits from hardware accelerators. Furthermore, since
TensorFlow Serving is an external approach, we note that in-
ference acceleration could potentially amortize the overhead
introduced by external network communications. In our exper-
iments, we see that tf-serving-gpu shows marginally lower
latency than onnx-gpu, although we observed a high standard
deviation between consecutive runs for the latter, of up to 500ms.
In contrast, the other combinations show a maximum deviation
of 90ms. tf-serving-gpu also outperforms onnx-cpu, achieving
an improvement of 18.4%.

Takeaways:
(1) TensorFlow Serving shows great improvements in latency when

enabling GPU acceleration.
(2) ONNX benefits from GPU accelerators, albeit to a lesser degree.
(3) GPU-based external servers can outperform embedded options and

alleviate the costs of network exhanges.

5.3 Stream Processors Comparison
Next, we aim to answer RQ3 by studying the performance of
a selection of SPSs. We set ONNX and TensorFlow Serving as
representative embedded and external serving tools, respectively.

684



0

500

1000

la
te

nc
y

onnx
flink kafkastreams spark ss ray

0

500

1000
tf-serving

32 128 512
Batch Size

0
10

st
de

v

32 128 512
Batch Size

0

250

Figure 10: End-to-end latency comparison of the SPSs using the
FFNN model (𝑖𝑟 = 1 event/s,𝑚𝑝 = 1)2.

5.3.1 Throughput. Depicted in Table 5, the results indicate
varying performance outcomes across the assessed SPSs. Kafka
Streams achieves considerably higher throughput than Flink for
both the embedded and external servers, showcasing a boost of
49.6% for ONNX and 13.7% for TF-Serving. This increase can
potentially be attributed to better compatibility with the mes-
sage broker chosen for the data storage source. Next, Spark SS
achieved the highest throughput among the tested SPSs, with re-
spective values of around 4000 events per second for both ONNX
and TF-Serving. This result is not surprising since Spark SS is de-
signed to achieve high throughput by applying the computation
in mini-batches (as detailed in §3.4.1) but at the cost of latency.
For instance, we find that using ONNX, the FFNN model, and
(𝑖𝑟 = 512 events/s, 𝑏𝑠𝑧 = 1, 𝑚𝑟 = 1), on average, one event is
served in 16.25 ms in Kafka Streams, but in 290.78 ms in Spark
SS. Interestingly, using Spark SS maximizes the performance of
TF-Serving and makes the performance difference between the
embedded and external approaches almost imperceptible. Lastly,
Ray exhibits the lowest throughput among the tested systems
in both serving scenarios but sustains similar arrival rates for
embedded and external serving. Further investigation is required
to identify the bottlenecks in the Ray pipelines.

5.3.2 Latency. Figure 10 shows the end-to-end latency for
increasing batch sizes under low input rates. Among SPS, Flink
achieves the lowest latency for batches of size 32 and 128, but is
outperformed by Kafka Streams for batch size 512. This behav-
ior is consistent for both the embedded and external inference
alternatives. The buffering and waiting times in Flink’s push-
based model, coupled with a default parallelism of 1, potentially
contribute to increased latency to achieve high throughput, par-
ticularly for large input records when those do not align with
Flink’s buffer quota. In contrast, Kafka Streams does not have
built-in mechanisms to split large objects, which, under very
low input rates, could be beneficial to minimize transfer latency.
Spark SS exhibits the highest latency across the board due to
overheads introduced by micro-batching. Ray also achieves com-
parable, or sometimes even lower latency measurements than
the SPSs. For instance, using TensorFlow Serving, Ray scores an
event of 128 data points in 169.7 ms, while Flink completes the
inference task in 167.44 ms, on average. Furthermore, Ray shows
a competitive advantage even in the case of external serving, de-
spite using HTTP instead of gRPC for communication. Lastly, we
note higher measured standard deviations, especially for bigger
batch sizes.

5.3.3 Scaling up. In Figure 11, we plot the vertical scalability
experiment results across the selected streaming engines. Spark
SS achieves high maximum throughputs of roughly 23k events
per second for most configurations, but the performance does not

seem to be improved by scaling up the used resources. Further
investigation is required to uncover the root cause. However, we
note the high maximum throughput of 10.2k events/s achieved by
Spark SS with TensorFlow Serving and parallelism 2. When com-
paring the same configuration but in combination with the other
stream processors, we note that they achieve considerably lower
performance, with Kafka Streams showcasing throughput 7.2
times lower than the one of Spark SS, hinting that the TensorFlow
Serving instance was not saturated and that the performance
bottlenecks come from the SPS side. Next, Kafka Streams yields
good performance scalability metrics in both embedded and ex-
ternal settings, peaking at 23k events/s using ONNX and scoring
parallelism equal to 16 while showing consistent performance
increase when increasing the parallelism. Flink’s performance
shows similar tendencies but achieves a maximum throughput
of 13k events/s using ONNX and 9.8 k events/s with TensorFlow
Serving. This could be attributed to Kafka Streams’ pull-based
network model, as detailed in §3.4.1, and its tight integration
with the input/output Kafka message queues. Kafka Streams’
pull-based approach can potentially distribute work across multi-
ple threads more efficiently by fetching data directly from Kafka
partitions when needed. In contrast, Flink’s push-based model
and buffering strategies can lead to network congestion, which
may limit its ability to scale throughput effectively with more
threads. Further, Ray peaks at 1.2k events per second for ONNX
and only 455.44 events/s for the external counterpart. The lat-
ter could be justified by a design choice we found in Ray Serve,
where a single HTTP Proxy can be deployed per physical node
(as depicted in Figure 4). As its role is to forward requests to
inference replicas, it can potentially hinder the prospects of ver-
tical scalability. Lastly, we note the higher standard deviations
across runs with higher parallelism, which is consistent with the
scalability experiments we showcased in §5.1.

Takeaways:
(1) Ray shows the lowest end-to-end inference times, but also the lowest

maximum sustained throughput.
(2) Flink shows low inference times for smaller batches, but loses its

competitive advantage in favor of Kafka Streams for bigger batches.
(3) Spark Structured Streaming’s micro-batching mechanism helps sat-

urate the external servers and achieve the best optimal throughput,
making it more suitable in combination with external approaches.

(4) All the tested SPSs’s performance increases when scaling vertically,
except for Spark Structured Streaming.

6 DATA MANAGEMENT CONSIDERATIONS
Integrating ML inference into stream processing pipelines is in-
trinsically a data management problem. Based on our experience
conducting the experimental analysis, we noticed that the im-
pact of data transfer overheads and resource allocation are key
problems that influence the end-to-end performance of ML infer-
ence in this context. In this section, we discuss these challenges
and further explore the overhead introduced by Crayfish to
understand its implications on the overall system performance.

6.1 SPS Resource Allocation
In data stream processing pipelines that use ML inference, op-
timizing solely the inference task may not lead to the desired
outcomes. While allocating adequate resources for inference is
crucial, it is essential to recognize that other components within
2Ray is depicted with dotted lines for the tf-serving case because it is not using
TensorFlow Serving, but simulating it using Ray Serve.

685



100

102

104
th

ro
ug

hp
ut

input rate

onnx
flink kafkastreams spark ss ray

100

102

104

tf-serving

2 4 8 16 32
Scoring Parallelism

0

5000

st
de

v

2 4 8 16 32
Scoring Parallelism

0
2500

Figure 11: Vertical scalability results of the selected SPSs and serving tools using the FFNN model (𝑖𝑟 = 30k events/s, 𝑏𝑠𝑧 = 1) 2.

Figure 12: Parallelismperformance forApache Flink and the FFNN
model. [A-B-C] defines a Flink DAG with parallelism set to 𝐴 on
the input operator, 𝐵 on the scoring operator, and 𝐶 on the out
operator. In flink[32-N-32] we disable operator chaining.

the pipeline, such as upstream or downstream operators like
sources or sinks, can substantially impact the overall perfor-
mance. These components may introduce complexities and bot-
tlenecks, potentially outweighing the computational overhead of
the scoring task. Therefore, to achieve optimal performance in
the inference task, it becomes imperative to scale these upstream
or downstream operators independently, ensuring that the entire
pipeline is efficiently managed and the performance of the infer-
ence task is maximized without suffering from overhead that is
not essential to model serving.

To validate the argument above, we conducted an experiment
using Apache Flink with two distinct pipelines to explore the
decoupling of the parallelism level of the reading and writing
operations from that of the scoring task and devise two dis-
tinct Flink pipelines. The first alternative, flink[N-N-N], em-
ploys the default parallelism configuration of 𝑁 data-parallel
task, as used in prior experiments. The second scenario, denoted
as flink[32-N-32], uses operator parallelism and matches the
parallelism of the source and sink to the number of partitions
in the Kafka topic (i.e., 32), therefore allocating more resources
to reading and writing. The scoring operator is the only com-
ponent in the pipeline that is scaled up. We now discuss the
results of serving the FFNN model using ONNX, but also show
the results of inference using TF-Serving, which exhibit similar
trends. Firstly, when it comes to the maximum throughput of one
scoring task, flink[N-N-N] achieves 1393.07 events per second,
as reported in §5.1.1. However, we find that flink[32-N-32]
achieves an input rate around 3.8 times higher, reaching up to
5373.15 req/s. Furthermore, Figure 12 illustrates the results of an
experiment testing the vertical scalability of these alternative par-
allelism configurations. The findings indicate that flink[N-N-N]
achieves consistently lower performance due to resource con-
straints in the reading and writing operations, suggesting that
these may serve as bottlenecks in a chained pipeline. Accordingly,

32 128 512
Batch Size (datapoints/batch)

0

250

500

la
te

nc
y

-59% -59%
-56%

kafka
no-kafka

Figure 13: Overhead introduced by Crayfish (kafka) in terms of
end-to-end latency when compared to a self-contained, equivalent
standalone Apache Flink implementation (no-kafka). The experi-
ments used the ONNX serving tool (𝑖𝑟 = 1 events/s,𝑚𝑝 = 1).

operator-level parallelism proves advantageous for model scor-
ing, as it maximizes the utilization of the scoring tool. This out-
come strongly supports the intuition that independently scaling
operators within the data pipeline yields better results, emphasiz-
ing the significance of benchmarking and optimizing end-to-end
pipelines rather than solely focusing on the inference task.

6.2 Measuring the Kafka Overhead
We now quantify the overhead introduced in Crayfish by hav-
ing Kafka handle the input and output feeds. We devised a stan-
dalone Flink pipeline that infers using the FFNN model in ONNX
format. This pipeline is also responsible for input data gener-
ation and recording the output timestamps. We use operator-
level parallelism and set the same configurations for both the
standalone (kafka) and the Crayfish adapter (no-kafka). In
throughput measurements, Crayfish achieved up to 5506.67
events/s, whereas the standalone implementation exhibited an
ST of 5506.67 events/s. Therefore, Crayfish incurred a through-
put overhead as low as 2.42% by introducing Kafka in the pipeline.
At the same time, Crayfish also displayed extra latency, as it can
be noted in Figure 13. This is expected since multiple communica-
tion hops are needed between multiple systems. To that end, we
observed up to 59% lower latency in the standalone configuration
compared to the one with Kafka-based logging. However, we
argue that introducing realistic latency overheads is beneficial in
measuring the performance of the inference task over streaming
data since, in production-level systems, it is rarely the case that
an SPS will operate in isolation.

7 DISCUSSION
In this section, we first discuss the features worth adopting when
designing new SPSs equippedwith inference capabilities based on
insights obtained in our empirical evaluation. Next, we highlight
the open research questions in this area.

7.1 Designing New Systems
External Inference Tools for Decoupled Scalability. If scala-
bility is a hard requirement, external serving systems offer a more

686



suitable solution, according to our study. We showed that sharing
resources between an SPS and an embedded serving tool can curb
the system’s performance when scaling up. The advantage of
external systems lies in their decoupled scalability, allowing for
independent adjustments without even requiring redeployment
of the SPS. Furthermore, this separation facilitates a more nu-
anced understanding of system performance with respect to the
resources allocated to the serving tool. At the opposite pole, the
scalability gains are difficult to grasp in systems combining SPSs
and embedded serving tools, and allocating resources to scale up
the serving task is not trivial.
Micro-batching Support for External Servers. We found
in §5.3.3 that the event-based SPSs, Kafka Streams and Apache
Flink, showed significantly lower throughput than micro-batch-
based systems (i.e., Spark Structured Streaming) when utilized in
conjunction with external inference tools, in situations where the
resources allocated to the stream processor are low. This suggests
that batching the inference requests is crucial for maximizing
the performance of the external serving tool.
Operator-level Parallelism. In Section 6.1, we meticulously
analyze the potential bottlenecks arising from upstream and/or
downstream tasks, emphasizing the imperative of operator-level
scaling to optimize the performance of the inference task.

7.2 Open Research Questions
Despite the shown competitive performance of the embedded
options in specific cases, we believe that external serving is cur-
rently the more attractive alternative. First, embedded serving
requires custom effort and rare interdisciplinary knowledge of
ML and event-based system internals. Furthermore, the execu-
tion model of current dataflow systems is rather restrictive in
support of capabilities essential for model serving in production.
That includes the lack of model management, auto-scaling, state
sharing, multi-model serving, and native hardware acceleration
capabilities for inference, features natively supported by most
external alternatives. These considerations are crucial for many
industries that require flexibility to deploy and serve thousands
of models of different sizes concurrently, each with different
deployment time, re-deployment periodicity, and lifespan [26].

Nevertheless, despite these advantages, modern streaming
services prioritize tight integration and processing guarantees,
like fault tolerance and exactly-once processing, which are not
ensured with external interfacing. Hence, looking forward, we
identify the prospects of a close integration supported between
external serving tools and stream processors. Core challenges
in achieving this include decentralized dataflow execution [46],
hardware resource management and storage for hybrid relational
and vectorized operations, as well as enriching existing event-
based programming libraries with ML semantics.

8 RELATEDWORK
Except for a short study that quantitatively compares serving
alternatives using Apache Flink [25], to the best of our knowl-
edge, this paper is the first work that offers both a benchmarking
framework and an extensive performance analysis of selected
alternatives for stream processing, serving tools, and representa-
tive pre-trained models. In this section, we outline related efforts.

Benchmarking Streaming Frameworks. As the demand for
real-time data processing has grown, so has the need for thorough
evaluations of SPSs. Providing a taxonomy for such studies is
outside the scope of this work; we refer the reader to recent results

that provide general-purpose performance evaluations [10, 23, 29,
52]. Similarly to our study, these evaluations focus on measuring
throughput and latency. When it comes to benchmarking tools,
we mention efforts such as ESPBench [24] or Yahoo! Streaming
Benchmark (YSB) [10], which are configurable and offer APIs to
plug in new workloads, or evaluation metrics.

Machine Learning Benchmarks. Most efforts towards bench-
marking ML solutions focus on optimizing models’ performance
on respective hardware. Distinctively, we highlight the MLPerf
Inference Benchmark, a community effort that proposes a stan-
dardized benchmark suite for measuring the performance of ML
inference systems [42]. The benchmark suite includes a range of
workloads and models across several domains, including image
classification, object detection, and natural language processing.
While streaming data can be used as input for the model serving
task, MLPerf is not specifically designed to evaluate the perfor-
mance of SPSs. Moreover, MLPerf does not consider external
alternatives such as TensorFlow Serving.

Unifying Directions. Finally, we acknowledge the attempts
made toward consolidating the Python ecosystem with modern
stream processors. Presently, numerous SPSs provide Python
APIs that may alleviate the necessity for interoperation libraries
for embedded inference. For instance, Apache Flink offers a spe-
cialized ML solution through Flink ML [18], comprising a num-
ber of Flink-based operators for standard ML algorithms. No-
tably, at the moment of writing this paper, Flink ML does not
offer deep learning capabilities. Subsequently, InferLine [12] and
Clipper [13] are versatile systems that support inference with
plugged-in models and advanced capabilities, including online
learning or adaptive batching. They feature RPC-type interfaces
analogous to the external alternatives considered in this research.

9 CONCLUSION AND FUTUREWORK
In this work, we presented Crayfish, an extensible framework
to benchmark model serving alternatives over streaming data.
Crayfish can aid developers in choosing the option most suit-
able for their use case and quickly iterating and optimizing the
inference task in their chosen stream processor. Among possible
prospects for future work, we highlight the non-trivial problem of
independent scaling and resource management for model serving
in conjunction with stream processing with the goal of analyz-
ing optimal non-uniform allocations of resources between the
stream processor and the serving tool. Lastly, Crayfish could be
extended to add support for models with unique requirements,
such as Graph Neural Networks, which, besides access to a stored
pre-trained model, require reading historical data in the form of
a k-hop neighborhood of a node.

ACKNOWLEDGMENTS
The authors would like to thank Jun-Wei Liu, Sophie Zhang, and
Achilleas Stefanidis for their contributions. This work was sup-
ported by the Wallenberg Foundation (WASP), the Google Cloud
Research Credits program, and the National Academic Infrastruc-
ture for Supercomputing in Sweden (NAISS), partially funded
by the Swedish Research Council through grant agreement no.
2022-06725. E. Kritharakis is supported by the Onassis Scholar-
ship [Scholarship ID: F ZR 030/1-2021/2022]. V. Kalavri’s work is
supported by the National Science Foundation under Grant No.
2237193, a Red Hat Collaboratory Research Incubation Award
(ID:2023-01-RH03), and a Google DAPA Award.

687



REFERENCES
[1] Leonel Aguilar, David Dao, Shaoduo Gan, Nezihe Merve Gurel, Nora Hollen-

stein, Jiawei Jiang, Bojan Karlas, Thomas Lemmin, Tian Li, Yang Li, et al. 2021.
Ease. ML: A lifecycle management system for MLDev and MLOps. Proc. of
Innovative Data Systems Research (2021).

[2] Adnan Akbar, Abdullah Khan, Francois Carrez, and Klaus Moessner. 2017.
Predictive analytics for complex IoT data streams. IEEE Internet of Things
Journal 4, 5 (2017), 1571–1582.

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernández-Moctezuma, Reuven Lax, SamMcVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. 2015. The dataflowmodel: a practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. (2015).

[4] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured
Streaming: A Declarative API for Real-Time Applications in Apache Spark.
In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das,
Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 601–613. https:
//doi.org/10.1145/3183713.3190664

[5] Colby R. Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas Navarro,
Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina,
and Paul N. Whatmough. 2021. MicroNets: Neural Network Archi-
tectures for Deploying TinyML Applications on Commodity Microcon-
trollers. In Proceedings of Machine Learning and Systems 2021, MLSys
2021, virtual, April 5-9, 2021, Alex Smola, Alex Dimakis, and Ion Sto-
ica (Eds.). mlsys.org. https://proceedings.mlsys.org/paper/2021/hash/
a3c65c2974270fd093ee8a9bf8ae7d0b-Abstract.html

[6] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and
Kenneth Knowles. 2019. One SQL to rule them all-an efficient and syntactically
idiomatic approach to management of streams and tables. In Proceedings of
the 2019 International Conference on Management of Data. 1757–1772.

[7] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integra-
tion Tasks. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1335–1349. https://doi.org/10.1145/3318464.3389742

[8] Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. Beyond analytics: The evolution of stream processing systems. In
Proceedings of the 2020 ACM SIGMOD international conference on Management
of data. 2651–2658.

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, VolkerMarkl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28–38.

[10] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,
MarkHolderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Peng,
and Paul Poulosky. 2016. Benchmarking Streaming Computation Engines:
Storm, Flink and Spark Streaming. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2016, Chicago,
IL, USA, May 23-27, 2016. IEEE Computer Society, 1789–1792. https://doi.org/
10.1109/IPDPSW.2016.138

[11] PyTorch Serve Contributors. 2023. TorchServe. https://pytorch.org/serve/.
[accessed 11-July-2023].

[12] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica,
Joseph Gonzalez, and Alexey Tumanov. 2020. InferLine: latency-aware pro-
visioning and scaling for prediction serving pipelines. In SoCC ’20: ACM
Symposium on Cloud Computing, Virtual Event, USA, October 19-21, 2020, Ro-
drigo Fonseca, Christina Delimitrou, and Beng Chin Ooi (Eds.). ACM, 477–491.
https://doi.org/10.1145/3419111.3421285

[13] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E.
Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction
Serving System. In 14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, Aditya Akella
and Jon Howell (Eds.). USENIX Association, 613–627. https://www.usenix.
org/conference/nsdi17/technical-sessions/presentation/crankshaw

[14] Miyuru Dayarathna and Srinath Perera. 2018. Recent advancements in event
processing. ACM Computing Surveys (CSUR) 51, 2 (2018), 1–36.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
ImageNet: A large-scale hierarchical image database. In 2009 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR 2009),
20-25 June 2009, Miami, Florida, USA. IEEE Computer Society, 248–255. https:
//doi.org/10.1109/CVPR.2009.5206848

[16] ONNX Runtime developers. 2023. ONNX Runtime. https://onnxruntime.ai/.
[accessed 10-July-2023].

[17] Javier Duarte, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi,
Shvetank Prakash, and Vijay Janapa Reddi. 2022. FastML Science
Benchmarks: Accelerating Real-Time Scientific Edge Machine Learning.
arXiv:cs.LG/2207.07958

[18] Apache Flink. 2021. Flink ML Documentation. https://nightlies.apache.org/
flink/flink-ml-docs-stable/. [accessed 10-July-2023].

[19] Apache Flink. 2023. Asynchronous I/O in Apache Flink. https://nightlies.
apache.org/flink/flink-docs-master/docs/dev/datastream/operators/asyncio/.
[accessed 10-July-2023].

[20] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. A survey on the evolution of stream processing systems. arXiv preprint
arXiv:2008.00842 (2020).

[21] Fangcheng Fu, Huanran Xue, Yong Cheng, Yangyu Tao, and Bin Cui. 2022.
Blindfl: Vertical federated machine learning without peeking into your data.
In Proceedings of the 2022 International Conference on Management of Data.
1316–1330.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 770–778.

[23] Sören Henning and Wilhelm Hasselbring. 2023. Benchmarking scalability of
stream processing frameworks deployed as event-driven microservices in the
cloud. CoRR abs/2303.11088 (2023).

[24] Guenter Hesse, Christoph Matthies, Michael Perscheid, Matthias Uflacker, and
Hasso Plattner. 2021. ESPBench: The Enterprise Stream Processing Benchmark.
In ICPE ’21: ACM/SPEC International Conference on Performance Engineering,
Virtual Event, France, April 19-21, 2021, Johann Bourcier, Zhen Ming (Jack)
Jiang, Cor-Paul Bezemer, Vittorio Cortellessa, Daniele Di Pompeo, and Ana Lu-
cia Varbanescu (Eds.). ACM, 201–212. https://doi.org/10.1145/3427921.3450242

[25] Sonia Horchidan, Emmanouil Kritharakis, Vasiliki Kalavri, and Paris Carbone.
2022. Evaluating Model Serving Strategies over Streaming Data. In Proceedings
of the Sixth Workshop on Data Management for End-To-End Machine Learning
(DEEM ’22). Association for ComputingMachinery, NewYork, NY, USA, Article
4, 5 pages. https://doi.org/10.1145/3533028.3533308

[26] Chip Huyen. 2022. Designing Machine Learning Systems. " O’Reilly Media,
Inc.".

[27] Nick Hynes, David Dao, David Yan, Raymond Cheng, and Dawn Song. 2018. A
demonstration of sterling: a privacy-preserving data marketplace. Proceedings
of the VLDB Endowment 11, 12 (2018), 2086–2089.

[28] Colin Jermain. [n.d.]. Machine Learning Inference in Flink with ONNX.
Vervetica. https://www.youtube.com/watch?v=6g167GXFb4A&ab_channel=
Ververica

[29] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking Distributed Stream Data
Processing Systems. In ICDE. IEEE Computer Society, 1507–1518.

[30] Konduit K.K. 2023. Deeplearning4j. https://deeplearning4j.konduit.ai/. [ac-
cessed 10-July-2023].

[31] Sanjay Krishnan, Michael J Franklin, Ken Goldberg, Jiannan Wang, and Eu-
gene Wu. 2016. Activeclean: An interactive data cleaning framework for
modern machine learning. In Proceedings of the 2016 International Conference
on Management of Data. 2117–2120.

[32] Arun Kumar, Matthias Boehm, and Jun Yang. 2017. Data management in
machine learning: Challenges, techniques, and systems. In Proceedings of the
2017 ACM International Conference on Management of Data. 1717–1722.

[33] Valliappa Lakshmanan, Sara Robinson, and Michael Munn. 2020. Machine
learning design patterns. O’Reilly Media.

[34] Side Li, Lingjiao Chen, and Arun Kumar. 2019. Enabling and Optimizing
Non-Linear Feature Interactions in Factorized Linear Algebra. In Proceedings
of the 2019 International Conference on Management of Data (SIGMOD ’19).
Association for Computing Machinery, New York, NY, USA, 1571–1588. https:
//doi.org/10.1145/3299869.3319878

[35] Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. 2017. Mlog:
Towards declarative in-database machine learning. Proceedings of the VLDB
Endowment 10, 12 (2017), 1933–1936.

[36] Yiming Li, Yanyan Shen, and Lei Chen. 2022. Camel: Managing Data for
Efficient Stream Learning. In Proceedings of the 2022 International Conference
on Management of Data (SIGMOD ’22). Association for Computing Machinery,
New York, NY, USA, 1271–1285. https://doi.org/10.1145/3514221.3517836

[37] Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, Kai Zeng, and Ce Zhang.
2021. AutoML: From Methodology to Application. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management (CIKM
’21). Association for Computing Machinery, New York, NY, USA, 4853–4856.
https://doi.org/10.1145/3459637.3483279

[38] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging
AI Applications. In 13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, An-
drea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association, 561–
577. https://www.usenix.org/conference/osdi18/presentation/nishihara

[39] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li
Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
2017. TensorFlow-Serving: Flexible, High-Performance ML Serving. CoRR
abs/1712.06139 (2017). arXiv:1712.06139 http://arxiv.org/abs/1712.06139

[40] Jose Picado, John Davis, Arash Termehchy, and Ga Young Lee. 2020. Learning
Over Dirty Data Without Cleaning. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 1301–1316. https://doi.org/
10.1145/3318464.3389708

[41] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2017. Data management challenges in production machine learning. In Pro-
ceedings of the 2017 ACM International Conference on Management of Data.
1723–1726.

688



[42] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara,
Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David
Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius
Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath
Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan,
Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf Inference
Benchmark. In 47th ACM/IEEE Annual International Symposium on Computer
Architecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020. IEEE, 446–459.
https://doi.org/10.1109/ISCA45697.2020.00045

[43] Matthias J. Sax, Guozhang Wang, Matthias Weidlich, and Johann-Christoph
Freytag. 2018. Streams and Tables: Two Sides of the Same Coin. In Proceedings
of the International Workshop on Real-Time Business Intelligence and Analytics,
BIRTE 2018, Rio de Janeiro, Brazil, August 27, 2018, Malú Castellanos, Panos K.
Chrysanthis, Badrish Chandramouli, and Shimin Chen (Eds.). ACM, 1:1–1:10.
https://doi.org/10.1145/3242153.3242155

[44] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-
mann, and Andreas Grafberger. 2018. Automating large-scale data quality
verification. Proceedings of the VLDB Endowment 11, 12 (2018), 1781–1794.

[45] Apache Spark. [n.d.]. Structured Streaming Programming
Guide. Retrieved July 10, 2023 from https://spark.apache.
org/docs/latest/structured-streaming-programming-guide.html#
structured-streaming-programming-guide

[46] Jonas Spenger, Paris Carbone, and Philipp Haller. 2022. Portals: An Extension
of Dataflow Streaming for Stateful Serverless. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software, Onward! 2022, Auckland, New Zealand,
December 8-10, 2022, Christophe Scholliers and Jeremy Singer (Eds.). ACM,
153–171. https://doi.org/10.1145/3563835.3567664

[47] Ki Hyun Tae, Yuji Roh, Young Hun Oh, Hyunsu Kim, and Steven Euijong
Whang. 2019. Data cleaning for accurate, fair, and robust models: A big data-
AI integration approach. In Proceedings of the 3rd International Workshop on
Data Management for End-to-End Machine Learning. 1–4.

[48] Ray Team. 2023. Experimental Direct Ingress. https://docs.ray.io/en/latest/
serve/direct-ingress.html. [accessed 12-July-2023].

[49] Ray Team. 2023. Ray Serve: Scalable and Programmable Serving. https:
//docs.ray.io/en/latest/serve/index.html. [accessed 11-July-2023].

[50] TensorFlow. 2023. Using the SavedModel format. https://www.tensorflow.
org/guide/saved_model. [accessed 10-July-2023].

[51] Quoc-Cuong To, Juan Soto, and Volker Markl. 2018. A survey of state manage-
ment in big data processing systems. The VLDB Journal 27, 6 (2018), 847–872.

[52] Giselle van Dongen and Dirk Van den Poel. 2020. Evaluation of Stream
Processing Frameworks. IEEE Trans. Parallel Distributed Syst. 31, 8 (2020),
1845–1858.

[53] Maria Xekalaki, Juan Fumero, Athanasios Stratikopoulos, Katerina Doka,
Christos Katsakioris, Constantinos Bitsakos, Nectarios Koziris, and Christos
Kotselidis. 2022. Enabling Transparent Acceleration of Big Data Frameworks
Using Heterogeneous Hardware. Proceedings of the VLDB Endowment 15, 13
(2022), 3869–3882.

[54] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. CoRR
abs/1708.07747 (2017). arXiv:1708.07747 http://arxiv.org/abs/1708.07747

[55] Lijie Xu, Shuang Qiu, Binhang Yuan, Jiawei Jiang, Cedric Renggli, Shaoduo
Gan, Kaan Kara, Guoliang Li, Ji Liu,WentaoWu, Jieping Ye, and Ce Zhang. 2022.
In-Database Machine Learning with CorgiPile: Stochastic Gradient Descent
without Full Data Shuffle (SIGMOD ’22). New York, NY, USA, 1286–1300.
https://doi.org/10.1145/3514221.3526150

689


