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ABSTRACT
Modern machine learning models require large labelled datasets
to achieve good performance, butmanually labelling large datasets
is expensive and time-consuming. The data programming para-
digm enables users to label large datasets efficiently but produces
noisy labels, which deteriorates the downstream model’s per-
formance. The active learning paradigm, on the other hand, can
acquire accurate labels but only for a small fraction of instances.
In this paper, we propose ActiveDP, an interactive framework
bridging active learning and data programming together to gen-
erate labels with both high accuracy and coverage, combining the
strengths of both paradigms. Experiments show that ActiveDP
outperforms previous weak supervision and active learning ap-
proaches and consistently performs well under different labelling
budgets.

1 INTRODUCTION
Modern machine learning models require large training datasets
to achieve good accuracy, yet manual labelling and curation of
large datasets are both expensive and time-consuming. Thus,
acquiring labelled datasets has become one of the main bottle-
necks in applying machine learning in practical scenarios. Data
programming (DP) [23, 25], a recent paradigm for weak supervi-
sion, provides an approach to automatically label large datasets
without manually annotating specific instances. In the data pro-
gramming paradigm, users represent weak supervision sources
in the form of label functions (LFs), which are rules that provide
noisy labels to a subset of data. For example, suppose the task is
to classify the sentiment of customer reviews. In that case, the
users can write code snippets that label the review as positive or
negative based on specific keywords. Since the label functions
have varying accuracy and may exhibit ad-hoc correlations, a
generative model (also called the label model) is designed to ag-
gregate noisy, weak labels into probabilistic labels. Optionally,
a downstream model (also referred to as the end model) can be
trained with the probabilistic labels and utilized for downstream
tasks.

While the data programming paradigm can label large datasets
rapidly, the generated labels are usually noisy, and as a result
this may deteriorate the performance of the downstream model.
Active learning (AL) [28, 29], on the other hand, identifies and
selects a subset of data for manual annotation and utilizes the
subset of data for training the downstream model. As the anno-
tation is instance-specific, users can provide cleaner labels to the
selected instances. While active learning excels in label quality,
it falls short in label quantity, as users can only annotate a small
fraction of data with limited effort.

It is evident that the merits of data programming and active
learning compensate for each other. In this paper, we address

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Table 1: Approaches briding active learning with data pro-
gramming.

Method Query Type Train AL Model? Step to Improve Data Quality
Nemo [12] LF Creation No LF Generation
IWS [4] LF Validation No LF Generation

Revising LF [21] Instance Labelling No LF Revision
Active WeaSuL [3] Instance Labelling No Label Model Training
ActiveDP (ours) LF Creation Yes Post Training

the question: how can we combine the advantages of both methods
to label large datasets rapidly while maintaining superior label
quality? Researchers have investigated several approaches to
bridge data programming and active learning, such as leveraging
active learning to develop label functions [4, 12], revise label
functions [21] or tune label model parameters [3]. However, these
methods do not fully leverage themerits of both paradigms. Nemo
[12] and IWS [4] leverage active learning to select instances for
LF development. However, they only use LFs to annotate the
training dataset instead of combining the LFs with fine-grained
instance labels, which impedes them from achieving high-quality
labels. Nashaat et al. [21] correct the LF outputs on labelled data.
However, as pointed out by Biegel et al. [3], the revision does
not always benefit predictions on unlabelled data, as revising
the LFs on the labelled subset may mislead the label model to
believe they are also accurate on the unlabeled subset. Biegel
et al. [3] use the labelled subset to tune label model parameters.
However, it only leverages label functions to generate training
labels and thus has a similar drawback to Nemo and IWS. Besides,
the trade-off factor between the original model loss and the loss
term induced on the labelled subset is hard to select.

To address the abovementioned limitations, we propose Ac-
tiveDP1, a novel interactive framework bridging active learning
and data programming. Table 1 highlights the difference between
ActiveDP and previous works [3, 4, 12, 21]. The main differences
are: (1) ActiveDP combines weak supervision with active learn-
ing model predictions to balance label quality and quantity; (2)
ActiveDP improves the label quality in the post-training phase.
This enables ActiveDP to treat the label model as a black box
and neglect the intricate effect of revising LFs on label model
training.

Figure 1 illustrates the workflow of the ActiveDP framework.
In the training phase, ActiveDP leverages a novel ADP sampler
to select instances for users to develop LFs. Apart from collect-
ing the LFs returned by users, ActiveDP also creates a small
pseudo-labelled dataset based on user-returned LFs to train an
active learning model. Besides, ActiveDP learns the dependency
structure between LFs and the labels and chooses a diverse and
informative set of LFs to improve the end-to-end classification
accuracy. In the inference phase, ActiveDP aggregates the predic-
tion results of the label model in the DP paradigm and the active
learning model using a novel label aggregation method named
ConFusion to generate labels with high accuracy and coverage.

To summarize, we make the following main contributions:

1Code available at https://github.com/Gnaiqing/ActiveDP
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Figure 1: Workflow of ActiveDP. Left: iterative LF creation at training phase. Right: label aggregation at inference phase.

• We propose a novel interactive framework named Ac-
tiveDP that explores the design space between active learn-
ing and data programming and combines their strengths.

• We design various novel strategies to improve the effi-
ciency of ActiveDP and the quality of generated labels,
including the ConFusion method for label aggregation,
the ADP sampler for query instance selection, and the
LabelPick method for LF filtering.

• We conduct extensive experiments to compare ActiveDP
with baseline methods, demonstrating its efficiency in
providing labels with high coverage and accuracy and
enhancing the performance of the downstream model.

2 RELATEDWORKS
2.1 Data Programming
Data programming (DP) is a weak supervision paradigm for auto-
matically labelling large datasets. Given an unlabeled dataset𝐷 =

{𝑥𝑖 }𝑛𝑖=1, the users design a series of label functions Λ = {𝜆 𝑗 }𝑚𝑗=1,
each provide weak labels to a subset of data. We use 𝜆 𝑗 (𝑥𝑖 ) to
denote the output of the 𝜆 𝑗 on 𝑥𝑖 . For a class classification prob-
lem with 𝑌 = {0, 1, ...,𝐶 − 1} as the label space, the weak label
𝜆 𝑗 (𝑥𝑖 ) ∈ 𝑌 ∪ {−1} where −1 means 𝜆 𝑗 does not make prediction
on 𝑥𝑖 . We say 𝜆 𝑗 is activated on 𝑥𝑖 if 𝜆 𝑗 (𝑥𝑖 ) ≠ −1 and 𝜆 𝑗 abstains
on 𝑥𝑖 otherwise. The generated weak labels form a label matrix
𝑊 where𝑊𝑖 𝑗 = 𝜆 𝑗 (𝑥𝑖 ), which is used to train a label model 𝑓𝑙 .
We use 𝑓𝑙 (𝑥,Λ) ∈ 𝑅𝐶 to denote the probabilistic labels predicted
by the label model for 𝑥 . Finally, the probabilistic labels (or hard
labels by selecting the most likely class) will be used to train the
downstream machine learning model.

The works in the DP area can be briefly categorized into de-
veloping more advanced label models [2, 3, 23–25] and designing
label functions efficiently [4, 7, 10, 12, 13, 33, 35]. Snorkel [23, 25]
uses a factor graph to model the accuracy and pairwise dependen-
cies between label functions. MeTaL [24] extends the framework
to multi-task settings and proposes to estimate LF accuracy by
solving a matrix completion problem. Another line of work fo-
cuses on automating or aiding LF design. IWS [4] incorporates
human experts in an iterative process by letting experts decide
whether a candidate LF is accurate. Nemo [12] actively selects
the instances given to human experts, and experts return LFs
based on them.

2.2 Active Learning
Active learning [28, 29] is an established technique in machine
learning literature, which aims tomaximizemodel accuracywhile
annotating the fewest samples possible. There are abundant se-
lectors designed for active learning, such as uncertainty sampling

[16], query-by-committee [31], core-set approaches [27], density-
based approaches [30] and hybrid approaches [9, 17]. We refer
interested readers to recent surveys [18, 26] for a comprehensive
description of active learning methods.

Recently, there have been emerging works that leverage active
learning to improve the performance of PWS pipelines. Nashaat
et al. [20, 21] leverage uncertainty sampling to correct LF out-
puts. Active WeaSuL [3] actively selects a subset of instances for
labelling to guide label model training. IWS [4] and Nemo [12]
also leverages active learning for sample selection.

3 ACTIVEDP FRAMEWORK
In this section, we introduce and design the ActiveDP framework.
We first provide an overview of the ActiveDP framework and
illustrate its workflow using a running example; then, we discuss
each component of ActiveDP in detail.

3.1 Framework Overview
As illustrated in Figure 1, the ActiveDP framework contains a
training phase and an inference phase. In the training phase,
it iteractively selects query instances for users to inspect and
design LFs, and trains the label model and active learning model
based on user responses. In the inference phase, it aggregates
the prediction results of the label model and the active learning
model to improve label quality.

In the training phase, during the 𝑡-th iteration, the system
leverages the ADP Sampler (Section 3.3) to actively pick an exam-
ple 𝑥𝑙𝑡 ∈ 𝐷 as the query instance for the user to inspect. The user
designs a LF 𝜆𝑡 based on 𝑥𝑙𝑡 . In the running example in Figure 1
for spam detection, the sampler picks query instance "check out
my channel" and asks the user to suggest a LF based on the query,
and the user responds with a LF "check"→ SPAM(1), indicating
that a comment is likely to be spamwhen it contains the keyword
"check". The LFs will be collected into the LF set Λ𝑡 = {𝜆1, ..., 𝜆𝑡 }.
We further leverage the LabelPick method (Section 3.4) to select
a subset of helpful LFs Λ∗

𝑡 ⊂ Λ𝑡 , and use Λ∗
𝑡 to train the label

model 𝑓 𝑡
𝑙
.

Apart from collecting the LFs, we also curate a pseudo-labelled
subset of the training data to train an active learning model.
While the user does not explicitly provide labels to data, since
we have the LFs designed by the user based on the query in-
stances, these LFs should be at least accurate on the correspond-
ing query instances. In the running example, as the user designs
a LF "check"→ SPAM(1) when they observe the query instance
"check out my channel", we can infer the label of the query in-
stance should be SPAM. Based on that observation, we create the
pseudo-labelled subset as𝐿𝑡 = {(𝑥𝑙𝑡 , 𝑦𝑙𝑡 )}𝑇𝑡=1, where𝑦𝑙𝑡 = 𝜆𝑡 (𝑥𝑙𝑡 )
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being the pseudo-label inferred from LFs, and use 𝐿𝑡 to train the
active learning model 𝑓 𝑡𝑎 .

In the inference phase, we leverage the ConFusion method
(Section 3.2) to aggregate the prediction results of the label model
and active learning model based on a confidence threshold 𝜏𝑡 .
We would follow the prediction of the active learning model if
its confidence exceeds the confidence threshold. Otherwise, we
would follow the prediction of the label model as long as the
instance has non-abstain LFs. In the running example in Figure
1, the unlabeled instance is "just check the reviews". Suppose the
active learningmodel predicts it to be HAMwith confidence score
0.8, and the confidence threshold is 0.7. Since the confidence score
exceeds the threshold, we will follow the active learning model’s
prediction for that unlabeled instance.

3.2 Label Aggregation
In this section, we introduce ConFusion, a confidence-based la-
bel aggregation approach. While the label model and the active
learning model are both trained on the training dataset, their pre-
dictions differ because they are trained using different features
and their model structures are different. This makes label aggre-
gation helpful in combining the strengths of both models and
improves label quality. We use 𝑓 𝑡

𝑙
(𝑥,Λ∗

𝑡 ) and 𝑓 𝑡𝑎 (𝑥) to denote the
soft labels predicted by the label model and the active learning
model after the t-th iteration respectively. The confidence score
of the active learning model is defined as the predicted probabil-
ity for the top-1 candidate class, i.e.𝑚𝑎𝑥{𝑓 𝑡𝑎 (𝑥)}. For example,
the confidence score for the unlabeled instance in Figure 1 is 0.8.
The aggregated labels are defined as follows:

𝑦𝑡 =


𝑓 𝑡𝑎 (𝑥) 𝑚𝑎𝑥{𝑓 𝑡𝑎 (𝑥)} ≥ 𝜏𝑡

𝑓 𝑡
𝑙
(𝑥,Λ∗

𝑡 ) 𝑚𝑎𝑥{𝑓 𝑡𝑎 (𝑥)} < 𝜏𝑡 ∧ Λ∗
𝑡 (𝑥) ≠ −1

∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

In other words, when the confidence of the active learning
model is above the threshold 𝜏𝑡 , we adopt its prediction results.
Otherwise, if at least one label function is activated on the unla-
beled instance (i.e. ∃𝜆 ∈ Λ∗

𝑡 𝑠 .𝑡 .𝜆(𝑥) ≠ −1), we adopt the predic-
tion results of the label model. If all label functions abstain on
the unlabeled instance and the confidence of the active learning
model is below 𝜏𝑡 , we reject making predictions and discard the
instance when training the downstreammodel. Such an approach
balances label accuracy and label coverage because we leverage
data programming to label a significant fraction of data while
using the active learning model to improve label accuracy.

The confidence threshold 𝜏𝑡 determines the relative impor-
tance of the active learningmodel and the label model.We dynam-
ically tune the confidence threshold 𝜏𝑡 using a holdout validation
set 𝐷𝑉 drawn I.I.D. from the underlying distribution of training
data (with hidden labels). Let 𝐶𝑡 = {0.0, 𝑐𝑡1, 𝑐

𝑡
2, ..., 𝑐

𝑡
𝑘
, 1.0} be the

unique confidence scores of the active learning model 𝑓 𝑡𝑎 on in-
stances in 𝐷𝑉 together with two boundary values 0.0 and 1.0.
We evaluate every candidate threshold in 𝐶𝑡 , use Equation 1 to
aggregate labels and compute the accuracy of the aggregated
labels on the validation set. Note that when we evaluate the la-
bel accuracy, we only consider the part of validation data not
rejected by the ConFusion method due to low confidence. Finally,
we choose 𝜏𝑡 ∈ 𝐶𝑡 to maximize the aggregated label’s accuracy
on the validation set.

Both high label accuracy and coverage are desirable for train-
ing the downstream models, thus it is also possible to select
𝜏𝑡 ∈ 𝐶𝑡 that maximize the aggregated label’s coverage on the

Figure 2:Workflow of the LF selectionmodule in ActiveDP.

validation set following a similar process. However, selecting
𝜏𝑡 = 0.0 would always lead to maximal coverage as the active
learning model would be active on every instance, making Ac-
tiveDP fall back to active learning. In our experiments, we observe
that improving label accuracy is more important in enhancing the
end model performance than improving label coverage, which
also motivates us to maximize label accuracy during threshold
tuning.

3.3 Sample Selection Strategy
As our framework combines the prediction results of the ac-
tive learning model and the label model, the sample selector we
design needs to balance between two goals: improving the perfor-
mance of the active learning model and guiding experts to design
helpful LFs. To trade-off between these goals, we use entropy
[32] to evaluate the uncertainty of both models, and propose the
ADP sampler that selects the most uncertain point based on the
prediction of both models:

𝑥∗𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 [𝐸𝑛𝑡 (𝑓 𝑡𝑎 (𝑥))𝛼 ∗ 𝐸𝑛𝑡 (𝑓 𝑡
𝑙
(𝑥,Λ∗

𝑡 ))1−𝛼 ] (2)

Where 𝐸𝑛𝑡 () is the entropy function defined as follows.

𝐸𝑛𝑡 (𝑝) = −
∑︁
𝑖

𝑝𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖 ) (3)

The trade-off factor 𝛼 ∈ [0, 1] balances between the active
learning model and the label model. We set 𝛼 = 0.5 for textual
datasets and 𝛼 = 0.99 for tabular datasets in our experiments.
We give higher weights to the active learning model in tabular
datasets because these datasets are relatively easy to classify, thus
the active learning model can reach good performance with a
small labelling budget.

3.4 Label Function Selection
In this section, we introduce the LabelPick method for LF se-
lection, which selects a subset of helpful LFs Λ∗

𝑡 ⊂ Λ𝑡 to train
the label model. Figure 2 illustrates the LabelPick method. The
main contribution of the LabelPick method is reducting the LF
selection problem into feature selection in supervised settings. In
LabelPick, we first evaluate the accuracy of candidate LFs using
a holdout validation set 𝐷𝑉 drawn I.I.D. from the underlying
distribution of training data (with hidden labels) and prune out
LFs performing worse than random on the validation set; then we
create a small labelled dataset 𝐿𝑡Λ = {(Λ𝑡 (𝑥𝑙𝑖 ), 𝑦𝑙𝑖 }𝑡𝑖=1. The table
in Figure 2 illustrates the labelled dataset 𝐿𝑡Λ we created, which
consists the weak labels for four query instances and their pseudo
labels inferred from user feedback. We leverage the graphical
lasso method [8] to infer the dependency structure between the
LFs and the label based on 𝐿𝑡Λ, and select the subset of LFs adja-
cent to the class label in the dependency structure, corresponding
to choosing the Markov Blanket [22] of the class label. Formally,
if a subset of LFs Λ∗

𝑡 ⊂ Λ𝑡 forms the Markov Blanket of label
𝑌 , then we have 𝑌 ⊥⊥ Λ𝑡/Λ∗

𝑡 |Λ∗
𝑡 . In other words, the Markov

517



Table 2: Datasets used in Evaluation.

Name Task #Train #Valid #Test
Youtube Spam classification 1,566 195 195
IMDB Sentiment analysis 20,000 2,500 2,500
Yelp Sentiment analysis 20,000 2,500 2,500

Amazon Sentiment analysis 20,000 2,500 2,500
Bios-PT Biography classification 19,672 2,458 2,458
Bios-JP Biography classification 25,808 3,225 3,225

Occupancy Occupancy prediction 14,317 1,789 1,789
Census Income classification 25,541 3,192 3,192

Blanket contains all the helpful information for inferrring the
label, making other LFs unecessary once the LFs corresponding
to the Markov Blanket are selected. Therefore, we can prune
out the other LFs without sacrificing the label model’s perfor-
mance.Figure 2 shows that in the running example, the LFs 𝜆1
and 𝜆3 forms the Markov Blanket of 𝑌 , thus we select these two
LFs and discard 𝜆2 as it is redundant given 𝜆1 and 𝜆3. 𝜆4 was
discarded in the previous step due to low accuracy.

4 EXPERIMENTS
In this section, we evaluate the ActiveDP framework using the
classification performance of the downstream model, compare it
with other interactive frameworks for data labelling, and conduct
extensive studies to investigate the benefits of each component.

4.1 Experiment Setup
4.1.1 Datasets. We run experiments with six textual datasets

that have been used to evaluate previous data programming
works [4, 12]: Youtube Spam [1], IMDB Review [19], Amazon
Review [11], Yelp Review [36], and two subsets of the Bias-
Bios dataset [6] that distinguish between professor and teacher
(marked as Bios-PT), and between journalist and photographer
(marked as Bios-JP) respectively. These datasets cover three tasks:
spam classification, sentiment analysis and biography classifica-
tion. Besides, we also evaluated our framework on two tabular
datasets: Occupancy [5], aiming predicting office room occu-
pancy, which has been used to evaluate the Revising LF baseline
[21]; Census [14], which aims at predicting whether the income
of a person exceeds 50K or not. For each dataset, we randomly
partition the data into 80%/10%/10% for the train-validation-test
split. The detailed information of the datasets is listed in Table 2.

4.1.2 Baselines. We compare the ActiveDP framework with
the following baseline methods.

• Nemo [12]: Nemo2 is a representative framework of the
IDP paradigm. Nemo is also the current state-of-the-art
work in automatically labelling large datasets. As Nemo
only supports textual datasets and its SEU strategy is de-
signed for textual data, we compare ActiveDP with Nemo
on the six textual datasets only.

• IWS [4]: IWS3 actively selects a candidate label function
for human verification in each iteration. We evaluate IWS
under the unbounded setting (IWS-LSE-a in [4]), where
the final LF set includes all LFs that the system predicts as
accurate.

• Revising LF (RLF) [21]: Nashaat et al. propose to iteratively
select the instances where the current label model is most

2https://github.com/ChengYuHsieh/Nemo
3https://github.com/benbo/interactive-weak-supervision

uncertain for human labelling and use the labels to correct
LF outputs on selected instances.

• Uncertainty Sampling (US) [16]: Uncertainty Sampling is a
classical method for active learning, where the system se-
lects the data instance with the highest predictive entropy
for manual labelling.

4.1.3 Evaluation Protocol. We evaluate all frameworks by
simulating 300 iterations of manual annotation, assess the per-
formance of the downstream model every ten iterations, and
plot the performance curve for the downstream model. We use
MeTaL [24] as the label model to aggregate the label functions.
We train a logistic regression model as the active learning model
in ActiveDP for label quality improvement. When training the
downstream model, we extract the TF-IDF representation of the
input text and trains a logistic regression model as the down-
stream ML model for classification. We adopt classification ac-
curacy on the test set for the downstream model performance
evaluation metric and report the average test accuracy during the
run, corresponding to the area under the performance curve. We
repeat each experiment 5 times using different seeds and report
average results.

As different frameworks require different human supervision
types, we set each iteration corresponding to labelling a single
instance in uncertainty sampling and Revising LF, verifying a
single LF in IWS, and designing a single LF in Nemo andActiveDP.
While the user response time may differ in each framework, such
an evaluation protocol lets us compare the frameworks intuitively.
4 Besides, Revising LF [21] requires a pre-specified set of LFs,
which is not required by other frameworks. For a fair comparison,
we use the same method applied in ActiveDP to create a set of
LFs during the interaction and use Λ𝑡 as the input LF set for
Revising LF when evaluating it at the t-th iteration.

4.1.4 Simulated User. Following previous works [4, 12], we
use ground truth examples to simulate user responses when
evaluating all frameworks. We apply the following simulation
process for ActiveDP. For textual datasets, we first consider
the candidate LF space with all LFs 𝜆𝑤,𝑦 that return a specific
class label 𝑦 when observing keyword 𝑤 and abstain other-
wise. Given a query instance 𝑥 , we first build a candidate LF
set Λ𝑐 = {𝜆𝑤,𝑦 : 𝑤 ∈ 𝑥 ∧ 𝑎𝑐𝑐 (𝜆𝑤,𝑦) > 𝑡}, which contains all
LFs with their keywords inside the instance 𝑥 and with accuracy
above threshold 𝑡 . For tabular datasets, we consider the candidate
LF space with all decision stumps 𝜆 𝑗,𝑣,𝑜𝑝,𝑦 that returns a specific
class label𝑦 for instance𝑥 if𝑥 𝑗 ≥ 𝑦 (𝑜𝑝 =′≥′) or𝑥 𝑗 ≤ 𝑦 (𝑜𝑝 =′≤′),
and returns −1 otherwise. Given a query instance 𝑥 , we build
the candidate LF set as Λ𝑐 = {𝜆 𝑗,𝑣,𝑜𝑝,𝑦 : 1 ≤ 𝑗 ≤ 𝑚𝑓 𝑒𝑎𝑡 ∧ 𝑜𝑝 ∈
{′≤′,′ ≥′} ∧ 𝑣 = 𝑥 𝑗 ∧ 𝑎𝑐𝑐 (𝜆 𝑗,𝑣,𝑜𝑝,𝑦) > 𝑡}, where 𝑚𝑓 𝑒𝑎𝑡 is the
number of features in the dataset. In other words, we consider
the decision stumps based on a single feature with 𝑥 lying on the
boundary. We set the accuracy threshold 𝜏𝑎𝑐𝑐 = 0.6 in our experi-
ments. Then we filter out LFs returned in previous iterations and
select an LF from the filtered set with probability proportional to
the LF coverages. For IWS, the simulated user marks a candidate
LF as accurate when its accuracy exceeds 𝜏𝑎𝑐𝑐 . For uncertainty
sampling and Revising LF, the simulated user returns the correct
label of the selected instance.

4Nemo [12] provides a user study on the response time for different supervision
types. Asking users to give an LF takes slightly more time for users to label a single
instance or verify a given LF.
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4.2 System Performance
Figure 3 shows the performance curve of ActiveDP and other
baseline methods. The X-axis indicates the number of queries
given to the simulated user, and the Y-axis shows the downstream
model’s test set classification accuracy. Across all datasets, Ac-
tiveDP improves the downstream model’s test set accuracy by
an average of 4.4% compared to Nemo, 13.5% compared to IWS,
2.6% compared to Revising LF, and 6.5% compared to uncertainty
sampling.

Looking into the labelling process in detail, when the label
budget is small, ActiveDP, Nemo and Revising LF outperform
uncertainty sampling and IWS in general. These three methods
leverage data programming to efficiently label large datasets,
giving them advantages at the early stage of the labelling process.
On the other hand, uncertain sampling can only use a small
labelled subset of data to train the downstream model, making it
perform worse than data programming methods. IWS, although
following the data programming paradigm, does not perform
well in the early steps. This is likely because the system fails to
provide good candidate LFs for human experts to verify when
the labelled data is scarce. It underperforms Nemo and ActiveDP,
which ask human experts to provide LFs instead.

When the label budget increases, the performance of uncertain
sampling and ActiveDP improves steadily, as they both train an
active learning model which benefits from more labelled data.
However, for Nemo and IWS, we observe a performance drop
in some datasets. These methods only use label functions for
prediction. As they omit fine-grained instance labels for super-
vision, their performance will be surpassed by active learning
paradigms when the label budget is sufficient. Further, as these
methods do not apply label function selection or only use a simple
accuracy-based filter, their performance will be impeded when
some harmful LFs are used to train the label model.

For tabular datasets, the performance of uncertain sampling
and ActiveDP improves with more labelling budget, the perfor-
mance of Revising LF grows slowly, and the performance of IWS
does not improve. This is because the LFs for tabular datasets are
based on decision stumps, which can only provide coarse-grained
supervision to the data. Thus developing more LFs does not sig-
nificantly improve the data quality. On the other hand, these tab-
ular datasets are relatively easy to classify using a small labelled
dataset, thus the performance of uncertain sampling exceeds
IWS and Revising LF after around 100 queries. By combining
active learning and data programming, ActiveDP maintains good
performance with only a few queries, and similar to uncertain
sampling, it has steady performance improvement with increased
labelling budgets.

Note that while the performance of Revising LF is close to
ActiveDP in some textual datasets, the performance gaps in tab-
ular datasets is significant. This is because the performance of
Revising LF benefits from both aggregating more LFs and revis-
ing the LFs with user feedback. In textual datasets, both factors
contribute to its performance improvement. However, in tabular
datasets, the benefit of aggregating more LFs diminishes due to
the reason explained above, leaving the effect of revising LFs to
be dominant. As the LFs are only revised on queried instances,
the performance improvement for Revising LF is much slower
than ActiveDP or uncertain sampling, which trains an active
learning model to predict a larger fraction of data.

In summary, ActiveDP has good performance under both small
and large labelling budget scenarios, and its performance im-
proves steadily with more labels, making it a more general and
effective solution in combining data programming and active
learning compared to previous works.

4.3 Comparative Studies

Table 3: Performance of Ablated Versions of ActiveDP.

Method Dataset
Youtube IMDB Yelp Amazon Bios-PT Bios-JP Occupancy Census

Baseline 0.8130 0.7826 0.5776 0.7096 0.8527 0.8892 0.8881 0.7651
LabelPick 0.8598 0.7850 0.6564 0.7176 0.8572 0.9027 0.8881 0.7652
ConFusion 0.8708 0.7843 0.7538 0.7182 0.8671 0.8902 0.9906 0.8060
ActiveDP 0.8894 0.8016 0.7834 0.7198 0.8785 0.9078 0.9905 0.8096

4.3.1 Ablation study. We conduct ablation studies to investi-
gate the benefit of the ConFusion and LabelPick methods. Table
3 evaluates the performance of the downstream model using
different ablated versions of ActiveDP. The baseline method uses
all user-returned LFs to train the label model; the LabelPick and
ConFusion approach only apply the LF selection and confidence-
based label aggregation techniques, respectively, and the Ac-
tiveDP method combines the two techniques. Compared to the
baseline method, the LabelPick strategy improves the test set ac-
curacy on average by 1.9%, and the ConFusion strategy improves
the test accuracy on average by 5.0%. ActiveDP, combining both
strategies, improves the test accuracy on average by 6.3%, show-
ing that both strategies benefit the performance of ActiveDP.

Table 4: Performance of ActiveDP with different sample
selectors.

Sampler Dataset
Youtube IMDB Yelp Amazon Bios-PT Bios-JP Occupancy Census

Passive 0.8699 0.7992 0.7607 0.7263 0.8692 0.9030 0.9823 0.7919
US 0.8746 0.7997 0.7660 0.7212 0.8703 0.9058 0.9889 0.7959
LAL 0.8858 0.7889 0.7596 0.7242 0.8657 0.9002 0.9852 0.8033
SEU 0.8701 0.7566 0.7632 0.7259 0.8682 0.9023 0.9837 0.7927
ADP 0.8894 0.8016 0.7834 0.7198 0.8785 0.9078 0.9905 0.8096

4.3.2 Sampler Performance. To test the sensitivity of ActiveDP
to the sample selector choice, we evaluated ActiveDP using dif-
ferent sample selection strategies: passive sampling, uncertainty
sampling (US) [16], learning active learning (LAL) [15], select by
expected utility (SEU) [12], and the ADP sampler proposed by
us. For the samplers designed for active learning (US, LAL), we
use the implementation in the AliPy [34] package with default
parameters.

Table 4 presents the downstreammodel performance using dif-
ferent samplers. Our ADP sampler outperforms other evaluated
samplers on 7 out of 8 datasets. The ADP sampler is specifically
designed to consider both active learning and data programming,
making it a good fit for our ActiveDP framework.

Table 5: Performance of ActiveDP with different simulated
Label Noise Rates.

Label Noise Dataset
Youtube IMDB Yelp Amazon Bios-PT Bios-JP Occupancy Census

0% 0.8894 0.8016 0.7834 0.7198 0.8785 0.9078 0.9905 0.7948
5% 0.8671 0.7902 0.7449 0.7172 0.8692 0.9049 0.9905 0.7959
10% 0.8628 0.7846 0.7303 0.7091 0.8692 0.9036 0.9888 0.7922
15% 0.8474 0.7793 0.6999 0.7040 0.8583 0.9002 0.9884 0.7756
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Figure 3: End-to-end Performance comparison between ActiveDP and Baseline Methods.

4.3.3 Label Noise. Label noise occurs when the LF has ac-
curacy above the threshold but misfires on the corresponding
query instances. We simulate label noise by randomly selecting a
certain fraction of query instances and letting the simulated user
generate LFs for the flipped label. The LF generation process is
identical to the process described in Section 4.1.4, except that as
the label is reversed, the generated LFs will not be accurate on the
query instance (their accuracy on the training set is still above
the threshold of 0.6). As ActiveDP applies the LFs on related
query instances to generate labelled subsets, such label noise
will deteriorate the performance of the active learning model in
ActiveDP.

Table 5 illustrates the performance under various label noise
levels. While injecting label noise deteriorates the performance
of ActiveDP, the performance degradation is not significant with
a low label noise level. The average test set accuracy degradation
is 1.1% with 5% label noise, 1.6% with 10% label noise, and 2.7%
with 15% label noise.

5 CONCLUSIONS
In this paper, we propose ActiveDP, a novel interactive frame-
work that combines active learning and data programming to
automatically generate labels for training ML models. ActiveDP
selects a subset of helpful LFs for training the label model and
leverages active learning to improve data quality. Extensive ex-
periments show that ActiveDP outperforms previous weak su-
pervision approaches and performs well under different labelling
budgets.
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