
Auto-FP: An Experimental Study of Automated Feature
Preprocessing for Tabular Data

Danrui Qi†∗, Jinglin Peng†∗, Yongjun He♦∗, Jiannan Wang†

Simon Fraser University† ETH Zürich♦
{dqi, jinglin_peng, jnwang}@sfu.ca yongjun.he@inf.ethz.ch

ABSTRACT
Classical machine learning models, such as linear models and
tree-based models, are widely used in industry. These models are
sensitive to data distribution, thus feature preprocessing, which
transforms features from one distribution to another, is a cru-
cial step to ensure good model quality. Manually constructing a
feature preprocessing pipeline is challenging because data scien-
tists need to make difficult decisions about which preprocessors
to select and in which order to compose them. In this paper,
we study how to automate feature preprocessing (Auto-FP) for
tabular data. Due to the large search space, a brute-force solu-
tion is prohibitively expensive. To address this challenge, we
interestingly observe that Auto-FP can be modelled as either
a hyperparameter optimization (HPO) or a neural architecture
search (NAS) problem. This observation enables us to extend a
variety of HPO and NAS algorithms to solve the Auto-FP prob-
lem. We conduct a comprehensive evaluation and analysis of 15
algorithms on 45 public ML datasets. Overall, evolution-based
algorithms show the leading average ranking. Surprisingly, the
random search turns out to be a strong baseline. Many surrogate-
model-based and bandit-based search algorithms, which achieve
good performance for HPO and NAS, do not outperform ran-
dom search for Auto-FP. We analyze the reasons for our findings
and conduct a bottleneck analysis to identify the opportunities
to improve these algorithms. Furthermore, we explore how to
extend Auto-FP to support parameter search and compare two
ways to achieve this goal. In the end, we evaluate Auto-FP in
an AutoML context and discuss the limitations of popular Au-
toML tools. To the best of our knowledge, this is the first study
on automated feature preprocessing. We hope our work can in-
spire researchers to develop new algorithms tailored for Auto-FP.
We release our datasets, code, and comprehensive experimental
results at https://github.com/AutoFP/Auto-FP.

1 INTRODUCTION
Despite the recent advancement of deep learning for image and
text data, most machine learning (ML) use cases in industries are
still about applying classical ML algorithms to tabular data. For
example, a recent survey of over 25,000 data scientists and ML
engineers [5] shows that the most commonly used models are
linear models (linear regression or logistic regression); the most
popular ML framework is scikit-learn [4] (mainly designed for
traditional machine learning).

Building a classical ML model on tabular data involves sev-
eral tasks, such as feature preprocessing, feature selection, and
hyperparameter tuning. An important question faced by many

* The first three authors contributed equally to this research.
© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-091-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

real-world data scientists is how to automatically complete each
task. Fortunately, many research efforts have been devoted to
answering this question. They conduct comprehensive surveys
or experiments on feature selection [16, 22, 38], hyperparameter
tuning [20, 68], data cleaning [40], feature type inference [54],
etc. However, feature preprocessing, an essential task for classical
ML, has not been well explored in the literature. This paper aims
to fill this research gap.

There aremany commonly used feature preprocessors in scikit-
learn, such as Binarizer,MaxAbsScaler,MinMaxScaler,Normalizer,
PowerTransformer, QuantileTransformer and StandardScaler. In-
tuitively, a feature preprocessor transforms features from one
distribution to another. For example, MinMaxScaler transforms
features by scaling each feature to a given range. PowerTrans-
former applies an exponential transformation to each feature to
make its distribution more normal-like. Given a training dataset
and a set of feature preprocessors [8], the goal of feature pre-
processing is to construct a pipeline (i.e., a sequence of selected
feature preprocessors) to scale and transform the features in the
training set.

To construct a good pipeline, we need to answer two questions:
i) which preprocessors to select; ii) in which order to compose
them. Different answers will lead to different pipelines. Consider
the following two pipelines:

𝑃1 : MinMaxScaler → PowerTransformer

𝑃2 : PowerTransformer → MinMaxScaler → Normalizer

𝑃1 selects two preprocessors and applies MinMaxScaler first and
then PowerTransformer ; 𝑃2 selects three preprocessors and ap-
plies PowerTransformer first and thenMinMaxScaler and Normal-
izer.

It is not easy to use domain knowledge to determine which
pipeline (𝑃1 or 𝑃2) is better since it not only depends on the
upstream training set but also on the downstream learning al-
gorithm. To manually construct a pipeline, data scientists have
to get into a trial-and-error mode, which will be both tedious
and time-consuming. If a bad feature preprocessing pipeline is
selected, it could even hurt the downstream model accuracy. To
this end, this paper studies how to automatically search for the
best feature preprocessing pipeline.

The brute-force solution that enumerates all possible pipelines
is prohibitively expensive. Given a set of 𝑛 preprocessors, a
pipeline could contain 1, 2, · · · , or 𝑛 preprocessors, thus there
will be a total of

∑𝑛
𝑖=1 𝑖

𝑖 ≈ 𝑛𝑛 pipelines to enumerate. Apparently,
it is too expensive for the brute-force solution to enumerate all
pipelines. We interestingly find the insight that the Auto-FP prob-
lem can be modelled as either a Hyperparameter Optimization
(HPO) problem or a Neural Architecture Search (NAS) problem.
This interesting insight enables us to extendmany existing search
algorithms from HPO and NAS to Auto-FP. With these search
algorithms, we need to answer the following essential questions:

Experiments & Analyses Paper

Series ISSN: 2367-2005 129 10.48786/edbt.2024.12

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.12

Num

-1.5

1

1.5

2.5

3

4

5

Num

0

1

1

1

1

1

1

Num

-0.3

0.2

0.3

0.5

0.6

0.8

1

Num

0

0.38

0.46

0.61

0.69

0.85

1

Num

-1

1

1

1

1

1

1

Num

-1.72

-0.71

-0.46

0.07

0.35

0.93

1.53

Num

0

0.17

0.33

0.5

0.67

0.83

1

(a) (b) (c) (d) (e) (f) (g) (h)
Num

-1.87

-0.61

-0.36

0.15

0.40

0.90

1.41

Figure 1: Illustration of different feature preprocessors. (a)
No preprocessor; (b) StandardScaler; (c) MaxAbsScaler; (d)
MinMaxScaler; (e) Normalizer; (f) PowerTransformer; (g)
QuantileTransformer; (h) Binarizer.

Q1. Which search algorithm performs better? There are
many HPO and NAS search algorithms available, but it is unclear
which algorithms will perform well for Auto-FP. Unlike HPO and
NAS, Auto-FP focuses on optimizing a preprocessing pipeline, i.e.,
aiming to find the best combination as well as the best order of
preprocessors, thus it has a unique search space for these search
algorithms to explore. An algorithm performing well for HPO
and NAS does not mean that it will also perform well for Auto-FP.
Q2. How to extend Auto-FP to support parameter search?
To further enhance the performance of Auto-FP, we consider
the scenario where a user wants to search for not only the best
pipeline but also the best parameters associated with each prepro-
cessor. The characteristics such as the cardinality of parameter
search spaces can be varied and it is valuable to explore how to
extend Auto-FP to support different search spaces.
Q3.What is the relationship betweenAuto-FP andAutoML?
To further explore future opportunities, we put Auto-FP in an
AutoML context to figure out the relationship between Auto-
FP and AutoML. AutoML tools are typically equipped with a
feature preprocessing module. One natural question is whether
Auto-FP can outperform the FP part of a general-purpose AutoML.
Another question is whether Auto-FP is important in the AutoML
context. If yes, they can learn from our paper to improve their
feature preprocessing module.
Our Contributions. For answering the above essential ques-
tions, our work makes the following contributions:
(1) Indicate the importance of FP. Feature preprocessing is a

crucial step in classical ML. To the best of our knowledge,
this is the first comprehensive study on this important topic.

(2) Formally define Auto-FP.We identify a number of widely
used preprocessors in scikit-learn and formally define the
Auto-FP problem. We find that this problem can be modelled
as either a HPO or a NAS problem, and extend 15 search
algorithms from HPO and NAS to Auto-FP.

(3) Categorize Auto-FP search algorithms. We conclude these
search algorithms into a unified framework and categorize
them into 5 categories: traditional algorithms, surrogate-
model-based algorithms, evolution-based algorithms, RL-based
algorithms and bandit-based algorithms.

(4) To answer Q1, Q2 and Q3, we first conduct comprehensive
experiments comparing 15 Auto-FP algorithms on 45 public
ML datasets and provide recommendations for different sce-
narios. Then we explore two parameter search spaces with
varying cardinalities and propose two extensions for Auto-FP,
namely One-step (combining parameter and pipeline search)
and Two-step (separating the searches). Thirdly, by situating
Auto-FP within an AutoML context, we identify the limita-
tions of current AutoML tools, examine if Auto-FP outper-
forms FP in AutoML tools, and highlight the significance of
Auto-FP by comparing it to hyperparameter tuning in Au-
toML.

Table 1: 3-CV scores of decision tree models with different
tree depths for downstreamMLmodels (LR, XGB, or MLP).

LR XGB MLP
Tree
Depth

3-CV
Score

Tree
Depth

3-CV
Score

Tree
Depth

3-CV
Score

1 0.65 1 0.70 1 0.54
2 0.65 2 0.67 2 0.65
3 0.54 3 0.67 3 0.67
No
Limit

0.50 No
Limit

0.67 No
Limit

0.67

Experimental Findings. Our empirical results reveal a number
of interesting findings and we summarize our main experimental
findings as follows: 1) Evolution-based search algorithms typ-
ically achieve the highest overall average ranking. 2) Random
search is a strong baseline. 3) Many sophisticated algorithms,
such as RL-based, bandit-based and most surrogate-model-based
algorithms, perform even worse than random search. 4) Different
algorithms have different bottlenecks and model evaluation is
the bottleneck in most cases. 5) One-step fits for extended low-
cardinality search space and Two-step is preferred for extended
high-cardinality search space. 6) Auto-FP outperforms the FP
part in AutoML and it is important in the AutoML context.
ResearchOpportunities.According to our findings, we identify
four future research directions: 1) warm-start search algorithms
2) allocate pipeline and parameter search time budget reasonably
3) benchmark Auto-FP on various data types and deep models.
The code, datasets and experimental raw data are published on
GitHub as a reference for the community. We hope our work can
attract more research interest not only for Auto-FP but also for
automating other individual tasks (such as data cleaning [35],
feature generation and feature selection [28, 33, 45, 47, 56]) in
AutoML context and building more powerful AutoML.

2 BACKGROUND AND MOTIVATION
In practice, users enhance model accuracy by incorporating fea-
ture preprocessing techniques to serve the purposes such as
scale variance reduction, data distribution transformation and
dimensionality reduction. Scaling with StandardScaler addresses
varying scales, while PowerTransformer adjusts data for specific
distributions. Techniques like Binarizer reduce dimensionality
and improve efficiency. Proper selection of preprocessing tech-
niques is crucial for accurate results. In this section, we first
present the background of feature preprocessors, then validate
whether feature preprocessing really matters, and finally explore
the relationship between data characteristics and feature prepro-
cessing.

2.1 Feature Preprocessors
Scikit-learn [4] is popular for developing classical ML on tabular
data. Its feature preprocessing module offers various preproces-
sors1 and Sklearn-doc [7] explains their practical usage and effec-
tiveness. For example, scaling feature preprocessors is commonly
used for improving model performance [15, 36]. Compared to the
scaling feature preprocessors, discretization/binarization is less
frequent. We discuss seven feature preprocessors in the following
contents and provide a rigorous justification for choosing them.

1. StandardScaler: ML models may perform badly if indi-
vidual features do not follow the standard normal distribution.
StandardScaler standardizes a feature by removing its mean value
and scales it by dividing the standard deviation [4]. Let 𝜇 and
𝜎 denote the mean and the standard deviation of a feature, re-
spectively. For each value 𝑥 in the feature, the scaled result is

1https://scikit-learn.org/stable/modules/preprocessing.html

130

calculated by 𝑥−𝜇
𝜎 . Figure 1(b) shows the result of applying Stan-

dardScaler. The 𝜇 and 𝜎 are 2.21 and 1.98. Thus, the transformed
result of value -1.5 is −1.5−2.21

1.98 = −1.87.
2. MaxAbsScaler: When the standard deviations of some

features are very small like 10−8, applying StandardScaler can
cause unreasonable transformed features. In this situation, it is
better to scale the values of each feature into a specific range.
MaxAbsScaler scales each feature according to its maximum ab-
solute value [7]. Let 𝑥 be the maximum absolute value of the
feature. For each value 𝑣1, 𝑣2, · · · of the feature, the scaled values
will be 𝑣1

𝑥 ,
𝑣2
𝑥 , · · · . Figure 1(c) shows the result of applying Max-

AbsScaler to the original feature. The maximum absolute value
of the original feature is 5. Thus, the value -1.5 is transformed to
−1.5
5 = −0.3.
3. MinMaxScaler: Similar to MaxAbsScaler, MinMaxScaler

transforms features by scaling each feature to a given range [7?
] ([0, 1] by default). Let max and min denote the maximum and
minimum values of the feature, respectively. The scaled result of 𝑥
is calculated as 𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛 . Figure 1(d) shows the result of applying
MinMaxScaler to the original feature. The max (min) value of the
original feature is 5 (-1.5). Thus, the value 1 is transformed to
1−(−1.5)
5−(−1.5) = 0.38.
4.Normalizer: MLmodels can be impacted severely by differ-

ent scales of the features. Normalizer normalizes samples (rows
of data) individually into unit norm [7]. Given a row vector,
𝑥 = [𝑥1, 𝑥2, · · · , 𝑥𝑛], each value 𝑥𝑖 is scaled to 𝑥𝑖

| |𝑥 | |2 . Suppose the
data only has a single column as shown in Figure 1(a). Figure 1(e)
shows the result of applying Normalizer to the data. For the first
row 𝑥 = [−1.5], the Euclidean length is | |𝑥 | |2 =

√︁
(−1.5)2 = 1.5,

thus the value -1.5 is transformed to −1.5
1.5 = −1.

5. PowerTransformer: In some modelling scenarios, the nor-
mality of the features is desirable. When some features exhibit a
large skewness, PowerTransformer can perform an exponential
and monotonic transformation to each feature to make its distri-
bution more normal-like. It can help ML models with normal-like
input assumptions and help to handle highly skewed data [7]. The
default PowerTransformer of Scikit-Learn, called Yeo-Johnson
transformation, is defined as:

𝑌𝑒𝑜 − 𝐽 𝑜ℎ𝑛𝑠𝑜𝑛 (𝑥) =

(𝑥+1)𝜆−1

𝜆
𝑥 >= 0, 𝜆 ≠ 0

𝑙𝑜𝑔 (𝑥 + 1) 𝑥 >= 0, 𝜆 = 0
1−(1−𝑥)2−𝜆

2−𝜆 𝑥 < 0, 𝜆 ≠ 2
−𝑙𝑜𝑔 (1 − 𝑥) 𝑥 < 0, 𝜆 = 2

(1)

where 𝜆 is automatically calculated. It aims to fit the transformed
feature into a zero-mean, unit-variance normal distribution as
much as possible. Figure 1(f) shows the result of applying Power-
Transformer to the original feature. At first, the PowerTransformer
finds the optimal 𝜆 automatically, which is 1.22. Then, the trans-
formed results are calculated by Equation 1. For example, the
transformed result of value -1.5 is 1−(1−(−1.5))2−1.22

2−1.22 = −1.34.
6. QuantileTransformer: Similar to the applied scenarios

of PowerTransformer, QuantileTransformer also performs a non-
linear transformation. QuantileTransformer transforms features
independently into a uniform or a normal distribution [7]. Since
the above PowerTransformer can be used for normal distribu-
tion, we utilize QuantileTransformer for uniform distribution.
Intuitively, each transformed value represents its quantile po-
sition in the original feature column. For example, Figure 1(a)
shows the original feature column: [-1.5, 1, 1.5, 2.5, 3, 4, 5]. As
shown in Figure 1(g), it is transformed to [06 ,

1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 ,

6
6] =

[0, 0.17, 0.33, 0.5, 0.67, 0.83, 1].

7.Binarizer: Certain datasets can benefit from binarization,
especially when binarization results present a high correlation
with the target label [25]. Binarizer binarizes data into two values
(0 or 1) according to a threshold. Values greater than the threshold
are mapped to 1, otherwise to 0 [7]. The default threshold is 0,
which means that negative values are mapped to 0, and non-
negative values are mapped to 1. E.g., Figure 1(a) is the original
feature without any preprocessing. Figure 1(h) shows the result
of applying Binarizer to the feature. With the default threshold
0, the number -1.5 is transformed to 0, while the other values are
transformed to 1.
How DoWe Choose the Feature Preprocessors? We choose
seven widely used feature preprocessors based on their effective-
ness and interpretability. They have proven effective on popu-
lar models like LR and XGB and are easily interpretable when
combined with specific datasets and models. We exclude less
interpretable preprocessors like x-bit encoding. Our selection
surpasses what popular AutoML tools offer, ensuring applicabil-
ity across various scenarios. To accommodate additional prepro-
cessors, our benchmark can be extended for further insights.

2.2 Motivation
Does FP Really Matter? To motivate Auto-FP, we conduct an
exploratory experiment to examine whether feature preprocess-
ing really matters by considering pipelines of lengths up to 4
(2800 pipelines in total). We apply each pipeline to a training set
and train an LRmodel on the preprocessed data. Figure 2 presents
the distribution of model accuracy for four datasets. The x-axis
represents accuracy values, while the y-axis denotes the number
of pipelines achieving each accuracy. The red line represents
ML accuracy without preprocessing. Results demonstrate that
different pipelines yield significantly varied model accuracy. For
instance, on the Heart dataset, accuracy ranges from 0.49 to 0.88.
Furthermore, a good pipeline can substantially improve accuracy,
while a poor one can even degrade it. For example, on the Pd
dataset, the best (worst) pipeline achieves 0.94 (0.24) accuracy,
while no preprocessing (red line) achieves 0.81 accuracy. These
findings emphasize the importance of feature preprocessing. To
further motivate Auto-FP, we compare the accuracy of the 2800
pipelines with a given combination of FP represented by pipelines
generated by the popular AutoML tool TPOT[48]. Table 2 shows
the accuracy comparison between TPOT’s FP pipeline and the
best FP pipeline among the 2800 considered. For all four datasets,
the best FP pipeline outperforms TPOT’s pipeline, indicating
the potential for improving performance by extending pipeline
length and highlighting the need for Auto-FP.
Are there explicit data characteristic rules that can be used
to infer the effectiveness of FP? To further motivate Auto-FP,
we analyze the relationship between data characteristics and
FP effectiveness. We consider 40 characteristics used in Auto-
Sklearn [21], encompassing basic (e.g., NumberOfClasses), statis-
tical (e.g., SkewnessMean), landmarking (e.g., Landmark1NN), and
information-theoretic (e.g., ClassEntropy) measures. The detailed
list of these data characteristics is shown in the technical report
[6]. The datasets, downstream ML models, and the experimental
environment we use are the same as in Section 5.

We investigate whether there are data characteristic rules that
can be used to infer the effectiveness of feature preprocessing.
For example, one possible rule is “if features are highly skewed,
then FP will be very useful for improving the downstream model
accuracy”. Using 45 commonly used ML datasets with diverse
characteristics, we construct a training data with 40 features

131

0.00 0.25 0.50 0.75 1.000

1000

2000
Heart

0.00 0.25 0.50 0.75 1.000

1000

2000
Forex

0.00 0.25 0.50 0.75 1.000

1000

2000
Pd

0.00 0.25 0.50 0.75 1.000

1000

2000
Wine

Accuracy

of
 p
ip
el
in
e

Acc(no FP)

Figure 2: Distribution of LR accuracy with different feature preprocessing pipelines.
Table 2: Accuracy comparison between the TPOT FP pipeline and the best pipeline in Figure 2.

Dataset TPOP FP Pipeline / Accuracy Best FP Pipeline in Figure 2 / Accuracy
Heart Binarizer / 0.8333 Normalizer ->StandardScaler ->Binarizer / 0.8367
Forex Binarizer ->StandardScaler / 0.7001 MaxAbsScaler ->Normalizer ->Normalizer ->StandardScaler / 0.7042
Pd MinMaxScaler / 0.9250 StandardScaler ->Normalizer ->MinMaxScaler / 0.9421

Wine Binarizer ->Normalizer ->MaxAbsScaler / 0.5591 PowerTransformer ->Normalizer ->MaxAbsScaler ->QuantileTransformer / 0.5693

representing data characteristics and a binary label indicating
whether FP significantly improves downstream model accuracy.
To determine the label, we calculate the accuracy score A by di-
rectly inputting a dataset into a model without FP. Then we apply
200 randomly selected pipelines on the same dataset and model
and obtain an accuracy score B. We compute B-A and assign label
1 if B-A > 1.5%, and label 0 if B-A < -1.5%. We train a decision
tree on the training data and try to derive characteristic rules.
Table 1 presents the 3-fold cross-validation (3-CV) scores for dif-
ferent downstream models at varying tree depths. Unfortunately,
the 3-CV scores are consistently low, suggesting the absence of
reliable data characteristic rules to predict FP effectiveness. This
further emphasizes the need for Auto-FP.

3 AUTOMATED FEATURE PREPROCESSING
In this section, we first formally define the Auto-FP problem and
then view Auto-FP problem as HPO and NAS.

3.1 Problem Formulation
Definition 3.1 (Feature Preprocessor). Given a dataset 𝐷 , let 𝑟𝑖

be its 𝑖-th row and 𝑐 𝑗 be its 𝑗-th column. A preprocessor P is a
mapping function that maps dataset 𝐷 to 𝐷′, where each row 𝑟𝑖
is mapped to 𝑟 ′

𝑖
and each column 𝑐 𝑗 is mapped to 𝑐′

𝑗
.

Example 3.2. This paper considers the seven feature prepro-
cessors from Section 2.1. Given a dataset 𝐷 and a feature prepro-
cessor StandardScaler(·), we have 𝐷′ = StandardScaler(𝐷).

Definition 3.3 (Feature Preprocessing Pipeline). Given a set of
preprocessors, a pipeline L of size 𝑛 is a composite function that
contains a sequence of 𝑛 preprocessors, denoted by P1 → P2 →
· · · → P𝑛 . For a dataset D, L maps it to dataset D′, where
D′ = P𝑛 ◦ (...P2 ◦ (P1 (D)).

Example 3.4. Given D and a feature preprocessing pipeline
𝑃𝑜𝑤𝑒𝑟𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 → 𝑀𝑖𝑛𝑚𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟 → 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟 , we have
D′ = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟◦(𝑀𝑖𝑛𝑚𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟◦(𝑃𝑜𝑤𝑒𝑟𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (D))).

Pipeline Error. Auto-FP problem is the problem of searching for
the best pipeline. Thus, it is vital to figure out how to measure
the quality of a given pipeline. We formally define Pipeline Error
as follows, thus searching for the best pipeline means searching
FP pipeline with minimal pipeline error:

Consider the model training process that gives a classifier
C, a training dataset D𝑡𝑟𝑎𝑖𝑛 with its labels, and a validation
dataset D𝑣𝑎𝑙𝑖𝑑 with its labels. For a pipeline L, it will be used
to transform the training data D𝑡𝑟𝑎𝑖𝑛 and get a new dataset
L(D𝑡𝑟𝑎𝑖𝑛). Then, the classifier C will be trained on the new
dataset. We denote the trained classifier as CL(D𝑡𝑟𝑎𝑖𝑛) , or CL
for simplicity when the context is clear. Clearly, a good pipeline

should be the one that minimizes the error of the trained clas-
sifier CL . Since the test data is not available in the training
stage, we measure the validation error of CL on D𝑣𝑎𝑙𝑖𝑑 , denoted
by validation_error(CL ,D𝑣𝑎𝑙𝑖𝑑). Then, we define the error of a
pipeline L as:

error(L) := validation_error(CL(D𝑡𝑟𝑎𝑖𝑛) ,D𝑣𝑎𝑙𝑖𝑑) (2)
Now we have defined the error of a pipeline. Next, we for-

mally define the pipeline search problem (i.e., automated feature
preprocessing) in definition 3.5.

Definition 3.5 (Automated Feature Preprocessing). Given a set of
preprocessorS𝑝𝑟𝑒𝑝 , suppose that a feature preprocessing pipeline
contains at most 𝑁 preprocessors. Let S𝑝𝑖𝑝𝑒 be the set of all
pipelines constructed with 𝑛 = {1, · · · , 𝑁 } preprocessors cho-
sen from S𝑝𝑟𝑒𝑝 . The automated feature preprocessing (Auto-FP)
problem aims to find the best pipeline with minimal error, i.e.,

argmin
L∈S𝑝𝑖𝑝𝑒

error(L)

3.2 Auto-FP as HPO and NAS
Interestingly, Auto-FP can be viewed in two different ways.
Auto-FP as HPO. HPO aims to find the best combination of
classifier and its related hyperparameters for a given dataset.
Since different classifiers have different HP space (e.g., LR needs
to tune “penalty” while Random Forest (RF) does not), its search
process contains two steps and can be modelled as a search tree
like Figure 3(a). The first step is to select a classifier to activate its
corresponding HP space (e.g., RF). The second step is to determine
the candidate option for each HP (e.g., n_estimators = 200). The
search process of Auto-FP can also be divided into two steps
as shown in Figure 3(b). The first step is to select the pipeline
length (e.g., len = 7). The second step is to determine the specific
preprocessor for each position (e.g., 𝑃1 = Normalizer).
Auto-FP as NAS. NAS aims to find the best neural architec-
ture for a given dataset. Auto-FP can be modelled as the chain-
structure NAS problem, whose neural architecture has no skip
connection among different layers and no multi-branch in each
layer. That is, a chain-structure neural architecture is a sequence
of operators (i.e., a pipeline) as shown in Figure 4(a). Its search
process optimizes two factors holistically: (1) the max depth of a
chain structure; (2) the operator put in each position. Similarly,
for Auto-FP, the goal is also to find the best chain-structure neural
architecture. The difference is that it puts a feature preprocessor
(e.g., Normalizer) rather than a neural-architecture operator at
each position.
Remark. HPO, NAS, and AutoFP all aim to find the best combi-
nation in large search spaces. HPO optimizes the combination

132

root

LR Linear
SVC RF

penalty penalty

…

C dual loss dual tol C n_estimators criterion

Step 1: Select classifier

Step 2: Select activated
hyperparam value

n_estimators=100 n_estimators=200n_estimators=500
Candidate Options

n_estimators=1000

(a) HPO Problem

(b) Auto-FP as HPO

root

len = 1 len=2 len=7

	𝑃# 	𝑃# 	𝑃$ 	𝑃# 	𝑃%

...

…

Step 1: Select pipeline length

Step 2: Select preprocessors
for activated positions

Binarizer MinMaxScaler

PowerTransformer

MaxAbsScaler Normalizer
Candidate Preprocessors

StandardScaler QuantileTransformer

Figure 3: The analogy between HPO and Auto-FP.

of classifiers and hyperparameters, NAS selects the combination
of operators in neural architecture, and AutoFP searches for the
optimal combination of feature preprocessors. Thus, HPO and
NAS can cover AutoFP, which is the reason that we derive search
algorithms for AutoFP from HPO and NAS area in Section 4.

4 AUTO-FP SEARCH ALGOITHMS
We identify 15 representative search algorithms from HPO and
NAS for Auto-FP. To select the algorithms in our study, we re-
ferred to the popular Microsoft NNI tool [46] and two widely
cited surveys [17, 27]. Our paper covers a significant propor-
tion of HPO and NAS algorithms in NNI, i.e. 8 out of 12 HPO
algorithms and 5 out of 10 NAS algorithms. Also, our search
algorithms cover all categories of search algorithms in NNI. We
initially divide them into 5 categories according to their optimiz-
ing strategies. Then we conclude them into a unified framework
for analyzing their performance bottleneck in Section 5. Table 3
shows a summary of these algorithms.

4.1 Categories of Search Algorithms
Roughly, Auto-FP search algorithms can be divided into 5 cate-
gories including traditional, surrogate-model-based, evolution-
based, RL-based and band-based algorithms. We introduce these
algorithms in detail in the following content.

4.1.1 Traditional Algorithms. Traditional algorithms samples
and evaluates one pipeline for each iteration without any initial-
ization.
Random Search [13] randomly picks one FP pipeline from the
search space and evaluates the pipeline with downstream ML
model in each iteration.
Anneal [34] progressively approaches the best FP solution by
comparing the current best pipeline to its neighbourhoods. In
each iteration, it accepts the better neighbourhoods as the new
best state and rejects the worse neighbourhoods.

4.1.2 Surrogate-model-based Algorithms. The existing surrogate-
model-based algorithms utilize one surrogate model to model
the relationship 𝑝 (𝑒𝑥 |𝑥) between FP pipelines and the down-
stream model accuracy. The 𝑥 represents FP pipelines and 𝑒𝑥
represents the downstream model accuracy. In each iteration,

𝐿"#$image … 𝐿"𝐿$
Initial
Conv 𝐿%

3×3 Sep. Conv 5×5 Sep. Conv 3×3 Avg Pool 3×3 Max Pool

Candidate Operations

(a) Chain-structure NAS Problem

𝑃"#$𝐷 … 𝑃"𝑃&𝑃$ 𝑃'

Binarizer MinMaxScaler

PowerTransformer

MaxAbsScaler Normalizer
Candidate Preprocessors

StandardScaler QuantileTransformer

(b) Auto-FP as NAS

Figure 4: The anology between NAS and Auto-FP.

they follow two steps: 1) fit the surrogate model with evaluated
trials 2) generate the next promising pipeline to evaluate.
SMAC [29] uses the random forest as the surrogate model to
handle high-dimensional and categorical input, which fits better
for our Auto-FP scenario than Gaussian Process. At each iteration,
SMAC fits random forest to represent 𝑝 (𝑒𝑥 |𝑥), then generates the
next promising FP pipeline for evaluation.
TPE [12] takes Kernel Density Estimation (KDE) as the surrogate
model which gives the linear time complexity. It performs sim-
ilar actions like SMAC at each iteration, i.e. refitting KDE and
generating the next promising FP pipeline.
Progressive NAS [43] initially starts by considering single pre-
processors as pipelines, evaluating them and training the surro-
gate model (MLP or LSTM). Then it expands the simple pipelines
by adding more possible preprocessors. The surrogate model
is used to select the next top-k pipelines for evaluation instead
of one single pipeline generated by SMAC and TPE based on
their score prediction. There are four variants of Progressive NAS
according to the variants of the surrogate model, which are all
listed in Table 3.

4.1.3 Evolution-based Algorithms. Evolution-based algorithms
consider each individual FP pipeline as single DNA in a popu-
lation. In each evolution step, some outstanding pipelines are
selected, mutated and evaluated to update the population.
Tournament Evolution [51] randomly chooses 𝑆 FP pipelines
from the population in each step and the pipelines with the high-
est downstream model accuracy are used for mutation. There
are two variants of Tournament Evolution because of two killing
strategies, i.e. kill the oldest pipeline in the population (TEVO_Y)
or kill pipelinewithworst downstreammodel accuracy (TEVO_H).
PBT [31] updates the population gradually by replacing bad
FP pipelines with the mutation of good pipelines. The “good
pipelines” means the downstream model accuracies of these
pipelines exceed the lowest bar. In each evolution step, PBT also
injects more exploration by randomly generating FP pipelines
with a fixed probability instead of just mutating.

4.1.4 RL-based Algorithms. The existing RL-based algorithms
aims find an optimal policy 𝜋𝜃 which can maximize the expected
cumulative reward.With the trial-and-error strategy, FP pipelines
are sampled and evaluated to produce rewards.
REINFORCE [62] is a policy-gradient algorithm based on the
Monte Carlo strategy, which tries to directly update 𝜃 of a pol-
icy. In each iteration, it samples one FP pipeline and updates
𝜃 according to the downstream model accuracy. The larger the

133

Table 3: Categories of Automated Feature Preprocessing Search Algorithms.
Category Area Search Alg Surrogate Model Initialization # of samples / iter # of evaluations /

iter
Traditional HPO Random Search (RS) [13] None None =1 =1
Traditional HPO Anneal [34] None None =1 =1

Surrogate-Model-based HPO SMAC [29] Random Forest Random Search >1 =1
Surrogate-Model-based HPO TPE [12] KDE Random Search >1 =1

Surrogate-Model-based NAS Progressive NAS +
MLP no ensemble (PMNE) [43] MLP no ensemble Single Preprocessors >1 >1

Surrogate-Model-based NAS Progressive NAS +
MLP ensemble (PME) [43] MLP ensemble Single Preprocessors >1 >1

Surrogate-Model-based NAS Progressive NAS +
LSTM no ensemble (PLNE) [43] LSTM no ensemble Single Preprocessors >1 >1

Surrogate-Model-based NAS Progressive NAS +
LSTM ensemble (PLE) [43] LSTM ensemble Single Preprocessors >1 >1

Evolution-based HPO PBT [31] None Random Search >1 >1

Evolution-based NAS Tournament Evolution-
Higher (TEVO_H) [51] None Random Search =1 =1

Evolution-based NAS Tournament Evolution-
Younger (TEVO_Y) [51] None Random Search =1 =1

RL-based HPO REINFORCE [62] Parameter Matrix None =1 =1
RL-based NAS ENAS [49] LSTM None =1 =1

Bandit-based HPO Hyperband [39] None None >1 >1
Bandit-based HPO BOHB [19] KDE Random Search >1 >1

downstream model accuracy of the sampled pipeline, the higher
probability to choose feature preprocessors in this pipeline.
ENAS [49]considers all the FP pipeline architectures as DAGs
and considers the whole search space as a large super-graph. The
nodes in this super-graph represent the preprocessors, and the
edges represent the edge flow. Each iteration utilizes a LSTM
to predict the next edges that should be activated and the next
preprocessors that should be used.

4.1.5 Bandit-based Algorithms. Bandit-based algorithms aim
to create a trade-off between the number of evaluated FP pipelines
and the evaluation time for each pipeline. It allocates more time
for promising pipelines and successively discards others before
the evaluation process is finished. Note that there are many types
of bandit-base algorithms [9, 58]. However, the reason we choose
Hyperband [39] and BOHB [19] here is that 1) they are two very
popular HPO algorithms used specifically for HPO, 2) we take
the analogy between Auto-FP and HPO.
Hyperband [39] considers Succesive Halving [32] as a subroutine
and each running of SH is called a bracket. In each bracket, the
outer loop controls the number of randomly sampled FP pipelines
and the initial resource allocation, while the inner loop runs SH.
BOHB [19] indicates the shortcoming of pure Hyperband, that
is, randomly generating sampled FP pipelines in each bracket
wastes the limited budgets. Thus, it gives a mixture of randomly
selected pipelines and pipelines generated by TPE, which helps
to direct pipeline search without losing exploration.

4.2 Search Algorithm Framework
In fact, we notice that all these algorithms roughly follow the
same search framework, as shown in Algorithm 1. It is an iterative
frameworkmainly consisting of four steps: Step 1. Generate initial
pipelines; Step 2. Update a surrogate model (optional); Step 3.
Sample new pipelines; Step 4. Evaluate sampled pipelines and go
back to Step 2 until the budget is exhausted. Finally, the pipeline
with the lowest error is returned. In the following, we describe
how each algorithm works at each step in detail.
Step 1: Generate initial pipelines (Line 2): As shown in the
“Initialization” column of Table 3, most algorithms need an initial-
ization step, i.e., generating initial pipelines. The evolution-based
algorithms randomly generate initial pipelines to form an initial
population. RS, Anneal, and Hyperband are the ones that do not
need any initial pipelines. However, they still follow the frame-
work in Algorithm 1 by setting P𝑖𝑛𝑖𝑡 = ∅. RL-based algorithms

Algorithm 1 : A Unified Auto-FP Search Framework

1: Input: dataset 𝐷 = (𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑), time budget 𝑇 , surro-
gate modelM (optional), downstream ML model C

2: Initialization: Randomly sample and evaluate 𝑛𝑖𝑛𝑖𝑡
pipelines with random search. // Step 1

3: elapsedTime = 0, P𝑛𝑒𝑤 = ∅, P𝑒𝑣𝑎𝑙 = P𝑖𝑛𝑖𝑡

4: while elapsedTime < 𝑇 do
5: M = Update(M,P𝑒𝑣𝑎𝑙) // Step 2
6: S𝑛𝑒𝑤 = get_sampled_pipelines() // Step 3
7: P𝑛𝑒𝑤 = Eval(S𝑛𝑒𝑤) // Step 4
8: P𝑒𝑣𝑎𝑙 = P𝑒𝑣𝑎𝑙 ∪ P𝑛𝑒𝑤

9: end while
10: return Pipeline with the lowest error from P𝑒𝑣𝑎𝑙

do not need any initial pipelines because REINFORCE uses a ran-
domly generated parameter matrix as the initial policy and ENAS
utilizes a randomly parameterized LSTM as the initial controller.
Surrogate-model-based algorithms all need the initial pipelines
and their evaluation results to build an initial surrogate model.
For example, TPE leverages initial pipelines to generate an ini-
tial KDE, while SMAC uses them to generate an initial random
forest model. Progressive NAS build initial MLP or LSTM with all
single-preprocessor pipelines. Note that the initialization of all
these algorithms except for Progressive NAS uses random search.
Step 2: Update a surrogatemodel (optional) (Line 5): Surrogate-
model-based algorithms leverage surrogate models to gener-
ate pipelines. As mentioned in Step 1, all of them need initial
pipelines to initialize a surrogate model. After each iteration,
there are one or more newly sampled pipelines evaluated. The
surrogate model should be updated with the historical and newly
generated pipelines. For instance, SMAC retrains its random for-
est, TPE refits its KDEs, and Progressive NAS refreshes its MLP
or LSTM surrogate model. Other algorithms which include sur-
rogate models also need to update their surrogate model: BOHB
refits its KDE with pipelines trained with the highest iterations
or estimators, REINFORCE updates its policy, and ENAS updates
its LSTM model. Note that the algorithms without any surrogate
model skip this step and directly go to Step 3.
Step 3: Sample new pipelines (Line 6): Different algorithms
sample new pipelines with different strategies. In addition, they
could sample one or multiple pipelines. RS and Anneal randomly
sample a single pipeline at each iteration. Hyperband randomly

134

10−1 101
Size (MB)

0

5

of
 D
at
as
et
s (a)

103 104 105
of Rows

0

5

10

of
 D
at
as
et
s (b)

101 102 103

of Cols
0

5

10

of
 D
at
as

et
s (c)

22 24 26

of Classes
0

10
20

of
 D
at
as

et
s (d)

Figure 5: Statistics of 45 real-world ML datasets.

generates multiple pipelines in order to apply Successive Halv-
ing to early terminate poor-performing pipelines. Tournament
Evolution tries to mutate the best one into another new child,
while PBT generates multiple pipelines with its exploitation and
exploration process.

The algorithms with surrogate models generate new sampled
pipeline(s) with updated surrogate models. For example, TPE,
SMAC sample a single pipeline with the best acquisition score
based on updated KDE or random forest. BOHB follows the frame-
work of Hyperband, thus at each iteration, it needs to generate
multiple pipelines for Successive Halving. REINFORCE produces
one sampled pipeline with the updated policy. ENAS generates
one sampled pipeline for evaluation using its LSTM controller,
and Progressive NAS generates its candidate pipelines with the
prediction of LSTM or MLP.

Note that there is also one important difference in Step 3
among the surrogate-model-based algorithms, i.e., the number
of sampled pipelines for evaluation. Progressive NAS generates
top-k (k > 1) pipelines for evaluation. In the running process of
TPE and SMAC, actually they produce several candidate pipelines
when sampling. However, they pick up only one pipeline with
the best acquisition score for the next-step evaluation.
Step 4: Evaluate sampled pipelines (Line 7): The last step is
to evaluate newly sampled pipelines. The goal is to update the
population (like TEVO_H, TEVO_Y and PBT) or collect new data
to fit a better surrogate model. In this step, the preprocessed
training data is used to train downstream ML models. Then, the
preprocessed validation data is used to test the accuracy of trained
ML models. The higher the accuracy, the better the preprocessing
pipeline.

5 HOW DO DIFFERENT SEARCH
ALGORITHMS PERFORM?

In practice, when users are looking for a feature preprocessing
pipeline with good quality, they often constrain search time. In
this section, we investigate how these search methods perform
within specified time limits. At first, we compare these algorithms
and rank them. Then, we analyze the performance bottleneck
of these algorithms and identify the opportunities to further
improve them.

5.1 Experimental Setup
Datasets. We search for a large collection of real-world datasets
(in total 45 datasets) from the widely-known AutoML challenge
website [1], an AutoML Benchmark [23], and Kaggle datasets [3].
Without losing generalization, for categorical and textual fea-
tures, we need to first transform them into numerical features and
then search FP pipelines for numerical features. That is why we
focus on the 45 numerical datasets because the conclusion drawn
from numerical datasets can be widely used in all scenarios.

As shown in Figure 5, these selected datasets have diverse
characteristics in terms of file size, the number of rows/columns
and binary/multi-classification. The file size of these datasets is
from 0.01 MB to 75.2 MB. The number of rows of all datasets is
from 242 to 464,809. The number of columns of all datasets is
from 4 to 1,636. There are 28 binary classification datasets and 17
multi-classification datasets with up to 100 classes. These broad

considerations promise the generalization of our experiments.
The detailed information of datasets is shown in our technical
report [6].
Search Algorithms. As shown in Table 3, we consider 15 search
algorithms in total. Some of them have been included in famous
Python libraries. E.g., HyperOpt [14] includes Anneal [34] and
TPE, SMAC3 [42] includes SMAC algorithm, and HyperbandSter
[2] includes Hyperband and BOHB. We slightly change these li-
braries to make their algorithms support our scenario. For NAS
algorithms like Progressive NAS and ENAS, they are originally
implemented in PyTorch. However, they do not fit into our sce-
nario, and thus we re-implement them based on their papers.
We also implement REINFORCE, Tournament Evolution, and PBT.
Note that all algorithms are implemented in Python, which is
fair for comparison.
Downstream Classifiers. We evaluate search algorithms using
three downstream classifiers: Logistic Regression (LR), XGBoost
(XGB) andMulti-layer Perceptron (MLP).We choose the threeML
models based on the recent survey [5]. LR is a linear model which
takes the top popularity of all ML models, XGB is a tree-based
model which takes the first popularity of complexMLmodels, and
MLP is a neural network which gains more popularity recently.
Choosing them means that our experimental results can provide
insights on a wide range of scenarios. In terms of implementation,
we use LR (set n_jobs = 1) and MLP in the Scikit-learn library
with default parameters and use the XGB model (set n_jobs = 1)
in the XGBoost library.
Training and Evaluation. For each dataset, we split it into train-
ing and validation with the proportion 80:20. The training set is
used to generate trained downstream models after being prepro-
cessed. And the preprocessed validation set is used to evaluate
the trained models. Based on evaluations, search algorithms can
derive information and choose the proper search direction for the
next steps. After an iterative search of preset time limits, search
algorithms stop their work and output the feature preprocessing
pipeline with the highest validation accuracy.
Experimental Environment. We conduct experiments on a
guest virtual machine with 110 vCPUs and 970GB main memory.
The guest virtual machine runs on a Linux Kernel-based Virtual
Machine (KVM) enabled server equipped with four Intel Xeon
E7-4830 v4 CPUs clocked at 2.0GHz and 1TB main memory. Each
CPU has 14 cores (28 hyperthreads) and 35MB Cache. All of the
experiments are repeated five times and we report the average
to avoid the influence of hardware and network.

5.2 Which Search Algorithm Performs Better?
We run the 15 algorithms on 45 datasets under 6 different time
constraints: 60, 300, 600, 1200, 1800 and 3600 seconds. We choose
these settings because it is more practical to mainly concern
about the performance of FP with lower resources and leave some
resources for tasks like feature generation and selection. Due to
the space constraint, we report the general findings derived from
the comprehensive experimental results on all datasets with all
time constraints. Detailed experimental results are shown in the
technical report [6].
Which search algorithm ranks better? To give a recommen-
dation, we compute the average rankings of all 15 algorithms

135

Table 4: Overall Average Performance Ranking of All Search Algorithms.
Category Traditional Evolution-based Surrogate-model-based RL-based Bandit-based
Search Alg RS Anneal PBT TEVO_Y TEVO_H PMNE PME PLNE PLE SMAC TPE REINFORCE ENAS HYPERBAND BOHB

LR Avg Ranking 6 12 1 2 3 4 5 11 14 7 8 10 15 9 13
XGB Avg Ranking 6 13 1 2 3 4 5 11 14 8 7 9 15 10 12
MLP Avg Ranking 7 12 3 4 5 1 2 6 10 8 9 14 15 11 13

Overall Avg Ranking 6 12 1 2 3 4 5 9 13 7 8 11 15 10 14

under all scenarios with at least 1.5% improvement of validation
accuracy compared to no-FP (215 scenarios on LR + 90 scenarios
on XGB + 196 scenarios on MLP = 501 scenarios). The reason we
choose no-FP as a baseline instead of data processed by single
preprocessors is that we want to compare the validation accuracy
with/without FP instead of comparing the effectiveness between
multiple and single preprocessors. Naturally, the scope of FP
includes single preprocessors. The ranking value in each sce-
nario is also according to validation accuracy. If there is a tie,
we give the same ranking value. Table 4 shows the ranking re-
sults. We can see that PBT is ranked at the top, followed by the
other two evolution-based algorithms. More specifically, when
the downstream model is LR or XGB, evolution-based algorithms
are highly recommended; when the downstream model is MLP,
PMNE and PME are highly recommended. The overall average
ranking of RS is 6, which is still a strong baseline. Our following
analysis also takes RS as a baseline.
Why evolution-based algorithms outperformRS?One possi-
ble reason that evolution-based algorithms exceed RS is that they
have more exploitation than RS, which can produce promising
search directions for the next steps. For example, TEVO_H mu-
tates the best pipeline of sampled pipelines from the population.
Moreover, evolution-based algorithms require a small overhead
to select the next pipeline since they just sample and then mutate.
This allows them to evaluate many more pipelines under the
same budget.
Why most surrogate-model-based algorithms do not out-
perform RS?We observe that most surrogate-model-based al-
gorithms do not outperform RS, except PMNE and PME. The
goal of utilizing surrogate models is to direct the search direc-
tion for the next steps through a model, thus precise directing is
important for the performance of these surrogate-model-based
algorithms. However, these surrogate-model-based algorithms
that need initialization do not have enough data to promise the
initial directions or only start with randomness. For example, the
starting points of PLNE are just the 7 pipelines with only one
preprocessor. Furthermore, the fitting process of these surrogate
models is time-consuming, which causes fewer pipelines eval-
uated. For example, SMAC needs to train a random forest, TPE
needs to fit many KDEs, PLNE and PNE need to fit a LSTM and
multi number of LSTMs. This insight also inspires us that the
search space of feature preprocessing pipelines is hard to learn
by general surrogate models like the random forest, KDE and
LSTM, and there is still space to improve these surrogate models
for Auto-FP scenario especially. However, the special cases here
are PMNE and PME. Even though they have non-precise starting
points like PLNE and PLE, the overhead of the fitting process
of MLP is very small (approximate to RS as shown in Figure 7),
which leaves more time to train more precise MLP(s) with enough
number of pipelines evaluated.
Why RL-based algorithms show poor performance? It is
obvious that REINFORCE and ENAS do not perform well. There
are two reasons. Firstly, the initialization of REINFORCE and
ENAS is random, which is not so effective for finding a promising
direction at the starting stage. Secondly, REINFORCE and ENAS
employ the idea of stochastic gradient descent, which updates

the policy after only one evaluation, which means the process of
finding a good policy is slow and with lots of iterations.
Why bandit-based algorithms show low average ranking?
The average rankings of Hyperband and BOHB are also behind RS.
Their main early-stopping idea cannot grasp the correct pipeline
ranking at the early stage for downstream ML models under
our setting. Even though we try many possibilities of the two
important parameters 𝜂 and min_budget (See Figure 6. Due to
the space limit, we only exhibit the result of Jasmine with the LR
model), it is still hard to make the two algorithms exceed RS. Also,
it is hard to determine which parameter is better with different
downstream ML models and time limits. Clearly, how to improve
Hyperband and BOHB, especially for the Auto-FP scenario, still
needs further exploration.
Are there any frequent excellent feature preprocessor pat-
terns? We tried to dig out if there are frequent patterns in the
best pipelines of all 45 datasets searched by PBT (top 1 rank-
ing search algorithm) with FP-growth [26] (a famous frequent
pattern mining algorithm). However, the support of discovered
patterns is very low, i.e. there are no obvious frequent patterns.
This result further motivates our search idea and indicates that
the Auto-FP problem is hard because of the large search space.

5.3 Performance Bottleneck Analysis
We investigate the performance bottleneck of different algorithms
to identify opportunities to enhance their performance. We break
down the performance into three parts. (1) “Pick”: picking up FP
pipelines to be evaluated, i.e. picking-up time, which includes
Step 2 and Step 3 in Algorithm 1. (2) “Prep”: preprocessing
training and validation datasets with picked pipelines, i.e. pre-
processing time, which is included in Step 4 of Algorithm 1. (3)
“Train”: training ML models with preprocessed training dataset,
i.e., training time, which is also included in Step 4 of Algorithm 1.
We conduct experiments on all datasets under different time lim-
its. Due to the space constraint, we only show the results of 10
mins on 7 datasets in Figure 7. Note that Hyperband and BOHB
are not shown because the two methods mix the picking-up and
evaluation time and adopt partial training, making it impossible
to record each part separately as other algorithms.
What is the most common bottleneck? Different search algo-
rithms have different time distributions among the three parts, as
shown in Figure 7. Obviously, “Train” is the bottleneck in most
cases, followed by “Prep”, then “Pick”. “Train” and “Prep” are
highly related to data size, i.e. the smaller data size, the shorter
“Train” and “Prep” time. Therefore, reducing data size (e.g. by
sampling) is meaningful for improving the performance.
Are there explicit data characteristic rules that can be used
to figure out bottlenecks?To further indicate bottlenecks under
different scenarios, we try to conclude the relationship between
data characteristics and the type of bottleneck. According to the
number of dataset dimensions, we split the 45 datasets into high-
dimensional datasets (# of dimensions > 100) and low-dimensional
datasets (# of dimensions <= 100). The low-dimensional datasets
can also be split into three groups according to their size: small
(size <= 1.6MB), medium (1.6MB < size <= 4MB) and large (size
> 4MB). Combined with the complexity of the downstream ML
model, we draw Table 5 to help researchers develop optimized

136

1 5 10 20 30 60
0.79

0.80

0.81
Jasmine, LR, HYPERBAND

,=2, min_ udget=1
,=3, min_ udget=1
,=5, min_ udget=1
RS

1 5 10 20 30 60
0.79

0.80

0.81
Jasmine, LR, BOHB

,=2, min_ udget=1
,=3, min_ udget=1
,=5, min_ udget=1
RS

1 5 10 20 30 60
0.79

0.80

0.81
Jasmine, LR, HYPERBAND

,=3, min_ udget=1
,=3, min_ udget=8
,=3, min_ udget=30
RS

1 5 10 20 30 60
0.79

0.80

0.81
Jasmine, LR, BOHB

,=3, min_ udget=1
,=3, min_ udget=8
,=3, min_ udget=30
RS

Time Limit (min)

Va
l A

cc

Figure 6: Parameter adjustment for Hyperband and BOHB. The upper two vary 𝜂. The lower two vary min_budget. Even
with several parameter adjustments, Hyperband and BOHB still cannot outperform RS.

0

50

100
Australian, LR Forex, LR Gesture, LR Higgs, LR Helena, LR Wine, LR Madeline, LR

0

50

100
Australian, XGB Forex, XGB Gesture, XGB Higgs, XGB Helena, XGB Wine, XGB Madeline, XGB

RS
AN

N
TP
E

SM
AC

TE
_H

TE
_Y

RE
IN
F

EN
AS

PM
NE PM
E

PL
NE PL
E

PB
T0

50

100
Australian, MLP

RS
AN

N
TP
E

SM
AC

TE
_H

TE
_Y

RE
IN
F

EN
AS

PM
NE PM
E

PL
NE PL
E

PB
T

Forex, MLP

RS
AN

N
TP
E

SM
AC

TE
_H

TE
_Y

RE
IN
F

EN
AS

PM
NE PM
E

PL
NE PL
E

PB
T

Gesture, MLP

RS
AN

N
TP
E

SM
AC

TE
_H

TE
_Y

RE
IN
F

EN
AS

PM
NE PM
E

PL
NE PL
E

PB
T

Higgs, MLP

RS
AN

N
TP
E

SM
AC

TE
_H

TE
_Y

RE
IN
F

EN
AS

PM
NE PM
E

PL
NE PL
E

PB
T

Helena, MLP

RS
AN

N
TP
E

SM
AC

TE
_H

TE
_Y

RE
IN
F

EN
AS

PM
NE PM
E

PL
NE PL
E

PB
T

Wine, MLP

RS
AN

N
TP
E

SM
AC

TE
_H

TE
_Y

RE
IN
F

EN
AS

PM
NE PM
E

PL
NE PL
E

PB
T

Madeline, MLPOc
cu
pi
ed
 T
im
e(
%
)

Pick Prep Train

Figure 7: Overhead Percentage on 7 datasets with different downstream ML models. “Pick” means the overhead of picking
up next pipelines. “Prep” means the overhead of preprocessing dataset with feature preprocessors. “Train” means the
overhead of evaluating FP pipelines.

Table 5: Performance Bottleneck of Different Scenarios.
Dataset

Dimensions
Dataset
Size

ML
Model

RS PBT TEVO_H TEVO_Y

High All
LR Prep
XGB TrainMLP

Low

Small
LR Prep/Train
XGB TrainMLP

Medium
LR Prep
XGB TrainMLP

Large
LR Prep/Train
XGB TrainMLP

searched algorithms tailored for different scenarios. For example,
if some researchers tend to utilize PBT to search FP pipeline for
high-dimensional dataset with XGB model, it is better for her to
enhance the performance by solving the “Train” bottleneck.

5.4 Main Findings
Our main findings of this section are summarized as follows:
• Evolution-based algorithms, especially PBT, give the highest
overall average ranking under all scenarios. They have more
exploitation with a similar small overhead for picking up the
next pipeline compared to RS.

• RS is still a strong baseline.
• Most surrogate-model-based algorithms except PMNE and PME
do not outperform RS because of the imprecise initialization
and time-consuming surrogate model fitting process.

• RL-based algorithms do not exceed RS because of the imprecise
initialization and time-consuming policy learning process.

• Bandit-based algorithms do not exceed RS because the early-
stopping cuts-off good pipelines in the early stage of training
when the downstream ML models are LR, XGB and MLP.

• There is no obvious frequent feature preprocessor pattern al-
ways performing well.

• Different scenarios have different bottlenecks and “Train” is the
bottleneck in most cases. Users can check Table 5 for indicating
the most promising direction to enhance performance.

6 EXTENDING AUTO-FP TO SUPPORT
PARAMETER SEARCH

In this section, we explore two extended search spaces and eval-
uate two approaches to extend Auto-FP to support parameter
search. Furthermore, we also discuss in which situation one is
superior to the other and explain the reasons.

6.1 Two Extended Search Spaces
We extend our search space by allowing preprocessors’ param-
eters to have multiple possible values. For example, Binarizer
has a parameter called “threshold”. As mentioned in Section 2.1,
its default value is 0. The extended search space extends the pa-
rameter space to a set of values such as {0, 0.2, 0.4, 0.6, 0.8, 1.0}.
Based on the number of available values, i.e. the cardinality for
each parameter, we present two types of extended search spaces:
low-cardinality and high-cardinality search space.
Low-Cardinality Search Space.We first construct an extended
search space as shown in Table 6, which is the low-cardinality
search space. In low-cardinality search space, the value of max
cardinality is small. For example, the max cardinality in Table 6
is the cardinality of n_quantiles, which is 8.
High-Cardinality Search Space. We construct another ex-
tended search space by significantly increasing the number of
possible values for some parameters. We changed the threshold
space of Binarizer into a list from 0 to 1 with a gap of 0.05, and the
n_quantiles space of QuantileTransformer into a list from 10 to

137

Table 6: Extended Low-Cardinality Search Space. The max
cardinality is the cardinality of n_quantiles, which is 8.

Preprocessor Space Configures
Binarizer threshold = [0,0.2,0.4,0.6,0.8,1.0]

MinMaxScaler range_min=0
range_max = 1

MaxAbsScaler No parameter
Normalizer norm = [‘l1’, ‘l2’, ‘max’]

StandardScaler with_mean = [True, False]
PowerTransformer standardize = [True, False]

QuantileTransformer n_quantiles = [10, 100, 200, 500, 1000, 1200, 1500, 2000]
output_distribution = [‘uniform’, ‘normal’]

2000 with a gap of 1. As shown in Table 7, in the high-cardinality
search space, there are parameters with very high cardinality,
i.e. the value of max cardinality is large. For example, the max
cardinality in Table 7 is the cardinality of n_quantiles, which
is 1990.

6.2 Two Approaches Supporting Parameter
Search

We adopt two approaches to extendAuto-FP to support parameter
search. The first one, called One-step, combines parameter search
and pipeline search together. The second one, called Two-step,
treats the parameter search and the pipeline search separately.
One-step. This approach considers each preprocessor with dif-
ferent selected parameters as different preprocessors. For ex-
ample, Binarizer(threshold=0) and Binarizer(threshold=1) are
considered two different preprocessors. In this way, for the low-
cardinality search space, the number of preprocessors is even
and will be increased from 7 to 6 + 1 + 1 + 3 + 2 + 2 + 16 = 31.
After that, any search algorithm presented before can be directly
applied to search for the best sequence of preprocessors along
with associated parameter values.
Two-step. This approach consists of two steps. In the first step, it
randomly selects the parameter values for each preprocessor. For
example, threshold=1 is selected for Binarizer and with_mean=False
is selected for StandardScaler. In the second step, it runs a search
algorithm with a short time limit (like 60s) to search for the best
pipeline w.r.t. the selected parameter values. It repeats the two
steps until the time budget is exhausted and finally returns the
best overall pipeline. Note that other sample techniques in the
first step besides random can be further explored, but it is outside
the scope of this work.

6.3 One-step vs. Two-step.
We compare the two approaches on all datasets. We choose the
PBT as the search algorithm because it shows the best overall
average ranking.
For low-cardinality search space, One-step or Two-step?
We first varied the time limit and used each approach to search
for the best pipeline for the extended low-cardinality search
space in Table 6. Due to the space constraint, Figure 8 shows
the results on Australian and Madeline. The complete results are
shown in our technical report [6]. The “Val Acc” refers to the
average accuracy over five runs. We can see that for most cases,
One-step outperforms Two-step. This is because Two-step only
exploits at most one group of parameter values every minute.
Even if we increase the time limit to 1 hour, it only goes through
at most 60 groups of parameter values, which does not do enough
exploration. In comparison,One-step can pick upmore reasonable
pipelines with more exploration.

Table 7: Extended High-Cardinality Search Space. The max
cardinality is the cardinality of n_quantiles, which is 1990.

Preprocessor Space configures
Binarizer ’threshold’ = from 0 to 1 with 0.05 step

MinMaxScaler ’range_min’=0
’range_max’ = 1

MaxAbsScaler No parameter
Normalizer ’norm’ = [’l1’, ’l2’, ’max’]

StandardScaler ’with_mean’ = [True, False]
PowerTransformer ’standardize’ = [True, False]

QuantileTransformer ’n_quantiles’ = from 10 to 2000 with 1 step
’output_distribution’ = [’uniform’, ’normal’]

For high-cardinality search space, One-step or Two-step?
However, One-step has its own limitation. Compared to the low-
cardinality search space in Table 6, the n_quantiles parameter
of QuantileTransformer in the high-cardinality search space has
about 2k possible values, which leads One-step to choose Quan-
tileTransformer with a much higher opportunity. So does the
threshold parameter of Binarizer. We run the same experiments
as in Figure 8 w.r.t. the high-cardinality search space and get
the results in Figure 9. We can see that in most cases, One-step
performs worse than Two-step because One-step selects pipelines
with many duplicate preprocessors. For example, it may return a
pipeline like “QuanitleTransformer(n_quantiles=10) → Quantile-
Transformer(n_quantiles=50)→QuantileTransformer(n_quantiles=200)”.
It is natural becauseQuantileTransformer takes a large proportion
of preprocessors in this space, which is 4000/4027 ≈ 99.3%, mak-
ing the search algorithm less likely to select other preprocessors.
Two-step can avoid this issue and thus perform better.

In summary, our experimental study shows that different
types of extended search space fit different approaches. In low-
cardinality search space, One-step is a preferred approach. How-
ever, in high-cardinality settings (e.g., one preprocessor dom-
inates the search space), it may perform worse than Two-step.
It is an open research problem to combine pipeline search and
parameter search in a systematic way.

6.4 Main Findings
Our main findings of this section are summarized as follows:
• Different types of extended search space fit different approaches.
• For extended low-cardinality search space, One-step is pre-
ferred because it can do more exploration than Two-step.

• For extended high-cardinality search space, Two-step is pre-
ferred because it can avoid selecting many duplicated prepro-
cessors in pipelines.

• Better combining pipeline and parameter search is still an
important open problem which deserves further exploration.

7 PUTTING AUTO-FP IN AN AUTOML
CONTEXT

AutoML aims to democratize machine learning by automating
the search for the best ML pipeline. Recent decomposed Auto-ML
works [41, 44, 60, 66] introduced space decomposition to accel-
erate the search process. However, existing approaches use a
one-size-fits-all search strategy for all subspaces. A more reason-
able choice is to design specific solutions for each subspace. By
considering FP space as one individual search space in the Au-
toML context, we first figure out the answers to the two essential
questions: 1) Does Auto-FP outperform the feature preprocessing
module in AutoML? 2) Is Auto-FP Important in AutoML Context? To
answer these questions, we investigate three popular open-source
AutoML systems and evaluate the effectiveness of Auto-FP in
an AutoML context using our benchmark datasets. After getting

138

1510 20 30 60
0.85

0.90

No FP

Australian, LR

1510 20 30 60

0.85

0.90
No FP

Australian, XGB

1510 20 30 60

0.80

0.90
No FP

Australian, MLP

1510 20 30 60
0.55
0.60
0.65

No FP

Madeline, LR

1510 20 30 60
0.83

0.85
No FP

Madeline, XGB

1510 20 30 60
0.60

0.70

No FP

Madeline, MLP

Time Limit (min)

Va
l A

cc

One-Step Two-Step

Figure 8: Comparison of One-step and Two-step in the extended low-cardinality search space in Table 6. One-step is
preferred.

1510 20 30 60
0.85

0.90

No FP

Australian, LR

1510 20 30 600.80

0.90
No FP

Australian, XGB

1510 20 30 60

0.80

0.90

No FP

Australian, MLP

1510 20 30 60
0.55

0.60 No FP
Madeline, LR

1510 20 30 60
0.83

0.85
No FP

Madeline, XGB

1510 20 30 60
0.60

0.70

No FP

Madeline, MLP

Time Limit (min)

Va
l A

cc

One-Step Two-Step

Figure 9: Comparison of One-step and Two-step in the extended high-cardinality search space in Table 7. Two-step is
preferred.

the answers to the two essential questions, we provide the dis-
cussion on What AutoML can learn from Auto-FP to indicate the
opportunities the Auto-FP experience can provide for building
more powerful AutoML.

7.1 Does Auto-FP Outperform FP in AutoML?
Since FP is part of anML pipeline, a general-purpose AutoML tool
can be configured to solve an Auto-FP problem, by only enabling
the FP component and disabling all other components. However,
after investigating several popular AutoML systems, we find that
their FP modules are quite limited. Table 8 shows the capability
of the FP module of Auto-WEKA [59], Auto-Sklearn [21], and
TPOT [48], respectively. We can see that Auto-WEKA does not
provide any preprocessor, thus it cannot be applied to find an
FP pipeline. In comparison, Auto-Sklearn provides five prepro-
cessors, but each FP pipeline only contains a single preprocessor
and one search algorithm. TPOT allows a pipeline to contain an
arbitrary number of preprocessors, but compared to Auto-FP, it
has fewer preprocessors and only considers one search algorithm.

We compare FP in AutoML with Auto-FP. We use TPOT which
has five preprocessors and applies the genetic programming [10]
algorithm for this comparison because it has a more sophisticated
FP module compared to Auto-WEKA and Auto-Sklearn. We adopt
the same experimental setting as Section 5.1 and set the time
limit to 600 seconds. For TPOT, we disable all components except
the FP module. For Auto-FP, the leading search algorithm PBT
is employed. Figure 10 shows the results of six datasets and
the complete results on all 45 datasets are shown in [6]. We
can see that Auto-FP outperforms TPOT-FP in four, three and
five datasets out of six datasets (24, 25 and 25 datasets out of
45 datasets) when downstream models are LR, MLP and XGB,
respectively. Besides default search space, in Figure 11, Auto-FP
outperforms TPOT-FP in four, three and five datasets out of six
datasets (24, 29, 24 out of 45 datasets) when downstream models
are LR, MLP and XGB. Obviously, the conclusion that Auto-FP
outperforms FP in AutoML can be generalized into a wider search
space. There are two reasons that Auto-FP outperforms TPOT-FP.
Firstly, Auto-FP considers more feature preprocessors. Secondly,
Auto-FP adopts a better search algorithm. This result validates
the necessity of designing specific solutions for each subspace.

7.2 Is Auto-FP Important in AutoML Context?
To illustrate whether Auto-FP is important in the AutoML context,
we explore whether Auto-FP is as important as other well-known
important modules in AutoML. To answer the question, we com-
pare Auto-FP against HPO, a well-known and highly effective
module in AutoML. We also adopt the same experimental setting

Table 8: Feature preprocessing module in popular open-
source AutoML systems.
AutoML System Preprocessors# Pipeline Len. Search Algo.
Auto-WEKA [59] 0 0 SMAC [29]
Auto-Sklearn [21] 5 1 SMAC [29]

TPOT [48] 5 arbitrary GP [10]

as Section 5.1 and set the time limit to 600 seconds. For TPOT,
we disable all other parts except HPO. For Auto-FP, we still use
PBT as the search algorithm. Figure 11 shows the results. We
can see that Auto-FP outperforms HPO in all the datasets (40
and 37 outperform datasets out of 45 datasets) when the down-
stream models are LR and MLP. When the downstream model
is XGB, out of six datasets, Auto-FP achieves better accuracy
in three datasets (22 outperform and 2 competitive datasets out
of 45 datasets). This result indicates that FP is as important as
HPO and contributes greatly to downstream model performance
improvement. Still in extended search space (Table 6), Auto-FP
outperforms HPO in all datasets (40 and 36 datasets out of 45
datasets) when downstream models are LR and MLP. For XGB,
Auto-FP is better in four datasets (29 outperform and 2 compet-
itive datasets out of 45 datasets). Obviously, Auto-FP is still as
important as HPO even in other search space.

7.3 What can AutoML learn from Auto-FP?
Mainstream AutoML systems are monolithic and they aim to
use a one-size-fits-all search algorithm to automate every step
(feature preprocessing, feature selection, hyperparameter tuning,
etc.) in anML pipeline. Due to the use of amonolithic architecture,
mainstream AutoML systems suffer from two limitations. Firstly,
to control the overall search space, they tend to use a smaller
search space for each step. For example, the search space of the
FP module of Auto-Sklearn contains only five pipelines while
that of Auto-FP contains about 1 million pipelines. Secondly, the
one-size-fits-all search algorithm may not be suitable for every
step of the pipeline. For example, the GP algorithm adopted by
TPOT may not be the best search algorithm for hyperparameter
tuning.

To overcome the two limitations, combining the previously
mentioned space decomposition idea and designing specific solu-
tions for each subspace is a promising direction. By employing
space decomposition, AutoML can use a larger search space for
each component without extending the whole search space ex-
ponentially. By designing specific solutions for each subspace,
there is an opportunity for AutoML to improve its performance.
To achieve this goal, the research community should conduct

139

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Forex Heart Jasmine

LR XGB MLP0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Pd

LR XGB MLP

Thyroid

LR XGB MLP

Wine

Auto-FP HPO TPOT-FP

Figure 10: Evaluate Auto-FP in an AutoML context (default
search space). In most cases, Auto-FP outperforms TPOT-
FP and comparable to HPOmodule in default search space.

more benchmarks and develop the best solution tailored for each
task, such as Automated Feature Generation/Selection.

7.4 Main Findings
Our main findings of this section are summarized as follows:

• Auto-FP outperforms FP in AutoML in most cases by consider-
ing larger search space and adopting better search algirithms.

• Auto-FP is important in the AutoML context. Specifically, it is
as important as the well-known HPO module.

• Limited search space and a one-size-fits-all search algorithm
are two limitations mainstream AutoML systems are suffering.
Combining the popular space decomposition idea and deploy-
ing specific solutions such as Auto-FP for each subspace is a
promising direction to refurbish current systems.

8 RESEARCH OPPORTUNITIES
Warm-start search algorithms. Evolution-based algorithms
show a leading position in the Auto-FP scenario. Intuitively, a
better initial population instead of random initialization is impor-
tant for searching good pipelines faster. How to better warm start
evolution-based algorithms for Auto-FP scenario is worthy to in-
vestigate. Meta-learning is an alternative way which is leveraged
for warm-starting HPO [11, 24, 52, 53, 63–65, 70] and database
tuning [71]. For Auto-FP, the initial population of newly-coming
tasks can also be warm-started by historical tasks encoded by
meta-features.
Allocate pipeline and parameter search time budget rea-
sonably. For better supporting parameter search in the Auto-FP
scenario, how to allocate the limited search time to different
stages, i.e. pipeline search and parameter search is worthy of
exploration [50, 61]. Allocating too much time for searching
pipelines may reduce the opportunity to fine-tune good pipelines
and get better performance. While allocating too much time for
searching parameter may miss promising pipelines. There is still
a trade-off between the time budget for searching pipelines and
parameters.
Benchmark Auto-FP on various data types and deep mod-
els. In addition to our focus on tabular data, it is valuable to
evaluate Auto-FP’s performance on different data types like text
and image data. Text data can benefit from feature preprocessors
such as TF-IDF and word embeddings, while image data com-
monly utilizes random cropping and normalization. Combining
these specific preprocessors with Auto-FP’s existing ones could
provide a more comprehensive understanding of its capabilities.
Furthermore, while our paper explores popular ML models, deep
models like DeepFM and DCN are dominant in specific domains
like recommendation tasks. Auto-FP can be applied to deep mod-
els. However, deep models for specific tasks may require tailored
search algorithms. Thus, benchmarking Auto-FP on deep models
for specific tasks would offer practical insights for its application.

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Forex Heart Jasmine

LR XGB MLP0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Pd

LR XGB MLP

Thyroid

LR XGB MLP

Wine

Auto-FP HPO TPOT-FP

Figure 11: Evaluate Auto-FP in an AutoML context (ex-
tended search space in Table 6). In most cases, Auto-FP
outperforms TPOT-FP and comparable to HPO module
also in extended search space.

9 RELATEDWORK
HPO and NAS. Auto-FP is similar in spirit to HPO and NAS.
The goal of HPO is to find the best combination of a classifier and
its related hyperparameters for a given dataset. There are many
search algorithms proposed for HPO [12, 13, 19, 29, 30, 39]. NAS
aims to automatically find the best DNN architecture. Zoph and
Le [74] did the pioneering work in NAS. Later, many improved
NAS algorithms are proposed [43, 49, 51, 72, 75]. In this paper, we
model Auto-FP as HPO and NAS respectively in order to utilize
these search algorithms. However, Auto-FP is fundamentally
different because it has a totally difference search space. The
search space of HPO includes classifiers and hyperparameters
and the search space of NAS includes DNN operators, while the
search space of Auto-FP includes feature preprocessors.
AutoML/Data PreparationPipeline Search.Recently, AutoML
attracts great attention from the database community [37, 41, 55,
66]. However, existing studies are mainly focused on optimizing
the entire AutoML pipeline. We have discussed how AutoML
systems can benefit from our study in Section 7. Our work is
also related to AutoPipeline [67], which aims to generate multiple
data preparation steps automatically. It would be interesting to
explore whether our Auto-FP search algorithms can be applied
to solve their problem.
AutoML Benchmark.OpenML [23] is a popular AutoML bench-
mark which utilizes 39 public datasets to evaluate classification
performance with different time slots and different metrics. Zogaj
et al. [73] conduct an extensive empirical study to investigate
the impact of downsampling on AutoML results. Several bench-
marks are published in the NAS area called NAS-Bench 101 [69],
201 [18] and 301 [57]. There are also benchmarks for some stages
in the data science life cycle such as data cleaning [40] and fea-
ture type recognition [54]. Different from existing work, we are
the first to benchmark automated feature processing.

10 CONCLUSION
In this paper, we studied an essential task in classical ML–feature
preprocessing. We justified the importance of FP and pointed
out that FP should be automated due to its large search space.
We benchmarked Auto-FP with 15 search algorithms from HPO
and NAS, 3 popular downstream ML models, and 7 widely-used
preprocessors on 45 public datasets. We found that evolution-
based algorithms take the top position. To further enhance Auto-
FP, We also explored two kinds of extended parameter search
space and compared two methods to support parameter search.
We concluded that different search spaces fit different methods.
In the end, we evaluated Auto-FP in an AutoML context and
figured out that Auto-FP is an important part in the AutoML
context which deserves a specific solution. How to decompose the
AutoML search space reasonably and conduct effective solutions
for other tasks in the AutoML context is a promising direction
for the community to further explore.

140

REFERENCES
[1] 2021. AutoML Challenge Website. https://automl.chalearn.org/data.
[2] 2021. HpBandSter. https://automl.github.io/HpBandSter/build/html/index.

html.
[3] 2021. Kaggle Datasets. https://www.kaggle.com/datasets.
[4] 2021. Scikit-learn: Machine Learning in Python. https://scikit-learn.org/

stable/.
[5] 2021. State of Data Science and Machine Learning 2021. https://www.kaggle.

com/kaggle-survey-2021.
[6] 2022. Auto-FP: An Experimental Study of Automated Feature Preprocessing

for Tabular Data (Technical Report). (2022). https://github.com/AutoFP/
Auto-FP/blob/main/Auto-FP(technical_report).pdf

[7] 2022. Scikit-learn Documentation. https://scikit-learn.org/stable/modules/
preprocessing.html.

[8] 2022. Scikit-learn: Preprocessing Data. https://scikit-learn.org/stable/modules/
preprocessing.html.

[9] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis
of the multiarmed bandit problem. Machine learning 47 (2002), 235–256.

[10] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. 1998.
Genetic programming: an introduction: on the automatic evolution of computer
programs and its applications. Morgan Kaufmann Publishers Inc.

[11] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michèle Sebag. 2013. Col-
laborative hyperparameter tuning. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June
2013 (JMLR Workshop and Conference Proceedings), Vol. 28. JMLR.org, 199–207.
http://proceedings.mlr.press/v28/bardenet13.html

[12] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011.
Algorithms for Hyper-Parameter Optimization. In Advances in Neu-
ral Information Processing Systems 24: 25th Annual Conference on Neu-
ral Information Processing Systems 2011. Proceedings of a meeting held
12-14 December 2011, Granada, Spain, John Shawe-Taylor, Richard S.
Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Wein-
berger (Eds.). 2546–2554. https://proceedings.neurips.cc/paper/2011/hash/
86e8f7ab32cfd12577bc2619bc635690-Abstract.html

[13] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research 13, 10 (2012), 281–305.
http://jmlr.org/papers/v13/bergstra12a.html

[14] James Bergstra, Dan Yamins, David D Cox, et al. 2013. Hyperopt: A python
library for optimizing the hyperparameters of machine learning algorithms.
In Proceedings of the 12th Python in science conference, Vol. 13. Citeseer, 20.

[15] Jason Brownlee. 2020. Data preparation for machine learning: data cleaning,
feature selection, and data transforms in Python.

[16] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection
methods. Computers & Electrical Engineering 40, 1 (2014), 16–28.

[17] Krishna Teja Chitty-Venkata, Murali Emani, Venkatram Vishwanath, and
Arun K. Somani. 2023. Neural Architecture Search Benchmarks: Insights and
Survey. IEEE Access 11 (2023), 25217–25236. https://doi.org/10.1109/ACCESS.
2023.3253818

[18] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of
Reproducible Neural Architecture Search. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=HJxyZkBKDr

[19] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and
Efficient Hyperparameter Optimization at Scale. In Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine Learning Research),
Jennifer G. Dy and Andreas Krause (Eds.), Vol. 80. PMLR, 1436–1445. http:
//proceedings.mlr.press/v80/falkner18a.html

[20] Matthias Feurer and Frank Hutter. 2019. Hyperparameter optimization. In
Automated machine learning. Springer, Cham, 3–33.

[21] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springen-
berg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated
Machine Learning. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2 (NIPS’15). 2755–2763.

[22] George Forman et al. 2003. An extensive empirical study of feature selection
metrics for text classification. J. Mach. Learn. Res. 3, Mar (2003), 1289–1305.

[23] P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren. 2019.
An Open Source AutoML Benchmark. arXiv preprint arXiv:1907.00909 [cs.LG]
(2019). https://arxiv.org/abs/1907.00909 Accepted at AutoML Workshop at
ICML 2019.

[24] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D. Sculley. 2017. Google Vizier: A Service for Black-Box Opti-
mization. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17,
2017. ACM, 1487–1495. https://doi.org/10.1145/3097983.3098043

[25] PC Hammer. 1962. Adaptive control processes: a guided tour (R. Bellman).
[26] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without

Candidate Generation. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, Wei-
dong Chen, Jeffrey F. Naughton, and Philip A. Bernstein (Eds.). ACM, 1–12.
https://doi.org/10.1145/342009.335372

[27] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the
state-of-the-art. Knowl. Based Syst. 212 (2021), 106622. https://doi.org/10.
1016/j.knosys.2020.106622

[28] Franziska Horn, Robert Pack, and Michael Rieger. 2019. The autofeat Python
Library for Automated Feature Engineering and Selection. InMachine Learning

and Knowledge Discovery in Databases - International Workshops of ECML
PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part I
(Communications in Computer and Information Science), Peggy Cellier and
Kurt Driessens (Eds.), Vol. 1167. Springer, 111–120. https://doi.org/10.1007/
978-3-030-43823-4_10

[29] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential
model-based optimization for general algorithm configuration. In International
conference on learning and intelligent optimization. Springer, 507–523.

[30] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Kevin Murphy. 2010.
Time-bounded sequential parameter optimization. In International Conference
on Learning and Intelligent Optimization. Springer, 281–298.

[31] Max Jaderberg, Valentin Dalibard, SimonOsindero,WojciechM. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, TimGreen, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. 2017. Population Based Train-
ing of Neural Networks. CoRR abs/1711.09846 (2017). arXiv:1711.09846
http://arxiv.org/abs/1711.09846

[32] Kevin G. Jamieson and Ameet Talwalkar. 2016. Non-stochastic Best Arm
Identification and Hyperparameter Optimization. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, AISTATS 2016,
Cadiz, Spain, May 9-11, 2016 (JMLR Workshop and Conference Proceedings),
Arthur Gretton and Christian C. Robert (Eds.), Vol. 51. JMLR.org, 240–248.
http://proceedings.mlr.press/v51/jamieson16.html

[33] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. 2016. ExploreKit: Au-
tomatic Feature Generation and Selection. In IEEE 16th International Con-
ference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain,
Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua
Zhou, and Xindong Wu (Eds.). IEEE Computer Society, 979–984. https:
//doi.org/10.1109/ICDM.2016.0123

[34] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by
simulated annealing. science 220, 4598 (1983), 671–680.

[35] Sanjay Krishnan and Eugene Wu. 2019. AlphaClean: Automatic Generation
of Data Cleaning Pipelines. CoRR abs/1904.11827 (2019). arXiv:1904.11827
http://arxiv.org/abs/1904.11827

[36] Max Kuhn and Kjell Johnson. 2021. Feature engineering and selection: A
practical approach for predictive models. Chapman amp; Hall/CRC.

[37] Doris Jung Lin Lee, Stephen Macke, Doris Xin, Angela Lee, Silu Huang, and
Aditya G Parameswaran. 2019. A Human-in-the-loop Perspective on AutoML:
Milestones and the Road Ahead. IEEE Data Eng. Bull. 42, 2 (2019), 59–70.

[38] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino,
Jiliang Tang, and Huan Liu. 2017. Feature selection: A data perspective. ACM
computing surveys (CSUR) 50, 6 (2017), 1–45.

[39] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2017. Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization. J. Mach. Learn. Res. 18 (2017), 185:1–185:52.
http://jmlr.org/papers/v18/16-558.html

[40] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021.
CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classifi-
cation Tasks. In 37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021. IEEE, 13–24. https://doi.org/10.1109/
ICDE51399.2021.00009

[41] Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Yaliang Li, Bolin Ding, Jingren
Zhou, Zhi Yang, Wentao Wu, Ce Zhang, and Bin Cui. 2021. VolcanoML:
Speeding up End-to-End AutoML via Scalable Search Space Decomposition.
Proc. VLDB Endow. 14, 11 (2021), 2167–2176. http://www.vldb.org/pvldb/
vol14/p2167-li.pdf

[42] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
Difan Deng, Carolin Benjamins, René Sass, and Frank Hutter. 2021. SMAC3:
A Versatile Bayesian Optimization Package for Hyperparameter Optimization.
arXiv:cs.LG/2109.09831

[43] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia
Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progres-
sive neural architecture search. In Proceedings of the European conference on
computer vision (ECCV). 19–34.

[44] Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory
Bramble, Horst Samulowitz, Dakuo Wang, Andrew Conn, and Alexander G.
Gray. 2020. An ADMM Based Framework for AutoML Pipeline Configuration.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press,
4892–4899. https://ojs.aaai.org/index.php/AAAI/article/view/5926

[45] Shaul Markovitch and Dan Rosenstein. 2002. Feature Generation Using
General Constructor Functions. Mach. Learn. 49, 1 (2002), 59–98. https:
//doi.org/10.1023/A:1014046307775

[46] Microsoft. 2021. Neural Network Intelligence. https://github.com/microsoft/nni
[47] Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B. Khalil, and

Deepak S. Turaga. 2017. Learning Feature Engineering for Classification. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra
(Ed.). ijcai.org, 2529–2535. https://doi.org/10.24963/ijcai.2017/352

[48] Randal S Olson and Jason H Moore. 2016. TPOT: A tree-based pipeline
optimization tool for automating machine learning. InWorkshop on automatic
machine learning. PMLR, 66–74.

[49] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018. Effi-
cient Neural Architecture Search via Parameter Sharing. CoRR abs/1802.03268
(2018). arXiv:1802.03268 http://arxiv.org/abs/1802.03268

141

[50] Alexandre Quemy. 2020. Two-stage optimization for machine learning work-
flow. Inf. Syst. 92 (2020), 101483. https://doi.org/10.1016/j.is.2019.101483

[51] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2018. Regular-
ized Evolution for Image Classifier Architecture Search. CoRR abs/1802.01548
(2018). arXiv:1802.01548 http://arxiv.org/abs/1802.01548

[52] Nicolas Schilling, Martin Wistuba, Lucas Drumond, and Lars Schmidt-Thieme.
2015. Hyperparameter Optimization with Factorized Multilayer Perceptrons.
In Machine Learning and Knowledge Discovery in Databases - European Con-
ference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings,
Part II (Lecture Notes in Computer Science), Annalisa Appice, Pedro Pereira Ro-
drigues, Vítor Santos Costa, João Gama, Alípio Jorge, and Carlos Soares (Eds.),
Vol. 9285. Springer, 87–103. https://doi.org/10.1007/978-3-319-23525-7_6

[53] Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. 2016. Scalable
Hyperparameter Optimization with Products of Gaussian Process Experts. In
Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings,
Part I (Lecture Notes in Computer Science), Paolo Frasconi, Niels Landwehr,
Giuseppe Manco, and Jilles Vreeken (Eds.), Vol. 9851. Springer, 33–48. https:
//doi.org/10.1007/978-3-319-46128-1_3

[54] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun
Kumar. 2021. Towards Benchmarking Feature Type Inference for AutoML Plat-
forms. In SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and
Divesh Srivastava (Eds.). ACM, 1584–1596. https://doi.org/10.1145/3448016.
3457274

[55] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann,
Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim
Kraska. 2019. Democratizing Data Science through Interactive Curation of
ML Pipelines. In Proceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Aila-
maki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 1171–1188. https:
//doi.org/10.1145/3299869.3319863

[56] Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou.
2020. SAFE: Scalable Automatic Feature Engineering Framework for Industrial
Tasks. In 36th IEEE International Conference on Data Engineering, ICDE 2020,
Dallas, TX, USA, April 20-24, 2020. IEEE, 1645–1656. https://doi.org/10.1109/
ICDE48307.2020.00146

[57] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. 2020. NAS-Bench-301 and the Case for Surrogate Benchmarks
for Neural Architecture Search. CoRR abs/2008.09777 (2020). arXiv:2008.09777
https://arxiv.org/abs/2008.09777

[58] William R Thompson. 1933. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika 25, 3-4
(1933), 285–294.

[59] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
2013. Auto-WEKA: Combined selection and hyperparameter optimization of
classification algorithms. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. 847–855.

[60] Chi Wang and QingyunWu. 2019. FLO: Fast and Lightweight Hyperparameter
Optimization for AutoML. CoRR abs/1911.04706 (2019). arXiv:1911.04706
http://arxiv.org/abs/1911.04706

[61] Tianxiang Wang, Jie Xu, and Jian-Qiang Hu. 2021. A Study on Efficient Com-
puting Budget Allocation for a Two-Stage Problem. Asia Pac. J. Oper. Res. 38,
2 (2021), 2050044:1–2050044:20. https://doi.org/10.1142/S021759592050044X

[62] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3 (1992), 229–256.

[63] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2015. Sequential
Model-Free Hyperparameter Tuning. In 2015 IEEE International Conference on
Data Mining, ICDM 2015, Atlantic City, NJ, USA, November 14-17, 2015, Charu C.
Aggarwal, Zhi-Hua Zhou, Alexander Tuzhilin, Hui Xiong, and Xindong Wu
(Eds.). IEEE Computer Society, 1033–1038. https://doi.org/10.1109/ICDM.2015.
20

[64] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2016. Two-Stage
Transfer Surrogate Model for Automatic Hyperparameter Optimization. In
Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings,
Part I (Lecture Notes in Computer Science), Paolo Frasconi, Niels Landwehr,
Giuseppe Manco, and Jilles Vreeken (Eds.), Vol. 9851. Springer, 199–214. https:
//doi.org/10.1007/978-3-319-46128-1_13

[65] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2018. Scalable
Gaussian process-based transfer surrogates for hyperparameter optimization.
Mach. Learn. 107, 1 (2018), 43–78. https://doi.org/10.1007/s10994-017-5684-y

[66] Anatoly Yakovlev, Hesam Fathi Moghadam, Ali Moharrer, Jingxiao Cai, Nikan
Chavoshi, Venkatanathan Varadarajan, Sandeep R. Agrawal, Tomas Karnagel,
Sam Idicula, Sanjay Jinturkar, and Nipun Agarwal. 2020. Oracle AutoML:
A Fast and Predictive AutoML Pipeline. Proc. VLDB Endow. 13, 12 (2020),
3166–3180. https://doi.org/10.14778/3415478.3415542

[67] Junwen Yang, Yeye He, and Surajit Chaudhuri. 2021. Auto-Pipeline: Synthesize
Data Pipelines By-Target Using Reinforcement Learning and Search. Proc.
VLDB Endow. 14, 11 (2021), 2563–2575. http://www.vldb.org/pvldb/vol14/
p2563-he.pdf

[68] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of ma-
chine learning algorithms: Theory and practice. Neurocomputing 415 (2020),
295–316.

[69] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy,
and Frank Hutter. 2019. NAS-Bench-101: Towards Reproducible Neural
Architecture Search. CoRR abs/1902.09635 (2019). arXiv:1902.09635 http:
//arxiv.org/abs/1902.09635

[70] Wentao Zhang, Jiawei Jiang, Yingxia Shao, and Bin Cui. 2020. Snapshot
boosting: a fast ensemble framework for deep neural networks. Sci. China Inf.
Sci. 63, 1 (2020), 112102. https://doi.org/10.1007/s11432-018-9944-x

[71] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by
Meta-Learning for Cloud Databases. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2102–2114.
https://doi.org/10.1145/3448016.3457291

[72] Zhao Zhong, Junjie Yan,WeiWu, Jing Shao, and Cheng-Lin Liu. 2018. Practical
block-wise neural network architecture generation. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2423–2432.

[73] Fatjon Zogaj, José Pablo Cambronero, Martin Rinard, and Jürgen Cito. 2021.
Doing More with Less: Characterizing Dataset Downsampling for AutoML.
Proc. VLDB Endow. 14, 11 (2021), 2059–2072. http://www.vldb.org/pvldb/
vol14/p2059-zogaj.pdf

[74] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578 (2016).

[75] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2017.
Learning Transferable Architectures for Scalable Image Recognition. CoRR
abs/1707.07012 (2017). arXiv:1707.07012 http://arxiv.org/abs/1707.07012

142

