
Interactive Set Discovery
Arif Hasnat

University of Alberta

Edmonton, Canada

hasnat@ualberta.ca

Davood Rafiei

University of Alberta

Edmonton, Canada

drafiei@ualberta.ca

ABSTRACT
We study the problem of set discovery where given a few exam-

ple tuples of a desired set, we want to find the set in a closed

collection of sets. A challenge is that the example tuples may not

uniquely identify a set, and a large number of candidate sets may

be returned. Our focus is on interactive exploration to set discov-

ery where additional example tuples from the candidate sets are

shown and the user either accepts or rejects them as members of

the target set. The goal is to find the target set with the least num-

ber of user interactions. The problem is cast as an optimization

problem where we want to find a decision tree that can guide the

search to the target set with the least number of questions to be

answered by the user. We propose a general algorithm, capable

of reaching an optimal solution, and two variations of it that

strike a balance between the quality of a solution and the run-

ning time. We also propose a novel pruning strategy that safely

reduces the search space without introducing false negatives.

Our extensive evaluation on both real and synthetic data show

that our approach is effective, comparable to or improving upon

SOTA, while our pruning strategy reduces the running time of

the search algorithms by 2-5 orders of magnitude.

1 INTRODUCTION
Consider a patient walking to a clinic and being greeted by a

machine who does the triage. The patient types headache, nausea

and fatigue as symptoms, and the machine checks its database of

disease cases and finds over thousands matching each symptom

and over hundreds matching all three. What are the best ways of

narrowing down the cases? What are the next few questions the

machine asks?

Many database interfaces behave in a similar fashion in that

there is a large collection of sets and the user is searching for

a particular set in the collection. In SQL interfaces, in particu-

lar, queries express propositions over sets of tuples where the

grouping of tuples into sets (e.g. customers who live in Toronto

vs those who do not) is inherent in queries, and the user is forced

to precisely express all propositions in a query to describe the

target set. However, writing SQL queries is a challenging task

for many do-it-yourself scientists and professionals. For example,

both the Sloan Digital Sky Survey Project [1] and the SQL-Share

Project [2, 16, 18] allow scientists to query their data using SQL,

but not many scientists using these projects are expected to know

SQL.

In example-based query interfaces [24, 27, 34], the user pro-

vides a set of tuples that are expected to be in the target set (as

positive examples) and a set of tuples that are not (as negative

examples), and a query that satisfies the given constraints is

suggested. The user may adjust the query or provide additional

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the 
26th International Conference on Extending Database Technology (EDBT), 28th 
March-31st March, 2023, ISBN 978-3-89318-093-6 on OpenProceedings.org. 
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

tuples, as positive or negative examples, in an interactive fashion

until a precise query expression describing the target set is found.

In browsing-based interfaces, a repository of queries are main-

tained and the users can browse the repository for similar queries

that can be reused with small or no changes [20, 37]. For ex-

ample, both the Sloan Digital Sky Survey and the SQL-Share

projects keep popular user queries and support searches over

those queries. Similarly, in query recommendation, past queries

that are recorded in a query log may be recommended as a whole

or in part, based on the query fragments that are typed [10, 25].

If each query in the repository is treated as a set of tuples (e.g.

the result of the query applied to a database instance), then the

recommendation engine is searching for a set in the collection.

In all aforementioned cases, there is a collection of sets or

queries and the user is searching for a particular set in the col-

lection. We study an interactive exploration approach to set dis-

covery where example tuples from the candidate sets are shown,

and the user either accepts or rejects those tuples as members of

the target set.

The number of interactions does not depend on the number of

tuples in the database and is only a function of the number of sets

(e.g. see Figures 6 and 7). In many cases, the number of sets that

are similar to a target set is expected to be small. For example,

Zhong et al. [38] show that generating 94 neighbour queries on

average for a target SQL query is sufficient to distinguish queries

that are different from the target query. If 𝑘 denotes the number

of sets that are similar to a target set, the number of interactions

is 𝑘 − 1 in the worst cases and closer to 𝑙𝑜𝑔𝑘 in most cases. As

each interaction with the user has a cost, we want to retrieve

the target set with the least number of interactions. Relevant

research questions are: (1) what exploration strategies may be

used, and how efficient are those strategies? (2) how long does an

exploration take and what factors (e.g., set sizes, overlaps, etc.)

do affect the exploration time? (3) how may the sets be organized

to support an efficient exploration?

Problem statement Informally, set discovery is an interactive

process that starts with an initial membership question posed to

the user and continues with follow-up questions based on the

user’s answers. The problem is how to select the next question

such that the number of interactions is minimized. More formally,

given a collection 𝐶 of unique sets and an initial set 𝐼 , which

includes a subset of the user’s desired set, the goal is to find a

target set 𝐺 in 𝐶 such that 𝐼 ⊆ 𝐺 . We want to narrow down

the search through interactions, i.e. asking the user membership

questions about example tuples from 𝐶 , and we want to find the

target set with the minimal number of interactions. With no user

interaction, the problem is under-specified and more than one

such set 𝐺 can contain the elements of 𝐼 unless 𝐺 = 𝐼 , in which

case a search is meaningless since the user has listed the full

target set. Also, when 𝐼 is an empty set, then𝐺 is fully identified

through interactions with the user.

Our approach We cast the problem as an optimization with the

aim of minimizing the number of questions that the user needs to

answer. The search for a target set is modeled as a tree traversal

 

 

Series ISSN: 2367-2005 404 10.48786/edbt.2023.32

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.32


from the root to a leaf, with each node representing a step of the

exploration where the user is given a question that can reduce the

number of candidate sets. The problem of optimal decision tree

construction is NP-hard, and there are strong results on the non-

approximability of the problem (see Sec. 2). Our work improves

upon a SOTA approximate algorithm, in terms of the quality of

the tree, while significantly reducing the size of the search space

using strongly effective pruning strategies. The tree construction

is done online in an incremental fashion with questions answered;

we also discuss a strategy which aims to reduce the online search

cost with an offline tree construction. Assuming all candidate

sets in 𝐶 being equally likely to be the target set 𝐺 , we consider

two exploration scenarios: (1) average-case where the average
number of questions over all possible target sets is minimized,

and (2) worst-case where the maximum number of questions over

all possible target sets is minimized. Our algorithms are general

and work under both exploration scenarios.

Contributions Our contributions can be summarized as follows:

• We formalize interactive set discovery as an optimization

problem, minimizing the number of questions posed to

users.

• We propose cost functions to characterize the quality of

a decision tree for interactive set discovery, in terms of

its worst-case and average-case performance, and some

lower bounds that are easy to compute but effective in

pruning the search space.

• We propose a pruning strategy, based on our lower bounds,

that allows certain choices of entities for decision tree

nodes to be safely rejected if there is evidence that it cannot

lead to a better tree than one already found.

• Based on our pruning strategy, we develop an efficient

lookahead algorithm that can find near-optimal trees in

many cases. We also develop two variations of our looka-

head algorithm to further speed up the search process by

bounding the number of entities in each step of the search.

• Through an extensive experimental evaluation, we show

that our pruning strategy is effective, reducing the running

time by a few orders of magnitude, and that our algorithms

outperform competitive approaches from the literature.

The rest of the paper is organized as follows. We review the

related work in Section 2 and present the problem and our formu-

lation in Section 3. Our algorithms and strategies are discussed

in Section 4, and in Section 5, we experimentally evaluate their

performance. Finally, we conclude with a discussion in Section 6

and provide remarks for future work in Section 7.

2 RELATEDWORK
Our work is related to the lines of work on (a) example-based

query discovery, (b) active learning and interactive query discov-

ery, and (c) cost-efficient decision tree construction.

2.1 Example-based query discovery
Our work is related to this line of work in that it can be applied

to discover target queries based on example tuples if the candi-

date queries are known or can be enumerated. The problem of

discovering queries based on examples has its root in QBE [39]

and has been lately studied for reverse engineering queries in

various domains (e.g., relational [32] and graph data [6, 26]). On

discovering SQL queries, in particular, Tran et al. [33] study the

problem for select-project queries, and others study project-join

queries [19, 36]. Weiss et al. [34] show that the problem of dis-

covering SPJ from examples is NP-hard when there is a bound

on the size of queries. An underlying assumption in many of

these works is that the queries can be discovered on small in-

stances (where the answer tuples can be easily listed) before

being applied to larger instances. Unlike the aforementioned

works that focus on a specific query type to keep the complexity

of query generation under control, there is no such restriction

in our work. Our query discovery is done based on the query

output on a sample database, hence any pair of different queries

must return different results on the sample instance to be distin-

guishable. Also we assume the set of queries are given or can be

enumerated. There is no other constraint on queries and their

complexity. The approaches on reverse engineering queries are

limited in terms of the type of queries they can produce, and

these approaches are not applicable when the target is a set and

not a query.

2.2 Active learning and interactive query
discovery

Related work includes active learning [30], where a model is

learned by interacting with a user, and interactive exploration to

learn a desired query. Angluin [5] shows the polynomial learnabil-

ity of conjunctions of horn clauses and Abouzied et al. [3] show

that efficient solutions for a subset of quantified Boolean queries,

referred to as role-preserving qhorn queries, are reachable. In

both cases, users specify propositions that hold by answering

membership questions (e.g. a row is or is not in the answer)

and this helps to narrow down the search for candidate queries.

Bonifati et al. [8, 9] infer join queries and Dimitriadou et al. [11]

predict conjunctive queries, both based on interactions in the

form of simple yes/no answers about the presence of tuples in

the final output. Li et al. [24] take a sample database and a de-

sired result and generate candidate SPJ queries that produce the

result on the sample, using the approach of Tran et al. [33]. In

each follow-up interaction, the user is provided with a modified

database and a collection of query results to choose from, based

on which candidate queries are removed until a query emerges.

In all aforementioned works, the search takes place over the

space of possible queries that can be generated, and the size of

this space is bounded by placing constraints on the the shape

of queries. For example, this space in Abouzied et al. [3] is the

cartesian product of all domains, which means with𝑚 Boolean

variables, there are 3
𝑚

possible assignments of constants and

don’t-care values to those variables and that many propositional

logic queries. This space in Bonifati et al. [8, 9] is all subsets

of the Cartesian product of the two tables being joined while

limiting the predicates to equijoin, in Dimitriadou et al. [11]

is the set of rectangular regions defined by the conjunction of

range predicates on numerical data and in Li et al. [24] is a set

of conjunctive queries. In our case, the search takes place over a

closed collection of sets, and there is no constraint on the shape

of queries that may generate those sets. For example, the sets

in one of our datasets are generated using SQL queries with

CNF formulas in the where clause and in another dataset by

performing union over arbitrary sets. Also unlike active learning

where the classes are not explicitly known or not enumerated

and achieving 100% accuracy is out of reach, in our case the sets

to be discovered and their boundaries and relationships in terms

of overlaps are fully known.

405



2.3 Cost-efficient decision tree construction
There are some strong results on the nonapproximability of the

problem. Sieling [31] shows that the problem cannot be approxi-

mated up to any constant factor, based on the nonapproximability

of Vertex Cover for Cubic graphs and that the problem can be

mapped to an optimal decision tree construction. In a much

stronger result, Dinue and Steurer [12] show that optimal set

cover cannot be approximated to (1 − 𝑜 (1))𝑙𝑛𝑛 unless 𝑃 = 𝑁𝑃 ,

and the same result holds for optimal decision tree construction

based on a reduction from set cover [23]. Adler et al. [4] propose

a greedy algorithm which achieves (ln𝑛 + 1)-approximation, by

simply choosing an entity at each decision node that most evenly

partitions the collection of items. This greedy algorithm sets

a strong baseline in terms of the approximability of the prob-

lem, and many commonly-used approaches (e.g. Information

Gain [28], ID3 [29] and C4.5 [28]) are all variations of this 1-

step lookahead greedy algorithm (see Sec. 4.2). Esmeir et al. [14]

propose lookahead based algorithms for anytime induction of

decision trees by developing k-steps entropy and information

gain. Our proposed algorithm for set discovery improves upon

the 1-step lookahead approaches, which are pretty strong base-

lines, but is 2 to 5 orders of magnitude faster than the k-steps of

Esmeir et al., thanks to our powerful pruning strategies.

3 PROBLEM FORMULATION
Consider a collection of 𝑛 candidate sets and a target set in the

collection that needs to be identified. Without loss of general-

ity, we assume the sets are all unique; if not, duplicates can be

removed without affecting the search task. We want to find the

target set through a set of membership questions that the user

answers (e.g., Is 𝐴 in the target set?). At a high level, we want to

minimize the number of interactions.

A general approach to the search problem is to construct a

decision tree with the candidate sets placed at the leaves and

each internal node representing a question. With interactions

limited to yes/no membership questions, the decision tree will

be a full binary tree with 𝑛 leaves and 𝑛 − 1 internal nodes. The
number of such decision trees that can be constructed is huge

1
,

and some of those trees are more efficient for finding the target

set than others.

Let𝑚 denote the size of the universe from which the sets are

drawn. For a collection 𝐶 of finite sets, 𝑚 = |⋃𝑠∈𝐶 𝑠 |. In our

presentation, we may refer to the members of the universe as

entities, though our approach is applicable to any sets of tuples

(e.g., sets of relationships). For a fixed tree shape with 𝑛 − 1

internal nodes, the number of possible placements of𝑚 entities

or tuples on internal nodes will be𝑚(𝑚 − 1) . . . (𝑚 − 𝑛 + 2) =
𝑚!

(𝑚−𝑛+1)! , assuming that each entity appears at most once in the

tree. Otherwise, this number is even larger. Searching for an

efficient decision tree among all these tree shapes and possible

placements of entities on internal nodes is a major computational

challenge, and that is the problem studied in this paper.

To alleviate the problem, one may group entities in 𝐶 into

informative and uninformative. An entity that is either present

in all sets in 𝐶 or none is not informative, since a membership

question about that entity does not reduce the search space. The

rest of the entities can be considered as informative. Clearly we

want to limit our questions to informative entities, and only place

those entities on the internal nodes.

1
The actual number is the (𝑛 − 1)th Catalan number, i.e.,

1

𝑛

(
2(𝑛−1)
𝑛−1

)
=
(2(𝑛−1) ) !
𝑛!(𝑛−1) ! .

Example 3.1. Consider the collection of seven sets, as shown

in Fig. 1. Entity 𝑎 is uninformative since it is present in all sets.

All the other entities 𝑏, 𝑐, ..., 𝑘 are informative. Fig. 2 shows three

possible decision trees that represent the sets in the collection.

All the trees are full binary decision trees with 6 internal nodes

and 7 leaves. The root node corresponds to all sets of the collec-

tion. In Fig. 2a, the left branch corresponds to the sub-collection

{𝑆1, 𝑆2, 𝑆3} where entity 𝑑 is present and the right branch cor-

responds to the sub-collection {𝑆4, 𝑆5, 𝑆6, 𝑆7} where 𝑑 is not

present. Each branch is further broken down based on the pres-

ence or absence of entities.

𝑆1 = {𝑎, 𝑏, 𝑐, 𝑑} 𝑆2 = {𝑎, 𝑑, 𝑒} 𝑆3 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑓 }
𝑆4 = {𝑎, 𝑏, 𝑐, 𝑔, ℎ} 𝑆5 = {𝑎, 𝑏, ℎ, 𝑖} 𝑆6 = {𝑎, 𝑏, 𝑗, 𝑘}
𝑆7 = {𝑎, 𝑏, 𝑔}

Figure 1: A collection of example sets

Given a decision tree, the number of questions that are re-

quired to find a set is determined by the depth at which the set

is placed. For example, in Fig. 2a, 𝑆2 can be detected using two

questions whereas one will need three questions to find any other

set. Since we do not know the target set in advance, and assuming

that all sets are equally likely, the cost of a tree can be defined

as the average depth of the leaves which equivalently represents

the expected number of questions required to find the target set.

Definition 3.2. Let 𝑇 be a full binary decision tree over a col-

lection 𝐶 of unique sets, i.e., 𝑇 has exactly |𝐶 | leaves and each

leaf is labelled with a set in 𝐶 . If depth(s,T) denote the depth of a

set 𝑠 in 𝑇 , then the cost of 𝑇 is defined as

𝑐𝑜𝑠𝑡 (𝑇 ) =
∑
𝑠∈𝐶 𝑑𝑒𝑝𝑡ℎ(𝑠,𝑇 )

|𝐶 | .

Alternatively, one can also define the cost of a tree as the

height
2
of the tree. For a collection with 𝑛 unique sets, the height

of a full binary decision tree cannot be less than ⌈log
2
𝑛⌉ for

𝑛 > 0. This sets a lower bound on the height (H) of an optimal

tree, which we refer to as 𝐿𝐵_𝐻 (𝑛). The next lemma gives the

lower bound on the average depth of the leaves.

Lemma 3.3. Given a collection of𝑛 unique sets such that𝑛 > 0, a
lower bound on the average depth of the leaves (AD) of a full binary
decision tree representing the collection, denoted as 𝐿𝐵_𝐴𝐷 (𝑛), is
⌈𝑛 log

2
𝑛⌉/𝑛.

Proof. The average depth of the leaf nodes of a full binary

decision tree representing𝑛 sets cannot be less than log
2
𝑛. Hence,

the sum of depth of the 𝑛 leaf nodes cannot be less than ⌈𝑛 log
2
𝑛⌉

since it must be an integer number. Therefore, a lower bound on

AD for 𝑛 unique sets is ⌈𝑛 log
2
𝑛⌉/𝑛. □

Now let’s examine the trees in Fig. 2 again. A lower bound

on AD of any full binary decision tree representing a collection

of 7 sets, according to Lemma 3.3, is 2.857. The AD of the tree

in Fig. 2a is 2.857, Fig. 2b is 3.0 and that of the tree in Fig. 2c is

3.857, hence the first tree is optimal but the others are not.

Given a collection of 𝑛 unique sets, our goal can be stated as

finding a full binary decision tree representation of the collection

with the least cost where the cost metric is either AD or H.

2
Here height refers to the depth of the leaf with the longest distance from the root,

i.e., the number of questions to be answered to reach the deepest leaf.

406



(a) (b) (c)

Figure 2: Example of decision tree representations of the sets in Figure 1

4 METHODOLOGY
Given a collection 𝐶 of unique sets, our set discovery process

constructs a decision tree with the sets in 𝐶 placed at the leaves

and the membership questions about entities placed at the in-

ternal nodes. Since there are many possible trees that can be

constructed, and some are more efficient than others, our goal is

to find a tree that leads to the least number of interactions with

the user. Before presenting our algorithms, we develop a few

lower bounds on cost, which will be used in pruning the search

space of our algorithms.

4.1 Cost Lower Bounds
Given a collection𝐶 of unique sets, two lower bounds on cost (as

discussed in Section 3) are

𝐿𝐵_𝐴𝐷0 (𝐶) =
⌈|𝐶 | ∗ log

2
|𝐶 |⌉

|𝐶 | , 𝑎𝑛𝑑 (1)

𝐿𝐵_𝐻0 (𝐶) = ⌈log2 |𝐶 |⌉ (2)

for cost metrics AD and H respectively. Now consider an entity

𝑒 that partitions 𝐶 into two sub-collections 𝐶1 and 𝐶2. Our cost

lower bounds, after placing 𝑒 at the current node of the decision

tree, can be written as

𝐿𝐵_𝐴𝐷1 (𝐶, 𝑒) =
|𝐶1| ∗ 𝐿𝐵_𝐴𝐷0 (𝐶1) + |𝐶2| ∗ 𝐿𝐵_𝐴𝐷0 (𝐶2)

|𝐶 | + 1,
(3)

and

𝐿𝐵_𝐻1 (𝐶, 𝑒) =𝑚𝑎𝑥 (𝐿𝐵_𝐻0 (𝐶1), 𝐿𝐵_𝐻0 (𝐶2)) + 1 (4)

for cost metrics AD and H respectively, where the index ‘1’ in

the bounds indicates that the cost is calculated using information

available after looking one step ahead, i.e. one level below the

current node. We use the general term 𝐿𝐵 to refer to any lower

bound (including 𝐿𝐵_𝐴𝐷 and 𝐿𝐵_𝐻 ) when a distinction in the

cost metric is not important.

Let 𝐸 denotes the set of entities in collection𝐶 . A lower bound

on cost over all entities with 1-step look ahead is

𝐿𝐵1 (𝐶) =𝑚𝑖𝑛𝑒𝜖𝐸𝐿𝐵1 (𝐶, 𝑒) . (5)

These definitions can be extended for k-steps lookahead as

𝐿𝐵_𝐴𝐷𝑘 (𝐶, 𝑒) =
|𝐶1| ∗ 𝐿𝐵_𝐴𝐷𝑘−1 (𝐶1) + |𝐶2| ∗ 𝐿𝐵_𝐴𝐷𝑘−1 (𝐶2)

|𝐶 |
+ 1, 𝑎𝑛𝑑

(6)

𝐿𝐵_𝐻𝑘 (𝐶, 𝑒) =𝑚𝑎𝑥 (𝐿𝐵_𝐻𝑘−1 (𝐶1), 𝐿𝐵_𝐻𝑘−1 (𝐶2)) + 1 (7)

for cost metrics AD and H respectively. A lower bound over all

entities is

𝐿𝐵𝑘 (𝐶) =𝑚𝑖𝑛𝑒𝜖𝐸𝐿𝐵𝑘 (𝐶, 𝑒) . (8)

A desirable property of these lower bounds is their monotonic-

ity and that the cost lower bounds never decrease. This means the

lower bounds can get tighter but not looser, as we look more and

more steps ahead. The next two lemmas state this more formally.

Lemma 4.1. For any collection 𝐶 , 𝐿𝐵𝑘 (𝐶) is a monotone non-
decreasing function of 𝑘 , i.e., for non-negative integers 𝑘1 and 𝑘2,
if 𝑘2 > 𝑘1, then 𝐿𝐵𝑘2 (𝐶) ≥ 𝐿𝐵𝑘1 (𝐶).

Proof. The proof is by induction on 𝑘 . For the basis, the low-

est possible cost of a binary decision tree on𝐶 , defined as 𝐿𝐵0 (𝐶),
is calculated assuming that the entity in each node of the tree

partitions the sub-collection as evenly as possible. But, 𝐿𝐵1 (𝐶)
is calculated after an actual entity from the collection is assigned

to the root node and assuming that all other nodes partitions the

sub-collections as evenly as possible. If the entity at the root par-

titions the collection as evenly as possible then 𝐿𝐵1 (𝐶) is equal to
𝐿𝐵0 (𝐶). Otherwise, 𝐿𝐵1 (𝐶) is greater than 𝐿𝐵0 (𝐶). For the induc-
tion step, suppose the claim holds at step 𝑘1. In each additional

step 𝑘2 = 𝑘1 + 1 of the lower bound calculation, an additional

level of nodes are assigned with the best entities recursively. If

any of those entities does not partition the corresponding sub-

collections as evenly as possible then 𝐿𝐵𝑘2 (𝐶) > 𝐿𝐵𝑘1 (𝐶), oth-
erwise, 𝐿𝐵𝑘2 (𝐶) = 𝐿𝐵𝑘1 (𝐶). Therefore, the statement holds. □

Lemma 4.2. For any collection 𝐶 and entity 𝑒 in the collection,
𝐿𝐵𝑘 (𝐶, 𝑒) is a monotone non-decreasing function of 𝑘 , i.e., for posi-
tive integers 𝑘1 and 𝑘2, if 𝑘2 > 𝑘1, then 𝐿𝐵𝑘2 (𝐶, 𝑒) ≥ 𝐿𝐵𝑘1 (𝐶, 𝑒).

The proof follows the line of reasoning in Lemma 4.1.

4.2 Entity Selection
The problem of constructing an optimal binary decision tree,

minimizing the cost to discover an unknown target set, is NP-

complete [17], hence various greedy strategies have been studied

in the literature. In this section, we briefly review these strategies

and compare them with ours.

4.2.1 Most even partitioning. A greedy approximation algo-

rithm which achieves (ln𝑛 + 1)-approximation for the decision

tree problem on a collection C with 𝑛 sets is simply to choose

407



an entity at each internal node that most evenly partitions the

collection of sets in that node [4].

4.2.2 Information gain. Decision tree construction is a very

well-understood process in machine learning and data mining.

A popular heuristic used by the decision tree algorithms (such

as ID3 [29] and C4.5 [28]) for selecting the next feature or entity

is the information gain. The entity with the largest information

gain is selected to split the collection. If we treat each set in𝐶 as a

class and each distinct entity 𝑒 as a feature, then the information

gain of 𝑒 that partitions 𝐶 into sub-collections 𝐶1 and 𝐶2 can be

written as

𝐼𝑛𝑓 𝑜𝐺𝑎𝑖𝑛(𝐶, 𝑒) = log
2
|𝐶 | −

|𝐶1| ∗ log
2
|𝐶1| + |𝐶2| ∗ log

2
|𝐶2|

|𝐶 | .

(9)

4.2.3 Indistinguishable pairs. Another entity selection strat-

egy (used by Roy et al. [7]) selects an attribute or entity that

minimizes the number of indistinguishable pairs of sets. For an

entity 𝑒 that partitions a collection 𝐶 into sub-collections 𝐶1 and

𝐶2, the number of indistinguishable pairs is given as

𝐼𝑛𝑑𝑔(𝐶, 𝑒) = |𝐶1| ∗ (|𝐶1| − 1) + |𝐶2| ∗ (|𝐶2| − 1)
2

. (10)

4.2.4 Cost lower bound. Entity selection can be done using

our cost lower bound 𝐿𝐵𝑘 with 𝑘 > 0, as discussed in Section 4.1,

by selecting the entity that minimizes the cost lower bound.

This is the strategy we use in this paper because of some of the

desirable properties of those lower bounds. However, in some

cases, two entities that do not partition a collection in the same

way may have the same value of a lower bound. For example,

suppose entity 𝑎 partitions a collection of 16 sets into 9 and 7

sets, and entity 𝑏 partitions the same collection into 10 and 6 sets.

With ⌈log
2
9⌉ = ⌈log

2
10⌉ = 4, both entities will have the same

value of the lower bound on height. When there are such ties,

we select an entity that most evenly partitions the collection to

differentiate between entities with the same value of cost lower

bound.

Though these strategies seem different from each other, it

can be shown that the existing strategies discussed above and

our 1-step cost lower bound 𝐿𝐵1 select the same entity for the

binary decision tree problem. Hence, they all achieve the same

(ln𝑛 + 1)-approximation factor.

Lemma 4.3. Given a collection 𝐶 , the strategies (a) information
gain, (b) indistinguishable pairs, and (c) 1-step cost lower bound,
𝐿𝐵1, select the same entity that partitions 𝐶 most evenly into two
sub-collections.

Proof. (a) In (9), since |𝐶 | is constant and |𝐶1| + |𝐶2| = |𝐶 |,
the quantity |𝐶1| ∗ log

2
|𝐶1| + |𝐶2| ∗ log

2
|𝐶2| is minimum when

𝐶 is most evenly partitioned into 𝐶1 and 𝐶2. Hence, the entity

that partitions 𝐶 most evenly has the largest information gain

and is selected by information gain strategy.

(b) Similarly, in (10), |𝐶1| ∗ (|𝐶1| −1) + |𝐶2| ∗ (|𝐶2| −1) is minimum

when 𝐶 is most evenly partitioned. Therefore, the entity that

partitions 𝐶 most evenly has the minimum value of Indg() and is

selected by indistinguishable pairs strategy.
(c) It can also easily be seen from (3) and (4) (after replacing

𝐿𝐵_𝐴𝐷0 and 𝐿𝐵_𝐻0 with their respective values from (1) and

(2)) that, an entity that most evenly partitions the collection 𝐶

into 𝐶1 and 𝐶2, gives the minimum value of 𝐿𝐵1 in (5), thus is

selected by our 1-step cost lower bound strategy. □

This paper builds on top of our cost lower bounds, and this

offers a few benefits compared to other entity selection strategies.

First, the cost functions are simple and intuitive, offering an easy

choice between the average case and worse case costs. Second, we

can develop efficient and effective 𝑘-steps lookahead strategies

using 𝐿𝐵𝑘 with 𝑘 > 1. In particular, we develop an effective

pruning strategy that significantly reduces the search space and

the runtime of our lookahead strategies without affecting the

cost. Although 𝑘-steps lookahead strategies have been studied

for entropy [8] and information gain [14], we are not aware of

similar pruning strategies developed for these other measures.

4.3 Pruning
We want to find a decision tree that requires the least number of

interactions with the user for a set discovery hence has the least

cost. However, exhaustive searching the space of possible trees

for the one with the least cost is computationally intensive and

not always feasible. We propose a pruning strategy that allows

certain choices of entities for decision tree nodes to be safely

rejected to reduce the size of the search space without affecting

the correctness.

Lemma 4.4. Let 𝐿𝐵𝑘 (𝐶, 𝑒) denote our lower bound of cost for
entity 𝑒 in collection𝐶 by looking k-steps ahead, and suppose entity
selection is done based on 𝐿𝐵𝑘 , 𝑘-steps cost lower bound for some 𝑘 .
Consider entities 𝑒1 and 𝑒2, both in 𝐶 . If 𝐿𝐵𝑙 (𝐶, 𝑒2) ≥ 𝐿𝐵𝑘 (𝐶, 𝑒1)
for 𝑙 ≤ 𝑘 , then 𝑒2 can be pruned without affecting the correctness
of the search.

Proof. Based on Lemmas 4.1 and 4.2 𝐿𝐵𝑘 (𝐶, 𝑒2) cannot be
smaller than 𝐿𝐵𝑘 (𝐶, 𝑒1) when 𝐿𝐵𝑙 (𝐶, 𝑒2) ≥ 𝐿𝐵𝑘 (𝐶, 𝑒1) for 𝑙 ≤ 𝑘 .

Hence 𝑒2 can be pruned without affecting the correctness of the

search. □

As an example, consider the collection of sets shown in Fig. 1,

denoted as 𝐶1, and let H be our cost metric. The entities 𝑐 and 𝑑

are present in 3 sets and absent in 4 sets. Hence, the 1-step lower

bound, 𝐿𝐵_𝐻1 (), for entities 𝑐 and 𝑑 is𝑚𝑎𝑥 (𝑙𝑜𝑔2 (3), 𝑙𝑜𝑔2 (4)) +
1 = 3. Similarly, 1-step lower bound for all other informative

entities is 4. Suppose, we are using 3-steps cost lower bound for

entity selection. The 3-steps lower bound for 𝑑 , 𝐿𝐵_𝐻3 (𝐶1, 𝑑),
is 3. Since 𝐿𝐵_𝐻1 () for all other entities is not less than 3, any

further calculation for them can be pruned safely.

Now, consider another collection where the sets are the same

as in collection 𝐶1 except 𝑆1 = {𝑎, 𝑏, 𝑐} and 𝑆4 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑔, ℎ},
and let us denote this collection with 𝐶2. The set counts for all

entities are as before, hence the 1-step lower bound, 𝐿𝐵_𝐻1 (), for
the informative entities remain the same as in collection 𝐶1. But,

the 3-steps lower bound for 𝑑 , 𝐿𝐵_𝐻3 (𝐶2, 𝑑), is 4 now. Therefore,
we cannot prune the 3-steps lower bound calculation for entity 𝑐

using the 1-step lower bound, 𝐿𝐵_𝐻1 (𝐶2, 𝑐), which is 3. Thus, we

calculate the 2-steps lower bound for 𝑐 , 𝐿𝐵_𝐻2 (𝐶2, 𝑐), which is 4.

Now, any further lower bound calculation for 𝑐 can be pruned

using the 2-steps lower bound since it is not less than the already

calculated least 3-steps lower bound for entity 𝑑 .

4.3.1 Implementation. There are several places where our

pruning is applied. First, entities are sorted based on their 1-step

lower bounds in non-decreasing order, the 𝑘-steps lower bounds

for entities are calculated in that order, and the least value found

so far is updated accordingly. If the 1-step lower bound of an

408



entity 𝑒 is not less than the already found least 𝑘-steps lower

bound, then the k-steps lower bound calculations of entity 𝑒 and

all the subsequent entities in the sorted order are pruned.

Second, when calculating the 𝑘-steps lower bound for an en-

tity, the already found least value is used to set an upper limit

for each of the recursive steps of the calculation. Whenever the

upper limit is reached, the rest of the 𝑘-steps lower bound cal-

culation for the current entity is pruned. Since, for an entity 𝑒

to be selected, 𝐿𝐵𝑘 (𝐶, 𝑒) needs to be less than the already found

least value of the lower bound (AFLV), if 𝑒 partitions a collection

𝐶 into 𝐶1 and 𝐶2, the upper limit (UL) for the accepted value of

𝐿𝐵𝑘−1 (𝐶1) can be calculated using (6), for the cost metric AD,

by replacing 𝐿𝐵_𝐴𝐷𝑘 (𝐶, 𝑒) with AFLV and 𝐿𝐵_𝐴𝐷𝑘−1 (𝐶2) with
the least possible value 𝐿𝐵_𝐴𝐷0 (𝐶2) as

𝑈𝐿(𝐶1) = (𝐴𝐹𝐿𝑉 − 1) ∗ |𝐶 | − |𝐶2| ∗ 𝐿𝐵_𝐴𝐷0 (𝐶2)
|𝐶1| , (11)

and similarly using (7), for the cost metric H, as

𝑈𝐿(𝐶1) = 𝐴𝐹𝐿𝑉 − 1. (12)

Once the actual value of 𝐿𝐵𝑘−1 (𝐶1) is calculated, the upper limit

(UL) for the accepted value of 𝐿𝐵𝑘−1 (𝐶2) can be calculated, for

the cost metric AD, as

𝑈𝐿(𝐶2) = (𝐴𝐹𝐿𝑉 − 1) ∗ |𝐶 | − |𝐶1| ∗ 𝐿𝐵_𝐴𝐷𝑘−1 (𝐶1)
|𝐶2| , (13)

and for the cost metric H, as

𝑈𝐿(𝐶2) = 𝐴𝐹𝐿𝑉 − 1. (14)

4.4 Lookahead Strategies
Now that we have covered our cost functions and pruning strate-

gies, we present our 𝑘-steps lookahead strategy and two vari-

ations of it, for selecting the next question to ask by looking

𝑘-steps ahead. These strategies choose an entity based on the

𝑘-steps lower bound for the cost of a collection, as discussed in

Section 4.2. When there are ties between two or more entities

in terms of cost, the entity that partitions the collection most

evenly is chosen. If there are still ties for the choice of entities,

then an entity is selected randomly from the set of candidates.

The algorithm applies our pruning strategy in every step where

the search space can be cut without compromising the required

number of questions, as discussed in Section 4.3.

4.4.1 𝑘-Lookahead with Pruning (𝑘-LP). Algorithm 1 presents

our 𝑘-lookahead with pruning strategy. It takes a collection 𝐶 of

unique sets, the number of steps 𝑘 to look ahead, and an upper

limit 𝑢𝑙 of the 𝑘-steps lower bound for an entity to be selected,

as input. Initially, the upper limit is set to a large number. Then,

it sorts the entities in the collection based on their partition-

ing capability from the most even to the least even (Line 11).

Since, the entity that partitions a collection most evenly has the

minimum value of the 1-step cost lower bound, the entities will

also be sorted based on their 1-step lower bound of cost in non-

decreasing order. This way, an entity with both the minimum

lower bound and also the most even partitioning capability is

considered first, breaking possible ties on the cost lower bound.

For each entity in the sorted order that partitions the collection

𝐶 into two sub-collections 𝐶+ and 𝐶−, the (𝑘 − 1)-steps lower
bounds for 𝐶+ and 𝐶− are calculated by recursively calling the

algorithm (Lines 16-32). Those quantities are plugged into (6)

or (7) (depending on the cost metric used) to obtain the 𝑘-steps

lower bound 𝑙 for each entity (Line 33). The algorithm keeps track

Algorithm 1 K-Lookahead with Pruning (K-LP)

Input: collection 𝐶 of unique sets, steps 𝑘 , and upper limit 𝑢𝑙 of

the 𝑘-steps cost lower bound for an entity to be selected

Output: selected entity and it’s 𝑘-steps cost lower bound

1: if (𝐶, 𝑘) ∈ 𝐶𝑎𝑐ℎ𝑒 then
2: 𝑒 , 𝑙 ← 𝐶𝑎𝑐ℎ𝑒 [(𝐶, 𝑘)]
3: if 𝑢𝑙 ≤ 𝑙 then
4: return 𝑛𝑢𝑙𝑙 , 𝑙

5: else if 𝑒 ≠ 𝑛𝑢𝑙𝑙 then
6: return 𝑒 , 𝑙

7: if 𝑘 = 1 then
8: let entity 𝑒 to most evenly partition 𝐶

9: 𝐶𝑎𝑐ℎ𝑒 [(𝐶, 𝑘)] ← (𝑒 , 𝐿𝐵1 (𝐶, 𝑒))
10: return 𝐶𝑎𝑐ℎ𝑒 [(𝐶, 𝑘)]
11: 𝑆𝐸 ← sort entities according to most even partitioning of 𝐶

12: 𝑒 ← 𝑛𝑢𝑙𝑙

13: for each entity 𝑒𝑖 ∈ 𝑆𝐸 do
14: if 𝐿𝐵1 (𝐶, 𝑒𝑖 ) ≥ 𝑢𝑙 then
15: break
16: let 𝐶+ be the collection {𝑆 𝑗 ∈ 𝐶 | 𝑒𝑖 ∈ 𝑆 𝑗 }
17: 𝐶− ← 𝐶 −𝐶+
18: if |𝐶+ | = 1 then
19: 𝑙+ ← 0

20: else
21: 𝑙𝑏− ← 𝐿𝐵0 (𝐶−)
22: 𝑢𝑙+ ← Upper-Limit (𝑢𝑙, |𝐶+ |, 𝑙𝑏−, |𝐶− |, |𝐶 |)
23: 𝑒+, 𝑙+ ← K-LP (𝐶+, 𝑘 − 1, 𝑢𝑙+)
24: if 𝑒+ = 𝑛𝑢𝑙𝑙 then
25: continue
26: if |𝐶− | = 1 then
27: 𝑙− ← 0

28: else
29: 𝑢𝑙− ← Upper-Limit (𝑢𝑙, |𝐶− |, 𝑙+, |𝐶+ |, |𝐶 |)
30: 𝑒−, 𝑙− ← K-LP (𝐶−, 𝑘 − 1, 𝑢𝑙−)
31: if 𝑒− = 𝑛𝑢𝑙𝑙 then
32: continue
33: 𝑙 ← K-Steps-Lower-Bound ( |𝐶+ |, 𝑙+, |𝐶− |, 𝑙−, |𝐶 |)
34: if 𝑙 < 𝑢𝑙 then
35: 𝑢𝑙 ← 𝑙

36: 𝑒 ← 𝑒𝑖

37: 𝐶𝑎𝑐ℎ𝑒 [(𝐶, 𝑘)] ← (𝑒 , 𝑢𝑙)
38: return 𝑒 , 𝑢𝑙

of the entity with the least 𝑘-steps lower bound 𝑙 and sets it as the

upper limit 𝑢𝑙 for the next entity to be considered (Lines 33-35).

Since the entities are sorted, if it finds an entity with an equal or

larger 1-step lower bound than the upper limit 𝑢𝑙 , the algorithm

stops early and prunes all the remaining entities (Lines 14-15). To

further reduce the search space, it calculates the upper limits for

𝐶+ (using (11) or (12)) and𝐶− (using (13) or (14)) and passes them
to the recursive call (Lines 22-23 and 29-30). If no entity can be

selected with a lower value of (𝑘 − 1)-steps lower bound than the

calculated upper limit, then it stops processing the current entity

and moves to the next entity (Lines 24-25 and 31-32). Finally, the

algorithm returns an entity 𝑒 with the minimum 𝑘-steps lower

bound of cost (Lines 7-10 or 38). To speed up the calculations, the

algorithm uses memoization by storing and reusing the results

for different inputs of collection 𝐶 and steps, 𝑘 (Lines 1-6, 9, and

37).

409



Two important observations can be made about our k-LP algo-

rithm. First, it can be shown that the algorithm finds an optimal
solution if 𝑘 is set to the height of an optimal tree or a greater

value. Second, the early stopping opportunities, which are based

on our pruning strategy presented earlier, sets apart our looka-

head strategies from the existing lookaheads in literature [8, 14].

For a collection of 𝑛 unique sets and𝑚 distinct entities, the

runtime of Algorithm 1 is 𝑂 (𝑚𝑘𝑛) since finding 1-step lower

bounds for𝑚 entities is 𝑂 (𝑚𝑛) and in each recursive step, there

will be𝑂 (𝑚) calls to the next step. Our next two strategies further
reduce the time by setting bounds on the number of candidate

entities.

4.4.2 𝑘-LP with Limited Entities (𝑘-LPLE). Despite all the prun-
ing done using our lower bounds, the runtime of our 𝑘-LP algo-

rithm increases as a polynomial function of 𝑚 (e.g., quadratic

for 𝑘 = 2), and the algorithm becomes very inefficient for large

values of 𝑘 . On the other hand, the chance of constructing a

better tree increases as we increase 𝑘 . One good trade-off is to

limit the number of candidate entities in each step of the lower

bound calculation to 𝑞 < 𝑚, ranked in terms of the 1-step lower

bound of cost. For 𝑞 << 𝑚, the reduction in runtime can be

significant, analogous to setting a beam size in deep learning

algorithms [35]. This can be implemented by adding an extra

input 𝑞 to Algorithm 1, modifying Line 11 so that 𝑆𝐸 contains

only the first 𝑞 sorted entities, and passing 𝑞 on the recursive

calls to the algorithm in Lines 23 and 30.

4.4.3 𝑘-LP with Limited but Variable number of Entities(𝑘-
LPLVE). The runtime of k-LPLE may further be reduced by greed-

ily considering only a single entity in each recursive step of the

k-steps lower bound calculation for an entity. The intuition here

is that an entity with the smallest 1-step lower bound is more

probable to be the best choice. Hence, our k-LPLVE strategy lim-

its the number of candidate entities to only one (with the least

1-step lower bound) during each step of the lower bound calcu-

lation. With this strategy, the search time is expected to reduce

further, but the quality of the results is not expected to change

much (see Section 5 for evaluation results). This strategy can be

implemented by performing the same modifications as k-LPLE in

Algorithm 1 except that when the function is called from outside

with 𝑞, 𝑆𝐸 in Line 11 takes the first 𝑞 sorted entities during that

call and only the first entity during the subsequent recursive calls

to the function.

4.5 Set Discovery
The set discovery scheme studied in this paper is an interactive

process that starts with an initial question posed to the user and

continues with follow-up questions based on the user’s answers.

The lookahead strategies choose an entity to be the next question,

which is expected to minimize the cost of discovering the user’s

desired set. With each user feedback, the same selection process

continues until the user’s desired set is discovered or the user

is satisfied with the refined sub-collection of sets and does not

want to answer more questions.

The general approach for set discovery is presented in Algo-

rithm 2. It takes the entire collection 𝐶 of unique sets and a user-

provided initial set 𝐼 as inputs and finds the sub-collection 𝐶𝑆

containing all the supersets of 𝐼 in𝐶 (Lines 2-4). It then iteratively,

selects the best entity 𝑒 according to the entity selection strategy

denoted by Υ, asks the user a question about the presence of

that entity in the desired set, and re-calculates the sub-collection

Algorithm 2 Set Discovery

Inputs: collection 𝐶 of unique sets and initial set 𝐼

Output: sets that are consistent with the user’s answers

Parameter: entity selection strategy Υ and halt condition Γ

1: 𝐶𝑆 ← ∅
2: for each set 𝑆𝑖 ∈ 𝐶 do
3: if 𝐼 ⊆ 𝑆𝑖 then
4: 𝐶𝑆 ← 𝐶𝑆 ∪ {𝑆𝑖 }
5: while |𝐶𝑆 | > 1 and Γ is 𝑓 𝑎𝑙𝑠𝑒 do
6: 𝑒 ← Υ(𝐶𝑆)
7: 𝛼 ← query user about the presence of 𝑒 in target set

8: let 𝑃 be the collection {𝑆𝑖 ∈ 𝐶𝑆 | 𝑒 ∈ 𝑆𝑖 }
9: if 𝛼 is 𝑡𝑟𝑢𝑒 then
10: 𝐶𝑆 ← 𝑃

11: else
12: 𝐶𝑆 ← 𝐶𝑆 − 𝑃
13: return 𝐶𝑆

𝐶𝑆 of candidate sets based on the user feedback until a single

set is left or the halt condition Γ (e.g., the user does not want to

answer more questions) is met (Lines 5-12). Finally, it returns

the remaining sets that are consistent with the user’s answers

(Line 13). The runtime of Algorithm 2 depends on the number of

questions required to discover the desired set and the strategy

used. In the worst case, the number of questions can be 𝑛 − 1 for
a collection of 𝑛 sets.

Offline tree constructionOur tree constructionmay be done of-

fline for static collections, for example, when the initial query sets

are known in advance or are always empty. An offline construc-

tion may be useful when the same decision tree is constructed

multiple times or is used by multiple queries. Algorithm 3 pro-

vides the steps for precomputing a decision tree on a collection

of sets. With the decision tree constructed offline, a set discovery

can be efficiently performed by asking questions and following

only a single path through the tree in real-time.

Algorithm 3 takes a collection 𝐶 of unique sets as input. If the

collection has only one set, then it constructs a tree 𝑇 consisting

of a single node with the only set𝐺 (Lines 1-3). Otherwise, the

algorithm selects the best entity 𝑒 using the entity selection strat-

egy denoted by Υ (Line 5). It recursively constructs the subtrees

𝑇 + and 𝑇− for the two sub-collections 𝐶+ and 𝐶− respectively

(Lines 6-9). Finally, a tree 𝑇 , consisting of a root node 𝑒 and two

child subtrees (𝑇 +,𝑇−), is constructed and returned (Lines 10-11).
There are 𝑛 − 1 internal nodes in a full binary decision tree

representing a collection of 𝑛 sets and𝑚 entities, and each in-

ternal node requires a k-steps lookahead, which costs 𝑂 (𝑚𝑘𝑛).
Hence the runtime of Algorithm 3 is 𝑂 (𝑚𝑘𝑛2).

5 EXPERIMENTS
This section reports an experimental evaluation of our algorithms

and pruning strategies on both real and synthetic data and under

different parameter settings.

5.1 Evaluation Setup
As our evaluation measures, we study (a) the effectiveness of

our algorithms in finding a “good" solution for the problem of

set discovery, (b) the effectiveness of our pruning strategy in

reducing the size of the search space, (c) the efficiency of our

algorithms in terms of the running time, and (d) the scalability

of our algorithms with both the number and the size of sets. Our

410



Algorithm 3 Tree Construction

Input: collection 𝐶 of unique sets

Output: a decision tree representation of the input collection

Parameters: entity selection strategy Υ
1: if |𝐶 | = 1 then
2: let 𝐺 be the only element of 𝐶

3: 𝑇 ← Tree (𝐺,𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙)
4: else
5: 𝑒 ← Υ(𝐶)
6: let 𝐶𝑆+ be the collection {𝑆𝑖 ∈ 𝐶 | 𝑒 ∈ 𝑆𝑖 }
7: 𝐶𝑆− ← 𝐶 −𝐶𝑆+
8: 𝑇 + ← Tree-Construction (𝐶𝑆+)
9: 𝑇− ← Tree-Construction (𝐶𝑆−)
10: 𝑇 ← Tree (𝑒,𝑇 +,𝑇−)
11: return 𝑇

results are compared to the relevant algorithms in the literature

(when applicable).

The effectiveness of our set discovery is measured in terms

of the number of questions to be answered by a user looking for

a target set. Without knowing much about the target set of a

user, we assume all sets that contain an initially provided set

are equally likely. With this, the effectiveness may be defined

in terms of the average number of questions or the maximum
number of questions to be answered by a user. These quantities

also represent the average depth of the leafs (AD) and the height

(H) of a decision tree that is constructed.

The efficiency of an entity selection algorithm is measured in

terms of the tree construction time, which is the time needed to

construct a decision tree using the selection strategy. It can be

noted that the tree construction time is different from the time

spent when searching for a specific set (discovery time). For the
former, Algorithm 3 constructs a whole tree with all sets placed

at the leaves and the internal nodes giving the paths to all sets at

the leaves, whereas for the latter, Algorithm 2 only constructs a

path from the root to the target set. The latter is much less if the

wait time for user responses is excluded.

The algorithms being evaluated include entity selection using

𝑘-LP, 𝑘-LPLE, and 𝑘-LPLVE strategies. For a comparison with

entity selection strategies from the literature, our evaluation also

includes information gain (InfoGain) [29] and gain-𝑘 [14]. Our

reported result for information gain holds for indistinguishable
pairs [7] and 1-step lookahead, i.e. gain-𝑘 and 𝑘-LP with 𝑘 = 1,

since they all select the same entity, as shown earlier (Lemma 4.3).

Our algorithms were implemented in Python 3 and our exper-

iments were run on a 64-bit machine with Intel(R) Core i5-9300H

@2.40 GHz processor and 8 GB RAM.

5.2 Datasets and Queries
We conduct our experiments on two datasets for set discovery,

including web tables, which consists of a collection of entity sets

extracted from the columns of various web tables, and synthetic
datasets, where large collections of sets are generated following

some distributions. The former evaluates our algorithms on a

real dataset, whereas the latter assesses the scalability of our

strategies under different collection sizes and parameter settings.

We also evaluate our algorithms on the task of query discovery,

based on a baseball database.

5.2.1 Web tables. Our web table dataset is collected from a

2014 snapshot of Wikipedia. We extract tables in document text

and treat each of their columns as a set based on the observation

that each column has a domain and the values are drawn from

that domain. As an example, one set includes 58 NBA players

including Steve Nash, Kobe Bryant, and Tracy McGrady. The sets

are diverse, covering many domains of interest, but also noisy.

We remove any set that has less than three distinct elements and

sets that consist of all numbers. We further remove duplicate

entries, making each list a pure set, and a few frequent keywords

such as unknown, tba, total. After those cleanings, we obtain

1,407,178 unique sets containing in total 6,312,409 distinct entities.

Examples of sets and queries are given elsewhere [15] For our

experiments, we considered each combination of two entities

as a possible initial example set and the sets that contained the

two example entities as candidates. This resulted in 14,491 initial

sets, giving us the same number of sub-collections with at least

100 sets in each. The choice of two example entities was based

on the observation that at least two entities from a semantic

class are required to unambiguously represent the class. As an

example, Liverpool may represent both a “City" and a “Football

Club" whereas Liverpool and Arsenal together do not represent

the “Cities" semantic class. The number of sets in the selected

collections was in the range of [100, 11219] with an average of

390 and a standard deviation of 478, and the number of distinct

entities was in the range of [15, 15186] with an average of 3,112

and a standard deviation of 2,379. We constructed decision trees

for all the selected sub-collections to evaluate our strategies.

5.2.2 Synthetic data. To study the performance of our entity

selection strategies under different data distributions as well

as the scalability with the number of entities and sets in the

collection, we generated a few synthetic set collections. The set

generation follows a copy-add preferential mechanism where

some elements are copied from an existing set and the rest of the

elements are added from a universe of elements. Similar copying

models are used in other domains (e.g., the dynamics of the web

graph [21], the copying and publishing relationships between

data sources [13], etc.). Each set has two parameters: a set size 𝑠 ,

chosen randomly from a range of values (e.g., [50, 100]), and an

overlap ratio 𝛼 ∈ [0, 1). For each set, we choose a size 𝑠 from the

range of possible sizes randomly and an overlap ratio 𝛼 . Then

𝛼 ∗ 𝑠 elements are copied from a previously generated set and

(1 − 𝛼) ∗ 𝑠 elements are added from the entity universe. If a

previously generated set does not exist or does not have enough

elements, then additional elements are selected from the entity

universe to bump up the set size to 𝑠 . We generated 19 synthetic

collections by varying the overlap ratio 𝛼 , the range of set sizes 𝑑 ,

and the number of sets 𝑛. Table 1 gives some information about

these collections including the number of distinct entities in each

collection. For this dataset, no entities were selected as query

entities (i.e., the user-provided initial set is considered empty),

and all the sets in each collection are considered as possible target

sets.

5.2.3 Baseball database. The baseball database [22] is a com-

plex, multi-relation database that contains batting, pitching, and

fielding statistics plus standings, team stats, player information,

and more for Major League Baseball (MLB) covering the years

between 1871 and 2020. Our experiment is based on the People ta-
ble which contains information about name, birth, death, height,

weight, batting and throwing hand, etc., of 20,185 baseball players.

For our experiment, we considered only CNF (conjunctive normal

form) queries with conditions on columns birthCountry, birth-
State, birthCity, birthYear, birthMonth, birthDay, height, weight,

411



Overlap

ratio

𝛼

Number

of

distinct

entities

0.99 23k

0.95 36k

0.90 59k

0.85 83k

0.80 108k

0.75 132k

0.70 156k

0.65 178k

(a) 𝑛 = 10k, 𝑑 = 50 − 60

Number

of

sets 𝑛

Number

of

distinct

entities

10k 59k

20k 125k

40k 216k

80k 385k

160k 622k

(b) 𝛼 = 0.9, 𝑑 = 50 − 60

Set size

range

𝑑

Number

of

distinct

entities

50-100 119k

100-150 150k

150-200 180k

200-250 214k

250-300 249k

300-350 283k

(c) 𝑛 = 10k, 𝛼 = 0.9

Table 1: Synthetic data by varying (a) overlap ratio 𝛼 , (b)
number of sets 𝑛 and (c) set size range 𝑑

bats, and throws of the People table. At first, we constructed 7

target queries that could be interesting to a user. Table 2 describes

the target queries and the number of tuples in their outputs. Then,

for each target query, we randomly selected 2 output tuples as

the example tuples and generated candidate CNF queries that

contain the example tuples in their output. The candidate queries

are generated using the following simple steps:

(1) The columns are grouped into categorical and numerical

with columns birthCountry, birthState, birthCity, birth-
Month, birthDay, bats, and throws treated as categorical

and birthYear, height, and weight treated as numerical in

our experiments.

(2) A few reference values are defined for each numerical col-

umn. For examples, height: {60, 65, 70, 75, 80}, weight: {120,
140, 160, 180, 200, 220, 240, 260, 280, 300}, and birthYear :
{1850, 1870, 1890, 1910, 1930, 1950, 1970, 1990}.

(3) A selection condition on each categorical column is con-

structed as the disjunctions of the unique values of the ex-

ample tuples for that column. For example, if the birth city

of an example player is Chicago and that of another player

is Seattle, then the selection condition is 𝑏𝑖𝑟𝑡ℎ𝐶𝑖𝑡𝑦 =

“𝐶ℎ𝑖𝑐𝑎𝑔𝑜” ∨ 𝑏𝑖𝑟𝑡ℎ𝐶𝑖𝑡𝑦 = “𝑆𝑒𝑎𝑡𝑡𝑙𝑒”, whereas if the birth

city of all example players is Chicago, then the selection

condition is 𝑏𝑖𝑟𝑡ℎ𝐶𝑖𝑡𝑦 = “𝐶ℎ𝑖𝑐𝑎𝑔𝑜”.

(4) A few selection conditions on each numerical column are

constructed using the possible intervals of the reference

values that contain the values of all example tuples. For

example, if the height of an example player is 62 and that of

another player is 73, then the possible selection conditions

on height are ℎ𝑒𝑖𝑔ℎ𝑡 > 60 ∧ ℎ𝑒𝑖𝑔ℎ𝑡 < 75, ℎ𝑒𝑖𝑔ℎ𝑡 > 60 ∧
ℎ𝑒𝑖𝑔ℎ𝑡 < 80, ℎ𝑒𝑖𝑔ℎ𝑡 > 60, ℎ𝑒𝑖𝑔ℎ𝑡 < 75, and ℎ𝑒𝑖𝑔ℎ𝑡 < 80.

(5) Each selection condition on a column yields a candi-

date query, and the conjunction of any two selections

on different columns provide additional candidate queries.

For example, 𝜎𝑏𝑖𝑟𝑡ℎ𝐶𝑖𝑡𝑦=“𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠” (𝑃𝑒𝑜𝑝𝑙𝑒) is a query

with selection condition on a single column, whereas

𝜎𝑏𝑖𝑟𝑡ℎ𝐶𝑖𝑡𝑦=“𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠”∧ℎ𝑒𝑖𝑔ℎ𝑡>70∧ℎ𝑒𝑖𝑔ℎ𝑡<80 (𝑃𝑒𝑜𝑝𝑙𝑒) is a

query with selection conditions on two columns. Simi-

larly, candidate queries with selection conditions on more

columns can be generated. Our experiments consider

queries with selection conditions on up to two columns.

Once the candidate queries were generated, we applied our set

discovery strategy to discover the target query. The user answers

Target

query

Query

description

Number of

output tuples

T1 𝜎𝑏𝑖𝑟𝑡ℎ𝐶𝑜𝑢𝑛𝑡𝑟𝑦=“𝑈𝑆𝐴”∧𝑏𝑖𝑟𝑡ℎ𝑌𝑒𝑎𝑟>1990 (𝑃𝑒𝑜𝑝𝑙𝑒) 892

T2 𝜎𝑏𝑖𝑟𝑡ℎ𝐶𝑖𝑡𝑦=“𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠”∧ℎ𝑒𝑖𝑔ℎ𝑡>70∧ℎ𝑒𝑖𝑔ℎ𝑡<80 (𝑃𝑒𝑜𝑝𝑙𝑒) 201

T3 𝜎𝑏𝑎𝑡𝑠=“𝐿”∧𝑡ℎ𝑟𝑜𝑤𝑠=“𝑅” (𝑃𝑒𝑜𝑝𝑙𝑒) 2179

T4 𝜎𝑏𝑖𝑟𝑡ℎ𝐶𝑜𝑢𝑛𝑡𝑟𝑦=“𝑈𝑆𝐴”∧𝑏𝑎𝑡𝑠=“𝐵” (𝑃𝑒𝑜𝑝𝑙𝑒) 939

T5 𝜎𝑏𝑖𝑟𝑡ℎ𝑀𝑜𝑛𝑡ℎ=12∧𝑏𝑖𝑟𝑡ℎ𝐷𝑎𝑦=25 (𝑃𝑒𝑜𝑝𝑙𝑒) 65

T6 𝜎ℎ𝑒𝑖𝑔ℎ𝑡>75∧𝑤𝑒𝑖𝑔ℎ𝑡>260 (𝑃𝑒𝑜𝑝𝑙𝑒) 49

T7 𝜎ℎ𝑒𝑖𝑔ℎ𝑡<65∧𝑤𝑒𝑖𝑔ℎ𝑡<160 (𝑃𝑒𝑜𝑝𝑙𝑒) 26

Table 2: Target queries for the baseball database

Target

query

Player ids of

example tuples

# of candidate

queries

Average number

of output tuples

T1 baragca01, phillev01 776 9404.24

T2 ryanbr01, edwarda01 987 11254.35

T3 ellioal01, drumrke01 940 10612.07

T4 dashnle01, craigro02 916 10957.30

T5 brownll01, ellerfr01 1339 9772.70

T6 evansde01, fulchje01 600 7187.00

T7 emmerbo01, gearidi01 1189 7795.78

Table 3: Information about selected example tuples and
generated candidate queries on baseball database

about the membership of the presented tuples were simulated

by verifying them against the output of the target query. Table 3

provides information about the selected example tuples for each

target query, the number of generated candidate queries from the

example tuples, and the average number of tuples in the output

of those candidate queries.

5.3 Evaluation Results
5.3.1 Choosing the parameters 𝑘 and 𝑞. As 𝑘 increases, the

generated trees are expected to be closer to an optimal tree and

when 𝑘 is set to the height of an optimal tree or greater, our

algorithm finds an optimal tree. However, as 𝑘 increases, the

running time increases dramatically. Parameter q acts similar to

beam size in deep learning, and setting this parameter allows

us to increase 𝑘 without too much affecting the running time.

To set the parameters 𝑘 and 𝑞 for our algorithms, we did run

some experiments on our web tables dataset. Fig. 3 shows that

the runtime of 𝑘-LP increases by one to two orders of magnitude

when the number of lookahead steps 𝑘 is increased from 2 to 3. At

the same time, the average number of questions usually becomes

less with higher 𝑘 . To balance the runtime with the quality of

the trees that are constructed, we set 𝑘 = 2 for our experiments

with the 𝑘-LP strategy. The runtime may also be kept low, while

increasing 𝑘 , using the 𝑘-LPLE strategy, which limits the number

of entities in each step. For our experiments with 𝑘-LPLE and

𝑘-LPLVE strategies, we set 𝑘 = 3 and experiment with different

values (up to 50) of the number of entities 𝑞. The average number

of questions that are required remains almost the same when

the value of 𝑞 exceeds 10, but the runtime increases significantly.

Therefore, we set 𝑞 = 10 for the 𝑘-LPLE and 𝑘-LPLVE strategies.

The average numbers of questions for larger values of 𝑞 are

almost the same hence are not reported here.

5.3.2 Comparison to strategies in the literature. A strong base-

line for comparison is information gain [28], which is also equiv-

alent to indistinguishable pairs, gain-𝑘 with 𝑘 = 1, and our 𝑘-LP

412



Figure 3: Tree construction time (seconds) for 𝑘-LP varying
𝑘 on web tables dataset

T1 T2 T3 T4 T5 T6 T7

Avg 97.3% 99.4% 99.1% 99.7% 88.5% 99.7% 99.9%

Min 90.1% 94.6% 96.5% 98.0% 30.6% 98.1% 99.5%

Table 4: Average and minimum number of entities pruned
at all nodes for the Baseball dataset

with 𝑘 = 1; they all select the same entity as discussed in Sec-

tion 4.2. Our evaluation shows improvements over InfoGain in

the average number of questions with the cost metric AD and the

maximum number of questions with the cost metric H. The mean

improvement in the maximum number of questions (H) is close

to one, whereas the mean improvement for the average number

of questions (AD) is less due to the facts that the improvement is

averaged over all sets in each sub-collection and that the average

number of questions for InfoGain is already very close to the

optimal (the average difference in the average number of ques-

tions with optimal solution for InfoGain is only about 0.048) with

little room for improvement. The improvements in the number

of questions over Info-Gain for all our reported methods (k-LP

with k=2 and k-LPLE and k-LPLVE with k=3 and q=10) under

both AD and H are all statistically significant at 𝛼 = 0.01 using

one-tailed t-test. It should be noted that Info-Gain is a pretty

strong baseline, and any improvement in the number of ques-

tions is important. For example, if the questions are medical tests

required to identify a disease, then a small reduction even in the

average number of tests could save the patients a large amount

of money and time to complete the tests.

5.3.3 Effectiveness of our pruning. The pruning proposed in

this paper makes a huge difference in the tree construction time

of all our strategies. On our Web tables dataset, more than 99% of

candidate entities are pruned at the root level (for both 𝑘-LP with

𝑘 = 2 and 𝑘 = 3), meaning no tree is constructed for those entities

as the root. The pruning also happens at the nodes under the root.

Table 4 shows the average and the minimum number of entities

pruned at each node for the Baseball dataset at 𝑘 = 2. The results

are almost the same for 𝑘 = 3. In most cases, more than 90% of the

entities are pruned, demonstrating the effectiveness of our lower

bounds and the choice of questions. Fig. 4a shows the speedup

on the web tables dataset, and Fig. 4b shows the same on the

synthetic datasets. The average speedup in runtime on the web

tables dataset is in the range of two to three orders of magnitude

for 𝑘 = 2 and up to five orders of magnitude when 𝑘 = 3. Since

the runtime of gain-𝑘 increases polynomially with the number of

entities and exponentially with 𝑘 , the speedup is more for larger

values of 𝑘 and on datasets with a large number of entities and

sets. This can be seen in Fig. 4a for the web tables dataset where

𝑘 is varied from 2 to 3 and in Fig. 4b for the synthetic dataset

with a fixed 𝑘 and varying the number of sets.

5.3.4 Performance varying the overlap between sets. One fac-
tor that affects the performance of a set discovery is the amount

of overlap between sets. Consider an extreme case where there

is no overlap between sets. With 𝑛 sets, one needs to ask roughly

𝑛/2 questions on average (𝑛 − 1 questions in the worst case) to

find a target set. As the overlap between sets increases, there is

more chance to filter more than one set with each question. To

better understand this relationship between the overlap and the

search performance, we varied the overlap ratio as in Table 1a

for our synthetic dataset and measured the number of questions

that were needed to discover each set. Fig. 5 shows the average

number of questions that were needed as the overlap ratio varied

from 0.65 to 0.99. As the overlap ratio increases, both the average

number of questions and the tree construction time decrease.

When the overlap ratio becomes less than 0.90, the average num-

ber of questions starts showing an upward trend. This upward

trend is expected to continue to the point where one needs to ask

roughly 𝑛/2 questions on average (𝑛 − 1 questions in the worst

case) to find a target set. This happens, for example, when all

sets have the same elements except at least one more element

that distinguishes each set from the rest.

5.3.5 Scalability with the number of entities and the collec-
tion size. To evaluate the scalability of our algorithms on larger

datasets, we conducted some experiments using our synthetic

data. In one experiment, we varied the number of distinct entities

in a collection, while keeping the number of sets and the overlap

ratio fixed at 10k and 0.9 respectively. The number of distinct

entities changes (as shown in Table 1c) with the set size varied.

As can be seen in Fig. 6, the average number of questions is not

affected much, but the tree construction time increases because

of the larger number of candidate entities that are considered dur-

ing the lower bounds calculation. The increase in running time

is linear for 𝑘-LPLE and 𝑘-LPLVE, and that of 𝑘-LP is quadratic

with 𝑘 = 2.

In another experiment, we varied the number of sets in the

collection while keeping the set size in [50, 60] and the overlap

ratio fixed at 0.9. The number of distinct entities𝑚 increases as

well (as shown in Table 1b), when we increase the number of

sets 𝑛. As shown in Fig. 7, with each doubling of the input size,

the average number of questions increases roughly by 1. The

tree construction time is expected to increase linearly with the

number of sets if the number of distinct entities is fixed. In our

experiment, the tree construction time looks a bit far from linear

(and more quadratic) because of the increase in𝑚 as 𝑛 increases.

5.3.6 Evaluation results on query discovery. Fig. 8 shows both
the number of questions and the query discovery time to discover

the target queries on the baseball database for the baseline Info-

Gain and our lookahead strategies. It can be seen that the number

of questions for 𝑘-LP, 𝑘-LPLE, and 𝑘-LPLVE is less than or equal

to InfoGain (except T7 for 𝑘-LP). Since none of the strategies are

optimal, our strategies may sometimes require more questions

than InfoGain, but that probability is very low as discussed in

Section 5.3. Moreover, although the query discovery time of our

strategies is higher than InfoGain, it is relatively small when

the candidate queries have large result sets (on average 7000 to

413



(a) 𝑘-LP vs Gain-𝑘 on web tables data (b) 𝑘-LP vs Gain-𝑘 on synthetic data

Figure 4: Speedup of our strategies because of pruning

Figure 5: Effects of set overlaps on
average number of questions (top)
and tree construction time in seconds
(bottom)

Figure 6: Effects of increasing the
number of distinct entities in a collec-
tion on average number of questions
(top) and tree construction time in
seconds (bottom)

Figure 7: Effects of increasing the
number of sets on average number
of questions (top) and tree construc-
tion time in seconds (bottom)

12000), as shown in Table 3. Finally, an important observation can

be made about our query discovery strategy. The user is required

to confirm the membership of only a few tuples (9 to 11) to find

the target query among a large number of candidate queries (600

to 1200) which is more convenient than listing all the possible

output tuples (close to 2000 for some of our target queries) of a

target query.

6 DISCUSSIONS
Our work is focused on reducing the number of interactions by

selecting examples that are most informative, effectively reducing

the number of candidates, but that is only one factor affecting

the user experience. There are multiple other factors that need

to be considered when applying our work in real settings.

Multiple-choice examples Sometimes it is more desirable to

offer a set of examples (instead of one) and asking if one or more

of those examples belong to the target set. For example, this can

be more effective if the user is not sure about some examples. A

interesting question is how those examples should be selected.

One approach is to aim for maximizing the expected gain, as done

in a multi-armed bandit setting. This can dramatically increases

the size of the search space though, and using effective pruning

strategies is essential. An alternative is to find some strategies

414



Target query InfoGain

𝑘-LP

(𝑘 = 2)

𝑘-LPLE

(𝑘 = 3, 𝑞 = 10)

𝑘-LPLVE

(𝑘 = 3, 𝑞 = 10)

T1 10 10 10 10

T2 10 9 10 10

T3 10 10 9 9

T4 10 10 9 9

T5 11 11 10 10

T6 10 9 9 9

T7 10 11 10 10

(a) Number of questions

Target query InfoGain

𝑘-LP

(𝑘 = 2)

𝑘-LPLE

(𝑘 = 3, 𝑞 = 10)

𝑘-LPLVE

(𝑘 = 3, 𝑞 = 10)

T1 1.798 163.097 11.662 7.999

T2 3.234 17.880 37.867 26.060

T3 2.921 31.499 31.589 19.453

T4 2.796 20.548 20.944 15.894

T5 3.687 19.124 23.314 18.690

T6 0.906 10.747 10.395 4.806

T7 2.187 7.108 16.257 17.685

(b) Query discovery time (seconds)

Figure 8: Number of questions and query discovery time to find the target queries on baseball database

for selecting the nodes of a decision tree that provide ‘good’ sets

of examples but not computationally intensive.

Possibility of errors in answers It is possible that users make

mistakes in their answers, and this can introduce another interest-

ing challenge in detecting that a mistake is made and recovering

from them. One approach is to backtrack when no target set satis-

fies all constraints and revisit those constraints. An alternative is

to assign a level of certainty, and make the optimization process

aware of the uncertainties.

Unanswered questions Sometimes the user is uncertain about

the membership of an entity in the target set and may reply

“don’t know” to themembership question. In such cases, the entity

selection strategy can be called again using the same collection of

candidate sets but excluding the entities that the user is not sure

about. With unanswered questions, the search may not resolve

to a single set.

7 CONCLUSIONS
We have studied the problem of set discovery using an interactive

approach, where example entities from candidate sets are pre-

sented and the search is narrowed down based on the feedback

about the presence of those entities in the target set. We have

formulated the search as a tree optimization and have developed

both effective and efficient k-step lookahead algorithms to con-

struct a tree which results in near-optimal number of questions

needed to discover a set. Our evaluation on both real and syn-

thetic data shows the efficiency and scalability of our algorithms.

Our work can be extended or improved in a few directions,

in addition to those highlighted in Section 6. One direction is to

further study the distribution of entities in a collection. Better un-

derstanding the distribution may provide some insight to develop

other strategies. Another direction is to study scenarios where

the sets to be discovered are not equally likely. Extending our

algorithms to the cases where the sets are noisy or have errors is

another direction.

ACKNOWLEDGMENTS
This research was funded by the Natural Sciences and Engineer-

ing Research Council of Canada and through a grant from Servus

Credit Union.

REFERENCES
[1] [n.d.]. Sloan Digital Sky Survey. https://www.sdss.org/

[2] [n.d.]. SQLShare: Database-as-a-Service for Science. https://uwescience.

github.io/sqlshare/

[3] Azza Abouzied, Dana Angluin, Christos Papadimitriou, Joseph Hellerstein,

and Avi Silberschatz. 2013. Learning and Verifying Quantified Boolean Queries

by Example. Proceedings of the PODS Conference (04 2013). https://doi.org/10.

1145/2463664.2465220

[4] Micah Adler and Brent Heeringa. 2008. Approximating Optimal Binary Deci-

sion Trees. In Approximation, Randomization and Combinatorial Optimization.
Algorithms and Techniques, Ashish Goel, Klaus Jansen, José D. P. Rolim, and

Ronitt Rubinfeld (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–9.

[5] Dana Angluin. 1988. Queries and concept learning. Machine learning 2, 4

(1988), 319–342.

[6] Marcelo Arenas, Gonzalo I Diaz, and Egor V Kostylev. 2016. Reverse engineer-

ing SPARQL queries. In Proceedings of the WWW Conference. 239–249.
[7] Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh

Mohania. 2008. Minimum-Effort Driven Dynamic Faceted Search in Structured

Databases. In Proceedings of the 17th ACM Conference on Information and
KnowledgeManagement (Napa Valley, California, USA) (CIKM ’08). Association
for Computing Machinery, New York, NY, USA, 13–22. https://doi.org/10.

1145/1458082.1458088

[8] Angela Bonifati, Radu Ciucanu, and Slawomir Stawork. 2014. Interactive

inference of join queries. In In EDBT. 451–462.
[9] Angela Bonifati, Radu Ciucanu, and Sławek Staworko. 2016. Learning Join

Queries from User Examples. ACM Trans. Database Syst. 40, 4, Article 24 (Jan.
2016), 38 pages. https://doi.org/10.1145/2818637

[10] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. 2009. Query

recommendations for interactive database exploration. In International Con-
ference on Scientific and Statistical Database Management. Springer, 3–18.

[11] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2014. Explore-

by-Example: An Automatic Query Steering Framework for Interactive Data

Exploration. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association
for Computing Machinery, New York, NY, USA, 517–528. https://doi.org/10.

1145/2588555.2610523

[12] Irit Dinur andDavid Steurer. 2014. Analytical approach to parallel repetition. In

Proceedings of the forty-sixth annual ACM symposium on Theory of computing.
624–633.

[13] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. 2009. Truth

discovery and copying detection in a dynamic world. Proceedings of the VLDB
Endowment 2, 1 (2009), 562–573.

[14] Saher Esmeir and Shaul Markovitch. 2004. Lookahead-Based Algorithms

for Anytime Induction of Decision Trees. In Proceedings of the Twenty-First
International Conference on Machine Learning (Banff, Alberta, Canada) (ICML
’04). Association for Computing Machinery, New York, NY, USA, 33. https:

//doi.org/10.1145/1015330.1015373

[15] Arif Hasnat. 2021. Interactive set discovery. Master’s thesis. University of

Alberta. https://doi.org/10.7939/r3-k9jr-am91

[16] Bill Howe, Garret Cole, Emad Souroush, Paraschos Koutris, Alicia Key, Nodira

Khoussainova, and Leilani Battle. 2011. Database-as-a-service for long-tail

science. In International Conference on Scientific and Statistical Database Man-
agement. Springer, 480–489.

[17] Laurent Hyafil and Ronald L. Rivest. 1976. Constructing optimal binary

decision trees is NP-complete. Inform. Process. Lett. 5, 1 (1976), 15 – 17. https:

//doi.org/10.1016/0020-0190(76)90095-8

[18] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed Lazowska.

2016. Sqlshare: Results from a multi-year sql-as-a-service experiment. In

Proceedings of the 2016 International Conference on Management of Data. 281–
293.

[19] Dmitri V Kalashnikov, Laks VS Lakshmanan, and Divesh Srivastava. 2018.

Fastqre: Fast query reverse engineering. In Proceedings of the 2018 International
Conference on Management of Data. 337–350.

[20] Nodira Khoussainova, YongChul Kwon, Wei-Ting Liao, Magdalena Balazinska,

Wolfgang Gatterbauer, and Dan Suciu. 2011. Session-based browsing for more

effective query reuse. In International Conference on Scientific and Statistical
Database Management. Springer, 583–585.

[21] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D Sivakumar, An-

drew Tomkins, and Eli Upfal. 2000. Stochastic models for the web graph. In

415



Proceedings 41st Annual Symposium on Foundations of Computer Science. IEEE,
57–65.

[22] Sean Lahman. 2020. Baseball database. http://www.seanlahman.com/

baseball-archive/statistics/

[23] Hyafil Laurent and Ronald L Rivest. 1976. Constructing optimal binary decision

trees is NP-complete. Information processing letters 5, 1 (1976), 15–17.
[24] Hao Li, Chee-Yong Chan, and David Maier. 2015. Query from Examples: An

Iterative, Data-Driven Approach to Query Construction. Proc. VLDB Endow. 8,
13 (Sept. 2015), 2158–2169. https://doi.org/10.14778/2831360.2831369

[25] Tova Milo and Amit Somech. 2018. Next-step suggestions for modern in-

teractive data analysis platforms. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 576–585.

[26] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.

2014. Exemplar queries: Give me an example of what you need. Proceedings
of the VLDB Endowment 7, 5 (2014), 365–376.

[27] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.

2017. New trends on exploratory methods for data analytics. Proceedings of
the VLDB Endowment 10, 12 (2017), 1977–1980.

[28] J. R. Quinlan. 1993. C4.5: Programs for machine learning. Morgan Kaufmann,

San Mateo, CA.

[29] J. Ross Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (March

1986), 81–106. https://doi.org/10.1023/A:1022643204877

[30] Burr Settles. 2009. Active learning literature survey. (2009).

[31] Detlef Sieling. 2008. Minimization of decision trees is hard to approximate. J.
Comput. System Sci. 74, 3 (2008), 394–403.

[32] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009.

Query by Output. In Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data (Providence, Rhode Island, USA) (SIGMOD
’09). Association for Computing Machinery, New York, NY, USA, 535–548.

https://doi.org/10.1145/1559845.1559902

[33] Quoc Trung Tran, CheeYong Chan, and Srinivasan Parthasarathy. 2014. Query

Reverse Engineering. The VLDB Journal 23, 5 (Oct. 2014), 721–746. https:

//doi.org/10.1007/s00778-013-0349-3

[34] Yaacov Y. Weiss and Sara Cohen. 2017. Reverse Engineering SPJ-Queries

from Examples. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (Chicago, Illinois, USA) (PODS
’17). Association for Computing Machinery, New York, NY, USA, 151–166.

https://doi.org/10.1145/3034786.3056112

[35] Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. 2021. Dive

into deep learning. arXiv preprint arXiv:2106.11342 (2021).
[36] Meihui Zhang, Hazem Elmeleegy, Cecilia Procopiuc, and Divesh Srivastava.

2013. Reverse engineering complex join queries. Proceedings of the ACM
SIGMOD International Conference on Management of Data, 809–820. https:

//doi.org/10.1145/2463676.2465320

[37] Qianrui Zhang, Haoci Zhang, Thibault Sellam, and Eugene Wu. 2019. Mining

precision interfaces from query logs. In Proceedings of the 2019 International
Conference on Management of Data. 988–1005.

[38] Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic Evaluation for Text-

to-SQL with Distilled Test Suites. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Association for

Computational Linguistics, 396–411.

[39] Moshé M Zloof. 1975. Query by example. In Proceedings of the national
computer conference and exposition. 431–438.

416


