
Data Provenance for SHACL
Thomas Delva

IDLab, Ghent University, imec

Ghent, Belgium

thomdelva@gmail.com

Anastasia Dimou

Dept. Computer Science, KU Leuven

Leuven, Belgium

anastasia.dimou@kuleuven.be

Maxime Jakubowski

DSI, Hasselt University

Hasselt, Belgium

maxime.jakubowski@uhasselt.be

Jan Van den Bussche

DSI, Hasselt University

Hasselt, Belgium

jan.vandenbussche@uhasselt.be

ABSTRACT
In constraint languages for RDF graphs, such as ShEx and SHACL,

constraints on nodes and their properties are known as “shapes”.

Using SHACL, we propose in this paper the notion of neighbor-
hood of a node 𝑣 satisfying a given shape in a graph 𝐺 . This

neighborhood is a subgraph of 𝐺 , and provides data provenance

of 𝑣 for the given shape. We establish a correctness property

for the obtained provenance mechanism, by proving that neigh-

borhoods adhere to the Sufficiency requirement articulated for

provenance semantics for database queries. As an additional ben-

efit, neighborhoods allow a novel use of shapes: the extraction

of a subgraph from an RDF graph, the so-called shape fragment.

We compare shape fragments with SPARQL queries. We discuss

implementation strategies for computing neighborhoods, and

present initial experiments demonstrating that our ideas are fea-

sible.

1 INTRODUCTION
An important functionality expected ofmodern datamanagement

systems [1] is that they can provide provenance for the results they
produce in response to queries or constraint checks. Intuitively,

the provenance of a query result explains why the result was

produced. Provenance typically takes the form of a subinstance,

containing the data on which the produced result depends, or

the data that is responsible for the result.

Provenance semantics have been proposed for a variety of data

models and query languages, as surveyed by Glavic [27], even

with many different proposals for the standard relational model

and conjunctive queries. For the Shapes Constraint Language,

SHACL [54], however, a provenance semantics has been lacking

so far. Our goal in this paper is to fill this gap.

SHACL is the W3C-recommended language for formulating

constraints (called “shapes”) on nodes in graph data, more specif-

ically, RDF graphs [52]. In RDF, a framework often used on the

Web, data is represented as sets of subject–property–object triples.

Viewing properties as labeled edges, such a set of triples is indeed

naturally interpreted as a labeled graph over the subjects and

objects.

Example 1.1. Consider a publication graph (like the DBLP data-
base) in RDF, where nodes represent papers, authors, and classes.

We have :author-labeled edges from papers to their authors, and

rdf:type-labeled edges from nodes to their class (e.g., paper, stu-

dent, professor). A node on which a constraint is checked will

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-093-6 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

be referred to as a focus node. Consider the constraint “the focus
node has at least one author of type student”. In the language

SHACL, this constraint is expressed by the following shape:

:WorkshopShape sh:property [
sh:path :author ; sh:qualifiedMinCount 1 ;
sh:qualifiedValueShape [sh:class :Student]] .

The first line introduces the shape and names it :WorkshopShape;
the other two lines define the actual constraint in SHACLs RDF-

based syntax.

Provenance semantics is normally defined for query languages,

not for constraint languages. Yet, any shape (constraint) 𝜙 can be

naturally treated as the query that returns the set of nodes from

the input graph that conform to 𝜙 . Following this idea, we will

propose a provenance semantics for SHACL that returns, for any

shape 𝜙 , any RDF graph 𝐺 , and any focus node 𝑣 from 𝐺 that

conforms to the shape, a certain subset of 𝐺 . This subset, which

we call the neighborhood of 𝑣 in 𝐺 with respect to 𝜙 , intuitively

consists of the triples from 𝐺 that contribute to 𝑣 conforming to

𝜙 .

Example 1.2. For our example :WorkshopShape, we will de-
fine the neighborhood of a conforming node 𝑣 to consist of all

triples (𝑣 :author 𝑥) from the graph where the graph also has the

triple (𝑥 rdf:type Student), and that triple is also included in the

neighborhood.

The above example involves a simple positive-existential con-

straint, but SHACL has quite powerful logical constructs, includ-

ing negation, universal and counting quantifiers, path expres-

sions, and primitives for equality and disjointness. This means

that giving a nontrivial definition of neighborhood is challenging,

if we want neighborhoods to satisfy an essential criterion known

as sufficiency [27]. Simply put, a neighborhood 𝑁 of a node 𝑣

with respect to a shape 𝜙 is sufficient if 𝑣 still conforms to 𝜙 when

evaluated in the subgraph 𝑁 . We will prove sufficiency for our

provenance semantics for SHACL.

For conjunctive queries or positive-existential queries, suffi-

ciency is easy to satisfy. For a language with the logical constructs

mentioned above, however, we are the first to present a nontrivial

provenance semantics for which sufficiency can be proved. We

specify “nontrivial” here, as one can always define the neigh-

borhood to be the entire graph and obtain sufficiency trivially.

Indeed, the challenge is to keep only the relevant triples, without

throwing out too much. Also, thanks to negation, we obtain both

“why” and “why not” provenance [34]: if 𝑣 does not conform to

a shape 𝜙 , then its neighborhood for the shape ¬𝜙 provides the

explanation.

Interestingly, neighborhoods suggest an opportunity to lever-

age shapes beyond conformance checking, and use them also to

Series ISSN: 2367-2005 285 10.48786/edbt.2023.23

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.23

retrieve data. Specifically, given a shape 𝜙 and an input graph

𝐺 , we can retrieve the subgraph of 𝐺 formed by the union of all

neighborhoods of all nodes in 𝐺 that conform to 𝜙 . We refer to

the result as the shape fragment of 𝐺 with respect to 𝜙 . We will

actually prove a stronger version of sufficiency, to the effect that

a node 𝑣 conforms to 𝜙 in 𝐺 if and only if conforms to 𝜙 in the

shape fragment of 𝐺 with respect to 𝜙 .

Readers familiar with the language will point out that in stan-

dard usage of SHACL, shapes are associated with targets, which
are simple kinds of node-returning queries. Such a target–shape

pair represents an inclusion statement, to the effect that all nodes

returned by the target must satisfy the shape. Thus, in SHACL

one specifies a collection of inclusion statements, which we refer

to as a shape schema.1 The task of validation then amounts to

checking whether an input graph conforms to the schema, i.e.,

satisfies all inclusions.

In our work, we will duly generalize the notion of shape frag-

ments to shape schemas, and also extend the sufficiency result

to them.

Example 1.3. We may associate to our shape :WorkshopShape
the target that retrieves all papers. In SHACL syntax this is ex-

pressed by adding the statement :WorkshopShape sh:targetClass
:Paper to the shapes graph. An RDF graph 𝐺 validates against

the resulting schema if for every triple (𝑣 rdf:type :Paper) in 𝐺 ,

node 𝑣 conforms to :WorkshopShape.
The shape fragment of 𝐺 for this schema, as we will define

it, consists of all the above triples (𝑣 rdf:type :Paper) plus all
triples from the neighborhoods of these nodes 𝑣 with respect

to shape :WorkshopShape. Sufficiency for shape fragments will

guarantee that the resulting shape fragment still validates against

the schema (as we can indeed also verify in this example).

The further contents of this paper can be summarized as fol-

lows. Section 2 presents preliminaries on SHACL, defining shapes

and shape schemas formally.

Section 3 motivates and defines our notion of neighborhood,

and establishes sufficiency.

Section 4 develops the notion of shape fragments.

Section 5 explores how neighborhoods can be computed, ei-

ther by translation to SPARQL, or by instrumenting an existing

SHACL validator. We present initial experiments showing that

computing neighborhoods is feasible.

Section 6 compares our work to related work on data prove-

nance, and to a recent independent proposal, similar to shape

fragments, made by Labra Gayo [36]. We also compare the ex-

pressive power of shape fragments to Triple Pattern Fragments

[62], a popular existing subgraph retrieval mechanism based on

single triple patterns [10, 31, 38].

Section 7 concludes the paper by discussing possible new

applications and topics for further research.

Due to space limitations, some proofs have been omitted or

abbreviated; a full version is available on arXiv.

2 PRELIMINARIES ON SHACL
In this section, we give self-contained definitions of shapes, their

syntax and their semantics, and of shape schemas. It will be

convenient here to work not with the actual SHACL syntax, but

to build upon the logical syntax proposed by Corman, Reutter

and Savkovic [19], which is gaining traction [3, 5, 39, 45]. We

extend their proposal to cover all features of SHACL, such as

1
The official SHACL terminology is “shapes graph” instead of shape schema.

disjointness, zero-or-one property paths, closedness, language

tags, node tests, and literals. We have verified that our definitions

given here fully cover real SHACL.

From the outset, we assume three pairwise disjoint infinite

sets 𝐼 , 𝐿, and 𝐵 of IRIs, literals, and blank nodes, respectively. We

use 𝑁 to denote the union 𝐼 ∪𝐵∪𝐿; all elements of 𝑁 are referred

to as nodes. Literals may have a “language tag” [52]. We abstract

this by assuming an equivalence relation ∼ on 𝐿, where 𝑙 ∼ 𝑙 ′

represents that 𝑙 and 𝑙 ′ have the same language tag. Moreover, we

assume a strict partial order < on 𝐿 that abstracts comparisons

between numeric values, strings, dateTime values, etc.

An RDF triple (𝑠, 𝑝, 𝑜) is an element of (𝐼 ∪ 𝐵) × 𝐼 × 𝑁 . We

refer to the elements of the triple as the subject 𝑠 , the property 𝑝 ,

and the object 𝑜 . An RDF graph 𝐺 is a finite set of RDF triples. It

is natural to think of an RDF graph as an edge-labeled, directed

graph, viewing a triple (𝑠, 𝑝, 𝑜) as a 𝑝-labeled edge from node 𝑠

to node 𝑜 .

We formalize SHACL property paths as path expressions 𝐸.
Their syntax is given by the following grammar, where 𝑝 ranges

over 𝐼 :

𝐸 ::= 𝑝 | 𝐸− | 𝐸/𝐸 | 𝐸 ∪ 𝐸 | 𝐸∗ | 𝐸?
SHACL can do many tests on individual nodes, such as testing

whether a node is a literal, or testing whether an IRI matches

some regular expression. We abstract this by assuming a set Ω
of node tests; for any node test 𝑡 and node 𝑎, we assume it is

well-defined whether or not 𝑎 satisfies 𝑡 .
The formal syntax of shapes 𝜙 is now given by the following

grammar.

𝐹 ::= 𝐸 | id
𝜙 ::= ⊤ | ⊥ | hasShape(𝑠) | test (𝑡) | hasValue(𝑐)

| eq(𝐹, 𝑝) | disj(𝐹, 𝑝) | closed (𝑃)
| lessThan(𝐸, 𝑝) | lessThanEq(𝐸, 𝑝) | uniqueLang(𝐸)
| ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙

| ≥𝑛 𝐸.𝜙 | ≤𝑛 𝐸.𝜙 | ∀𝐸.𝜙
with 𝐸 a path expression; 𝑠 ∈ 𝐼 ∪ 𝐵; 𝑡 ∈ Ω; 𝑐 ∈ 𝑁 ; 𝑝 ∈ 𝐼 ; 𝑃 ⊆ 𝐼

finite; and 𝑛 a natural number.

Remark 2.1. In shapes of the form eq(𝐹, 𝑝) or disj(𝐹, 𝑝), the
argument expression 𝐹 can be either a path expression 𝐸 or the

keyword ‘id’. We will see soon that ‘id’ stands for the focus

node. We need to include these id-variants in order to reflect

the distinction, made in the SHACL recommendation, between

“node shapes” (expressing constraints on the focus node itself)

and “property shapes” (expressing constraints on nodes reachable

from the focus node by a path expression). □

We formalize SHACL shapes graphs as schemas. We first define

the notion of shape definition, as a triple (𝑠, 𝜙, 𝜏) where 𝑠 ∈ 𝐼 ∪ 𝐵,

and 𝜙 and 𝜏 are shapes. The elements of the triple are referred to

as the shape name, the shape expression, and the target expression,
respectively.

2

Now a schema is a finite set𝐻 of shape definitions such that no

two shape definitions have the same shape name. Moreover, as in

the current SHACL recommendation, in this paper we consider

only nonrecursive schemas. Here,𝐻 is said to be recursive if there

is a directed cycle in the directed graph formed by the shape

names, with an edge 𝑠1 → 𝑠2 if hasShape(𝑠2) occurs in the shape

expression defining 𝑠1.

In order to define the semantics of shapes and shape schemas,

we first recall that a path expression 𝐸 evaluates on an RDF

2
Real SHACL only supports specific shapes for targets, but our development works

equally well when allowing any shape for a target.

286

Table 1: Conditions for conformance of a node to a shape.

𝜙 𝐻,𝐺, 𝑎 |= 𝜙 if:

hasValue(𝑐) 𝑎 = 𝑐

test (𝑡) 𝑎 satisfies 𝑡

hasShape(𝑠) 𝐻,𝐺, 𝑎 |= def (𝑠, 𝐻)
≥𝑛 𝐸.𝜓 ♯{𝑏 ∈ J𝐸K𝐺 (𝑎) | 𝐻,𝐺,𝑏 |= 𝜓 } ≥ 𝑛

≤𝑛 𝐸.𝜓 ♯{𝑏 ∈ J𝐸K𝐺 (𝑎) | 𝐻,𝐺,𝑏 |= 𝜓 } ≤ 𝑛

∀𝐸.𝜓 every 𝑏 ∈ J𝐸K𝐺 (𝑎) satisfies 𝐻,𝐺,𝑏 |= 𝜓

eq(𝐹, 𝑝) the sets J𝐹K𝐺 (𝑎) and J𝑝K𝐺 (𝑎) are equal
disj(𝐹, 𝑝) the sets J𝐹K𝐺 (𝑎) and J𝑝K𝐺 (𝑎) are disjoint
closed (𝑃) for all triples (𝑎, 𝑝, 𝑏) ∈ 𝐺 we have 𝑝 ∈ 𝑃

lessThan(𝐸, 𝑝) 𝑏 < 𝑐 for all 𝑏 ∈ J𝐸K𝐺 (𝑎) and 𝑐 ∈ J𝑝K𝐺 (𝑎)
lessThanEq(𝐸, 𝑝) 𝑏 ≤ 𝑐 for all 𝑏 ∈ J𝐸K𝐺 (𝑎) and 𝑐 ∈ J𝑝K𝐺 (𝑎)
uniqueLang(𝐸) 𝑏 ≁ 𝑐 for all 𝑏 ≠ 𝑐 ∈ J𝐸K𝐺 (𝑎).

graph 𝐺 to a binary relation on 𝑁 , denoted by J𝐸K𝐺 and defined

as follows. J𝑝K𝐺 = {(𝑎, 𝑏) | (𝑎, 𝑝, 𝑏) ∈ 𝐺}; J𝐸−K𝐺 = {(𝑏, 𝑎) |
(𝑎, 𝑏) ∈ J𝐸K𝐺 }; J𝐸?K𝐺 = {(𝑎, 𝑎) | 𝑎 ∈ 𝑁 } ∪ J𝐸K𝐺 ; J𝐸1 ∪ 𝐸2K𝐺 =

J𝐸1K𝐺 ∪ J𝐸2K𝐺 ; J𝐸1/𝐸2K𝐺 = {(𝑎, 𝑐) | ∃𝑏 : (𝑎, 𝑏) ∈ J𝐸1K𝐺 &

(𝑏, 𝑐) ∈ J𝐸2K𝐺 }; and J𝐸∗K𝐺 = the reflexive-transitive closure of

J𝐸K𝐺 . Finally, we also define JidK𝐺 , for any 𝐺 , to be simply the

identity relation on 𝑁 .

We are now ready to define when a focus node 𝑎 conforms to
a shape 𝜙 in a graph 𝐺 , in the context of a schema 𝐻 , denoted

by 𝐻,𝐺, 𝑎 |= 𝜙 . For the boolean operators ⊤ (true), ⊥ (false),

¬ (negation), ∧ (conjunction), ∨ (disjunction), the definition is

obvious. For the other constructs, the definition is shown in

Table 1. In this table, we employ the following notations:

• def (𝑠, 𝐻) denotes the shape expression defining shape

name 𝑠 in 𝐻 . If 𝑠 does not have a definition in 𝐻 , we let

def (𝑠, 𝐻) be ⊤ (this is the behavior in real SHACL).

• We use the notation 𝑅(𝑥), for a binary relation 𝑅, to denote
the set {𝑦 | (𝑥,𝑦) ∈ 𝑅}. We apply this notation to the case

where 𝑅 is of the form J𝐸K𝐺 and 𝑥 is a node. For example,

JidK𝐺 (𝑎) equals the singleton {𝑎}.
• We also use the notion ♯𝑋 for the cardinality of a set 𝑋 .

Note that the conditions for lessThan(𝐸, 𝑝) and lessThanEq(𝐸, 𝑝)
imply that 𝑏 and 𝑐 must be literals.

Example 2.2. • The example shape :WorkshopShape from
the Introduction is expressed as follows:

≥1 :author.≥1 rdf:type/rdfs:subclassOf∗ .hasValue(:Student)

• The shape ¬disj(:friend, :colleague) expresses that the fo-
cus node has at least one friend who is also a colleague. In

real SHACL syntax, it would be expressed as

:HappyAtWork a sh:NodeShape ;
sh:not [

sh:path :friend ;
sh:disjoint :colleague ;] .

• For an IRI 𝑝 , the shape ¬disj(id, 𝑝) expresses that the focus
node has a 𝑝-labeled self-loop, and the shape eq(id, 𝑝)
expresses that its only outgoing 𝑝-edge is a self-loop. □

Finally, we can define conformance of a graph to a schema as

follows. RDF graph 𝐺 conforms to schema 𝐻 if for every shape

definition (𝑠, 𝜙, 𝜏) ∈ 𝐻 and for every 𝑎 ∈ 𝑁 such that 𝐻,𝐺, 𝑎 |= 𝜏 ,

we have 𝐻,𝐺, 𝑎 |= 𝜙 .

Remark 2.3. Curiously, SHACL provides shapes lessThan and

lessThanEq but not their variantsmoreThan andmoreThanEq (with
the obvious meaning). Note that moreThan(𝐸, 𝑝) is not equiva-
lent to ¬lessThanEq(𝐸, 𝑝). In this paper we stay with the SHACL

standard, but our treatment is easily extended to moreThan and

moreThanEq.

Remark 2.4. Note that shapes are unary constraints: they are

satisfied, or not, by any single node at a time (in the context of a

graph).
3
N-ary constraints over nodes in a graph, while natural,

are outside the scope of SHACL.

3 DATA PROVENANCE FOR SHACL
In this section, we propose a provenance semantics for SHACL by

defining the fundamental notion of the neighborhood of a node 𝑣

for a shape𝜙 in a graph𝐺 . The intuition is that this neighborhood

consists of those triples in 𝐺 that show that 𝑣 conforms to 𝜙 ; if 𝑣

does not conform to 𝜙 , the neighborhood is set to be empty. We

want a generic, tractable, deterministic definition that formalizes

this intuition.

3.1 Neighborhoods
Before developing the definition formally, we discuss the salient

features of our approach.

Negation Following the work by Grädel and Tannen on

supporting where-provenance in the presence of negation

[28], we assume shapes are in negation normal form, i.e.,

negation is only applied to atomic shapes. This is no re-

striction, since every shape can be put in negation normal

form, preserving the overall syntactic structure, simply

by pushing negations down. We push negation through

conjunction and disjunction using De Morgan’s laws. We

push negation through quantifiers as follows:

¬ ≥𝑛+1 𝐸.𝜓 ≡ ≤𝑛 𝐸.𝜓 ¬ ≤𝑛 𝐸.𝜓 ≡ ≥𝑛+1 𝐸.𝜓 ¬∀𝐸.𝜓 ≡ ≥1 𝐸.¬𝜓
The negation of ≥0 𝐸.𝜓 is simply false.

Node tests We leave the neighborhood for hasValue and

test shapes empty, as these involve no properties, i.e., no

triples.

Closedness We also define the neighborhood for closed (𝑃)
to be empty, as this is a minimal subgraph in which the

shape is indeed satisfied. A reasonable alternative ap-

proach would be to return all properties of the node, as

“evidence” that these indeed involve only IRIs in 𝑃 . Indeed,

we will show in Section 3.4 that our definitions, while min-

imalistic, are taken such that they can be relaxed without

sacrificing the sufficiency property.

Disjointness Still according to our minimal approach, the

neighborhood for disjointness shapes is empty. Analo-

gously, the same holds for lessThan and uniqueLang shapes.
Equality The neighborhood for a shape eq(𝐸, 𝑝) consists of

the subgraph traced out by the 𝐸-paths and 𝑝-properties

of the node under consideration, evidencing that the sets

of end-nodes are indeed equal. Here, we can no longer af-

ford to return the empty neighborhood, although equality

would hold trivially there. Indeed, this would destroy the

relaxation property promised above. For example, relaxing

by adversely adding just one 𝐸-path and one 𝑝-property

with distinct end-nodes, would no longer satisfy equality.

3
Of course, to check satisfaction, we need to inspect properties of the node, prop-

erties of these properties, etc. Indeed our goal in this paper is to pinpoint exactly

which subgraph needs to be inspected.

287

Nonclosure The neighborhood for a shape ¬closed (𝑃) con-
sists of those triples from the node under consideration

that involve properties outside 𝑃 , as expected.

Nonequality For ¬eq(𝐸, 𝑝) we return the subgraph traced

out by the 𝐸-paths from the node 𝑣 under consideration

that end in a node that is not a 𝑝-property of 𝑣 , and vice

versa. A similar approach is taken for nondisjointness and

negated lessThan shapes.

Quantifiers The neighborhood for a shape ∀𝐸.𝜓 consists,

as expected, of the subgraph traced out by all 𝐸-paths

from the node under consideration to nodes 𝑥 , plus the

𝜓 -neighborhoods of these nodes 𝑥 . For ≥𝑛 𝐸.𝜓 we do some-

thing similar, but we take only those 𝑥 that conform to𝜓 .

Given the semantics of the ≥𝑛 quantifier, it seems tempt-

ing to instead just take a selection of 𝑛 of such nodes 𝑥 .

However, we want a deterministic definition of neighbor-

hood, so we take all 𝑥 . Dually, for ≤𝑛 𝐸.𝜓 , we return the

subgraph traced out by 𝐸-paths from the current node to

nodes not conforming to𝜓 , plus their ¬𝜓 -neighborhoods.

3.2 Formal definition
Towards a formalization of the above ideas, we first make precise

the intuitive notion of a path in an RDF graph, and of the subgraph

traced out by a path. Paths are finite sequences of adjacent steps.

Each step either moves forward from the subject to the object of

a triple, or moves backward from the object to the subject. We

make backward steps precise by introducing, for each property

𝑝 ∈ 𝐼 , its reverse, denoted by 𝑝−. The set of reverse IRIs is denoted
by 𝐼−. We assume 𝐼 and 𝐼− are disjoint, and moreover, we also

define (𝑝−)− to be 𝑝 for every 𝑝 ∈ 𝐼 .

For any RDF triple 𝑡 = (𝑠, 𝑝, 𝑜), the triple 𝑡− := (𝑜, 𝑝−, 𝑠) is
called a reverse triple. As for IRIs, we define (𝑡−)− to be 𝑡 . A step
is an RDF triple (a forward step) or a reverse triple (a backward

step). For any step 𝑡 = (𝑥, 𝑟,𝑦), we refer to 𝑥 as the tail, denoted
by tail(𝑡), and to 𝑦 as the head, denoted by head (𝑡). A path is a

nonempty finite sequence 𝜋 of steps so that head (𝑡1) = tail(𝑡2)
for any two subsequent steps 𝑡1 and 𝑡2 in 𝜋 . The tail of 𝜋 is the tail

of its first step; the head of 𝜋 is the head of its last step. Any two

paths 𝜋 and 𝜋 ′
where head (𝜋) = tail(𝜋 ′) can be concatenated;

we denote this by 𝜋 · 𝜋 ′
.

The graph traced out by a path 𝜋 , denoted by graph(𝜋), is
simply the set of RDF triples underlying the steps of the path.

Thus, backward steps must be reversed. Formally,

graph(𝜋) = {𝑡 | 𝑡 forward step in 𝜋}
∪ {𝑡− | 𝑡 backward step in 𝜋}.

For a set Π of paths, we define graph(Π) = ⋃{graph(𝜋) | 𝜋 ∈ Π}.
We are not interested in arbitrary sets of paths, but in the set

of paths generated by a path expression 𝐸 in an RDF graph𝐺 , de-

noted by paths(𝐸,𝐺) and defined in a standard manner as follows.

paths(𝑝,𝐺) = {(𝑎, 𝑟, 𝑏) ∈ 𝐺 | 𝑟 = 𝑝}; paths(𝐸/𝐸 ′,𝐺) = {𝜋 · 𝜋 ′ |
𝜋 ∈ paths(𝐸,𝐺) & 𝜋 ′ ∈ paths(𝐸 ′,𝐺) & tail(𝜋) = head (𝜋 ′)};
paths(𝐸 ∪ 𝐸 ′,𝐺) = paths(𝐸,𝐺) ∪ paths(𝐸 ′,𝐺); paths(𝐸?,𝐺) =

paths(𝐸,𝐺); paths(𝐸∗,𝐺) = ⋃∞
𝑖=1 paths(𝐸𝑖 ,𝐺); and

paths(𝐸−,𝐺) = {𝜋− | 𝜋 ∈ paths(𝐸,𝐺)}.

Here, 𝐸𝑖 abbreviates 𝐸/· · · /𝐸 (𝑖 times), and 𝜋− = 𝑡−
𝑙
, . . . , 𝑡−

1
for

𝜋 = 𝑡1, . . . , 𝑡𝑙 . Note that paths(𝑝,𝐺) is a set of length-one paths.
In order to link 𝐸-paths to the evaluation of shapes below, we

introduce some more notation, for any two nodes 𝑎 and 𝑏:

paths(𝐸,𝐺, 𝑎, 𝑏) := {𝜋 ∈ paths(𝐸,𝐺) | tail(𝜋) = 𝑎& head (𝜋) = 𝑏}

Note that graph(𝜋), for every 𝜋 ∈ paths(𝐸,𝐺), is a subgraph of
𝐺 . This will ensure that neighborhoods and shape fragments are

always subgraphs of the original graph. Moreover, the following

observation ensures that path expressions will have the same

semantics in the neighborhood as in the original graph:

Proposition 3.1. Let 𝐹 = graph(paths(𝐸,𝐺, 𝑎, 𝑏)). Then

(𝑎, 𝑏) ∈ J𝐸K𝐺 ⇔ (𝑎, 𝑏) ∈ J𝐸K𝐹 .

Note that paths(𝐸,𝐺) may be infinite, due to the use of Kleene

star in 𝐸 and cycles in 𝐺 . However graph(paths(𝐸,𝐺)) is always
finite, because 𝐺 is finite.

We are now ready to define neighborhoods in the context of

an arbitrary but fixed schema 𝐻 . To avoid clutter we will omit 𝐻

from the notation.

Definition 3.2. Let 𝑣 be a node,𝐺 be a graph, and 𝜙 be a shape.

We define the 𝜙-neighborhood of 𝑣 in𝐺 , denoted by 𝐵(𝑣,𝐺, 𝜙), as
the empty RDF graph whenever 𝑣 does not conform to 𝜙 in 𝐺 .

When 𝑣 does conform, the definition is given in Table 2.

In the table, as already discussed above, by pushing negations

down, we can and do assume that𝜙 is put in negation normal form,

meaning that negation is only applied to atomic shapes. (Atomic

shapes are those from the first three lines in the production for

𝜙 , in the grammar for shapes given in Section 2.)

Example 3.3. Recall the “happy at work” shape

¬disj(:friend, :colleague)

from Example 2.2. The neighborhood of a conforming node

𝑣 consists of the union of all pairs of triples (𝑣 :friend 𝑥) and

(𝑣 :colleague 𝑥) for each common 𝑥 that exists in the data graph.

3.3 Algorithms for neighborhoods
Table 2 defines neighborhoods by set-theoretic expressions which

are constructive, comparable to safe relational calculus formulas

in the relational model [60]. As such, these expressions immedi-

ately yield a naive algorithm for computing neighborhoods.

Consider, for example, the computation of 𝐵(𝑣,𝐺, ≥𝑛 𝐸.𝜓). We

proceed as follows, following the set-theoretic expression pro-

vided. Run through all nodes 𝑥 for which there is an 𝐸-path from

𝑣 to 𝑥 . Algorithms for such regular path queries are well under-

stood [9] and are supported by SPARQL query processors. For

each such 𝑥 , test whether 𝐺, 𝑥 |= 𝜓 . This test is according to the

semantics of shapes defined in Table 1, which is again construc-

tive and algorithmic. Now for each 𝑥 passing the test, recursively

compute 𝐵(𝑥,𝐺,𝜓), and also compute graph(paths(𝐸,𝐺, 𝑣, 𝑥)).
Collect the results for all 𝑥 , and return their union.

For another example, the computation of 𝐵(𝑣,𝐺,¬eq(𝐸, 𝑝))
proceeds as follows. Again run through all nodes 𝑥 for which

there is an 𝐸-path from 𝑣 to 𝑥 . For each 𝑥 we test if (𝑣, 𝑝, 𝑥) is in
𝐺 ; if it is not, we compute graph(paths(𝐸,𝐺, 𝑣, 𝑥)). We collect the

resulting triples for all 𝑥 in a temporary result set 𝑇1. Secondly,

we run through all nodes 𝑥 for which the triple 𝑡 = (𝑣, 𝑝, 𝑥) is in
𝐺 . For each 𝑥 we test if 𝑥 is reachable from 𝑣 by an 𝐸-path; if it is

not, add 𝑡 to the temporary result set 𝑇2. We finally return the

union 𝑇1 ∪𝑇2.

All cases from Table 2 likewise can be given an algorithmic

reading, so together they provide a (naive) algorithm for comput-

ing neighborhoods.

288

Table 2: Neighborhood 𝐵(𝑣,𝐺, 𝜙) in the context of a schema 𝐻 , when𝐺, 𝑣 |= 𝜙 and 𝜙 is in negation normal form. In particular,
in rules 2 and 6, we assume that ¬def (𝑠, 𝐻) and ¬𝜓 are put in negation normal form. In the omitted cases, and when𝐺, 𝑣 ̸ |= 𝜙 ,
the neighborhood is defined to be empty.

𝜙 𝐵(𝑣,𝐺, 𝜙)
hasShape(𝑠) 𝐵(𝑣,𝐺, def (𝑠, 𝐻))
¬hasShape(𝑠) 𝐵(𝑣,𝐺,¬def (𝑠, 𝐻))
𝜙1 ∧ 𝜙2 𝐵(𝑣,𝐺, 𝜙1) ∪ 𝐵(𝑣,𝐺, 𝜙2)
𝜙1 ∨ 𝜙2 𝐵(𝑣,𝐺, 𝜙1) ∪ 𝐵(𝑣,𝐺, 𝜙2)
≥𝑛 𝐸.𝜓

⋃{graph(paths(𝐸,𝐺, 𝑣, 𝑥)) ∪ 𝐵(𝑥,𝐺,𝜓) | (𝑣, 𝑥) ∈ J𝐸K𝐺 & 𝐺, 𝑥 |= 𝜓 }
≤𝑛 𝐸.𝜓

⋃{graph(paths(𝐸,𝐺, 𝑣, 𝑥)) ∪ 𝐵(𝑥,𝐺,¬𝜓) | (𝑣, 𝑥) ∈ J𝐸K𝐺 & 𝐺, 𝑥 |= ¬𝜓 }
∀𝐸.𝜓 ⋃{graph(paths(𝐸,𝐺, 𝑣, 𝑥)) ∪ 𝐵(𝑥,𝐺,𝜓) | (𝑣, 𝑥) ∈ J𝐸K𝐺 }
eq(𝐸, 𝑝) ⋃{graph(paths(𝐸 ∪ 𝑝,𝐺, 𝑣, 𝑥)) | (𝑣, 𝑥) ∈ J𝐸 ∪ 𝑝K𝐺 }
eq(id, 𝑝) {(𝑣, 𝑝, 𝑣)}
¬eq(𝐸, 𝑝) ⋃{graph(paths(𝐸,𝐺, 𝑣, 𝑥)) | (𝑣, 𝑥) ∈ J𝐸K𝐺 & (𝑣, 𝑝, 𝑥) ∉ 𝐺} ∪ {(𝑣, 𝑝, 𝑥) ∈ 𝐺 | (𝑣, 𝑥) ∉ J𝐸K𝐺 }
¬eq(id, 𝑝) {(𝑣, 𝑝, 𝑥) ∈ 𝐺 | 𝑥 ≠ 𝑣}
¬disj(𝐸, 𝑝) ⋃{graph(paths(𝐸,𝐺, 𝑣, 𝑥)) ∪ {(𝑣, 𝑝, 𝑥)} | (𝑣, 𝑥) ∈ J𝐸K𝐺 & (𝑣, 𝑝, 𝑥) ∈ 𝐺}
¬disj(id, 𝑝) {(𝑣, 𝑝, 𝑣)}
¬lessThan(𝐸, 𝑝) ⋃{graph(paths(𝐸,𝐺, 𝑣, 𝑥)) ∪ {(𝑣, 𝑝,𝑦)} | (𝑣, 𝑥) ∈ J𝐸K𝐺 & (𝑣, 𝑝,𝑦) ∈ 𝐺 & 𝑥 ≮ 𝑦}
¬lessThanEq(𝐸, 𝑝) ⋃{graph(paths(𝐸,𝐺, 𝑣, 𝑥)) ∪ {(𝑣, 𝑝,𝑦)} | (𝑣, 𝑥) ∈ J𝐸K𝐺 & (𝑣, 𝑝,𝑦) ∈ 𝐺 & 𝑥 ≰ 𝑦}
¬uniqueLang(𝐸) ⋃{graph(paths(𝐸,𝐺, 𝑣, 𝑥)) | (𝑣, 𝑥) ∈ J𝐸K𝐺 & ∃𝑦 ≠ 𝑥 : (𝑣,𝑦) ∈ J𝐸K𝐺 & 𝑦 ∼ 𝑥}
¬closed (𝑃) {(𝑣, 𝑝, 𝑥) ∈ 𝐺 | 𝑝 ∉ 𝑃}

Computing graph(paths(𝐸,𝐺, 𝑣, 𝑥)). A key ingredient in the

neighborhood algorithm is the computation of the subgraph

graph(paths(𝐸,𝐺, 𝑣, 𝑥)). For simple path expressions 𝐸 which are

just a property 𝑝 or an inverse property 𝑝−, these are simply

the singletons {(𝑣, 𝑝, 𝑥)} and {(𝑥, 𝑝, 𝑣)}, respectively. For more

complex path expressions 𝐸, however, it is not obvious how

graph(paths(𝐸,𝐺, 𝑣, 𝑥)) can be computed. We will actually show

this later in Lemma 5.1, by effectively reducing the problem to

the computation of a SPARQL query.

Complexity. In Section 5.1 we will see more generally that,

in fact, the entire neighborhood can be computed by a single

SPARQL query. Since SPARQL (without the need for regular

expressions with counting, and using standard regular path se-

mantics) has polynomial-time data complexity [48], we obtain

polynomial-time complexity of neighborhood computation.

3.4 The sufficiency property
We can prove that neighborhoods indeed provide us with an ade-

quate provenance semantics for shapes. Specifically, we want to

show that the neighborhood 𝐵(𝑣,𝐺, 𝜙) is sufficient in the sense of

providing provenance for the conformance of 𝑣 to 𝜙 in 𝐺 . Think-

ing of a shape as a unary query, returning all nodes that conform

to it, the following theorem states exactly the “sufficiency prop-

erty” that has been articulated in the theory of data provenance

[27].

Theorem 3.4 (Sufficiency). If 𝐺, 𝑣 |= 𝜙 then also 𝐺 ′, 𝑣 |= 𝜙

for any RDF graph 𝐺 ′ such that 𝐵(𝑣,𝐺, 𝜙) ⊆ 𝐺 ′ ⊆ 𝐺 .

Proof. By induction on the structure of 𝜙 . Due to space lim-

itations we only present one representative base case and one

inductive case.

Let 𝜙 be of the form eq(𝐸, 𝑝). We must show that J𝐸K𝐺
′ (𝑣) =

J𝑝K𝐺
′ (𝑣). For the containment from left to right, let 𝑥 ∈ J𝐸K𝐺

′ (𝑣).
Since 𝐺 ′ ⊆ 𝐺 , also 𝑥 ∈ J𝐸K𝐺 (𝑣). Since 𝐺, 𝑣 |= 𝜙 , it follows that

𝑥 ∈ J𝑝K𝐺 (𝑣). Now let 𝐹 = graph(paths(𝑝,𝐺, 𝑣, 𝑥)); note that

𝐹 ⊆ 𝐵. By Proposition 3.1, we have 𝑥 ∈ J𝑝K𝐹 (𝑣). Then since

𝐹 ⊆ 𝐵 ⊆ 𝐺 ′
, also also 𝑥 ∈ J𝑝K𝐺

′ (𝑣) as desired. The containment

from right to left is analogous.

Let 𝜙 be of the form ≤𝑛 𝐸.𝜓 . We begin by verifying that every

𝑥 ∈ J𝐸K𝐺
′ (𝑣) that conforms to𝜓 in𝐺 ′

must also conform to𝜓 in

𝐺 . For, suppose to the contrary that 𝑥 would conform to ¬𝜓 in

𝐺 . Then, by definition, 𝐵(𝑥,𝐺,¬𝜓) ⊆ 𝐵(𝑣,𝐺, 𝜙), which is itself

included in 𝐺 ′
, so 𝐵(𝑥,𝐺,¬𝜓) ⊆ 𝐺 ′

. But then by induction, and

we know 𝐵(𝑣,𝐺, 𝜙) ⊆ 𝐺 ′
. Therefore, by induction, 𝑥 conforms

to ¬𝜓 in 𝐺 ′
, a contradiction.

Now because of the claim just verified, the number of nodes

reachable from 𝑣 through 𝐸 that satisfy𝜓 in 𝐺 ′
must be smaller

or equal to the number of nodes reachable from 𝑣 through 𝐸 that

satisfy 𝜓 in 𝐺 . Hence, since 𝐺, 𝑣 |= 𝜙 , certainly 𝐺 ′, 𝑣 |= 𝜙 , as

desired. □

Note that the Sufficiency property is stated not just for the

neighborhood, but more strongly for all subgraphs 𝐺 ′
that en-

compass the neighborhood. This stronger statement serves both

a technical and a practical purpose. The technical purpose is that

it is needed to deduce our results on shape fragments (cf. the

next Subsection). The practical advantage is that it allows some

leeway for provenance engines. Indeed, even if the engine, for

reasons of efficiency or ease of implementation, return larger
neighborhoods than the ones we strictly define, Sufficiency will

continue to hold.

Example 3.5. Let us consider a variation to the schema from

Example 1.3 in the Introduction. We now require that each paper

must have at least one author, but can have at most one author

who is not of type student. These two constraints are captured
by a schema 𝐻 with two shape definitions. One has the shape

expression ≥1 author.⊤, and the other has the shape expression

≤1 author.¬ ≥1 type.hasValue(student),

which in negation normal form becomes

≤1 author. ≤0 type.hasValue(student) .

289

Both shape definitions have target ≥1 type.hasValue(paper). We

denote the two shape expressions by 𝜙1 and 𝜙2, and the target

by 𝜏 .

Consider the simple graph 𝐺 consisting of a single paper, say

p1. This paper has two authors: Anne, who is a professor, and

Bob, who is a student. Formally, 𝐺 consists of the five triples

(p1, type, paper), (p1, auth,Anne), (p1, auth,Bob), (Anne, type,
prof) and (Bob, type, student).

Let us consider the neighborhood of p1 for the shape 𝜙1 ∧ 𝜏 .

This neighborhood consists of the three triples (p1, type, paper),
(p1, auth,Anne) and (p1, auth,Bob). On the other hand, the

neighborhood of p1 for𝜙2∧𝜏 consists of the three triples (p1, type,
paper), (p1, auth,Bob) and (Bob, type, student).

Note that the triple (Bob, type, student) is essential in the

neighborhood for 𝜙2 ∧ 𝜏 ; omitting it would break Sufficiency. On

the other hand, we are free to add the triple (Anne, type, prof) to
any of the neighborhoods without breaking Sufficiency.

Finally, note that we could add to𝐺 various other triples unre-

lated to the shapes 𝜙1, 𝜙2 and 𝜏 . The neighborhoods would omit

all this information, as desired.

We conclude this section with a number of remarks.

Remark 3.6. A natural question is whether 𝐵(𝑣,𝐺, 𝜙), as we
have defined it, isminimal while still being sufficient in the sense

of Theorem 3.4. Our discussion on quantifiers in Section 3.1 al-

ready indicated non-minimality. Assume, for example, that 𝜙

is “the focus node must have an 𝑎-property” (say, an address),

expressed as ≥1 𝑎.⊤. In a graph 𝐺 with two triples (𝑣, 𝑎, 𝑥) and
(𝑣, 𝑎,𝑦), node 𝑣 has two addresses. Any of the two triples in it-

self would be sufficient as a neighborhood of 𝑣 for 𝜙 . Choosing

between the two addresses 𝑥 and 𝑦, however, leads to a nonde-

terministic behavior.

Remark 3.7. In Theorem 3.1, what can we say if 𝑣 does not

conform to 𝜙 in 𝐺? In this case, 𝑣 conforms to ¬𝜙 in 𝐺 . Hence,

the provenance for the non-conformance will be provided by

𝐵(𝑣,𝐺,¬𝜙). This point was first made by Köhler, Ludäscher and

Zinn [34], who, however, do not define neighborhood subgraphs

and do not prove any Sufficiency property.

Remark 3.8. The neighborhood of a node, for whatever shape,

is always a subset of its connected component in the graph. Thus,

Sufficiency implies that only the connected component (indeed,

only the neighborhood!) is needed to check conformance of a

node.

4 SHAPE FRAGMENTS
In this section we define and illustrate the idea of shape fragments

as a novel mechanism to retrieve subgraphs.

The shape fragment of an RDF graph 𝐺 , for a finite set 𝑆 of

shapes, is the subgraph of 𝐺 formed by the neighborhoods of all

nodes in 𝐺 for the shapes in 𝑆 . Formally:

Frag(𝐺, 𝑆) =
⋃

{𝐵(𝑣,𝐺, 𝜙) | 𝑣 ∈ 𝑁 & 𝜙 ∈ 𝑆}.
Here, 𝑣 ranges over the universe 𝑁 of all nodes, but since neigh-

borhoods are always subgraphs of 𝐺 , it is equivalent to let 𝑣

range over all subjects and objects of triples in𝐺 . So, to compute

Frag(𝐺, 𝑆), we run over 𝑣 , retrieve the neighborhoods for each 𝑣

independently, and collect and return the set of resulting triples.

The shapes in 𝑆 can be interpreted as arbitrary “request shapes”.

An interesting special case, however, is when 𝑆 is derived from

a shape schema 𝐻 . Formally, we define the shape fragment of

𝐺 for 𝐻 as Frag(𝐺,𝐻) := Frag(𝐺, 𝑆), where 𝑆 = {𝜙 ∧ 𝜏 | ∃𝑠 :

(𝑠, 𝜙, 𝜏) ∈ 𝐻 }. Thus, the shape fragment for a schema requests

the conjunction of each shape in the schema with its associated

target.

In order to state our main results concerning these two types

of shape fragments, we need to revisit the definition of schema.

Recall that a schema is a set of shape definitions, where a shape

definition is of the form (𝑠, 𝜙, 𝜏). Until now, we allowed both the

shape expression 𝜙 and the target 𝜏 to be arbitrary shapes. In real

SHACL, however, only shapes of the following specific forms can

be used as targets:

• hasValue(𝑐) (node targets);
• ≥1 𝑝/𝑟∗ .hasValue(𝑐) (class-based targets: 𝑝 and 𝑟 stand for

type and subclass from the RDF Schema vocabulary [52],

and 𝑐 is the class name);

• ≥1 𝑝.⊤ (subjects-of targets); and

• ≥1 𝑝
− .⊤ (objects-of targets).

For our purposes, however, what counts is that real SHACL tar-

gets 𝜏 are monotone, in the sense that if 𝐺, 𝑣 |= 𝜏 and 𝐺 ⊆ 𝐺 ′
,

then also 𝐺 ′, 𝑣 |= 𝜏 .

We establish:

Theorem 4.1 (Conformance). Assume that schema 𝐻 has
monotone targets, and assume RDF graph𝐺 conforms to 𝐻 . Then
Frag(𝐺,𝐻) also conforms to 𝐻 .

The proof is a straightforward application of Theorem 3.4.

Moreover, Sufficiency carries over to shape fragments defined by

arbitrary request shapes as follows:

Corollary 4.2. Let 𝐺 be an RDF graph, let 𝑆 be a finite set of
shapes, let 𝜙 be a shape in 𝑆 , and let 𝑣 be a node. If 𝐺, 𝑣 |= 𝜙 , then
also Frag(𝐺, 𝑆), 𝑣 |= 𝜙 .

Example 4.3. For monotone shapes, the converse of Corol-

lary 4.2 clearly holds as well. In general, however, the converse

does not always hold. For example, consider the shape𝜙 = ≤0 𝑝.⊤
(“the node has no property 𝑝”), and the graph 𝐺 = {(𝑎, 𝑝, 𝑏)}.
Then the fragment Frag(𝐺, {𝜙}) is empty, so 𝑎 trivially conforms

to 𝜙 in the fragment. However, 𝑎 clearly does not conform to 𝜙

in 𝐺 .

Draft specification. Wehave defined a complete specification of

shape fragments which closely follows the existing W3C SHACL

recommendation. Our specification explains in detail how each

construct of core SHACL contributes to the formation of the

shape fragment [55].

4.1 Applicability of shape fragments
In order to assess the practical applicability of shape fragments,

we simulated a range of SPARQL queries by shape fragments.

Queries were taken from the SPARQL benchmarks BSBM [13]

andWatDiv [4]. Unlike a shape fragment, a SPARQL select-query

does not return a subgraph but a set of variable bindings. SPARQL

construct-queries do return RDF graphs directly, but not necessar-

ily subgraphs. Hence, we followed the methodology of modifying

SPARQL select-queries to construct-queries that return all images
of the pattern specified in the where-clause.

For tree-shaped basic graph patterns, with given IRIs in the

predicate position of triple patterns, we can always simulate the

corresponding subgraph query by a shape fragment. Indeed, a

typical query from the benchmarks retrieves nodes with some

specified properties, some properties of these properties, and so

on. For example, a slightly simplified WatDiv query, modified

290

into a subgraph query, would be the following. (To avoid clutter,

we forgo the rules of standard IRI syntax.)

CONSTRUCT WHERE {
?v0 caption ?v1 . ?v0 hasReview ?v2 . ?v2 title ?v3 .
?v2 reviewer ?v6 . ?v7 actor ?v6 }

(Here, CONSTRUCT WHERE is the SPARQL notation for re-

turning all images of a basic graph pattern.) We can express the

above query as the fragment for the following request shape:

≥1 caption.⊤ ∧ ≥1 hasReview.(≥1 title.⊤
∧ ≥1 reviewer. ≥1 actor− .⊤)

Of course, patterns can involve various SPARQL operators,

going beyond basic graph patterns. Filter conditions on property

values can be expressed as node tests in shapes; optionalmatching

can be expressed using ≥0 quantifiers. For example, consider a

simplified version of the pattern of a typical BSBM query:

?v text ?t . FILTER langMatches(lang(?t),“EN”)
OPTIONAL { ?v rating ?r }

The images of this pattern can be retrieved using the shape

≥1 title.test (lang = “EN”) ∧ ≥0 rating.⊤.
Interestingly, the BSBM workload includes a pattern involv-

ing a combination of optional matching and a negated bound-

condition to express absence of a certain property (a well-known

trick [6, 7]). Simplified, this pattern looks as follows:

?prod label ?lab . ?prod feature 870
OPTIONAL { ?prod feature 59 . ?prod label ?var }
FILTER (!bound(?var))

The images of this pattern can be retrieved using the shape

≥1 label.⊤∧≥1 feature.hasValue(870)∧≤0 feature.hasValue(59).
A total of 39 out of 46 benchmark queries, modified to return

subgraphs, could be simulated by shape fragments in this manner.

The remaining seven queries involved features not supported by

SHACL, notably, variables in the property position, or arithmetic.

5 IMPLEMENTATION AND EXPERIMENTAL
VALIDATION

In this section we show that neighborhoods can be effectively

computed, and report on initial experiments.

5.1 Translation to SPARQL
Our first approach to computing neighborhoods is by translation

into SPARQL, the recommended query language for RDF graphs

[30]. SPARQL select-queries return sets of solution mappings,
which are maps 𝜇 from finite sets of variables to 𝑁 . Variables are

marked using question marks. Different mappings in the result

may have different domains [8, 47].

Neighborhoods in an RDF graph 𝐺 are unions of subgraphs

of the form graph(paths(𝐸,𝐺, 𝑎, 𝑏)), for path expressions 𝐸 men-

tioned in the shapes, and selected nodes 𝑎 and 𝑏. Hence, the

following lemma is important. For any RDF graph 𝐺 , we denote

by 𝑁 (𝐺) the set of all subjects and objects of triples in 𝐺 .

Lemma 5.1. For every path expression 𝐸, there exists a SPARQL
select-query 𝑄𝐸 (?𝑡, ?𝑠, ?𝑝, ?𝑜, ?ℎ) such that for every RDF graph 𝐺 :

(1) The binary relation {(𝜇 (?𝑡), 𝜇 (?ℎ)) | 𝜇 ∈ 𝑄𝐸 (𝐺)} equals
J𝐸K𝐺 , restricted to 𝑁 (𝐺).

(2) For all 𝑎, 𝑏 ∈ 𝑁 (𝐺), the RDF graph
{(𝜇 (?𝑠), 𝜇 (?𝑝), 𝜇 (?𝑜)) | 𝜇 ∈ 𝑄𝐸 (𝐺) & (𝜇 (?𝑡), 𝜇 (?ℎ)) = (𝑎, 𝑏)

& 𝜇 is defined on ?𝑠 , ?𝑝 and ?𝑜}

equals graph(paths(𝐸,𝐺, 𝑎, 𝑏)).

Proof. The difficulty is that we do not merely have to test if

(𝑎, 𝑏) ∈ J𝐸K𝐺 , which is readily expressed using SPARQL property
paths, but that we actually have to return graph(paths(𝐸,𝐺, 𝑎, 𝑏)).
We construct 𝑄𝐸 by induction on the structure of 𝐸. We list 𝑄𝐸

in each of the cases of the syntax of path expressions. In the base

case, when 𝐸 is a property name 𝑝:

SELECT (?s AS ?t) ?s (𝑝 AS ?p) ?o (?o AS ?h) WHERE { ?s 𝑝 ?o }

When 𝐸 is of the form 𝐸−
1
, we obtain 𝑄𝐸1

by induction, and

construct 𝑄𝐸 as follows:

SELECT (?h AS ?t) ?s ?p ?o (?t AS ?h) WHERE { 𝑄𝐸1
}

When 𝐸 is of the form 𝐸1?:

SELECT ?t ?s ?p ?o ?h WHERE {
{ 𝑄𝐸1

} UNION
{ SELECT (?v AS ?t) (?v AS ?h)
WHERE { { ?v ?_p1 ?_o1 } UNION { ?_s2 ?_p2 ?v } } } }

When 𝐸 is of the form 𝐸1 ∪ 𝐸2:

SELECT ?t ?s ?p ?o ?h WHERE { { 𝑄𝐸1
} UNION { 𝑄𝐸2

} }

When 𝐸 is of the form 𝐸1/𝐸2:

SELECT ?t ?s ?p ?o ?h WHERE {
{ { SELECT ?t ?s ?p ?o (?h AS ?h1) WHERE { 𝑄𝐸1

} } .
{ SELECT (?t AS ?h1) ?h WHERE { ?t 𝐸2 ?h } } }

UNION {
{ SELECT ?t (?h AS ?h1) WHERE { ?t 𝐸1 ?h } } .
{ SELECT (?t AS ?h1) ?s ?p ?o ?h WHERE { 𝑄𝐸2

} } } }

Finally, when 𝐸 is of the form 𝐸∗
1
:

SELECT ?t ?s ?p ?o ?h WHERE {
{ ?t 𝐸∗

1
?x1 . ?x2 𝐸∗

1
?h .

{ SELECT (?t AS ?x1) ?s ?p ?o (?h AS ?x2) WHERE { 𝑄𝐸1
} } }

UNION {
SELECT (?v AS ?h) (?v AS ?t)
WHERE { { ?v ?_p1 ?_o1 } UNION { ?_s2 ?_p2 ?v } } } }

□

The following example illustrates the lemma, but using a more

readable query than the one that would be literally generated by

the above proof.

Example 5.2. For IRIs 𝑎, 𝑏, 𝑞 and 𝑟 , the following SPARQL

query, applied to any graph𝐺 , returns graph(paths((𝑞/𝑟)∗,𝐺, 𝑎, 𝑏)):
SELECT ?s ?p ?o
WHERE { 𝑎 (𝑞/𝑟)* ?t . ?h (𝑞/𝑟)* 𝑏 . {

{ SELECT ?t (?t AS ?s) (𝑞 AS ?p) ?o ?h
WHERE { ?t 𝑞 ?o . ?o 𝑟 ?h } }

UNION
{ SELECT ?t ?s (𝑟 AS ?p) (?h AS ?o) ?h
WHERE { ?t 𝑞 ?s . ?s 𝑟 ?h } } } } □

Using Lemma 5.1, and expressing the definitions from Table 2

in SPARQL, we obtain that neighborhoods can be uniformly

computed in SPARQL as follows.

291

Proposition 5.3. For every shape 𝜙 , there exists a SPARQL
select-query 𝑄𝜙 (?𝑣, ?𝑠, ?𝑝, ?𝑜) such that for every RDF graph 𝐺 ,

{(𝜇 (?𝑣), 𝜇 (?𝑠), 𝜇 (?𝑝), 𝜇 (?𝑜)) | 𝜇 ∈ 𝑄𝜙 (𝐺)}
= {(𝑣, 𝑠, 𝑝, 𝑜) ∈ 𝑁 4 | (𝑠, 𝑝, 𝑜) ∈ 𝐵(𝑣,𝐺, 𝜙)}

Moreover, the size of 𝑄𝜙 is linear in the size of 𝜙 .

The linear-size claim can indeed be verified by inspecting the

construction in the proof of Lemma 5.1 and the construction of

𝑄𝜙 .

Remark 5.4. The above result should not be confused with the

known result [18, Proposition 3] that SPARQL can compute the

set of nodes that conform to a given shape. Our result states that

also the neighborhoods can be computed. □

Since shape fragments are unions of neighborhoods, we also

obtain:

Corollary 5.5. For every finite set 𝑆 of shapes, there exists a
SPARQL select-query 𝑄𝑆 (?𝑠, ?𝑝, ?𝑜) such that for every RDF graph
𝐺 ,

{(𝜇 (?𝑠), 𝜇 (?𝑝), 𝜇 (?𝑜)) | 𝜇 ∈ 𝑄𝑆 (𝐺)} = Frag(𝐺, 𝑆).

Example 5.6. For IRIs 𝑝 , 𝑞 and 𝑐 , consider the request shape

∀𝑝.≥1 𝑞.hasValue(𝑐) (e.g., “all my friends like ping-pong”, with

𝑝 , 𝑞 and 𝑐 playing the role of friend, like, and ping-pong, respec-

tively). The corresponding shape fragment is retrieved by the

following SPARQL query:

SELECT ?s ?p ?o WHERE {
{ SELECT ?v WHERE
{ ?v 𝑝 ?x MINUS { ?v 𝑝 ?y OPTIONAL { ?y 𝑞 𝑐 . ?v 𝑝 ?z }

FILTER (!bound(?z)) } } } .
{ { SELECT (?v AS ?s) (𝑝 AS ?p) (?x as ?o)

WHERE { ?v 𝑝 ?x . ?x 𝑞 𝑐 } }
UNION
{ SELECT (?x AS ?s) (𝑞 AS ?p) (𝑐 as ?o)
WHERE { ?v 𝑝 ?x . ?x 𝑞 𝑐 } } } }

The first subselect retrieves nodes ?𝑣 conforming to the shape;

the UNION of the next two subselects then retrieves the neigh-

borhoods. □

The above example illustrates that query expressions for shapes

can quickly become quite complex, even for just retrieving the

nodes that conform to a shape. Shapes involving equality con-

straints require nested not-exists subqueries in SPARQL, and

would benefit from specific operators for set joins, e.g., [32, 41].

Shapes of the form ≤5 𝑝.⊤ requires grouping the 𝑝-properties and

applying a condition count ≤ 5, plus a union with an outer join

to retrieve the nodes without any 𝑝-property. Such shapes would

benefit from specific operators for group join [22, 42]. Query

optimization for queries derived from SHACL is an important

topic for further research.

One may wonder about the converse to Corollary 5.5: is ev-

ery SPARQL select-query expressible as a shape fragment? This

does not hold, if only because shape fragments always consist

of triples from the input graph, while select-queries can return

arbitrary variable bindings. However, also more fundamentally,

SHACL is strictly weaker than SPARQL; we give two representa-

tive examples.

4-clique Let 𝑝 ∈ 𝐼 . There does not exist a shape 𝜙 such that,

on any RDF graph 𝐺 , the nodes that conform to 𝜙 are

exactly the nodes belonging to a 4-clique of 𝑝-triples in

𝐺 . We can show that if 4-clique would be expressible by

a shape, then the corresponding 4-clique query about a

binary relation 𝑃 would be expressible in 3-variable count-

ing infinitary logic 𝐶3

∞𝜔 . The latter is known not to be

the case, however [43]. (Infinitary logic is needed here to

express path expressions, and counting is needed for the

≥𝑛 quantifier, since we have only 3 variables.)

Majority Let 𝑝, 𝑞 ∈ 𝐼 . There does not exist a shape 𝜙 such

that, on any RDF graph 𝐺 , the nodes that conform to 𝜙

are exactly the nodes 𝑣 such that ♯{𝑥 | (𝑣, 𝑝, 𝑥) ∈ 𝐺} ≥
♯{𝑥 | (𝑣, 𝑞, 𝑥) ∈ 𝐺} (think of departments with at least

as many employees as projects). We can show that if Ma-

jority would be expressible by a shape, then the classical

Majority query about two unary relations 𝑃 and 𝑄 would

be expressible in first-order logic. Again, the latter is not

the case [35]. (Infinitary logic is not needed here, since for

this query, we can restrict to a class of structures where

all paths have length one.)

5.2 Adapting a validation engine
Wehave also investigated computing neighborhoods by adjusting

a SHACL validator to return the validated RDF terms and their

neighborhood, instead of a validation report.

A SHACL validation engine checks whether a given RDF graph

conforms to a given schema, and produces a validation report

detailing possible violations. A validation engine needs to inspect

the neighborhoods of nodes anyway. Hence, it requires only

reasonably lightweight adaptations to produce, in addition to

the validation report, also the nodes and their neighborhoods

that validate the shapes graph, without introducing significant

overheads for tracing out and returning these neighborhoods,

compared to doing validation alone. Our hypothesis is that the

resulting overhead will not be prohibitive.

To test this hypothesis, we extended the open-source, free-

license engine pySHACL [49]. This is a main-memory engine and

it achieves high coverage for core SHACL [25]. Written in Python,

we found it easy to make local changes to the code [46]; starting

out with 4501 lines of code, 482 lines were changed, added or

deleted.

Our current implementation covers most of SHACL core, with

the exception of complex path expressions, i.e., only simple path

expressions are supported. The algorithm that is implemented is

then essentially the naive algorithm described in Section 3.3.

Our software, called pySHACL-fragments, is available open-
source [50].

5.3 Experiments
We validated our approach by (i) measuring the overhead of

neighborhood extraction, compared to mere validation, using

pySHACL-fragments; and (ii) testing the viability of computing

neighborhoods by translation to SPARQL. We perform our ex-

periments in the context of computing shape fragments. Indeed,

shape fragments offer a natural test case as they require the

neighborhoods of all nodes to be retrieved.

5.3.1 Extraction overhead. To evaluate the viability of com-

puting neighborhoods by adapting a validation engine, we mea-

sured the overhead of extracting neighborhoods using our system

pySHACL-fragments, compared to producing the corresponding

validation report using pySHACL alone. Performance evaluation

of SHACL engines is not our goal here; see Schaffenrath et al. [53]

for this. Yet, we reuse the 57 shapes from their performance bench-

mark. These shapes are expressed over a 30-million triple dataset

292

0

5

10

15

20

25

30

1.5M 2.5M 3.5M 4.5M

O
ve

rh
ea

d
pe

rc
en

ta
ge

Figure 1: Overhead (percent increase in time to do prove-
nance extraction, over mere validation of a shape) shown
for 57 shapes over four graph sizes. Each line represents a
shape.

known as the “Tyrolean Knowledge Graph”. Notably, however,

Schaffenrath et al. managed to run their comparative study on a

1-million slice of the knowledge graph only, as common SHACL

validation engines are still in their infancy and not very efficient.

For our experiment, instead, we generated a 1.5-million triple

induced subgraph of the knowledge graph as follows.We sampled

50 000 individual nodes uniformly at random, and then retrieved

all triples involving these individuals as subjects or objects. By

sampling a larger number of 100K, 150K and 200K nodes, we

similarly obtained subgraphs of (approximately) 2.5, 3.5, and 4.5

million triples.

We used a 12 core AMD EPYC 2.595GHz processor with 16GB

DDR4 RAM and 400GB SSD.We executed each of the shapes three

times, both on pySHACL and on pySHACL-fragments. Timers

were placed around the validator.run() function, so data loading
and shape parsing time is not included.The average overhead turns
out to be well below 10%; if we restrict attention to the shapes

where validation on the 1.5M graph takes longer than a second,

the average overhead grows to 15.6%. Figure 1 shows that the

overhead may vary somewhat going to larger graphs, but stays

constant on average. There are some outliers where the overhead

fluctuates more wildly, but these happen to be associated with

low (below second) runtimes.

The shapes where the overhead is highest are those with exis-

tential shapes and many target nodes with large neighborhoods.

For some property 𝑝 and some condition𝜓 , an existential shape

requires that the target node must have at least one 𝑝-edge to

a node 𝑥 satisfying 𝜓 (expressed as ≥1 𝑝.𝜓). Here, a validator

merely needs to check for each target node 𝑣 that at least one

such 𝑥 exists, while provenance computation must also retrieve

all the satisfying triples (𝑣, 𝑝, 𝑥).

5.3.2 Computing neighborhoods in SPARQL. Instead of modi-

fying an existing SHACL engine, one may compute provenance

using SPARQL queries, as presented in Section 5.1. Shapes give

rise to complex SPARQL queries which pose quite a challenge to

SPARQL query processors. It is outside the scope of the present

paper to do a performance study of SPARQL query processors;

our goal rather is to obtain an indication of the practical feasibility

of computing neighborhoods in SPARQL.

0

5

10

15

20

25

30

35

40

45

50

1.5M 2.5M 3.5M 4.5M

Ti
m

e
in

 se
co

nd
s

Figure 2: Execution times of provenance computation for
12 shapes by SPARQL queries, over four graph sizes. Each
line represents a shape.

Initial work by Corman et al. has reported satisfying results

on doing validation for nonrecursive schemas by a single, com-

plex SPARQL query [18]. The question we want to answer is

whether we can observe a similar situation when computing

neighborhoods, where the queries become even more complex.

We have obtained a mixed picture. We used the main-memory

SPARQL engine Apache Jena ARQ. Implementing Corollary 5.5

by following the constructive proof of Proposition 5.3, we trans-

lated the shape fragment queries for the benchmark shapes from

the previous Section 5.3.1 into large SPARQL queries. The gener-

ated expressions can be hundreds of lines long, as our translation

procedure is not yet optimized to generate “efficient” SPARQL

expressions. However, we then reduced the shapes by substitut-

ing ⊤ for node tests, and simplifying the resulting expressions.

This reduction preserves the graph-navigational nature of the

queries.

After the reduction, 13 out of 57 shapes produced SPARQL

queries that ARQ could execute. The other queries were still too

long and did not terminate or went out of memory. Figure 2 shows

the runtimes on the same test data and the same machine as the

overhead experiment; one shape is omitted from the Figure as it

does not retrieve any triples at all. Reported timings are averages

over three runs.

Finally, to test the extraction of paths in SPARQL, we used

the DBLP database [21], and computed the shape fragment for

shape ≥1 𝑎
−/𝑎/𝑎−/𝑎/𝑎−/𝑎.hasValue(MYV), where 𝑎 stands for

the property dblp:authoredBy, andMYV stands for the DBLP IRI

for Moshe Y. Vardi. This extracts not only all authors at co-author

distance three or less from this famous computer scientist, but,

crucially, also all 𝑎-triples on all the relevant paths. The generated

SPARQL query is similar to the query from Example 5.2.

We ran this heavy analytical query on the two secondary-

memory engines Apache Jena ARQ on TDB2 store, and GraphDB.

The execution times over increasing slices of DBLP, going back-

wards in time from 2021 until 2010, are comparable between

the two engines (see Figure 3). Vardi is a prolific and central

author and co-author; just from 2016 until 2021, almost 7% of

all DBLP authors are at distance three or less, or almost 145 943

authors. The resulting shape fragment contains almost 3% of all

dblpl:authoredBy triples, or 219 085 unique triples. We see that

retrieving neighborhoods can be a computationally intensive

task for which new methods may be needed.

293

2 4 6 8 10 12

0

20

40

60

80

2020
2018

2016

2014

2012

2010

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

Data graph size (million triples)

Figure 3: Jena ARQ store-based SPARQL execution time
(dotted) and store-based GraphDB execution time (dashed-
dotted) for the Vardi-distance-3 shape fragment.

For the Vardi experiment we used a 2x 8core Intel Xeon E5-

2650 v2 processor with 48GB DDR3 RAM and a 250GB hard

disk.

5.3.3 Discussion. From these experiments, we conclude that

computing neighborhoods is viable, but can be computationally

intensive. Indeed, provenance for SHACL serves as an interest-

ing new challenge and testbed both for SHACL validators (suit-

ably adapted to retrieve neighborhoods) and SPARQL engines.

Advances on either front will also benefit SHACL provenance

performance. Interestingly, recent approaches to SHACL valida-

tion [18, 23] consider decomposing the task into multiple small

SPARQL queries, as opposed to translating to a single large query.

6 RELATEDWORK
Shapes may be viewed as queries on RDF graphs, returning the

nodes that conform to the shape. This observation allows us to

compare neighborhoods for shapes, with provenance semantics

for queries proposed in the literature [17, 27].

A seminal work in the area of data provenance is that on

lineage by Cui, Widom and Wiener [20]. Like neighborhoods,

the lineage of a tuple returned by a query on a database 𝐷 is

a subdatabase of 𝐷 . Lineage was defined for queries expressed

in the relational algebra. In principle, we can express shapes

in relational algebra. So, instead of defining our own notion of

neighborhood, should we have simply used lineage instead? The

answer is no; the following example shows that Sufficiency would

fail.

Example 6.1. Recalling Example 3.5, consider a relational data-

base schema with three relation schemes Paper(𝑃),Author(𝑃,𝐴),
and Student(𝐴), and the query 𝑄 returning all papers with at

least one author but without non-student authors. Consider the

database 𝐷 given by

𝐷 (Paper) = {p1};
𝐷 (Author) = {(p1,Bob)};
𝐷 (Student) = {Bob}.

Note that p1 is returned by 𝑄 on 𝐷 . A relational algebra ex-

pression for 𝑄 is 𝐸 = Paper Z (𝜋𝑃 (Author) − 𝑉) with 𝑉 =

𝜋𝑃 (Author − (Author Z Student)). Since 𝑉 is empty on 𝐷 , the

lineage of p1 for 𝐸 in 𝐷 is the database 𝐷 ′
where

𝐷 ′(Paper) = {p1}; 𝐷 ′(Author) = {(p1,Bob)}; 𝐷 ′(Student) = ∅.
However, p1 is no longer returned by 𝐸 on 𝐷 . □

An alternative approach to lineage is why-provenance [16].
This approach is non-deterministic in that it reflects that there

may be several “explanations” for why a tuple is returned by

a query (for example, queries involving existential quantifica-

tion). Accordingly, why-provenance does not yield a single neigh-

borhood (called witness), but a set of them. While logical, this

approach is at odds with our aim of providing a deterministic
retrieval mechanism through shapes. Of course, one could take

the union of all witnesses, but this runs into similar problems

as illustrated in the above example. Indeed, why-provenance

was not developed for queries involving negation or universal

quantification.

A recent approach to provenance for negation is that by Grädel

and Tannen [28, 59] based on the successful framework of prove-

nance semirings [29]. There, provenance is produced in the form

of provenance polynomials which give a compact representation

of the several possible proof trees showing that the tuple satisfies

the query. Thus, like why-provenance, this approach is inher-

ently non-deterministic. Still, we were influenced by Grädel and

Tannen’s use of negation normal form, which we have followed

in this work.

6.1 Triple pattern fragments
Shape fragments return subgraphs: they retrieve a subset of the

triples of an input graph. A popular subgraph-returning mech-

anism is that of triple pattern fragments (TPF [62]). A TPF may

indeed be viewed as a query that, on an input graph𝐺 , returns the

subset of 𝐺 consisting of all images of some fixed triple pattern

in 𝐺 .

While the logic of shapes is, in general, much richer than

simple triple patterns, it turns out that not all TPFs are actually

expressible by shape fragments.

For example, TPFs of the form (𝑐, 𝑝, 𝑑), (𝑐, 𝑝, ?𝑥), (?𝑥, 𝑝, 𝑐),
or (?𝑥, 𝑝, ?𝑦), for IRIs 𝑝 , 𝑐 , and 𝑑 , are easily expressed as shape

fragments using request shapes hasValue(𝑐) ∧ ≥1 𝑝.hasValue(𝑑),
≥1 𝑝

− .hasValue(𝑐), ≥1 𝑝.hasValue(𝑐), or ≥1 𝑝.⊤, respectively.
The TPF (?𝑥, 𝑝, ?𝑥), asking for all 𝑝-self-loops in the graph,

corresponds to the shape fragment for ¬disj(id, 𝑝).
Furthermore, the TPFs (?𝑥, ?𝑦, ?𝑧) (requesting a full download)

and (𝑐, ?𝑦, ?𝑧) are expressible using the request shapes¬closed (∅)
and hasValue(𝑐) ∧ ¬closed (∅). Here, the need to use a “trick”

via negation of closedness constraints exposes a weakness of

shapes: properties are not treated on equal footing as subjects

and objects. Indeed, other TPFs involving variable properties,

such as (?𝑥, ?𝑦, 𝑐), (?𝑥, ?𝑦, ?𝑥), or (𝑐, ?𝑥, 𝑑), are not expressible as
shape fragments.

The above discussion can be summarized as follows.

Proposition 6.2. The TPFs expressible as a shape fragment
(uniformly over all input graphs) are precisely the TPFs of the
following forms:

(1) (?𝑥, 𝑝, ?𝑦);
(2) (?𝑥, 𝑝, 𝑐);
(3) (𝑐, 𝑝, ?𝑥);
(4) (𝑐, 𝑝, 𝑑);

294

(5) (?𝑥, 𝑝, ?𝑥);
(6) (?𝑥, ?𝑦, ?𝑧);
(7) (𝑐, ?𝑦, ?𝑧).
Remark 6.3. SHACL does not allow negated properties in path

expressions, while these are supported in SPARQL property paths.

Extending SHACL with negated properties would readily allow

the expression of all TPFs as shape fragments. For example, the

TPF (?𝑥, ?𝑦, 𝑐), for IRI 𝑐 , would become expressible by requesting

the shape

≥1 𝑝.hasValue(𝑐) ∨ ≥1!𝑝.hasValue(𝑐),
with 𝑝 an arbitrary IRI. Here, the negated property !𝑝 matches

any property different from 𝑝 .

6.2 Knowledge graph subsets
Recently, the idea of defining subgraphs (or fragments as we call

them) using shapes was independently proposed by Labra Gayo

[36]. An important difference with our SHACL-based approach

is that his approach is based on ShEx, the other shape language

besides SHACL that is popular in practice [15, 26]. Shapes in ShEx

are quite different from those in SHACL, being based on bag-

regular expressions over the bag of properties of the focus node.

As a result, the technical developments of our work and Labra

Gayo’s are quite different. Still, the intuitive and natural idea of

forming a subgraph by collecting all triples encountered during

conformance checking, is clearly the same in both approaches.

This idea, which Labra Gayo calls “slurping”, is implemented

in our pyshacl-fragments implementation, as well as a “slurp”

option in the shex.js implementation of ShEx [56]. Labra Gayo

also gives a formal definition of ShEx + slurp, extending the

formal definition of ShEx [15].

In our work we make several additional contributions com-

pared to the development by Labra Gayo:

• We make the connection to database provenance.

• We consider the important special case of shape fragments

based on schemas with targets.

• We support path expressions directly, which in ShEx need

to be expressed through recursion.

• We support negation, universal quantification, and other

non-monotone quantifiers and shapes, such as ≤𝑛 , equal-
ity, disjointness, lessThan.

• We establish formal correctness properties (Sufficiency

and Conformance Theorems).

• We investigate the translation of shape fragments into

SPARQL. On the other hand, Labra Gayo discusses Pregel-

based implementations of his query mechanism.

6.3 Path-returning queries on graph databases
Our definition of neighborhood of a node 𝑣 for a shape involving

a path expression 𝐸 returns 𝐸-paths from 𝑣 to relevant nodes 𝑥

(see Table 2). Notably, these paths are returned as a subgraph,

using the graph constructor applied to a set of paths. Thus, shape

fragments are loosely related to path-returning queries on graph

databases, introduced as a theoretical concept by Barceló et al.

[11] and found in the languages Cypher [24] and G-CORE [37].

However, to our knowledge, a mechanism to return a set of

paths in the form of a subgraph is not yet implemented by these

languages. We have showed in Section 5.1 that, at least in prin-

ciple, this is actually possible in any standard query language

supporting path expressions, such as SPARQL. Barceló et al. con-

sider a richer output structure whereby an infinite set of paths

(or even set of tuples of paths) resulting from an extended regular

path query can be finitely and losslessly represented. In contrast,

our graph constructor is lossy in that two different sets 𝑆1 and

𝑆2 of paths may have graph(𝑆1) = graph(𝑆2). However, our Suf-
ficiency property shows that our representation is sufficient for

the purpose of validating shapes.

7 CONCLUDING REMARKS
In this paper we have proposed a provenance semantics for

SHACL, which was long overdue. In addition to the desirability

of supporting provenance from a general database perspective,

the utility of a provenance semantics for shapes to support data

footprint in Linked Data applications has been pointed out infor-

mally by prominent SemanticWeb researchers [12, 61]. Moreover,

the idea of using shapes to describe nodes in a graph has been

floating around in the community [58]. Also, the SHACL Rec-

ommendation itself anticipates applications for shapes beyond

conformance checking. Our work serves to put these ideas on a

firm formal footing.

Our notions of shape fragment, developed in Section 4, serve

to open up SHACL: initially conceived as a constraint or data

validation language, it can now also serve as a data retrieval

language. If shapes are available, either in a schema coming from

the producer of the data, or as an expression of an application’s

interest in certain types of information, they can now be used to

retrieve data. In such settings we avoid the need to switch to a

separate retrieval language, typically SPARQL in this context.

A more specific application made possible by shape fragments

is retrieval from data that was populated through forms. For

example, in Schímatos [63], Web forms are compiled from shapes.

It is conceivable that all data that was entered based on some

given shape can be retrieved back as a shape fragment, using

that shape as the request shape.

SHACL is a quite powerful language, so an obvious direction

for further research is to investigate efficient processing and op-

timization strategies for SHACL, both just for validation, and for

computing provenance. Recent work on validation optimization

was done by Figuera et al. [23]. Yet we believe many more in-

sights from database query optimization can be beneficial and

specialized to shape processing. (A related direction is to use

shapes to inform SPARQL query optimization [2, 51].)

We have seen that shape fragments are strictly less expres-

sive than SPARQL subgraph queries. The relationship between

SHACL and SPARQL deserves much further study. Is the com-

plexity of evaluation lower? For those SPARQL subgraph queries

that are expressible as shape fragments, are queries in practice

often easier to write in SHACL? Can we precisely characterise

the expressive power of SHACL?

Our approach to defining neighborhoods has been to be de-

terministic, and to satisfy Sufficiency, while also omitting need-

less triples, i.e., trying to be minimal. However, as discussed by

Glavic [27, Section 2.1], minimality is a requirement for prove-

nance semantics that is challenging, and sometimes impossible to

achieve together with determinism and Sufficiency. See also our

Remark 3.6 in Section 3.4. Developing good postulates for mini-

mality in provenance notions is an important topic for further

research.

Another obvious direction for further research is to extend

our work to recursive schemas. The SHACL recommendation

only defines the semantics for nonrecursive shape schemas, and

we have seen in this paper that defining provenance is already

295

Figure 4: Positioning shape fragments in the LDF Framework (adapted from [62]). This diagram is not to be interpreted as
a comparison in expressive power.

nontrivial for this case. Nevertheless, there is current interest in

recursive shape schemas [5, 14, 15, 18, 26].

A final open problem that we mention is to extend shapes

so that properties are treated on equal footing as subjects and

objects, as is indeed the spirit of RDF [40, 48].

To conclude, we mention that shape fragments fit the frame-

work of Linked Data Fragments [10, 31, 38, 62] (LDF) for publi-

cation interfaces to retrieve RDF (sub)graphs. At one end of the

spectrum the complete RDF graph is retrieved; at the other end,

the results of arbitrary SPARQL queries. Triple Pattern Fragments

(TPF) [62], compare Section 6.1, represent an intermediate point

where all triples from the graph that match a given SPARQL

triple pattern are returned. On this spectrum, shape fragments lie

between TPF and arbitrary SPARQL, as depicted in Fig. 4, taking

advantage of the merits of both approaches. On the one hand,

shape fragments may reduce the server cost, similarly to TPF,

but they can also perform fewer requests as multiple TPFs can be

expressed as a single shape fragment. On the other hand, shape

fragments may also perform quite powerful requests, similarly

to SPARQL endpoints, but without reaching the full expressivity

of SPARQL.

ACKNOWLEDGMENTS
We are indebted to Bart Bogaerts for helpful suggestions and

discussions. This research was supported by the Flanders AI

Research programme.

REFERENCES
[1] Daniel Abadi et al. 2019. The Seattle report on database research. SIGMOD

Record 48, 4 (2019), 44–53.

[2] Abdullah Abbas, Pierre Genevès, Cécile Roisin, and Nabil Layaïda. 2018. Se-

lectivity estimation for SPARQL triple patterns with shape expressions. In

Proceedings 18th International Conference on Web Engineering (Lecture Notes in
Computer Science, Vol. 10845), T. Mikkonen et al. (Eds.). Springer, 195–209.

[3] Shqiponja Ahmetaj, Robert David, Magdalena Ortiz, Axel Polleres, Bojken

Shehu, and Mantas Simkus. 2021. Reasoning about explanations for non-

validation in SHACL. In Proceedings 18th International Conference on Principles
of Knowledge Representation and Reasoning, M. Bienvenu, G. Lakemeyer, et al.

(Eds.). IJCAI Organization, 12–21.

[4] Güneş Aluç, Olaf Hartig, Tamer Özsu, and Khuzaima Daudjee. 2014. Diver-

sified stress testing of RDF data management systems. In Proceedings 13th
International Semantic Web Conference (Lecture Notes in Computer Science,
Vol. 8796), P. Mika, T. Tudorache, et al. (Eds.). Springer, 197–212.

[5] Medina Andreşel, Julien Corman, Magdalena Ortiz, Juan L. Reutter, Ognjen

Savkovic, and Mantas Simkus. 2020. Stable model semantics for recursive

SHACL, See [33], 1570–1580.

[6] Renzo Angles and Claudio Gutierrez. 2008. The expressive power of SPARQL.

In Proceedings 7th International Semantic Web Conference (Lecture Notes in
Computer Science, Vol. 5318), A. Sheth, S. Staab, et al. (Eds.). Springer, 114–129.

[7] Marcelo Arenas and Jorge Pérez. 2011. Querying semantic web data with

SPARQL. In Proceedings 30st ACM Symposium on Principles of Databases. ACM,

305–316.

[8] Marcelo Arenas, Jorge Pérez, and Claudio Gutierrez. 2009. On the semantics

of SPARQL. In Semantic Web Information Management—A Model-Based Per-
spective, R. De Virgilio, F. Giunchiglia, and L. Tanca (Eds.). Springer, 281–307.

[9] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, and Javiel Rojas-Ledesma.

2022. Time- and space-efficient regular path queries. In Proceedings 38th
International Conference on Data Engineering. IEEE, 3091–3105.

[10] Amr Azzam, Javier D. Fernández, et al. 2020. SMART-KG: Hybrid shipping

for SPARQL querying on the Web, See [33], 984–994.

[11] Pablo Barceló, Carlos A. Hurtado, Leonid Libkin, and Peter T. Wood. 2012.

Expressive languages for path queries over graph-structured data. ACM
Transactions on Database Systems 37, 4 (2012), 31:1–31:46.

[12] Tim Berners-Lee. 2019. Linked data shapes, forms and footprints. https:

//www.w3.org/DesignIssues/Footprints.html.

[13] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL benchmark.

International Journal on Semantic Web and Information Systems 5, 2 (2009),
1–24.

[14] Bart Bogaerts and Maxime Jakubowski. 2021. Fixpoint semantics for recursive

SHACL. In Proceedings 37th International Conference on Logic Programming
(Technical Communications) (Electronic Proceedings in Theoretical Computer
Science, Vol. 345), A. Formisano, Y.A. Liu, et al. (Eds.). 41–47.

[15] Iovka Boneva, Jose E. Labra Gayo, and Eric G. Prud’hommeaux. 2017. Seman-

tics and validation of shape schemas for RDF. In Proceedings 16th International
Semantic Web Conference (Lecture Notes in Computer Science, Vol. 10587), Clau-
dia d’Amato, Miriam Fernandez, Valentina Tamma, et al. (Eds.). Springer,

104–120.

[16] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2001. Why and

where: A characterization of data provenance. In Database Theory—ICDT 2001
(Lecture Notes in Computer Science, Vol. 1973), J. Van den Bussche and V. Vianu

(Eds.). Springer, 316–330.

[17] James Cheney, Laura Chiticarius, and Wang-Chiew Tan. 2009. Provenance

in Databases: why, how and where. Foundations and Trends in Databases 1, 4
(2009), 379–474.

[18] Julien Corman, Fernando Florenzano, Juan L. Reutter, and Ognjen Savkovic.

2019. Validating SHACL constraints over a SPARQL endpoint. In Proceedings
18th International Semantic Web Conference (Lecture Notes in Computer Science,
Vol. 11778), C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, et al. (Eds.).

Springer, 145–163.

[19] Julien Corman, Juan L. Reutter, and Ognjen Savkovic. 2018. Semantics and

validation of recursive SHACL. In Proceedings 17th International Semantic Web
Conference (Lecture Notes in Computer Science, Vol. 11136), D. Vrandecic et al.
(Eds.). Springer, 318–336. Extended version, technical report KRDB18-01,

https://www.inf.unibz.it/krdb/tech-reports/.

[20] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the lineage

of view data in a warehousing environment. ACM Transactions on Database
Systems 25, 2 (2000), 179–227.

[21] DBLP data in RDF. [n.d.]. http://dblp.org/rdf/.

[22] Marius Eich, Pit Fender, and Guido Moerkotte. 2018. Efficient generation of

query plans containing group-by, join, and groupjoin. The VLDB Journal 27, 5
(2018), 617–641.

[23] Mónica Figuera, Philipp D. Rohde, and Maria-Ester Vidal. 2021. Trav-SHACL:

Efficiently validating networks of SHACL constraints. In ProceedingsWWW’21,
J. Leskovec et al. (Eds.). ACM, 3337–3348.

[24] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias

Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer,

and Andrés Taylor. 2018. Cypher: An evolving query language for property

graphs, See [57], 1433–1445.

[25] Jose E. Labra Gayo, Holger Knublauch, and Dimitris Kontokostas. 2021. SHACL

test suite and implementation report. https://w3c.github.io/data-shapes/

data-shapes-test-suite/.

[26] Jose E. Labra Gayo, Eric Prud’hommeaux, Iovka Boneva, and Dimitris Kon-

tokostas. 2018. Validating RDF Data. Synthesis Lectures on the Semantic Web:
Theory and Technology 16 (2018).

[27] Boris Glavic. 2021. Data provenance: Origins, Applications, Algorithms, and

Models. Foundations and Trends in Databases 9, 3–4 (2021), 209–441.
[28] Erich Grädel and Val Tannen. 2017. Semiring provenance for first-order model

checking. arXiv:1712.01980.

[29] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance

semirings. In Proceedings 26th ACM Symposium on Principles of Database
Systems. 31–40.

[30] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 query language. W3C

Recommendation.

[31] Olaf Hartig and Carlos Buil-Aranda. 2016. Bindings-restricted triple pattern

fragments. In Proceedings OTM Conference (Lecture Notes in Computer Science,
Vol. 10033), C. Debruyne, H. Panetto, et al. (Eds.). 762–779.

[32] Sven Helmer and Guido Moerkotte. 1997. Evaluation of main memory join

algorithms for joins with set comparison join predicates. In Proceedings 23rd
International Conference on Very Large Data Bases. Morgan Kaufmann, 386–

395.

[33] Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). 2020.

Proceedings WWW’20. ACM.

296

[34] Sven Köhler, Bertram Ludäscher, and Daniel Zinn. 2013. First-order prove-

nance games. In In Search of Elegance in the Theory and Practice of Computation,
V. Tannen, L. Wong, et al. (Eds.). Lecture Notes in Computer Science, Vol. 8000.

Springer, 382–399.

[35] Phokion G. Kolaitis. 2007. On the expressive power of logics on finite models.

In Finite Model Theory and Its Applications. Springer, Chapter 2.
[36] Jose E. Labra Gayo. 2021. Creating knowledge graph subsets using shape

expressions. arXiv:2110.11709.

[37] LDBC Graph Query Language Task Force. 2018. G-CORE: A core for future

graph query languages, See [57], 1421–1432.

[38] LDF 2020. Linked Data Fragments. htps://linkeddatafragments.org.

[39] Martin Leinberger, Philipp Seifer, et al. 2020. Deciding SHACL shape contain-

ment through description logics reasoning, See [44], 366–383.

[40] Leonid Libkin, Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč. 2018. TriAL:

A navigational algebra for RDF triplestores. ACM Transactions on Database
Systems 43, 1 (2018), 5:1–5:46.

[41] Nikos Mamoulis. 2003. Efficient processing of joins on set-valued attributes.

In Proceedings ACM SIGMOD International Conference on Management of Data.
157–168.

[42] Guido Moerkotte and Thomas Neumann. 2011. Accelerating queries with

group-by and join by groupjoin. Proceedings of the VLDB Endowment 4 (2011),
843–851.

[43] Martin Otto. 1997. Bounded Variable Logics and Counting: A Study in Finite
Models. Lecture Notes in Logic, Vol. 9. Springer.

[44] Jeff Z. Pan et al. (Eds.). 2020. Proceedings 19th International Semantic Web
Conference. Lecture Notes in Computer Science, Vol. 12506. Springer.

[45] Paolo Pareti, George Konstantinidis, et al. 2020. SHACL satisfiability and

containment, See [44], 474–493.

[46] Linda D. Paulson. 2007. Developers shift to dynamic programming languages.

Computer 40, 2 (2007), 12–15.
[47] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and

complexity of SPARQL. ACM Transactions on Database Systems 34, 3 (2009),
article 16.

[48] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2010. nSPARQL: A

navigational language for RDF. Journal of Web Semantics 8, 4 (2010), 255–270.

[49] pyshacl 2021. RDFLib/pySHACL: A Python validator for SHACL. https:

//github.com/RDFLib/pySHACL.

[50] pySHACL-fragments software. [n.d.]. https://github.com/shape-fragments/

pySHACL-fragments.

[51] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 2021. Optimizing SPARQL

Queries using Shape Statistics. In Proceedings 24th International Conference
on Extending Database Technology, Y. Velegrakis, D. Zeinalipour-Yazti, et al.
(Eds.). OpenProceedings.org, 505–510.

[52] RDF 2014. RDF 1.1 Primer. W3C Working Group Note.

[53] Robert Schaffenrath, Daniel Proksch, Markus Kopp, Iacopo Albasini, Oleksan-

dra Panasiuk, and Anna Fensel. 2020. Benchmark for Performance Evaluation

of SHACL Implementations in Graph Databases. In International Joint Confer-
ence on Rules and Reasoning. Springer, 82–96.

[54] SHACL 2017. Shapes Constraint Language (SHACL). W3C Recommendation.

[55] Shape Fragments Specification. [n.d.]. https://shape-fragments.github.io/

shape-fragments-spec.

[56] shexjs [n.d.]. https://github.com/shexjs/shex.js.

[57] SIGMOD 2018. Proceedings 2018 International Conference on Management of
Data. ACM.

[58] SPARQL 1.2 community group. [n.d.]. DESCRIBE using shapes. https://github.

com/w3c/sparql-12/issues/39.

[59] Val Tannen. 2017. Provenance analysis for FOL model checking. ACM SIGLOG
News 4, 1 (2017), 24–36.

[60] Jeffrey D. Ullman. 1988. Principles of Database and Knowledge-Base Systems.
Vol. I. Computer Science Press.

[61] Ruben Verborgh. 2019. Shaping linked data apps. https://ruben.verborgh.org/

blog/2019/06/17/shaping-linked-data-apps/.

[62] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, et al. 2016. Triple Pattern

Fragments: A low-cost knowledge graph interface for the Web. Journal of
Web Semantics 37–38 (2016), 184–206.

[63] Jesse Wright et al. 2020. Schímatos: A SHACL-based web-form generator

for knowledge graph editing. In Proceedings 19th International Semantic Web
Conference. 65–80.

297

