
Density-Based Geometry Compression for
LiDAR Point Clouds

Xibo Sun1
xsunax@connect.ust.hk

1Hong Kong University of Science and Technology

Qiong Luo1,2
luo@cse.ust.hk

2Hong Kong University of Science and Technology
(Guangzhou)

ABSTRACT
LiDAR (Light Detection and Ranging) sensors produce 3D point
clouds that capture the surroundings, and these data are used
in applications such as autonomous driving, tra�c monitoring,
and remote surveys. LiDAR point clouds are usually compressed
for e�cient transmission and storage. However, to achieve a
high compression ratio, existing work often sacri�ces the geo-
metric accuracy of the data, which hurts the e�ectiveness of
downstream applications. Therefore, we propose a system that
achieves a high compression ratio while preserving geometric
accuracy. In our method, we �rst perform density-based cluster-
ing to distinguish the dense points from the sparse ones, because
they are suitable for di�erent compression methods. The clus-
tering algorithm is optimized for our purpose and its parameter
values are set to preserve accuracy. We then compress the dense
points with an octree, and organize the sparse ones into poly-
lines to reduce the redundancy. We further propose to compress
the sparse points on the polylines by their spherical coordinates
considering the properties of both the LiDAR sensors and the real-
world scenes. Finally, we design suitable schemes to compress
the remaining sparse points not on any polyline. Experimental
results on DBGC, our prototype system, show that our scheme
compressed large-scale real-world datasets by up to 19 times
with an error bound under 0.02 meters for scenes of thousands
of cubic meters. This result, together with the fast compression
speed of DBGC, demonstrates the online compression of LiDAR
data with high accuracy. Our source code is publicly available at
https://github.com/RapidsAtHKUST/DBGC.

1 INTRODUCTION
A point cloud is a set of data points with spatial coordinates,
generated by special cameras such as LiDAR (Light Detection
and Ranging) sensors. These sensors are mounted on airplanes,
vehicles, and tripods to capture large-scale scenes and structures.
Various applications take point clouds as the input data, including
survey [59], transportation [8], SLAM (Simultaneous Localiza-
tion And Mapping) [4], and object classi�cation [31]. Due to
the high capture frequency of LiDAR sensors, LiDAR data are
typically compressed for transmission and storage in resource-
constrained environments. For example, Velodyne HDL-64E [9],
a popular LiDAR sensor, generates about 96 Megabits data per
second, whereas the bandwidths of 4G mobile networks are un-
der 10 Megabits per second [41]. Furthermore, the compressed
data must maintain a high accuracy in comparison with the orig-
inal data so as to satisfy the downstream processing tasks after
decompression. However, current work on LiDAR data compres-
sion often sacri�ces accuracy for compression ratio. Therefore,
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in this paper, we study how to compress LiDAR point clouds
e�ectively under a given small error bound.

Point cloud compression is performed on 3D coordinates, so
we call it geometry compression to distinguish from general data
compression. Early approaches on point cloud compression, in-
cluding space partitioning [3, 36, 48], clustering [17, 57], and
transformation [40, 56], focus on 3D object scans, where points
are densely and uniformly sampled from the object surface. In
contrast, LiDAR data capture much larger physical space and are
much more sparse than object point clouds. Furthermore, LiDAR
point clouds are sampled uniformly from the sensor to the en-
tire physical space, as opposed to individual objects. As a result,
traditional methods on object clouds as well as their adaptations
[5, 27, 33, 45] do not work e�ectively on LiDAR point clouds.

Another feature of LiDAR sensors is that they can output raw
point clouds where the spherical coordinates of the points form a
regular grid. Taking advantage of this feature, a recent approach
[53, 54] maps a raw LiDAR point cloud to a 2D image with re-
spect to the relative position of each point to the sensor, and
then compresses the image. However, this approach bears a low
compression accuracy in comparison with the calibrated point
cloud, due to the noise and errors in the raw data. Such accuracy
reduction may be acceptable by tasks such as visualization and
SLAM, but not by surveys or measurement applications that re-
quire a small error range between the original point cloud and
the decompressed one.

Considering the drawbacks of existing LiDAR data compres-
sors, we propose a compression scheme for LiDAR point clouds
that preserves the geometry accurately as well as improves the
compression ratio. As most applications use the point cloud after
calibration, or the released point cloud, as the original data, our
work has no assumption about the raw point cloud feature and is
applicable to both raw and calibrated point clouds. We focus on
compressing single-frame point clouds as opposed to a stream of
point clouds because (1) some LiDAR sensors can capture static
scenes only, (2) some downstream applications select speci�c
frames of LiDAR data to process [2, 20], and (3) single-frame
compression can be a building block in compressing point cloud
streams.

Speci�cally, we design an e�ective point cloud compression
scheme, the main idea of which comes from our observation
on LiDAR data. As an example, Figure 1 shows the G>~ plane
projection of a real-world city-scene point cloud from the KITTI
[22] dataset. In this �gure, we can see a pattern similar to a
spider web of diverse density: the polylines surrounding the
central area are dense, and from the central area outwards the
polylines gradually become sparse. However, previous research
has not exploited this pattern, but treated all points uniformly in
their schemes. As shown in our experiments, the compression
ratios of latest algorithms, e.g., the octree compression, decrease
signi�cantly as the point cloud becomes sparser. To alleviate
this problem, we propose to use the octree to compress only the
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Figure 1: A LiDAR point cloud in 2D Cartesian space.

points in dense regions. To identify these dense points, we adopt
density-based clustering on points and set its parameter values
to satisfy the user-de�ned error bound. For e�ciency, we �rst
build the octree for all points, and then perform clustering based
on the cells of the tree: if a cell contains a dense point, all points
in the cell are kept in the cell; otherwise, the cell is removed from
the octree. This way, the octree covers all points in dense regions
and the compression ratio is improved.

After constructing the octree for dense points, we further
organize sparse points into similar polylines in the spherical
coordinate system. We de�ne the similarity between polylines
by that of the sequence of points on the polylines. This polyline
organization is to facilitate the compression of point coordinates.
Considering the characteristics of the real-world LiDAR data, we
design a radial distance optimized delta encoding scheme and
compress the sparse points in their azimuthal and polar angles.

Additional contributions within our approach include (1) co-
ordinate scaling, which takes advantage of the error bound to
reduce data entropy; (2) grouping sparse points and then or-
ganizing each group to perform polyline compression; and (3)
optimized outlier compression, which processes coordinates of
outliers (i.e., sparse points not on any polyline) in each dimension
separately.

All our compression components satisfy a user-given error
bound, e.g., 0.02 meters error bound for each point, and together
they achieve a high compression ratio.

We have implemented our compression scheme in a proto-
type system called DBGC and evaluated its e�ectiveness and
e�ciency. Our experiments compared our compression scheme
with existing work, using large-scale point cloud data from dif-
ferent scenes, with the error bound varied. The results show that
our compression scheme outperforms the state of the art consid-
erably on e�ectiveness. We also evaluated the end-to-end time
performance and compression bandwidths of DBGC. We �nd
that the compression bandwidth of DBGC is big enough for the
online processing of LiDAR sensor data generated at full speed.

In summary, we make the following contributions.
• We identify the drawback of octree compression on sparse
point clouds and design a density-based clustering method
to determine the dense and sparse points. Speci�cally,
we set the parameter values of clustering based on the
octree structure and the error bound, and improve both the
clustering e�ciency and the compression e�ectiveness.

• We propose to organize sparse points into polylines that
have similar patterns in the spherical coordinate space.
Then, we introduce a compression method for the coordi-
nates of the sparse points on these polylines based on our
radial distance optimized delta encoding.

• We propose other optimizations, including coordinate scal-
ing, sparse point grouping for polyline organization, and
optimized outlier compression, to further improve the
compression ratio of our scheme.

• We design and implement an end-to-end compression
system DBGC to evaluate our compression scheme. Then,
we conduct experiments on real-world point clouds from
di�erent scenes under various settings to examine the
e�ectiveness and e�ciency of our approach.

2 PRELIMINARIES AND RELATEDWORK
In this section, we present the preliminaries of point cloud com-
pression and then introduce related work.

2.1 Preliminaries
First, we de�ne a point cloud as follows.

De�nition 2.1. A point cloud, denoted as PC, is a set of points.
Each point ? 2 PC is a tuple containing geometry information,
represented in coordinates, and optionally, attributes such as
intensity, color, and the surface normal at the point.

We denote |PC| as the number of points in PC. In this paper,
we focus on compressing the geometry information in a point
cloud, as commonly done in previous work [27, 53, 54]. In the
Cartesian coordinate system with the origin at > , a point ? is
represented by (G? ,~? , I? ), where G? , ~? , and I? are the o�sets
from > to ? on the G , ~, and I dimensions. In comparison, in the
spherical coordinate system with the origin at > , a point ? is
represented by (\? ,q? , A? ), where \? and q? are the azimuthal
and polar angles of the vector from > to ? , respectively. A? is the
radial distance between > and ? . Given PC, we use 2<0G and 2<8=
to denote the maximum and minimum values of the dimension 2
coordinates of all points in PC.

We represent a polyline ; as a sequence points, ; = h?1, ?2, · · · ,
?=i, and ; .5 A>=C , ; .102: , and ; [8] are the �rst, last, and 8th points
in ; , respectively. We also denote PL as a set of polylines and
L = hE1, E2, · · · , E=i as a sequence of numbers, where E< is a
number.

Given a point cloud PC, a compression procedure ⇠ converts
PC into a bit sequence B, and ⇠’s corresponding decompression
procedure⇡⇠ converts B into the decompressed point cloud PC0.
We denote |B| as the size ofB in bytes. We de�ne the compression
ratio as the ratio of the data size of PC measured in bytes to |B|.
In general, we refer to compression performance as the data size
reduction capability. The higher the compression ratio, the better
the compression performance.

As the decompressed point cloud PC0 and the input data PC
may di�er, people de�ne errors to measure the di�erence. Since
our compression scheme ensures one-to-one mapping between
points in the input point cloud and those in the decompressed
point cloud, we de�ne the error between the coordinates of two
corresponding points in PC0 and PC as follows.

De�nition 2.2. Given a coordinate E of point ? and E 0 of ? 0,
where ? 2 PC and ? 0 2 PC0, the error between E 0 and E is the
absolute value of the di�erence between E and E 0.

We call E the actual coordinate value and E 0 the approximate
coordinate value, respectively. In our point cloud compression,
we further specify the error bound @2 , as the maximum error
allowed on each dimension 2 between the original point and
the corresponding point in the decompressed point cloud. In the
Cartesian coordinate system, the error bound on the G , ~, and I
dimensions are usually the same, so we denote a single @G~I for
all three dimensions for simplicity. In this paper, we study the
geometry compression of point clouds with a high accuracy or
small error bound.
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Table 1: Notations

Symbol Description

PC A point cloud
? A point
(G? ,~? , I? ) The Cartesian coordinates of a point ?
(\? ,q? , A? ) The spherical coordinates of a point ?
2<0G ,2<8= The maximum/minimum value of dimension 2
; A sequence of points, i.e., a polyline
PL A set of polylines
L A sequence of values
B A bit sequence
@2 The error bound of dimension 2

We summarize the notations and their descriptions in Table 1.
Finally, we de�ne the problem of point cloud geometry com-

pression with an error bound as follows, which is consistent with
previous work [33, 48].

Problem Statement.Given an error bound@2 on each dimen-
sion 2 of a coordinate system, develop a point cloud geometry
compression scheme ⇠ that satis�es the following conditions: (1)
given a point cloud PC, ⇠ will generate a bit sequence B, and
⇠’s corresponding decompression scheme will convert B into
a decompressed point cloud PC0; (2) there exists a one-to-one
mapping " from PC to PC0; and (3) for each ? 2 PC, the error
between the coordinates of" (?) and ? on each dimension 2 is
less than or equal to @2 .

Octree Representation. An octree representation [36] of a
3D point cloud can be constructed by recursive partitioning.
Without loss of generality, we let the space represented by each
tree node be a cube. First, a bounding cube covering all points is
created, serving as the root node of the octree. Then, the cube is
partitioned into eight sub-cubes by dividing each dimension into
two halves. These eight sub-cubes are the child nodes of the root
node, and further partitioning can continue on non-empty cubes
until a given tree depth is reached, or each leaf node contains
only a single point.

In a point cloud compression scheme using an octree repre-
sentation, each point in a leaf node is approximated to the cube’s
center. Therefore, if the side length of the leaf node is less than
or equal to 2@2 on each dimension 2 , the error for a point before
compression and after decompression on each dimension will be
less than or equal to @2 .

Delta Encoding. Delta encoding works on a sequence of val-
ues, de�ned as follows.

De�nition 2.3. Given a sequence of valuesL = hE1, E2, · · · , E=i,
delta coding transforms L into �L = hE1,�E2, · · · ,�E=i, where
�E< = E< � E<�1 for 1 < <  =.

Entropy. Given a sequence of n valuesL, supposeL contains
< distinct values E1, E2, · · · , E< . The entropy of L is de�ned as

� (L) = �
<’
8=1

% (E8 ) log % (E8 ) (1)

where % (E) is the frequency of the occurrence of E in L [50].
Entropy coding is a group of compression methods that compress
L into B such that each distinct value in L is represented by a
symbol with � (L) bits on average in B.

2.2 Related Work
Object Point Cloud Compression. Traditionally, a point cloud
illustrates the surface of an object. Botsch et al. [7] converted a
point cloud into an octree and then encoded the octree. Specif-
ically, they represented each non-leaf node of the octree as an
occupancy code, i.e., a bitmap of length eight, where the =th bit
was 0 (resp., 1) if its =th child node was empty (resp. non-empty).
After that, the octree was serialized in the breadth-�rst order
into a sequence of occupancy codes. Then, they utilized an arith-
metic coder [58] to compress the sequence. Due to the impressive
compression performance of the octree, several improvements
were proposed to further reduce the redundancy [28, 44, 48]. The
latest improvement proposed by Garcia et al. [21] grouped oc-
tree nodes by the occupancy code of their parent nodes. Then,
they compressed each group separately to improve the overall
compression ratio. An alternative representation of a point cloud
is a kd-tree [3], partitioning the space into two halves in each
step. The point cloud compression program Draco [23] uses the
kd-tree.

In comparison, other schemes compress a point cloud without
any alternative representation. Gumhold et al. [25] and Merry et
al. [37] connected all points into a spanning tree and determined
a point’s coordinates based on those of its ancestors. Ochotta et
al. [40] and Fan et al. [17] partitioned a point cloud into clusters
and compressed each cluster by representing it with a �tting
function.

As the baseline octree coder [7] is already su�cient for com-
pressing dense point clouds, and further improvements have lim-
ited bene�t, we implement the baseline octree coder as a building
block in our scheme to compress dense points in a LiDAR point
cloud.

Scene Point Cloud Compression. 3D scanning sensors rep-
resented by LiDAR arewidely used for large-scale scenes. Directly
adopting compression methods for object point clouds to com-
press scene point clouds results in a poor performance, because
the latter are much sparser than the former. Therefore, some
work optimized octree compression methods for scene point
clouds. Speci�cally, G-PCC [33], proposed by the Moving Picture
Experts Group (MPEG), represented a point cloud by an octree,
and adopted several optimizations such as direct point coding,
neighbor-dependent entropy coding, and triangle construction to
achieve a better compression performance. Huang et al. [27] and
Que et al. [45] designed deep learning models to reduce the space
cost of an octree. These methods show limited improvement over
the original octree-based methods on LiDAR point clouds.

LiDAR sensors can output raw point clouds where the spheri-
cal coordinates of the points form an image. Taking advantage
of this feature, Houshinar et al. [26] mapped each pixel in the
image to the RGB color space and then applied existing image
compression methods. Similarly, Tu et al. [54] treated the data as
a greyscale image for compression. Ahn et al. [1] partitioned the
image into blocks and applied various compression strategies for
the blocks. Zanuttigh et al. [60] and Sun et al. [53] performed seg-
mentation on the image and modeled the pixel value distribution
of each segment. However, applications usually use calibrated
point clouds rather than raw data, to reduce errors and noise.

In addition to approaches compressing static point clouds,
some research focused on reducing the temporal redundancy of
a dynamic point cloud stream [5, 55].
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In comparison to existing work on point cloud compression,
our scheme works for both raw and released point clouds. Fur-
thermore, we distinguish between dense and sparse points, and
organize dense points into an octree and sparse points into poly-
lines.

Compression in Databases. There is an abundance of com-
pression schemes in databases, especially column-oriented data-
bases. Fang et al. [18] studied nine lightweight compression meth-
ods, including delta encoding, run-length encoding, data scal-
ing, dictionary encoding, and others, with their combinations in
databases on GPUs. Additionally, Damme et al. [12] proposed an
experimental survey to investigate several compression schemes
and their SIMD extensions. Gorilla et al. [43] performed the XOR
operation on consecutive values and then compressed the lead-
ing and tailing zeros of the XOR results. Sprintz et al. [6] stored
the di�erence between actual values and predicted values and
compressed the errors with bit-packing encoding. Liu et al. [32]
eliminated the least signi�cant bits of a �oating-point number
and compressed the integer and decimal components of each
number separately.

The coordinates of points can be stored in a relational table in
the database, where each tuple corresponds to a point, and the
coordinates of points are attributes. Therefore, lightweight data-
base compression schemes can also be applied to domain-speci�c
systems that store points and trajectories. For instance, TrajS-
tore [11] utilizes delta encoding to reduce the space consumption
of a trajectory data store. Trajic [39] improves TrajStore by uti-
lizing timestamp information and current positions in predicting
future positions. TRACE [30] performs online compression on
network-constrained trajectories. In our compression scheme,
we optimize delta encoding based on the properties of real-world
LiDAR data and adopt several other techniques to achieve com-
pression e�ectiveness.

General-purpose Compressors. General-purpose compres-
sors take input as a byte sequence. For instance, Hu�man cod-
ing [29] and arithmetic coding [58] reduce the redundancy based
on entropy. LZ77 [61] and LZMA [47] encode frequent subse-
quences in the input sequence to decrease the space cost. De-
�ate [13], integrated into the software Gzip [14] and Zlib [34],
performs Hu�man coding on the output of LZ77. Bzip2 [49]
compresses a sequence based on Burrows-Wheeler transform.

The state-of-the-art compressors are Zstd [16] and Snappy [24],
focusing on high throughput real-time compression. However,
they are not employed in current point cloud compression meth-
ods yet, because the data size of a single-frame point cloud is
small, and the compression throughput is not a concern. In con-
trast, many point cloud compression approaches adopt traditional
general-purpose compressors as building blocks in their design
for a high compression ratio. For instance, after converting a
point cloud into an octree and serializing the octree, Botsch et
al. [7] utilizes an arithmetic coder to compress the occupancy
code sequence. Sun et al. [53] put all pixels in a residual image
into a sequence and then compressed the sequence by De�ate
and Bzip2. We adopt De�ate and an arithmetic coder in our com-
pression scheme.

3 THE DBGC SYSTEM
3.1 System Overview
We design our point-cloud compression scheme with an error
bound, i.e., the points in PC and those in PC0 have a one-to-one
mapping, and the coordinate di�erences of each pair of points in

the mapping meet the error bound. In practice, this error bound
is typically the measurement accuracy of LiDAR sensors, for ex-
ample, 0.02 meters. Our scheme can be utilized as a standalone
compression tool in various applications. Additionally, we also
integrate the scheme into our prototype system DBGC. DBGC
targets at a common class of applications that acquire and trans-
mit LiDAR data in resource-constrained environments and have
online processing or storage requirement, for example, remote
surveys and online monitoring. In the following, we describe our
scheme in DBGC.

Figure 2 presents the architecture of the DBGC system. First,
the LiDAR sensor captures the geometry of its surroundings
and stores the points as a point cloud PC. Next, the point cloud
is transferred from the sensor to the memory of the host com-
puter (client in our system) through a wired network. The client
performs compression on the point cloud data in memory and
generates a bit sequence B whose data size is smaller than PC.
After that, the bit sequence is transferred to the memory of a
server (server in our system) through a mobile network. The
server decompresses the bit sequence into the decompressed
point cloud PC0, and processes it or stores it. Alternatively, the
server may bypass the decompression procedure and directly
store B.

On the client, there are six components: density-based clus-
tering, coordinate conversion, point organization, octree com-
pression, coordinate compression, and outlier compression. The
choices of these di�erent compression schemes are based on the
characteristics of the subsets of the point cloud, and together they
achieve the best overall compression ratio. Speci�cally, DBGC
�rst performs density-based clustering on the input LiDAR point
cloud PC with the given error bound @G~I , and then compresses
the dense points with an octree. Next, DBGC converts the Carte-
sian coordinates of the sparse points to the spherical coordinates,
organizes these points into polylines, and conducts our proposed
coordinate compression method. Third, if any sparse points are
left out of all polylines, DBGC will convert these outliers back
to the Cartesian coordinate system and compress them by an
optimized compressor based on the quad-tree. Finally, DBGC
puts together the three compressed subsets of the point cloud
and generates the �nal B.

After the compressed point cloud is sent to the server, DBGC
separates B into three subsequences, and passes each to a corre-
sponding decompressor, i.e., an octree decompressor, a coordinate
decompressor, and an outlier decompressor. Since points in poly-
lines are of spherical coordinates, they are converted back to
the Cartesian coordinate system. Finally, PC0, the entire decom-
pressed point cloud in Cartesian coordinates, is constructed by
putting together the three groups of points.

In the following sections, we present each component of the
DBGC system in detail.

3.2 Density-based Clustering
Problem of Octree on LiDARPoint Clouds.Most point cloud
compression approaches, including the octree coder, were origi-
nally proposed for object point clouds that are generated by 3D
object scanning [46], where the spatial coordinates have a small
range and points are densely distributed. In contrast, LiDAR point
clouds are captured by sensors in large-scale scenes, commonly
spanning thousands of cubic meters, which are much sparser
than the object point clouds.
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Figure 2: The DBGC system architecture.

To illustrate the impact of the sparsity on the e�ectiveness
of an octree, we select subsets of the real-world LiDAR point
cloud we visualized in Figure 1 to compress with an octree. These
subsets are concentric spheres centered at the sensor, with radius
(the maximum distance from the sensor to a point in the subset)
varied. As shown in Figure 3a, the compression performance,
measured in compression ratio, decreases as the radius of the
point cloud increases. This trend correlates with the decrease
of density in the number of points over radius cubed, shown in
Figure 3b. In particular, when the radius of the point cloud is over
20 meters, the point density is 2 points per cubic meter, and the
compression ratio is 22, both of which are much worse than those
of point clouds of smaller spatial ranges. In comparison, object
point clouds are much denser and of smaller spatial ranges than
LiDAR point clouds. For instance, the Stanford Bunny dataset [51]
has a density over 106 points per cubic meter.

Cell-based Clustering Approach. To make the best use of
the octree’s compression capability, in DBGC, we only apply it on
a subset of the point cloud that is su�ciently dense, and design
a more suitable algorithm for the remaining sparse points.

A simple method to identify dense regions is to select all points
at distances to the sensor less than a given threshold, as Figure
3 suggests. This method works but is not �exible because (1)
The spatial distribution of point clouds may vary signi�cantly
in di�erent scenes; and (2) The distance threshold may di�er by
user requirement on the error bound. The DBSCAN [15] algo-
rithm is widely utilized to cluster points based on the density
in their local areas. It �rst determines the core points with at
least<8=%CB neighbors within a radius of n . Then, a core point
and its neighbors form a cluster. If any neighbor is also a core
point, the cluster expands. This recursive process goes on un-
til no more expansion occurs. However, performing clustering
in terms of points is time-consuming, taking $ (=2) time in the
worst case [19]. Furthermore, since the distance between two

(a) Compression ratio. (b) Density.

Figure 3: Varying radius.

points is measured in Euclidean distance, the local boundaries of
the set of dense points are likely to have a sphere shape, which
mismatches the structure of the octree cell represented as a cube.
So a single octree cell may contain both the dense and sparse
points. Recall that in our previous analysis, we only construct an
octree cell if it contains a su�cient number of points. Therefore,
as long as the number of dense points inside a cell meets our
requirement, the cell can also include all the sparse points within
the cube region to further improve the compression ratio of the
octree.

As a result, we borrow the general idea of DBSCAN [15] and
design a clustering method adapted to the property of octrees.
Speci�cally, we propose to identify dense cells in an octree in
addition to dense points in a point cloud. Given the bounding
cube of a point cloud, we can determine the boundary of each
cell. Initially, all cells are sparse cells. Then, in the clustering, we
iterate over each point ? in the point cloud and check if ? is in a
dense cell. If so, we directly set ? as a dense point and process
the neighbors of ? , i.e., all points within a radius of n around ? ,
recursively. Otherwise, we perform the neighbor check operation
by counting if ? has at least<8=%CB neighbors. If ? is determined
to be dense, we record the cell it belongs to as a dense cell and
process each neighbor of ? recursively. In comparison, if ? is
not a dense point, the algorithm backtracks. Since a point may
be processed before its cell is determined to be a dense cell, we
need a second iteration to set those sparse points in dense cells
to be dense points. This way, our cell-based clustering approach
reduces the execution time of clustering compared with DBSCAN,
because many costly neighbor check operations are pruned.

Parameters. The distance threshold n determines the region
size to compute the local density. If n is small, the accuracy of
estimated density may be low. However, a large n leads to a high
computational cost. In our approach, we set n based on the user-
given error bound. Speci�cally, n = : · @G~I , where : is a natural
number. Since the side length of the octree leaf node is twice the
error bound, the : value should be at least 2, so points whose
distances are less than 2 · @G~I will appear in the cluster results.
We have experimented with : values ranging from 2 to 100 and
set the �nal : value to 10, since 10 is su�ciently large for the
point cloud data, and the clustering time is short.

<8=%CB speci�es the lowest density of a cluster. If<8=%CB is
small, many points from the sparse regions are included. In com-
parison, if <8=%CB is large, only the points with high density
are compressed with the octree, limiting the compression perfor-
mance. As each non-empty leaf node of an octree contains at least
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Figure 4: Example of density-based clustering.

one point, the minimum number of neighbors of a core point can
be set as the number of non-empty leaf nodes in the sphere with
the core point as the center and the radius n . This sphere has a vol-
ume of 4

3c
�
: · @G~I

�3. Since the side length of a leaf node in the
octree is 2 ·@G~I , the sphere contains 4

3c
�
: · @G~I

�3 /�2 · @G~I �3
= :3

6 c leaf nodes. Therefore, we can set<8=%CB to :3

6 c so that
the sphere around a core point is covered by a su�cient number
of non-empty leaf nodes.

After performing density-based clustering with these two pa-
rameters on a point cloud, DBGC identi�es all points in any
cluster as dense points and the remaining points as sparse ones.
In our running example of the point cloud demonstrated in Fig-
ure 1, about 40% of the point cloud are dense points and 60% are
sparse points.

Octree Compression Our clustering method may identify
multiple clusters, each of which has a density higher than the
given threshold. It is straightforward to build an octree for each
cluster. However, these octrees may overlap if data points covered
in di�erent trees have overlapping bounding cubes, leading to
redundancy. Therefore, DBGC uses a single octree to represent
all dense points. Even though this single octree may cover some
empty space between clusters, the empty nodes are not further
subdivided in the tree. The output of the octree compressor is
denoted as B34=B4 .

Example 3.1. Figure 4a shows the example points labeled with
point IDs and potential quadtree cells in the 2D space. Suppose
we identify two point clusters {1, 2, 3} and {7, 8, 9}. Our cell-based
clustering will not only mark these six points but also points 4
and 6 as dense points because point 4 is in the same cell as point
3 and 6 in the same cell as point 7. Figure 4b shows the quadtree
built on the clustering result. In the top two levels, each cell is
represented as a bit sequence. The bottom level shows the points
represented by the quadtree, where all dense points are included.

3.3 Coordinate Conversion
LiDAR point clouds are hard to compress due to their sparsity,
so some previous methods [1, 54, 60] exploited the characteris-
tics of LiDAR data and convert each point from the Cartesian
coordinates (G,~, I) to the spherical coordinates (\ ,q, A ), where
\ and q are the azimuthal and polar angles of the vector from
the sensor to the point, respectively, and A is the radial distance
from the sensor to the point. In the raw data, the azimuthal and
polar angles form a regular 2D grid, where each cell is attached
with an A value. Such a format is essentially an image and related
methods thus compress the image instead of the points.

However, most applications take calibrated point clouds rather
than raw ones as their input data to reduce the noise and errors

from the LiDAR sensor. We plot our running example (calibrated)
point cloud in a 2D space with the azimuthal angle on the hori-
zontal dimension and the polar angle on the vertical dimension
in Figure 5. The solid boundary of the top rectangle represents
the bounding box de�ned by the sensor. We further zoom into
three particular regions enclosed by the dashed rectangles. As
shown in the �gure, some points are out of the bounding box. For
example, some points in the dashed rectangle on the bottom left
are out of the top boundary, and some cells are missing points. In
short, the points do not exhibit a grid but overall are positioned
with regularity.

Consequently, DBGC does not map the points into an image,
but only converts the coordinates to take advantage of the reg-
ularity as well as ensure the compression to be a one-to-one
mapping from the original points. Based on these considerations,
we design a new point compression scheme in the spherical
coordinate system.

In the remainder of this paper, we use the following notations
to denote variables related to coordinates. Speci�cally, the meta-
data of a LiDAR sensor provides the minimum and maximum
values of the spherical coordinates, namely ö\<0G , ö\<8= , öq<0G ,öq<8= , öA<0G , and dA<8= . The number of samples in the horizontal
and vertical directions are also recorded, denoted as � and, ,
respectively. Therefore, we can get average di�erence between

two adjacent points in the azimuthal angle, D\ =
ö\<0G�ö\<8=

, , and

that in the polar angle, Dq =
öq<0G�öq<8=

� .

3.4 Point Organization
In the point organization step, we �rst identify a sequential order
among the sparse points. This total order is necessary because
(1) Points are unordered in the point cloud, but our proposed
compression scheme works on an ordered sequence of points;
and (2) A good point order can boost the compression e�ective-
ness. Our observation in the previous section indicates that the
coordinate di�erences between two points near to each other are
similar in the spherical coordinate space. Therefore, we adopt
a delta-encoding compression approach, i.e., processing on the
coordinate di�erences of two points rather than the original co-
ordinates of a point, on sparse points in the following step. As a
result, in the output of point organization, the coordinate di�er-
ence between two consecutive points in the sequence is small,
so the data entropy is low.

To ful�ll our goal, we propose to organize points with similar
polar angles into horizontal polylines. Some polylines are marked
in Figure 5. To extract a polyline, we �rst choose a point, and
then extend it by adding vertices based on distance and q angle
similarity. The details are illustrated in Algorithm 1. The input
is a point cloud PC in the spherical coordinate system. Line
1 initializes an empty polyline set PL. Then, Lines 2-8 iterate
over each remaining point in PC to generate a polyline. As Line
3 selects a point ? , we set the minimum and maximum polar

Figure 5: Point cloud in (\ , q) space.
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Algorithm 1: O�������S�����P�����
Input: PC: a point cloud
Output: hPLi: a sorted sequence of polylines, and$DC;84AB

1 PL {};
2 foreach ? 2 PC do
3 ;  h? i;

/* extend a polyline to the right */
4 while ?0  Extend(;,q? �Dq ,q? +Dq ) exists do
5 move ?0 from PC to the back of ; ;

/* extend a polyline to the left, omitted */
6 PL PL [ {; };
7 hPLi  sort PL;
8 return hPLi and$DC;84AB ;
9 Function Extend(;,q;

<8=,q
;
<0G ) :

10 ? = tail of ; ;
11 ⇠?0 = {?0 2 PC : q;

<8= < \?0 < q;
<0G 0=3 0 < \?0 �\? < 2D\ };

12 if ⇠?0 is not empty then
13 return ?0 2 ⇠?0 with minimum | |? � ?0 | |2 ;
14 else
15 return null;

angles of the points in the polyline to q? � Dq and q? + Dq ,
where Dq is the average di�erence between two consecutive
points in the polar angle direction. This way, the polyline extends
roughly horizontally. After that, Lines 4-5 extend a polyline to the
right and Line 6 inserts the line to PL. In the extension routine,
Lines 10-11 generate a candidate point set ⇠?0 containing all ? 0

whose polar angle is within the range from q;<8= to q;<0G and the
azimuthal angle di�erence between ? 0 and ? is within the range
from 0 to 2D\ . Since D\ is the average di�erence between two
consecutive points in the azimuthal angle direction, this setting
allows adjacent sampling points, if present, to be included in the
candidate set. Then, if ⇠?0 is not empty, Line 13 selects a point
from ⇠?0 with the minimum Euclidean distance from ? , denoted
as | |? � ? 0 | |2. Otherwise, the current extension ends. Then, a
polyline is also extended to the left. We omit the details since the
extension routines in both directions are similar.

Finally, the resulting polylines are sorted on Line 7. Speci�cally,
we �rst de�ne the polar angle of a polyline as the polar angle of
its �rst point since all polylines are extended horizontally. Then,
we sort all polylines in PL by the ascending order of their polar
angles. If two polylines have the same polar angle, we place the
one whose head has a smaller azimuthal angle in front of the
other. Line 8 returns the resulting sequence of polylines, denoted
as hPLi, and the $DC;84AB , i.e., the set of points not belonging to
any polyline.

3.5 Coordinate Compression of Sparse Points
After organizing the sparse points, we design a coordinate com-
pression approach for them by considering the redundancywithin
each polyline as well as across polylines. The outline is shown in
Figure 6. A rounded rectangle represents a step, where the back
circled number at the top-left corner represents the step number.
The gray arrows indicate data dependencies. Namely, an arrow
from data D1 to data D2 means that D2 is generated based on
D1. Next, we describe each step in detail.

Step 1: Coordinate Scaling. LiDAR sensors record the coor-
dinates of a point with a precision much higher than required by
the user. As a result, most applications set an error bound and
allow the coordinates to be stored with a di�erence lower than
the error bound from the original values. Also, high precision
numbers are likely to have high entropy because they possibly

di�er on each digit. Therefore, in the �rst step of our compres-
sion, we lower the precision of the coordinate values. Speci�cally,
we �rst compute the error bound on each dimension in the spher-
ical coordinate system given @G~I . For the azimuthal and polar
angles, given a �xed error on a dimension, the farther a point
is from the sensor, the larger the error on the position will be.
So we set @\ and @q to be @G~I

A<0G
to ensure that even the farthest

point has a position error not greater than @G~I in the \ and q
direction. Also, we set @A to be @G~I so that the position error on
the A direction is within @G~I . Lemma 3.2 states the correctness
of our choices of @\ , @q , and @A .

L���� 3.2. Given a point ? 2 %⇠ , the maximum position error
of ? in the spherical coordinate system with @\ =

@G~I
A<0G

, @q =
@G~I
A<0G

,
and @A = @G~I , is not greater than the maximum position error of
? in the Cartesian coordinate system with @G = @~ = @I = @G~I .

P����. In both the spherical and Cartesian coordinate sys-
tems, a point has the maximum Euclidean error if it has a maxi-
mum error on all dimensions simultaneously. Then, given @\ =
@G~I
A<0G

, @q =
@G~I
A<0G

, and @A = @G~I , the square of the maximum
error of a point (\? ,q? , A? ) in the spherical coordinate system is

[(A? + @A )B8=(\? + @\ )2>B (q? + @q ) � A?B8=\?2>Bq? ]2

+ [(A? + @A )B8=(\? + @\ )B8=(q? + @q ) � A?B8=\?B8=q? ]2

+ [(A? + @A )2>B (\? + @\ ) � A?2>B\? ]2

= @2G~I [B8=\?2>Bq? + 2>B (\? + q? )]2 + @2G~I [B8=\?B8=q?
+ B8=(\? + q? )]2 + @2G~I (2>B\? � B8=\? )2

= (2 + B8=2\ )@2G~I

(2)

In the Cartesian coordinate, given @G = @~ = @I = @G~I , the
square of the maximum Euclidean error of a point (G? ,~? , I? ) is

@G · @G + @~ · @~ + @I · @I = 3@2G~I (3)

Therefore, given our choices of @\ , @q , and @A , the maximum
Euclidean error in the spherical coordinate system is not greater
than that in the Cartesian coordinate system. ⇤

Observing that the precision below the given error bound
is needless, DBGC performs the data scaling and rounding on
the spherical coordinates. Speci�cally, it divides the coordinate
values on each dimension 2 by the corresponding scaling factor

❷

❺

ℒ<95
ℒ@

ℬ<95 ℬ∇@

ℒ@9B

❽

❾

❸ ❹

ℒ=>C928 ℒ=>D24<
❻

ℬ=>C928 ℬ=>D24<
∇ℒ@Δℒ=>C928

ℬ@9B

ℒ=?C928 ℒ=?D24<❼

ℬ=?C928 ℬ=?D24<
Δℒ=?C928

ℬ<95 ℬ∇@ℬ=>C928 ℬ=>D24< ℬ@9Bℬ=?C928 ℬ=?D24<

❶ Coordinate Scaling

Figure 6: Procedure of coordinate compression.
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2@2 , and then rounds the division result to an integer. The value
of @2 on each dimension is carried with B. In the decompression,
all recovered coordinates are multiplied by 2@2 . The rounding
from a �oating-point number to an integer introduces an error
up to 0.5. Therefore, after the multiplication, the error is within
0.5 · 2@2 = @2 , namely the error bound.

Step 2: Delta Encoding on \ and q . In this step, for each
polyline ; generated by Algorithm 1, we perform delta encoding
on the \ and q dimensions of the coordinates. After delta encod-
ing, the �rst point of each polyline is represented as the original
coordinates, whereas the remaining points are represented as the
delta coordinates, i.e., the coordinate di�erence between the point
and its preceding point. Compared with the original coordinates,
the entropy of the delta coordinates is likely to be small for the
following reasons. (1) Since LiDAR points are sampled uniformly
from the sensor, delta coordinates on the \ dimension are dis-
tributed around D\ ; (2) Delta coordinates on the q dimension are
close to 0 because a polyline is extended horizontally.

Therefore, delta encoding provides opportunities to reduce
the data size with entropy coding. In Figure 6, circles �lled with
white and black represent the original and delta coordinates,
respectively. We denote the �rst point of a polyline by the head,
and the sequence of remaining points by the tail.

Step 3: Data Reorganization. In the third step, the head and
tail of each polyline are concatenated separately. DBGC performs
this operation because the head of a polyline is stored as original
coordinates, which have di�erent data distributions from the
delta coordinates of the remaining points.

Step 4: Polyline Concatenation. DBGC also directly con-
catenates all polylines and gets a single concatenated polyline.

Step 5: Compressing Lengths. Since in Steps 3 and 4, points
in polylines are reorganized, the length of each polyline is recorded
so that the decompressor can correctly recover each polyline from
the bit sequence. Therefore, in this step, DBGC stores the length
of each polyline into L;4= and then compresses it into B;4= with
arithmetic coding.

Step 6: Compressing \s. Polylines with similar polar angles
are likely to contain points captured from the same set of objects
in the scene. Therefore, these polylines may have similar patterns
in the azimuthal angle. As such, DBGC performs compression
on the azimuthal angles of all polylines.

Speci�cally, DBGC concatenates the coordinates of the heads
of all lines on the \ dimension into L⌘403

�\ and those of the tails
into LC08;

�\ . After that, DBGC transforms L⌘403
�\ into �L⌘403

�\ by
delta encoding. Finally, both �L⌘403

�\ and L⌘403
�\ are compressed

by De�ate [13] into B⌘403
�\ and BC08;

�\ . De�ate performs both LZ77
compression [52] and entropy coding. We adopt De�ate as op-
posed to simple entropy encoder because it can compress the two
sequences more e�ectively as there are many repeated patterns.

Step 7: Compressing qs. Similar to compressing azimuthal
angles across all lines, DBGC generates L⌘403

�q and LC08;
�q , con-

verts L⌘403
�q into �L⌘403

�q by delta encoding, and compresses

�L⌘403
�q and LC08;

�q by arithmetic coding. We use arithmetic coder
instead of De�ate because the redundancy in polar angles is not
as much as in azimuthal angles, and therefore, the former is
su�cient.

Step 8: Compressing A . Di�erent from \ and q , the delta co-
ordinates on A of some consecutive points on a polyline may be
relatively large due to the complexity of real-world scenes. There-
fore, rather than performing delta encoding on the A dimension,

Algorithm 2: G���������C��������P�������
Input: PL⇤; : a sorted sequence of reference polylines
Output: ;⇤ : a consensus reference polyline

1 foreach ; 0 2 PL⇤; do
2 if ;⇤ is empty or \;⇤ .102: . < \;0 .5 A>=C then
3 insert ; 0 to the end of ;⇤ ;

4 else
5 83G;4 5 C =<0G {8 : \;⇤ [8 ] > \;0 .5 A>=C };
6 83GA86⌘C =<8={8 : q;⇤ [8 ] < q;0 .102: };
7 erase ;⇤ from 83G;4 5 C to 83GA86⌘C ;
8 insert ; 0 to ;⇤ at 83G;4 5 C ;

9 return ;2>= ;

we propose our radial distance optimized delta encoding method,
described in De�nition 3.3, to further reduce the redundancy
among all values in LA .

De�nition 3.3 (Radial Distance Optimized Delta Encoding). Given
a radial distance sequence LA = hA?1 , A?2 , · · · , A?= i, radial dis-
tance optimized delta encoding transforms LA into rLA = hA?1 ,
rA?2 , · · · ,rA?= i, where rA?< = A?< � A'45 (?<) for 1 < <  =,
and '4 5 (?) returns the reference point of ? .

Delta encoding is a special case of De�nition 3.3, where'4 5 (?<)
= ?<�1, i.e., ?< ’s preceding point in the same polyline. However,
in De�nition 3.3, '4 5 (?) can be chosen from all points in the
polyline and also points from other polylines. Next, we de�ne
the reference polyline set.

De�nition 3.4 (Reference Polyline Set). Given hPLi, ; 2 PL, and
a polar angle threshold )�q , the reference polyline set PL⇤; of ;
contains all polylines ; 0, such that (1) ; 0 precedes ; in hPLi, and
(2) the di�erence between the polar angle of ; 0 and that of ; is
less than or equal to )�q .

)�q controls the range for �nding reference polylines. We set
)�q to 2Dq so that most polylines have a non-empty reference
polyline set. We denote the sequence of reference polylines as
hPL⇤; i. Polylines in hPL

⇤
; i have the same order as in hPLi.

Reference polylines of ; are vertically close to ; . Therefore, due
to the spatial locality, the As of points in ; are similar to those
in ; 0 2 PL⇤; . To mitigate the complexity of handling multiple
polylines in the encoding, we summarize all the ; 0 2 PL⇤; and
generate a consensus reference polyline, denoted as ;⇤, for each
; . The generation procedure is illustrated in Algorithm 2. Lines
1-8 loop over each polyline ; 0 2 PL⇤; . Speci�cally, Line 2 checks
if the current ;⇤ is empty or the azimuthal angle of the tail of ;⇤
is less than that of the head of ; 0. If so, the current polyline ; 0 is
directly inserted into the end of ;⇤. Otherwise, Line 5 �nds the
index of the leftmost point of ;⇤ whose azimuthal angle is greater
than that of the head of ; 0, 83G;4 5 C . In contrast, Line 6 �nds the
index of the rightmost point of ;⇤ whose azimuthal angle is less
than that of the tail of ; 0, 83GA86⌘C . After that, Lines 7-8 replace
the points between 83G;4 5 C and 83GA86⌘C in ;⇤ with ; 0.

With the assistance of radial distance optimized delta encoding
and ;⇤s, DBGC performs compression on LA . Elements in LA are
processed one after another. Given A? , suppose ? resides on ; .
DBGC �rst checks if ? is the head of ; .
(1) If so, an ;⇤ is created for ; , and '4 5 (?) is the rightmost point

? 0 2 ;⇤ whose azimuthal angle is less than \? . If ;⇤ does not
exist or such a ? 0 does not exist in ;⇤, '4 5 (?) is set to be the
head of the preceding polyline of ; in hPL⇤; i.

(2) Otherwise, we denote the preceding point of ? in ; as ?1; , i.e.,
the bottom-left point. Also, in ;⇤, we denote the rightmost

385



point whose azimuthal angle is less than \?1; as ?D; , i.e., the
upper-left point, and the leftmost point whose azimuthal
angle is greater than \? as ?DA , i.e., the upper-right point.
Additionally, if there is a point next to ?DA on the left, which
is not ?D; , it is denoted as ?D< , i.e., the upper-middle point.
If ;⇤ does not exist or ?D; or ?DA does not exist in ;⇤, '4 5 (?)
is set to ?1; . Otherwise, there are two situations:
(a) The di�erence between each pair of points among A?D; ,

A?DA , and A?1; is less than or equal to a radial distance
threshold )�A , then the local scene near ? is likely to
be �at and DBGC directly sets '4 5 (?) to ?1; . We will
describe the choice of )�A later in this section.

(b) Otherwise, '4 5 (?) is set to be one of the point from ?D; ,
?D< (if any), ?DA , and ?1; , whose A is the nearest to A? .

In situation (1) and (2)(a), the choice of '4 5 (?) does not need
recording, because as long as the \ and q of all points are decom-
pressed, the choice of '4 5 (?) can be reproduced by the decom-
pressor based on the same procedure in the compression. How-
ever, in situation (2)(b), the choice of '4 5 (?) should be recorded
since the decompressor can not determine which point from ?D; ,
A?D< (if any), ?DA , and ?1; has the A nearest to A? . As a result,
DBGC maintains another sequence LA4 5 . ?D; , ?D< (if any), ?DA ,
and ?1; are represented by symbols 3, 2, 1, and 0, respectively. As
long as the condition (2)(b) is applied in the compression phase,
DBGC pushes the symbol of its choice to LA4 5 . In this way, to de-
compress the raidal distance of ? , DBGC checks if the di�erence
between any pair of points among A?D; , A?DA , and A?1; is greater
than )�A . If so, DBGC reads an element from LA4 5 to get the
reference point of ? and then computes A? .

In the compression scheme, a greater )�A leads to a higher
entropy of rLA but a shorter LA4 5 , since a high threshold is un-
likely to reach and Situation (2)(b) is encountered less often than
other conditions. By contrast, a smaller )�A leads to a lower en-
tropy of rLA but a longer LA4 5 . We set it to be 2< in our scheme
because consecutive points with a radial distance di�erence of
more than 2< are likely to appear at the boundary of an object.

Example 3.5 shows a concrete example of generating rLA and
LA4 5 based on LA . After that, DBGC performs arithmetic coding
on both rLA and LA4 5 to get BrA and BA4 5 .

Step 9: Organizing Output. Finally, DBGC combines all the
compressed sequences generated by our scheme together, such as
B;4= , B⌘403

�\ , BC08;
�\ , B⌘403

�q , BC08;
�q , BrA , and BA4 5 , to produce the

�nal bit sequence for the coordinate compression phase, denoted
as BB?0AB4 .

Example 3.5. Figure 7 shows the example points and their
radial distances. ?5 is the head of polyline ; , and a part of ;⇤ is
shown as the upper polyline. Since ?5 is the �rst point of ; , Sit-
uation (1) is applied. '4 5 (?5) is set to be ?1, so DBGC pushes
A?5 � A?1 = �1.4< to rLA . Next, A?6 is encoded, where ?D; , ?DA ,
and ?1; are ?1, ?2, and ?5, respectively. Since the di�erence be-
tween ?DA and ?1; is greater than 2<, Situation (2)(b) is applied.
DBGC �nds a point from ?D; , ?DA , and ?1; with the A nearest to
A?6 , which is ?D; = ?1. As a result, DBGC pushes A?6 �A?1 = 0.2<
to rLA and 3 to LA4 5 . Then, for ?7, ?D; , ?D< , ?DA , and ?1; are
?1, ?2, ?3, and ?6, respectively. Among these four points, no two
points have the di�erence on A greater than 2<, so Situation
(2)(a) is applied, and A?7 � A?6 = �1.2< is pushed into rLA . For
?8, according to Situation (2)(b), ?4 is selected as the reference
point. Therefore, DBGC pushes A?8 � A?4 = 0.8< to rLA and 1
to LA4 5 .

$#, 8.2)

$$, 6.8)

$%, 8.4)
$&, 7.2)

$', 6.5)

$(, 8.9) $), 8.0) $*, 5.7)0+,-

0

Figure 7: Example points with radial distances.

Point Grouping. The data scaling and rounding techniques
still keep precision higher than the accuracy. Speci�cally, @\
and @q guard the position error of the farthest point, but the
points near the sensor could have an error greater than them
on the \ and q directions. Such a small error bound restricts
the e�ectiveness of the compressor. Therefore, after the density-
based clustering, DBGC splits all the sparse points into several
groups evenly by the radial distance and then processes each
group separately to improve the performance. After that, the
points not belonging to any polylines in any group are regarded
as outliers. We �nd that a small number of groups can already
achieve a high compression performance, so we set the number
of groups to 3 in our experiments.

3.6 Optimized Outlier Compression
In the output of Algorithm 1, the set of outliers is small, and
its impact on the overall compression performance is negligible.
Therefore, we choose to compress the outliers based on existing
methods on the Cartesian coordinates. Speci�cally, we build a 2D
quad-tree on the G and ~ coordinates and keep I as an attribute
of the point. This choice is because the I coordinate range is
relatively small due to the inherent characteristics of LiDAR data,
i.e., LiDAR sensors have a much smaller vertical scanning range
than the horizontal one, and outliers are typically far points on
the G>~ plane. If we use an octree on (G,~, I), a lot of the space
on the I dimension of the bounding cube will be wasted.

After encoding the G and ~ coordinates of the point cloud
with the quad-tree compressor, DBGC records the I coordinate
of all points into LI . Then it performs delta encoding on LI to
get �LI and utilizes entropy coding to compress �LI into B�I .
After that, DBGC moves B�I to the back of the result of quad-
tree compression. The �nal bit sequence of outlier compression
is denoted as B>DC;84A .

3.7 Output Layout and Decompression
The layout of the bit sequenceB without point grouping is shown
in Figure 8a. DBGC records the error bound @G~I and the maxi-
mum value on the A dimension among all sparse points partici-
pating in the coordinate compression. The two values determine
the data scaling factor so that DBGC can recover the coordinates
of the points in polylines correctly. B also contains the three bit
sequences B34=B4 , BB?0AB4 , and B>DC;84A , output by the octree
compressor, the coordinate compressor, and the outlier compres-
sor, respectively. The grey block before each sequence records
the length. The decompressor splits the three components based
on their lengths and passes them to di�erent blocks in Figure 2.
Next, the octree decompressor gets the points from the octree
representation. The coordinate decompressor splits each bit se-
quence, listed in Step 9 in Figure 5, and recovers the spherical
coordinates of all the points in polylines. After that, these points
are scaled by the scaling factor and converted to the Cartesian
coordinates. Finally, the Cartesian coordinates of the outliers are
decompressed through outlier decompression.
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Additionally, Figure 8b shows the layout of DBGC with point
grouping of 3 groups. In particular, A=<0G and B=

B?0AB4 represent
the maximum value of A and the bit sequence of coordinate com-
pression in the =th group, respectively. The decompression pro-
cedure is similar to that without point grouping, except that
multiple groups of polylines are decompressed separately.

-123.3F; ℬ76D@99 ℬ:K2@:9 ℬ7GD<49@
|ℬ76D@99| |ℬ:K2@:9| |ℬ7GD<49@|

(a) Without point grouping.

ℬ:K2@:9J ℬ7GD<49@
|ℬ:K2@:9J | |ℬ7GD<49@|
-123J.3F; ℬ76D@99

|ℬ76D@99|
ℬ:K2@:9I

|ℬ:K2@:9I |
-123I ℬ:K2@:9H

|ℬ:K2@:9H |
-123H

(b) With point grouping.

Figure 8: Final layout of B produced by DBGC.

4 EXPERIMENTS
This section evaluates the performance of our compression scheme
and the DBGC system on real-world LiDAR point cloud datasets
with the state of the art.

4.1 Experimental Setup
Implementation. Both the DBGC client and server are imple-
mented in C++. DBGC has built-in Velodyne LiDAR sensor sup-
port, but users can easily apply DBGC on other types of sensors
by importing the metadata of the sensor. DBGC client automati-
cally pulls point clouds from the sensor and compresses the point
clouds. We utilize the Linux socket model to transfer data from
the client to the server. For the server storage, DBGC supports
storing data into �les or relational databases through ODBC. We
also package compression and decompression functions of DBGC
into libDBGC, so that existing point cloud systems can adopt
DBGC’s compression scheme as a building block with minor
e�orts.

We ran our experiments on a Linux machine with two Intel
Xeon Gold 5218 CPUs and 512G RAM.

Datasets. We use three large-scale datasets in our evaluation
captured from a variety of scenes spanning thousands of cubic
meters. The �rst dataset KITTI [22] is widely used for evaluation
in previous studies [27, 45, 53]. It contains four types of scenes –
campus, city, residential areas, and road scenes. We select 1000
frames from each scene to conduct the experiments. Each frame
contains approximately 100K points, stored in a binary �le. Each
point is represented by the G , ~, and I coordinates and the in-
tensity. The second dataset we use is Apollo [35], with the same
�le format as KITTI capturing urban scenes. We randomly select
1000 frames from this dataset, and each frame contains about
100K points. The third dataset we adopt is a Ford LiDAR dataset
[42] capturing campus scenes. We also randomly select 1000
frames, each of which stores the coordinates of about 80K points
in a<0C �le.

Methods under comparison. We compare the compression
scheme of DBGC with the state-of-the-art point cloud compres-
sion schemes. Ourmain competitor is the Octree [36] as well as an
improved version [21], denoted as Octree_i. The latter groups oc-
tree nodes by the occupancy code of their parent nodes and com-
presses each group separately. We re-implemented both methods
according to the original papers. We also compare with Draco,

(a) Campus scene of KITTI. (b) City scene of KITTI.

(c) Residential scene of KITTI. (d) Road scene of KITTI.

(e) Ford dataset. (f) Apollo dataset.

Figure 9: Bandwidth vs @G~I of �ve schemes.

a kd-tree-based compressor, whose code is publicly available
[23]. Finally, we evaluate the TMC13 tool version 14 [38], which
conforms to the MPEG G-PCC [33] standard for point cloud
compression. We use the tool with the mergeDuplicatedPoints
�ag disabled so that the compressed point cloud has no missing
points.

Metrics. We utilize compression ratio to indicate the e�ec-
tiveness of a compression approach, which is the ratio of the data
size of PC measured in bytes to |B|. However, to evaluate our
DBGC system in the data management context, we also report the
average bandwidth requirement, measured in Mbps (Megabits
per second), for transferring the compressed bit sequence in each
compression scheme. Given PC and B, if the number of frames
generated per second in the dataset is 5 , then the bandwidth
requirement is 85 |B8 | bit per second. In particular, the factor 8
converts the length of B8 measured in bytes into that measured
in bits.

Additionally, we use throughput and latency as performance
metrics to evaluate the e�ciency of the system. The throughput
represents the number of point clouds compressed per second,
while the latency measures the time passed between a point cloud
is produced by the sensor and stored into the server storage.

4.2 Evaluation of Compression Capability
In this experiment, we evaluate the e�ectiveness of competing
compression schemes on various scenes from di�erent datasets.
For each scene, we vary @G~I from 0.06 to 2.0 centimeters to
study the compression performance. Speci�cally, since all points
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in an octree leaf node are approximated to the center of the cube
represented by the node, we let the leaf side length be 2@G~I in
octree-based methods such as Octree, Octree_i, and G-PCC, to
ful�ll the compression requirement. However, in Draco, a user
can only set the number of bits for quantizing the coordinates,
@1, not @G~I . Therefore, we vary @1 to get the speci�ed @G~I .
Speci�cally, given a point cloud with the maximum spatial range
of all three dimensions in the Cartesian coordinate system ⌦,
@G~I = ⌦

2@1+1 .
As shown in Figure 9, the compression scheme of DBGC out-

performs all previous approaches on all datasets. Speci�cally,
on the campus scene of the KITTI dataset, shown in Figure 9a,
our scheme achieves an 18% bitrate reduction over G-PCC and a
25%-31% improvement over Octree, Octree_i, and Draco. Similar
results are observed on the other scenes in KITTI, as well as on
the other two datasets, as illustrated in Figure 9b, 9c, 9d, 9e, and 9f,
respectively. This result clearly demonstrates the e�ectiveness of
our density-based compression method in handling points with
di�erent local densities. In particular, the majority of the points
are in sparse areas, and our sparse point compression scheme
on the spherical coordinates yields a good compression ratio by
taking advantage of the characteristics of both the LiDAR sen-
sors and outdoor scenes. Given the typical error bound of LiDAR
sensors, 2 cm, DBGC can provide an up to 19 compression ratio.

Among the four previousmethods, G-PCC outperformsOctree,
Octree_i, and Draco because its optimizations, such as direct
point coding and neighbor-dependent entropy coding, make the
method, to a certain extent, handle LiDAR point clouds well.
Interestingly, Octree_i underperforms Octree in most instances,
which is inconsistent with the results reported in the original
paper [21]. One reason might be that the experiments in the
paper were solely conducted on object point clouds, which are
quite di�erent from scene ones.

In summary, our method outperforms four representative
point cloud compression methods on various datasets and re-
quires the lowest bandwidth at the same accuracy requirement.
A reduction of 18%-30% on the required bandwidth is signi�cant
for high accuracy requirements under 2cm on scene LiDAR point
clouds.

4.3 Evaluation of Individual Techniques
In this section, we study the impact of each individual technique
in the DBGC’s compression method.

Density-basedClustering. In the result of the example point
cloud, 39.4% of points are dense, and 60.6% are sparse. Only 1.2%
of all points are outliers. To evaluate the impact of the clustering
methods on the compression e�ectiveness, we manually vary the
percentage of points nearest to the sensor from 0% to 100% to be
compressed by the octree. Speci�cally, 0% means the algorithm

Figure 10: Percentage of points encoded in the octree var-
ied.

performs our coordinate compression on the entire point cloud,
whereas at 100% the point cloud is compressed by an octree
solely. Figure 10 shows the compression performance with an
error bound of 2cm. Our density-based clustering method shows
the highest compression ratio among the entire spectrum of
dense versus sparse categorization, with octree compression or
coordinate compression on the entire point cloud on each end.

ApproximateDensity-basedClustering. In Section 3.2, we
have proposed a cell-based method to accelerate the clustering.
However, the method has a complexity of $ (=2). In this experi-
ment, we adopt an approximate clustering approach [19], with a
time complexity of $ (=), to further improve the e�ciency. We
�rst get all cells as in Section 3.2 and de�ne the surrounding cells
of a cell N as the set of all cells N 0 (including N ) where the
coordinate di�erence between the central points of N and N 0
is not greater than n on at least one dimension. We count the
number of points in each cell and then loop over each non-empty
cell. If the total number of points in all surrounding cells of N is
not less than<8=%CB , we mark N as dense. After that, we check
all sparse cells - if a sparse cell has at least one dense cell as a
surrounding cell, we mark that sparse cell a dense cell. Finally,
all points in dense cells are marked as dense points and all other
points are sparse ones.

The di�erence between the approximate method and the origi-
nal one is the size and shape of the region to �nd neighbor points.
Through our experiments, we �nd the sets of resulting dense
points generated by the two algorithms are nearly the same.
Furthermore, the approximate method is more time e�cient, re-
sulting in a 2.1X speedup over the original cell-based clustering
method. After integrating the approximate clustering method
into our compression scheme, we achieve a 1.2X speedup on the
overall compression time compared with the original version.

Coordinate Compression. To evaluate the impact of spher-
ical coordinate conversion, we present an alternative approach
which extracts and compresses polylines in the Cartesian coordi-
nate system, denoted as -Conversion. Additionally, we run two
modi�ed schemes by disabling the radial distance optimized delta
encoding and point grouping techniques of our scheme, respec-
tively, denoted as -Radial and -Group. We run these methods with
the original DBGC on the campus scene of KITTI and present
the compression ratios in Figure 11 with various error bounds.
As we can see, -Radial, -Group, and -Conversion can only reach
88%, 85%, and 29% of the compression performance of DBGC on
average.

Figure 11: Improvement of optimizations in DBGC.

Optimized Outlier Compression. For the point clouds in
the campus scene of KITTI, we develop two alternative approaches,
one compresses the outliers by an octree and the other does not
compress outliers, denoted as Octree and None, respectively.
Then, we compare them with DBGC which performs outlier
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Table 2: Compression ratios.

Scene Campus City Residential Road

Outlier 19.32 18.80 18.78 15.29
Octree 19.18 18.58 18.61 15.20
None 12.09 12.39 12.96 9.84

compression with a quadtree, denoted as Outlier. Given an er-
ror bound of 2 cm, the results in Table 2 show that, the outlier
compression method of DBGC achieves slightly higher average
compression ratios than the octree and both methods outperform
None where outliers are not compressed.

4.4 End-to-end Evaluation
This section presents the end-to-end performance and evaluates
the e�ciency of the entire system. We take the KITTI dataset
as an example since the total size of point clouds generated per
second is the largest.

Throughput. KITTI dataset is captured by a Velodyne HDL-
64E sensor [9]. In the default setting, the sensor generates 10
frames of point cloud per second, eachwith around 100,000 points.
If each Cartesian coordinate is represented by a �oating-point
number, a point needs 32 bits ⇥ 3 = 96 bits to store. Then, a frame
occupies approximately 9.6 Megabits, and the total size of point
clouds generated per second is 96 Megabits. The most popular
Ethernet 100BASE-TX [10], as well as the recently developed
Gigabit Ethernet, have the bandwidth big enough to transfer the
LiDAR data. Additionally, HDDs, commonly used in data centers,
have a data write speed of more than 500 Megabits per second.
Therefore, our system can nicely transfer PC0, with the same
size of PC, from the memory to the storage of the server online.
The bottleneck of the system is the connection from the client
to the server. Speci�cally, the current 4G mobile network has
an average upload speed of 8.2 Megabits per second [41], much
lower than the data generation speed of the LiDAR sensor, and
we present our compression scheme to �ll in this gap. As shown
in Figure 9b, at the error bound of 2cm, B needs a bandwidth of
approximately 6.0 Mbps to transfer, lower than the typical 4G
mobile network speed. Therefore, the bit sequences B can be
transferred online from the client to the server. In conclusion,
our DBGC system can achieve online compression and storage
of point cloud data, with the throughput higher than the data
generation rate of the LiDAR sensor.

Latency. Next, given a point cloud PC, we evaluate the time
spent on each step in our system. We �rst compare the compres-
sion and decompression time of all competing schemes given
various error bounds and present the results on the city scene of
KITTI in Figure 12a and 12b. DBGC, taking about 0.4 and 0.1 sec-
onds on compression and decompression, respectively, is slower
than Octree, Octree_i, and Draco, but faster than G-PCC. Gener-
ally, DBGC’s compression time and decompression time slightly
decreases as the error bound increases. However, when the error
bound is very small ( @G~I = 0.062<), DBGC’s compression time
is the shortest. This is because, when @G~I is very small, there is
hardly any repeated pattern in polylines, and De�ate can pass
through the sequence quickly. Additionally, a frame of PC in the
KITTI dataset is about 9.6 Megabits, taking approximately 0.1
seconds to transfer through 100BASE-TX Ethernet. Additionally,
if @G~I is 2 cm, B has a size of 0.6 Megabits, which can be trans-
ferred in 0.1 seconds. The time to write PC0 takes negligible time.

(a) Compression time. (b) Decompression time.

Figure 12: Compression and decompression time.

To sum up, a point cloud spends 0.7 seconds totally before being
generated from the sensor and stored into the server storage.

Detailed Evaluation. We further present the compression
and decompression time breakdown of DBGC given @G~I = 2
cm in Figure 13. The compression scheme contains six building
blocks: (1) density-based clustering (DEN), (2) octree compres-
sion and decompression (OCT), (3) coordinate conversion (COR),
(4) point organization (ORG), (5) coordinate compression and de-
compression of sparse points (SPA), and (6) outlier compression
and decompression (OUT). In the compression, steps (2), (3), and
(6) take negligible time, while steps (1), (4), and (5) take 31%, 22%,
and 44% of the total compression time on average, respectively.
By contrast, SPA dominates the total time of decompression.

Figure 13: Time Breakdown.

We also measure the memory usage by reading the peak resi-
dent set size (VmHWM) of the process from the proc �lesystem.
The compression and decompression of DBGC consume around
45-Megabyte and 12-Megabyte space, respectively, negligible
considering the con�guration of current computers.

5 CONCLUSION
This paper proposed a density-based geometry compression sys-
tem, DBGC, for LiDAR point clouds. In this system, we propose
to classify points based on the cell-based clustering method with
optimized parameter values and improved routines. Then, we
pass the dense points to an octree coder and propose a coordi-
nate compression method for the sparse points. Speci�cally, we
present a point organization approach in the spherical coordinate
space and then reduce the redundancy based on our radial dis-
tance optimized delta encoding method. Furthermore, we include
several optimizations into the system to increase the compression
performance. The experimental results show that at the same
error bound, our method achieves a 20% space-reduction over
the state of the art, which is a signi�cant improvement in the
topic of LiDAR point cloud compression according to previous
research [5, 27]. Furthermore, we study the impact of each in-
dividual technique and the end-to-end performance of DBGC.
The compression time of DBGC is comparable to existing meth-
ods, and the system can compress point clouds generated by the
LiDAR sensor online with high accuracy.
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