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ABSTRACT
We introduce bloomRF as a unified method for approximate mem-
bership testing that supports both point- and range-queries. As a
first core idea, bloomRF introduces novel prefix hashing to effi-
ciently encode range information in the hash-code of the key it-
self. As a second key concept, bloomRF proposes novel piecewise-
monotone hash-functions that preserve local order and support
fast range-lookups with fewer memory accesses. bloomRF has
near-optimal space complexity and constant query complexity.
Although, bloomRF is designed for integer domains, it supports
floating-points, and can serve as a multi-attribute filter. The eval-
uation in RocksDB and in a standalone library shows that it is
more efficient and outperforms existing point-range-filters by up
to 4× across a range of settings and distributions, while keeping
the false-positive rate low.

1 INTRODUCTION
Modern data sets are large and grow at increasing rates [45].
To process them data-intensive systems perform massive scans
that incur significant performance and resource consumption
penalties. While indices may reduce the scan pressure, they are
not always effective due to size or predicate selectivity concerns,
or due to the high maintenance costs and workload compatibility.
Filters are a class of approximate data structures that may effec-
tively complement the workhorse data structures to reduce scans.
Bloom-Filters (BFs) [3], are prominent representatives of this class
that are efficient and compact. They avoid false negatives, while
false positives are possible, yet the false positive rate (FPR) can be
controlled by parameters such as bits/key or the number of hash
functions. If a BF returns true, the search key may be present or
not and the system needs to verify that through expensive scans
or index-lookups. BFs only support point-lookups, i.e. is key 4711
not in the dataset. Yet, BFs are inadequate for range-queries, due
to the lack of practicable monotone hash functions.

State-of-the-Art Overview. Many algorithms and systems
necessitate efficient range filtering for queries such as: are there
keys between 42 and 4711 in the dataset. Classical Prefix BFs
or Min/Max indices (fence pointers, ZoneMaps [34] in Neteeza
or Block-Range Index [38] in PostgreSQL) can perform range-
filtering, but are impractical for point queries and result in a
higher FPR.

Rosetta [29], SuRF [49] and ARF [2] are some recent proposals
that can handle point- and range-lookups on a unified data struc-
ture and serve as point-range filters (PRF). ARF [2] and SuRF [49]
utilize tries and thus partially materialize the index at the cost of
extra space. Such techniques result in increased range-filter sizes,
that are reduced by trie-truncation or require tedious training/re-
optimization. These yield an a posteriori/offline creation. Rosetta
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Figure 1: bloomRF is efficient, generally-applicable and
augments existing approaches. The color indicates the ap-
proachwith the best FPR for different number of keys (103-
5 · 107), and normally distributed data and queries in stan-
dalone settings.

[29] takes a different approach, where each key is decomposed
into a set of prefixes according to a dyadic interval scheme and
implicit Segment-Trees [13]. The key-prefixes are maintained in
a hierarchical set of BFs, one for each prefix length. Fig. 1 shows
a holistic PRF positioning in the problem space according to their
FPR, for different space budgets and query ranges. It is a flattened
version of Fig. 11.E, where we average the FPR for 103-5·107 keys.
Problem1: Existing point-range-filters are designed either
for small or for large query ranges. Existing Point-Range-
Filters are optimized for handling different query ranges sizes.
While Rosetta [29] excels at relatively small ranges [21−26], SuRF
[49] offers outstanding FPR for mid- and large-ranges [237−238]
(Fig. 1). On the one hand, as stated in [29] trie-truncation tech-
niques, like the ones used in SuRF may lose effectiveness as short
query ranges may fall in the scope of the truncated suffixes and
thus have higher probability of being detected non-empty. On
the other hand, range-lookups in Rosetta have logarithmic (some-
times linear) complexity with respect to the query range size. It
may lose efficiency for longer ranges as probing a hierarchical
set of BFs, implies higher memory or CPU-costs. Moreover, it is
not always possible to bound the query-range size. While short-
ranges seem reasonable for KV-stores, this does not apply to other
systems or workloads. Besides, datatypes also have an impact:
for doubles a range of 1 can be 261 in the bit representation.
Problem 2: Existing point-range-filters are offline. Existing
PRF (ARF [2], SuRF [49], or Rosetta [29]) employ powerful opti-
mizations, which require a priori the complete dataset and are
therefore constructed offline. Hence, PRF cannot serve range-
queries, while data is being simultaneously inserted. This limits
PRF applicability in the general case, i.e., when PRF are used stan-
dalone, when the data is too large, is streamed, or is not available
in advance, etc.

The issue can be mitigated by the way PRF are integrated
in larger systems. KV-stores use a main-memory delta area to
absorb new data. The PRF leverage that delta and get constructed
only when it gets full and thus holds the complete PRF dataset.
Searching the main-memory delta is handled otherwise, e.g.
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through its organization (for instance through HashSkipLists
or HashLinkLists in RocksDB). While this approach is practica-
ble in such systems, it: (a) is a property of the system integration,
not of the PRF; (b) disregards the extra space for the delta; and
(c) is far from optimal in general settings.

Prefix-BFs and Min/Max filters may be constructed online,
but are inadequate for point-querying. Rosetta [29] may be used
online per se, yet some of its optimizations require the dataset a
priori.
Problem3: ExistingPoint-Range-Filters exhibit non-robust
performance across a variety of workload- and data- dis-
tributions. Existing PRF are sensitive to data and workload skew.
For instance, Rosetta claims [29] to outperform SuRF by 2× on
normally distributed workloads in RocksDB [30] as the suffix-
truncation techniques in SuRF yield more prefix-collisions for
small ranges. A PRF must have robust performance over a range
of workload and data distributions. It is not always possible to
assume upper bounds on the query-range size.
Bloom-Range-Filter (bloomRF).We introduce bloomRF as a
unified data structure, supporting approximate point- and range-
membership tests that can substitute existing BFs. bloomRF op-
erates on prefixes of keys. Firstly, bloomRF introduces novel
prefix hashing (Fig. 2) to efficiently encode range information in
the hash-code of the key. This information is based on certain
dyadic intervals to which the key prefixes correspond. Secondly,
bloomRF proposes novel piecewise-monotone hash-functions (PMHF)
that preserve local order and support fast range-lookups with
fewer memory accesses. PMHF place information for adjacent
prefixes side by side in an overlapped bit-array such that this
information can be queried with a single word access. Insertions
and point-lookups (Fig. 2.A) behave much like in a BF except
that in bloomRF they operate on prefixes. Range-lookups (Fig.
2.B) follow a two-path algorithm, computing the intervals along
the prefix-paths for the left and the right key, and probe a tight
interval-set. The area in between is probed automatically. PMHF
incur fewer memory accesses, e.g. for the query [42, 43] (Fig. 2.B),
𝐻4 uses a single access to probe both points.

Our contributions are: (a) bloomRF is a unified point-range-
filter that is online and can serve queries, while data is being
simultaneously inserted. (b) bloomRF has constant query com-
plexity, independent of the query range size, due to PMHF and its
two-path range-lookup algorithm. bloomRF has a near-optimal
space complexity, due to prefix hashing. (c) bloomRF can serve
small-to-large query ranges and can handle different workload-
and data-distributions. It supports integers, floating-point num-
bers, and can serve as a multi-attribute filter. (d) bloomRF outper-
forms all baselines by up to 4× across a wide range of settings.
bloomRF is more efficient as it achieves better performance and
FPR at lower bits/key.

Key 42 = 0x 0000 0000 0010 1010
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Figure 2: (a) bloomRF relies on PMHF and prefix hashing.
(b) Range lookups traverse two prefix paths, probing auto-
matically the area in between (shaded).

Outline.We continuewith a brief background (Sect. 2), overview-
ing key terms. On their basis we introduce basic bloomRF’s prefix
hashing and PMHF (Sect. 3.1, 3.2), and range-lookup algorithm
(Sect. 4). We present the theoretical model of basic bloomRF and
compare it to the theoretical lower bound [20] in Sect. 5, 6. While
basic bloomRF is simple, tuning-free, and suitable for ranges
𝑅 ≤ 214, various optimizations, presented in Sect. 7 are needed
for handling larger query ranges. We present the evaluation in
Sect. 9 and conclude in Sect. 11.

2 BACKGROUND
We now overview well-known BFs and dyadic intervals from the
perspective of bloomRF and establish several key terms.
Bloom-Filters (BF). Consider a set 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ⊆𝐷 of
𝑛 elements in a domain 𝐷 represented by 𝑑 bits, |𝐷 | = 2𝑑 , e.g.
d=16 for UINT16. We call the elements 𝑥 ∈𝑋 keys and arbitrary
elements 𝑦 ∈𝐷 lookup keys. A BF[3] uses a bit-array of m bits
with positions 𝑀 = {0, 1, . . . ,𝑚 − 1} and 𝑘 hash functions ℎ𝑖
mapping 𝐷 to 𝑀 (i.e. ℎ𝑖 :𝐷→𝑀, 𝑖 = 𝑘 − 1, . . . , 1, 0). Noticeably,
the hash functions transform each lookup key 𝑦 ∈𝐷 in a code of
bit-array positions:

𝑐𝑜𝑑𝑒 (𝑦) =
(
ℎ𝑘−1 (𝑦), ℎ𝑘−2 (𝑦), . . . , ℎ0 (𝑦)

)
. (1)

Initially all bits in the bit-array are set to zero. To insert the set
of keys 𝑋 in a BF for each key 𝑥 ∈ 𝑋 the bits of code(𝑥) are
set to one. A BF performs an approximate membership test to
decide if a lookup key 𝑦 ∈ 𝐷 is in 𝑋 , by checking, if all the bits of
code(𝑦) are set to one. This procedure may return positive results
for elements 𝑦 ∉ 𝑋 , called false-positives. The ratio between
false-positives and negatives is called false-positive rate.
Dyadic Intervals (DI).ADI is an interval whose boundaries are
aligned to powers of two. They can be organized in dyadic levels,
where an interval on level ℓ spans 2ℓ elements. For a domain
represented by 𝑑 bits there are 𝑑 +1 dyadic levels ℓ ∈ {0, 1, . . . , 𝑑}.
Each DI on level ℓ + 1 is decomposed in two DIs on level ℓ . Thus
DIs form a complete binary tree. For example, for a domain 𝐷 of
non-negative integers with 𝑑 = 3 bits there are 𝑑 + 1 = 4 levels:
on level 0 the DIs are the points [0, 0], [1, 1],. . . , [7, 7]; on level
1 are [0, 1], [2, 3], . . . [6, 7]; on level 2 are [0, 3], [4, 7]; and level 3
has just [0, 7]. We show how bloomRF encodes DIs with code(𝑦)
in Sect. 3.
Prefixes. A prefix of 𝑦 on level ℓ is the sequence of the 𝑑 − ℓ
most significant bits of 𝑦. These bits are accessed by a right shift
by ℓ bits (i.e. 𝑦>> ℓ), discarding the ℓ least significant bits. Thus
for ℓ > ℓ ′

𝑦>> ℓ = (𝑦>> ℓ ′)>> (ℓ − ℓ ′), (2)

i.e., a prefix of 𝑦 on level ℓ is a prefix of a prefix of 𝑦 on level ℓ ′.
Noticeably, prefixes are DIs. There is a one to one correspon-

dence between prefixes on level ℓ and DIs on level ℓ , i.e., all
lookup keys 𝑦 with an identical prefix on level ℓ form a DI on
level ℓ . Consider, for instance, a domain 𝐷 of non-negative in-
tegers represented by 𝑑 =3 bits. The prefixes of a key 𝑦=5 (bin
0b101) are 1=0b1 on level 2, 2=0b10 on level 1 and 5=0b101 on
level 0. The prefixes of 𝑦 = 6= 0b110 are 0b1 on level 2, 0b11 on
level 1 and 0b110 on level 0. The prefixes of 𝑦=7=0b111 are 0b1
on level 2, 0b11 on level 1 and 0b111 on level 0. Finally, the prefix
0b11 on level 1 corresponds to the DI 𝐼 = [6, 7] on level 1. Indeed,
exactly the keys 6 and 7 share the prefix 0b11 on level 1.
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3 BLOOM-RANGE-FILTER
This section presents themain aspects of bloomRF. Since bloomRF
operates on prefixes we recall them this new context, and then
introduce the novel concepts of prefix hashing and PMHF.

3.1 Prefix Hashing
In a BF a lookup key 𝑦 corresponds to code(𝑦) of bit-array posi-
tions. Thus, we check if 𝑦 is in 𝑋 by testing if the bits at code(𝑦)
are set.

The core idea of bloomRF is to encode range information in
the code(𝑦) itself. To this end, we introduce code(𝑦)𝑖 as the prefix
of code(𝑦) on layer 𝑖 . We define code(𝑦)𝑖 as an ordered sequence
of the first 𝑘−𝑖 hash-functions of code(𝑦):

code(𝑦)𝑖 =
(
ℎ𝑘−1 (𝑦), ℎ𝑘−2 (𝑦), . . . , ℎ𝑖 (𝑦)

)
. (3)

Thus the prefixes code(𝑦)𝑖 are sub-sequences of bit-array posi-
tions of code(𝑦). As an example we refer to Fig. 3.A, which will
be explained in detail below. Here the code of key 42 and prefixes
code(42)𝑖 for all layers 𝑖 ∈ {3, 2, 1, 0} are shown.

When performing a lookup, our goal is to check prefixes
of lookup key 𝑦 by testing bits at prefixes of code(𝑦). The is-
sue at hand is that there are 𝑑 + 1 dyadic levels, but code(𝑦)
comprises 𝑘 hash-functions, making it impossible to encode
each level. Therefore, we choose to consider only certain lev-
els ℓ𝑘−1 ≥ ℓ𝑘−2 ≥ . . . ≥ ℓ0 . (Fig. 3.A exemplifies equidistant
levels.)

On this premise, we define prefix hashing as a key property of
bloomRF. It mandates that for each layer 𝑖 ∈ {𝑘 − 1, . . . , 1, 0} a
prefix of 𝑦 on dyadic level ℓ𝑖 corresponds to a prefix of code(𝑦) on
layer 𝑖 , i.e., arbitrary lookup keys 𝑦,𝑦′ ∈𝐷 satisfy

𝑦>> ℓ𝑖 = 𝑦
′>> ℓ𝑖 ⇒ code(𝑦)𝑖 = code(𝑦′)𝑖 . (4)

Prefix hashing allows using code(𝑦) to test if DIs on level ℓ𝑖 in-
clude keys 𝑥 ∈𝑋 . Remember that such DIs are prefixes on level ℓ𝑖 .
By prefix hashing such DIs correspond to prefixes code(𝑦)𝑖 , which
are checked by testing if the bits at code(𝑦)𝑖 are set. This way,
bloomRF implicitly encodes range information in the code(𝑦).

Arbitrary hash-functions can be used for prefix hashing: eq. (4)
is satisfied, if hash-functions of code(𝑦)𝑖 only operate on prefixes
on level ≥ ℓ𝑖 . Using (2) we achieve this by:

code(𝑦)=
(
ℎ𝑘−1 (𝑦>> ℓ𝑘−1), . . . , ℎ1 (𝑦>> ℓ1), ℎ0 (𝑦>> ℓ0)

)
Finally, we have to determine the levels ℓ𝑖 and the number of

hash-functions 𝑘 . A natural choice are equidistant levels. Thus

Table 1: Most important symbols and abbreviations.

𝐷 , |𝐷 |,𝑑 domain D of size |𝐷 |=2𝑑 elements, e.g., 216 for UINT16
𝑥 , 𝑋 , 𝑛 𝑥 ∈ 𝑋 ⊆ 𝐷 - keys in the filter, |𝑋 | = 𝑛 - number of keys
𝑦 𝑦 ∈ 𝐷 - lookup keys
level ℓ level ℓ ∈ {𝑑, . . . , 1, 0} - defines prefixes/dyadic intervals of keys
𝑀 ,𝑚 𝑀 = {0, 1, . . . ,𝑚−1} - bit-array positions, |𝑀 |=𝑚 bits
ℎ𝑖 ℎ𝑖 : 𝐷 → 𝑀 - hash function, 𝑖 ∈ {𝑘 − 1, . . . , 1, 0}
code(𝑦) a sequence of bit array positions: code(𝑦) = (ℎ𝑘−1 (𝑦), . . . , ℎ0 (𝑦))
layer 𝑖 layer 𝑖 ∈ {𝑘 − 1, . . . , 1, 0} - defines prefixes of code(𝑦)
code(𝑦)𝑖 prefix of code(𝑦) on layer 𝑖 : code(𝑦)𝑖 = (ℎ𝑘−1 (𝑦), . . . , ℎ𝑖 (𝑦))
ℓ𝑖 ℓ𝑘−1 ≥ . . . ≥ ℓ0 - level ℓ𝑖 corresponds to layer 𝑖
Δ distance between levels: ℓ𝑖 = 𝑖Δ
𝑘 𝑘 ≈ ⌈𝑑/Δ⌉ number of hash functions ℎ𝑖 . Considering 𝑛 and the

saturation of levels 𝑘 = ⌈( 𝑑 − log2𝑛 )/Δ⌉.
𝐼 , |𝐼 | 𝐼 is a lookup interval with |𝐼 | elements
𝑅 upper bound for range-query size: |𝐼 | ≤ 𝑅

PMHF Piecewise-Monotone Hash-Function𝑀𝐻𝑖 on layer 𝑖
word bit-array elements of size 2Δ−1 bits that PMHF read/write
DI; BF Dyadic Intervals; Bloom-Filters

layer i
3 2 1 0

level ℓi ℓ3 = 12 ℓ2 = 8 ℓ1 = 4 ℓ0= 0
ai 2 3 5 7
bi 29 31 37 41

h3 h2 h1 h0

Key 42 2 3 19 19

0 1 2 3 4 … 19 … 29
0 0 1 1 0 … 1 … 0

h3 h2 h1 h0
42 2 3 19 19
1414 2 8 21 21
50000 20 18 10 17

A

B

ke
ys

prefix:  
code(42)3 preifx: 

code(42)1
prefix: 

code(42)0

prefix: 
code(42)2

hi(x)=( ai + bi (x >> ℓi ) ) mod m

Bit-array

code(42)
code(42)1 is a prefix
of code(42) on layer 1, with

43 2 3 19 0
48 2 3 26 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

bitarray positions(2,3,19). 

Figure 3: Hash functions and codes of keys.

we define a distance Δ between two adjacent levels and set ℓ𝑖 =
𝑖Δ. Then the number of hash-functions is given by ⌈(𝑑+1)/Δ⌉.
Depending on the number of keys top layers saturate (Sect. 7).
We omit such levels and therefore use 𝑘 = ⌈( 𝑑 − log2𝑛 )/Δ⌉ hash-
functions.
Introductory example. Consider a set 𝑋 = {42, 1414, 50000}
(Fig. 3.B) of 𝑛=3 keys in a domain 𝐷 with 𝑑 =16 bits. We use 10
bits/key and Δ= 4, yielding a bit-array with𝑚 = 10|𝑋 | = 30 bits
and 𝑘 = ⌈(𝑑 − log2𝑛)/Δ⌉=4 hash-functions. For hashing we use
multiplication with prime numbers 𝑎𝑖 and 𝑏𝑖 , followed by mod
𝑚 to determine a position in 𝑀 , i.e., ℎ𝑖 (𝑥) =

(
𝑎𝑖 + 𝑏𝑖 · (𝑥 >> ℓ𝑖 )

)
mod 𝑚.

Figure 3.A shows layers 𝑖 , levels ℓ𝑖 and values for the hash-
functions. For example, key 42 has a code (2, 3, 19, 19) of positions
in the bit-array. Inserting all keys of 𝑋 leads to a bit-array where
the bits 2, 3, 8, 10, 17, 18, 19, 20 and 21 are set to one and all others
are zero (Fig. 3.B). Since we choose Δ=4 bit shifts by levels ℓ𝑖 =4𝑖
can be displayed in hexadecimal representation. For example, for
key 42 (hex 0x002A) the prefix on level 𝑙3 = 12 is 0x0, on level
𝑙2=8 is 0x00, on level 𝑙1=4 is 0x002 and on level 𝑙0=0 is 0x002A.

Remember that due to prefix hashing (eq. 4), a prefix of 𝑦 on
a certain dyadic level ℓ𝑖 corresponds to a code(𝑦)𝑖 , i.e. a prefix
of code(𝑦) on layer 𝑖 . Thus, keys 42 and 43 = 0x002B have the
same prefix on level ℓ1 = 4, 42 >> ℓ1 = 0x002 = 43 >> ℓ1 and
code(42)1= (2, 3, 19)=code(43)1 as required by eq.(4).

Recall also that prefix hashing allows us to use code(𝑦) to test
if DIs on level ℓ𝑖 include keys 𝑥 ∈ 𝑋 by testing the positions
of code(𝑦)𝑖 , since these DIs are in fact prefixes of 𝑦 on level ℓ𝑖
corresponding to code(𝑦)𝑖 . All 𝑦 ∈ 𝐼 = [32, 47] = [0x0020, 0x002F]
have the same prefix 0x002 on level ℓ1 and therefore the same
prefix code(𝑦)1= (2, 3, 19) on layer 1 (Fig. 3.A,B). Thus we check
positions (2, 3, 19) to test, if a key 𝑥 ∈𝑋 is included in 𝐼 . In this
example, the answer is positive, which is true since indeed 42∈ 𝐼 .
All lookup keys in [48, 63] = [0x0030, 0x003F] have (2, 3, 26) as
code prefix on layer 1 (e.g. 48). Checking positions (2, 3, 26) results
negative, since 26 is set to zero, and here indeed 𝑋 ∩ [48, 63] = ∅.
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A DI 𝐼 on level ℓ , ℓ𝑖 < ℓ < ℓ𝑖+1, can be decomposed in up to
2Δ−1 intervals on level ℓ𝑖 , thus 𝐼 can be tested via these DIs on
level ℓ𝑖 . For example 𝐼 = [42, 43] on level 1 can be checked by
testing [42, 42] and [43, 43] on level 0. The corresponding prefixes
code(𝑦)𝑖 only differ in the hash-function on layer 0. While 42 and
43 are adjacent, the positions of the hash-functions ℎ0 (42)=19
and ℎ0 (43) =0 are not. Clearly, a hash-function on layer 𝑖 does
not preserve the order of the prefixes 𝑦 >> ℓ𝑖 . We tackle this in
Sect. 3.2.
Prefix hashing is hierarchical. DIs are arranged hierarchically
by inclusion. Prefixes are DIs and follow the same hierarchy –
eq. (2). The prefixes code(𝑦)𝑖 also inherit that hierarchy by (4),
hence bloomRF uses hierarchical hashing. Thus, by testing key
𝑦 ∈𝐷 , all DIs on levels ℓ𝑖 including 𝑦 are automatically tested.

For example, when testing key𝑦=43 with code(𝑦)= (2, 3, 19, 0),
the following prefixes are checked: prefix (2, 3, 19)=code(43)1 cor-
responding to DI [32, 47], prefix (2, 3)=code(43)2 corresponding
to [0, 255] and prefix (2)=code(43)3 corresponding to [0, 4095].
Space Efficiency. bloomRF has a near-optimal space efficiency
(Sect. 6) since code(𝑦) itself contains range information in terms
of corresponding DIs. In particular, prefix hashing encodes the
difference between any two consecutive prefixes of a key in a
single position as a single bit. For example, the difference between
prefixes 0x002 on level 4 and 0x002A on level 0 of key 42 is
encoded in a single bit.

3.2 Piecewise-Monotone Hash-Functions
Although prefix hashing results in near-optimal space consump-
tion the order of prefixes𝑦>> ℓ𝑖 is not preserved by hash-function
ℎ𝑖 , increasing significantly the query time of intervals 𝐼 on level
ℓ , ℓ𝑖 < ℓ < ℓ𝑖+1. To this end, and as a second core idea, bloomRF
introduces piecewise-monotone hash-functions (PMHF) that are
locally order preserving and place corresponding bits side by
side in the bit-array. This allows checking all bits of DIs of 𝐼 on
level ℓ𝑖 with hash-function ℎ𝑖 , in a single memory access, yielding
better performance.

Noticeably, arbitrary hash-functions ℎ𝑖 can be easily extended
to satisfy this property and remain compute-efficient:((

ℎ𝑖
(
𝑥 >> (Δ − 1)

)
mod

𝑚

2Δ−1
)
<< (Δ − 1)

)
+ 𝑥 & (2Δ − 1)

The new h must preserve the order of the least significant
Δ − 1 bits of a prefix. Therefore, 𝑥 is right-shifted by Δ − 1 bits,
such that ℎ only operates on the rest. The bit-array is accessed
in words of size 2Δ−1, therefore𝑚 must be a multiple of 2Δ−1. In
fact, the bit-array can be viewed as an array of𝑚/2Δ−1 words.
The modulo operation determines a position in this word-array.
Finally a left-shift by Δ − 1 bits, yields the position of the word
in the bit-array. To keep the order the least significant Δ − 1 bits
are added to the position. These bits are extracted with a bitwise
AND (&) with the mask 2Δ−1.

Combining with prefix hashing we get

𝑀𝐻𝑖 (𝑥) =
((
ℎ𝑖
(
𝑥 >> (ℓ𝑖 + Δ − 1)

)
mod

𝑚

2Δ−1
)
<< (Δ − 1)

)
+ (𝑥 >> ℓ𝑖 ) & (2Δ − 1),

which we call piecewise-monotone hash-functions.
For example, consider again the set 𝑋 = {42, 1414, 50000} (Fig.

4) for a domain with 𝑑 = 16 bits. Again, we use Δ = 4 and 𝑘 = 4
hash-functions. Here we set𝑚=32 since𝑚 must be a multiple of
2Δ−1=8, thus we use approximately 10 bits per key. Again we use
the hash-functions ℎ𝑖 (𝑥) =𝑎𝑖 + 𝑏𝑖𝑥 as in the previous example.

MH3 MH2 MH1 MH0
42 16 24 10 2
1414 16 29 0 30
50000 28 27 29 8

keys

43 16 24 10 3
48 16 24 11 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0

Figure 4: PMHF codes of keys (positions in bit- array)

Figure 4 shows the codes of keys 𝑥 ∈ 𝑋 using corresponding
PMHF. Inserting all keys of 𝑋 leads to a bit-array where the bits
0, 2, 8, 10, 16, 24, 27, 28, 29 and 30 are set to one and all others
are zero.

To test the DI [42, 43] the codes (16, 24, 10, 2) and (16, 24, 10, 3)
have to be checked. Both have the same prefix 16, 24 and 10 on
levels 3 to 1 and the positions 2 and 3 on level 0 lie side by side.
Thus on level 0 both can be tested with a single word access. The
positions 2 and 3 on level 0 can be described by the bit-mask
𝑏 = 0b00110000 and a word access on the first byte of the bit-
array yields 𝑤 = 0b10100000. The bits at 16, 24 and 10 are set
𝑏 &𝑤 ≠ 0, thus a positive answer.

For interval [44, 47] all codes (16, 24, 10, 4),. . . , (16, 24, 10, 7)
have to be tested. They have the same prefix 16, 24 and 10 on
levels 3 to 1 and positions 4 to 7 on level 0 lie side by side and
can be tested with a single word access. Positions 4 to 7 on level
0 correspond to the bit-mask 𝑏 = 0b00001111 and as above 𝑤 =

0b10100000. The bits at 16, 24 and 10 are set, but 𝑏 &𝑤 =0, thus
the negative answer.
Computational complexity. bloomRF can answer arbitrary
range queries in constant time, independent of the range size |𝐼 |
(Sect. 5).
Random Scatter.We now consider the scatter of PMHF as they
should preserve local order, but also distribute words randomly
over the bit-array. We compare bloomRF against the standard
BF in RocksDB. For a fair comparison we use 2M keys and 10
bits/key, for which BFs have 10·ln 2=6.93 hash functions, floored
to 6 in RocksDB, as basic bloomRF with 64-bit words (Δ = 7)
uses 𝑘 = ⌈(𝑑 − log2𝑛)/Δ⌉ = 6 PMHF. First, we investigate how
well PMHF scatter words. To this end (Fig. 5.A), we measure how
many times words (x-axis) of different layers are overlaid in a
bit-array element for different data distributions. As the relative
frequencies are mostly flat curves (the strong zipfian skew affects
layers 2 and 3) we conclude that PMHF scatter randomly at word
granularity for normal, zipfian and uniform data distributions.
Second, we consider the scatter/overlying of bits within words, by
looking holistically at the bit-array. To this end, we compare the
length of 0-bit runs (Fig. 5.B), as well as the bit-distance between
two consecutive 0-bit runs (Fig. 5.C), for both BF and bloomRF
and zipfian, normal, uniform data distributions. The 0-bit runs are
a relevant metric as they indicate bit areas that have never been
set. Thus, significant differences would indicate randomization
issues. Clearly, both bit-arrays are in similar states.

Intuition: bloomRF is not worse than BFs, with view of the
scatter of words and their overlaying in bit array elements for
common data distributions like zipfian, normal or uniform. PMHF
randomize words sufficiently. These insights are substantiated
by the relative point FPR of bloomRF vs BF in the evaluation (Fig.
10).
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Degenerate data distributions and PMHF. There are rare
cases of degenerate data distributions, where PMHF may be-
come inefficient. The core observation is that certain bits of a
key determine the bit position in a word of the bit-array, since
PMHF are piecewise monotone. In basic bloomRF with distance
among levels Δ = 7, for example, if all bits 0-5, 7-12, 14-19, . . . ,
𝑖Δ . . . (𝑖 + 1)Δ−2, . . . contain the value 𝜆 ∈ 0, 1, . . . ,𝑤 = 2Δ−1−1,
then every PMHF sets bit 𝜆 in its word. A data distribution
that generates such keys with high probability can be defined
by counting the number of appearances of these bits in a key
𝑐𝑥 = |{𝑖 = 0, 1, . . . , 𝑘 − 1 | ( (𝑥 >> 𝑖Δ) &𝑤) = 𝜆}| + 1 and finally
normalizing 𝑝𝑥 = 𝑐𝑥/

∑
𝑦 𝑐𝑦 . bloomRF can handle such cases. We

can employ slightly different hash functions, which permute the
bits in the word. For instance, on each layer, we can apply the
original PMHF on half of the keys, while the other half is tackled
by a PMHF that writes the words in reverse order.
Vertical PMHF and error-correction. The hierarchical struc-
ture of PMHF allows a new interpretation of hashing in bloomRF,
which can also be transferred to BFs. DIs on a level ℓ𝑖 correspond
to prefixes code(𝑦)𝑖 . With PMHF only the hash-function on layer
𝑖 operates on 𝑦>> ℓ𝑖 , all others only on prefixes of 𝑦>> ℓ𝑖 . Thus
one hash-function is primarily responsible for level ℓ𝑖 , namely
𝑀𝐻𝑖 . Therefore hashing in bloomRF is hierarchical with a sepa-
rate PMHF for each layer (Fig. 6.C). The hash-functions on higher
layers are used for error-correction. In the example (Fig. 4) the DI
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Figure 5: (a) Random scatter over bloomRF layers; (b), (c)
Comparison of the bit-array scatter to a BF.
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Figure 6: While (a) hashing in BFs is planar, (b) PMHF pre-
serve partial order, assisting range-querying, and are (c)
hierarchical.

𝐼 = [416, 431] an level ℓ1=4 is represented by the prefix (16, 25, 2).
We have 𝐼 ∩ 𝑋 = ∅, but hash-function 𝑀𝐻1, which is primarily
responsible for layer 1, yields an error, since the bit at position
2 is set to 1. Hash-function 𝑀𝐻2 checks bit 25 of the bit-array,
which is zero. Thus, we get a negative as the error of 𝑀𝐻1 is
corrected by𝑀𝐻2.

BFs can be viewed in the same way: Keys are represented by
one hash-function while the others are used for error-correction.
Since hashing in BFs is planar and not hierarchical (Fig. 6.A,B),
none of the hash-functions is preferred for representing keys or
error-correction.

4 bloomRF OPERATIONS
We now provide a detailed description of the main operations in
bloomRF such as insertion, point- or range-queries.
Insertion and Point-Lookup. To insert a key 𝑥 ∈𝑋 the code(𝑥)
of bit-array positions is computed via piecewise-monotone hash-
functions𝑀𝐻𝑖 (𝑥), 𝑖 =𝑘−1, . . . , 1, 0, and the corresponding bits in
the bit-array are set to one. To test, if a lookup key 𝑦 ∈ 𝐷 is in 𝑋 ,
the code(𝑦) of bitarray positions is computed via PMHF𝑀𝐻𝑖 (𝑦),
𝑖 = 𝑘−1, . . . , 1, 0, and bloomRF checks if all corresponding bits
in the bit-array are set. For these operations bloomRF behaves
like a regular BF, except that the hash-functions are replaced by
PMHF.
Range-Lookup. Range-queries in bloomRF are based on the
decomposition of arbitrary lookup intervals 𝐼 in DIs. Hierarchical
prefix hashing allows testing all these intervals together in one
pass. Additional DIs covering 𝐼 are automatically checked. Next,
we explain, which DIs are considered for an interval 𝐼 . Upon that
we elaborate on the algorithm that computes and tests all these
DIs.

Decomposition in DIs. For an arbitrary interval 𝐼 the DIs to
be considered are defined in a two-path algorithm, one for the
left and one for the right bound of 𝐼 . Starting from the top level,
𝐽𝑑 =𝐷 is a covering of 𝐼 . We proceed recursively. Suppose 𝐽ℓ+1,
ℓ <𝑑 , is a covering of 𝐼 . Then we decompose 𝐽ℓ+1=𝐾𝑙∪𝐾𝑟 in two
DIs and set 𝐽ℓ as the one covering 𝐼 . If 𝐼 is not covered by a single
DI the path of covering intervals splits in two, a left 𝐽 𝑙

ℓ
=𝐾𝑙 and

a right 𝐽 𝑟
ℓ
=𝐾𝑟 .

We describe only DIs considered for the left path as the right
one is mirror-inverted. Suppose 𝐽 𝑙

ℓ+1, ℓ <𝑑 , is a covering of the left
bound of 𝐼 . We decompose 𝐽 𝑙

ℓ+1=𝐾
𝑙∪𝐾𝑟 in two DIs. If 𝐾𝑙 ∩ 𝐼 ≠∅,

we know that 𝐾𝑟 ⊆ 𝐼 , thus 𝐼 𝑙
ℓ
=𝐾𝑟 belongs to the decomposition

of 𝐼 in DIs and 𝐽 𝑙
ℓ
=𝐾𝑙 is a covering of the left bound of 𝐼 . Else,

if 𝐾𝑟 ∩ 𝐼 ≠𝐾𝑟 , then 𝐾𝑟 covers the left bound of 𝐼 , thus we set
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𝐽 𝑙
ℓ
=𝐾𝑟 . Otherwise the decomposition of the left side is complete

and we set 𝐼 𝑙
ℓ
=𝐾𝑟 .

As example we look at the considered DIs for 𝐼 = [45, 60],
𝑑 =16 (Fig. 7). From level 16 to 5 𝐼 is covered by single DIs. On the
top levels left and right path coincide. On level 4 the paths split
with a covering of 𝐼 by two DIs. On level 3 the first DI 𝐼𝑟3 of the
decomposition of 𝐼 is calculated. Finally, 𝐼 = [45, 45] ∪ [46, 47] ∪
[48, 55] ∪ [56, 59] ∪ [60, 60].

Next, we map the above intervals onto the layers. A covering
𝐽 𝑙
ℓ𝑖+1

on level ℓ𝑖+1 is split into several DIs on the levels ℓ𝑖 ≤ ℓ < ℓ𝑖+Δ.
These can be represented by at most 2Δ DIs on level ℓ𝑖 . Some of
them are coverings, while others belong to the decomposition of
𝐼 . All DIs of the decomposition have to be tested. The covering
should be as tight as possible, thus we take the intersection of
the intervals 𝐽 𝑙

ℓ
, which is 𝐽 𝑙

ℓ𝑖
. Using PMHF 2Δ−1 DIs an level ℓ𝑖

lay side by side in the bit-array, thus all DIs to be tested can be
checked with at most two word-accesses. The same applies to
the right path, thus checks require at most four word-accesses
per layer.

In our example the decomposition of 𝐼 = [45, 60] results in
intervals [45, 47] = 𝐼 𝑙0 ∪ 𝐼

𝑙
1, [48, 55] = 𝐼

𝑟
3 and [56, 60] = 𝐼𝑟2 ∪ 𝐼

𝑟
0 to

be probed. Thereby, the coverings are automatically checked:
𝐽ℓ4 = 𝐽16 = [0, 65535] on level 16, 𝐽ℓ3 = 𝐽12 = [0, 4095] on level
12, 𝐽ℓ2 = 𝐽8 = [0, 255] on level 8 and on level 4 a covering with
𝐽 𝑙
ℓ1
= 𝐽 𝑙4 = [32, 47] and 𝐽

𝑟
ℓ1
= 𝐽 𝑟4 = [48, 63].

Detailed algorithm. We now describe how bloomRF performs
range queries for arbitrary intervals 𝐼 = [l_key,r_key] (Algorithm
1). The main loop iterates over the layers, with 𝑖 being the current
layer, which ranges from the top 𝑖 =𝑘−1 (Line 2) down to the
bottom 𝑖 =0. On layer 𝑖 several tests are performed using PMHF
𝑀𝐻𝑖 . The algorithm checks coverings (𝐽ℓ𝑖 ) and intervals of the
decomposition of 𝐼 (unions of intervals 𝐼ℓ𝑖 ). The variable checks
(L. 3) contains the data for these tests: check.l_key, check.r_key
and check.is_covering. The algorithm loops over the checks of
layers 𝑖 (L. 6).

For a covering (L. 8), only a single bit must be tested. If this bit is
set, the checks for the underlying layer are computed. Otherwise
this interval does not contain any keys 𝑥 ∈ 𝑋 . As an early stop
condition no further layers have to be checked.

To test an interval of the decomposition of 𝐼 (L. 11), the algo-
rithm has to test several bits. We compute a bit-mask 𝑏 and since
we use PMHF, all necessary bits are read in a single-word bit-
array access. If a bitwise AND yields a value ≠ 0, then the filter
claims the existence of a key 𝑥 ∈ 𝐼 and returns a positive answer.
Otherwise, if all intervals of the decomposition get excluded,
checks gets empty, yielding a negative answer.
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Figure 7: Dyadic intervals for range-query of I=[45,60].

Algorithm 1: bloomRF Range-Lookup
1 Function RangeLookup( l_key, r_key ):
2 Let 𝑖 ← 𝑘 − 1;
3 Let checks← init_checks(l_key, r_key, i);
4 while checks ≠ ∅ do
5 Let new_checks← ∅;
6 foreach check ∈ checks do
7 if check.is_covering = true then
8 if filter.bit_access(𝑀𝐻𝑖 (check.l_key)) = 1 then
9 Expand check to layer 𝑖 − 1 an append to

new_checks;

10 else
11 Let

𝑏←bit_mask(𝑐ℎ𝑒𝑐𝑘.𝑙_𝑘𝑒𝑦, 𝑐ℎ𝑒𝑐𝑘.𝑟_𝑘𝑒𝑦) ;
12 Let 𝑤←filter.word_access(𝑀𝐻𝑖 (check.l_key)) ;
13 if 𝑏 &𝑤 ≠ 0 then
14 return 𝑡𝑟𝑢𝑒 ;

15 Let 𝑖 ← 𝑖 − 1;
16 Let checks← new_checks;

17 return false;

5 THEORETICAL MODEL
We now analyze space and time complexity of bloomRF, and
begin with an FPR estimate for range-queries. As shown in Sect.
4, for an interval I=[l_key,r_key] several DIs are considered. There
are several special cases, depending on the position of 𝐼 . All have
in common that they (phase1, Fig. 7) start with a sequence of
𝑖1 coverings by single DIs 𝐽ℓ𝑗 , 𝑗 = 𝑘, 𝑘 −1, . . . , 𝑘 − 𝑖1 +1, which
then (phase 2) split up in 𝑖2 coverings by two DIs 𝐽 𝑙

ℓ𝑗
∪ 𝐽 𝑟

ℓ𝑗
, 𝑗 =

𝑘−𝑖1, 𝑘−𝑖1−1, . . . , 𝑘−𝑖1−𝑖2+1. Since here all intervals are coverings
only single bits have to be checked. Let 𝑝 be the probability that
a bit in the bit-array is set to zero. A false positive can only occur,
if all DIs of phase 1 yield positive and all DIs of left side of phase
2 yield positive, while on the right side an arbitrary combination
is possible, or vice versa. We estimate the FPR 𝜖 by eq. (5).

𝜖 ≤ (1 − 𝑝)𝑖1+𝑖2 (2
𝑖2−1∑
𝑖=0

(
𝑖2
𝑖

)
𝑝𝑖2−𝑖 (1 − 𝑝)𝑖 + (1 − 𝑝)𝑖2 )

= 2(1 − 𝑝)𝑖1+𝑖2 (
𝑖2∑
𝑖=0

(
𝑖2
𝑖

)
𝑝𝑖2−𝑖 (1 − 𝑝)𝑖︸                         ︷︷                         ︸
=1

− (1 − 𝑝)𝑖2 )

≤ 2(1 − 𝑝)𝑖1+𝑖2 (5)

The DIs on level ℓ𝑖 = 𝑖Δ have length 2𝑖Δ. Thus, an arbitrary
interval 𝐼 of length |𝐼 | ≤ 2𝑖Δ is covered by atmost twoDIs on level
ℓ𝑖 and therefore in phase 2 at least layer 𝑖 is reached, i.e. 𝑖1 + 𝑖2 ≥
𝑘 − 𝑖 . Thus 𝜖 ≤ 2(1−𝑝)𝑘−𝑖 and therefore 𝜖 ≤ 2(1−𝑝)𝑘−𝑙𝑜𝑔2 ( |𝐼 |)/Δ.

It remains to estimate the probability 𝑝 that a bit in the bit-
array is set to zero. For BFs the assumption of perfect random
hash-functions leads to a probability of 1/𝑚 of bits being set and
therefore the standard estimate [3] yields

𝑝 =

(
1 − 1

𝑚

)𝑘𝑛
≈ 𝑒−

𝑘𝑛
𝑚 .

We model the influence of the data distribution on PMHF by
introducing a constant𝐶 , such that 𝑝 = (1 −𝐶/𝑚)𝑘𝑛 ≈ 𝑒−𝐶𝑘𝑛/𝑚 .
Our experiments (PMHF random scatter, Fig. 5) suggest that
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𝐶 = 1 for common distributions such as uniform, normal and
zipfian.

Summary: for range lookups with max. query range 𝑅, such
that |𝐼 | ≤𝑅=2𝑖Δ, and common distributions bloomRF has an FPR
of

𝜖 ≤ 2
(
1 − 𝑒−

𝑘𝑛
𝑚

)𝑘−log2 (𝑅)/Δ
, (6)

where 𝑘 = ⌈(𝑑 − log2𝑛)/Δ⌉ (Sect. 3.1).
For point-queries bloomRF behaves like a BF, except that 𝑘 ,

the number of hash-functions, is not a free parameter. Thus for
common distributions the point FPR is 𝜖 ≈ (1 − 𝑒−

𝑘𝑛
𝑚 )𝑘 .

For time complexity we consider the operations in Sect. 4. The
insertion of keys and point lookups requires evaluating of 𝑘 hash-
functions, thus both have constant time O(𝑘). Range-queries are
handled by algorithm 1. There are two loops: The outer loop
(Line 4) iterates over the layers and the inner loop (Line 6) over
the checks on layer 𝑖 . Since there are 𝑘 layers and at most 4
word-accesses per layer, range-queries require also constant time
O(𝑘). Notably, the query-time is independent of the size of the
query-interval 𝐼 .

6 COMPARISON: SPACE/TIME
COMPLEXITY

With the theoretical model in place, we now compare bloomRF’s
space and time complexity to Rosetta’s model, and to the theoret-
ical lower bounds for point[7] and range-queries[20].
Space complexity.We estimate the space𝑚 needed by bloomRF
to achieve a given FPR 𝜖 by solving eq. (6) for𝑚.

[7] has shown that any structure which answers point-queries
with FPR 𝜖 , needs at least𝑚 ≥ 𝑛 log2 (1/𝜖) space. [20] shows that
any structure, answering range-queries of range-size 𝑅 with FPR
𝜖 , necessitates at least𝑚 ≥ 𝑛 log2 (𝑅1−𝑂 (𝜖)/𝜖) −𝑂 (𝑛) space. [20]
gives a family of lower bounds with a free parameter, 𝛾 > 1:

𝑚 ≥ 𝑛 log2
(
𝑅1−𝛾𝜖

𝜖

)
+ 𝑛 log2

(
1 − 4𝑛𝑅

2𝑑

) (
1 − 1

𝛾

)
𝑒

.

The lower bound is therefore the point-wise maximum of these
bounds. We can determine 𝛾 as a function of 𝜖 to achieve this
maximum, leading to a single curve for the lower bound (Fig. 8).

Furthermore we compare with Rosetta [29], which has four
variants for point-range filters and the variant (F) first-cut so-
lution in analyzed in terms of space complexity. The first-cut
solution uses a BF for each level of DIs, with FPR of 𝜖 on the
bottom level and 1/(2−𝜖) on all others. In [29] it is stated, that (F)
achieves an FPR of 𝜖 for range-queries of intervals up to length
𝑅 using𝑚 ≈ log2 (𝑒) · 𝑛 log2 (𝑅/𝜖).

Figure 8 shows the estimates for bloomRF, lower bounds and
Rosetta for point-queries (left) and range-queries of intervals of
length𝑅 = 16, 32, 64 (right) for a domain of𝑑 = 64 bit integers. For
point-queries bloomRF and Rosetta are close, but bloomRF always
uses a little bit more memory except at one FPR. The reason is,
that for bloomRF the number of hash-functions is determined
by the datatype’s domain size, 𝑘 = ⌈(𝑑 − log2𝑛)/Δ⌉, such that
the for BFs known optimal choice of 𝑘 = ln(2) ·𝑚/𝑛 cannot be
used. For range-queries the distance between Rosetta an the lower
bound is given by a near-constant factor. bloomRF improves over
Rosetta, especially with larger 𝑅, i.e., larger Δ, and gets closer to
the theoretical lower bound. The foundation for space savings in
bloomRF is prefix hashing, yielding a near space-optimal PRF.
Time-Complexity. Range queries in bloomRF are answered in
constant time O(𝑘), independent of the range size 𝑅.
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Figure 8: Comparison of bloomRF to Rosetta and the the-
oretical lower-bound [7, 20] for (a) point and (b) range
lookups.

Rosetta uses a BF for every dyadic level, but all levels except
to lowest have larger FPRs, e.g. 1/(2 − 𝜖) in the first-cut solution
(F). To improve FPR a process of doubting is applied. If a DI on
level ℓ yields a positive result, the two DIs on the level below
are tested. In the worst case, this may yield query-time linear in
𝑅. According to [29], (F) has avg. query time O(log2 (𝑅)/𝜃2) for
intervals ≤𝑅.

Two more variants also have logarithmic avg. query-time
O(log2 (𝑅)/𝜃 ′2) [29]. An optimized variant (O), where as in (F)
a BF is used for each level, but the FPRs 𝜖ℓ on the levels are ad-
justed to how often intervals are queried, and a variable-level
variant (V) similar to (O), but using different weights, pushing
more bits to lower levels, improving FPR of lower at cost of
higher FPR of the middle and top levels. Finally a single-level
variant (S) is suggested, where only a single level of Rosetta is
used. Here range-queries are answered by testing every element
of an interval, yielding linear time [29].
Space efficiency, FPR and Query-range size. Rosetta is de-
signed for relatively small query ranges and KV-stores, and covers
its design space well. Consider Rosetta (F) due to its logarithmic
time complexity for longer ranges and its space requirement
of 𝑙𝑜𝑔2 (𝑒) · 𝑛𝑙𝑜𝑔2 (𝑅/𝜖) bits/key to achieve an FPR 𝜖 for range-
queries 𝑅 ≈ 2ℓ [20, 29]. For example, to achieve an FPR of 2%
for ranges |𝑅 | = 26, Rosetta uses 17 bits/key, yet for |𝑅 | = 210 it
already demands 22 bits/key, while for |𝑅 | = 214 it requires 28
bits/key. Given 17 bits/key, basic bloomRF can handle ranges of
|𝑅 |=214 with an FPR of 1.5% and low probe-latency, while with 22
bits/key basic bloomRF covers |𝑅 |=221 with 2.5% FPR, whereas
with optimizations bloomRF can improve on those significantly.

7 OPTIMIZATIONS
Observation. Basic bloomRF is simple, tuning-free, and can han-
dle range queries with 𝑅 ≤ 214 with acceptable FPR and space
budgets. However, the theoretical model also shows that further
optimizations for larger 𝑅 are needed. Next, we describe them.
Replicated Hash-Functions. The number of hash-functions to
query DIs 𝐼 decreases with |𝐼 |. Larger DIs correspond to shorter
prefixes, by prefix-hashing to shorter prefixes of the code and
thus less hash-functions are used, weakening error-correction. To
increase the number of hash-functions on higher layers bloomRF
uses replicated hash-functions. They write replica of words of
the original PMHF 𝑀𝐻𝑖 but at different bitarray word-positions,
preserving the local order defined by PMHF𝑀𝐻𝑖 . Thus bloomRF
has 𝑟𝑖 functions per layer (incl. 𝑀𝐻𝑖 ), where typically 𝑟𝑖 =1 for
lower layers.
Variable Distance Between Levels. While large Δ between
levels work well on lower layers, as basic bloomRF shows, for
higher layers the exponentially increasing size of DIs is one rea-
son for the rapid increase of the FPR. Therefore we aim at smaller
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distances on higher layers. To this end bloomRF uses a vector
Δ = (Δ𝑘−1,Δ𝑘−2, . . . ,Δ0) ∈ N𝑘 , defining level ℓ𝑖 corresponding
to layer 𝑖 by 𝑙𝑖 =

∑𝑖−1
𝑗=0 Δ 𝑗 . Smaller distances on higher layers also

increase the number of hash-functions on higher layers.
MemoryManagement. The relative frequency of DIs including
keys changes with the level. On low levels this frequency is nearly
zero. Consider for example 𝑛 = 50 · 106 keys in a domain of
integers with 𝑑 = 64. Level 0 is nearly empty, since 𝑛 << 2𝑑 .
But each increment of the level halves the number of intervals.
Thus in mid levels more intervals are occupied and top levels
saturate, depending on the data distribution. Hash-functions used
on saturated levels almost always yield positive answers, such
that these functions can be omitted. In the above example, levels
39 to 64 (26 top levels) saturate, given a uniform key distribution.

The next lower levels are more then 25% occupied, but their
size is not much larger then 𝑛. For example level 38 has size
≈ 1.34𝑛, level 37 has size ≈ 2.68𝑛. Therefore a radical design
decision is to use one segment to store one level of DIs in an
exact (non-overlapped) bitmap.

From eq. (6) we see the FPR decreases step-wise with the level.
For better balance, we adjust the probability 𝑝 , by separating the
bit-array into 𝑆 =3 memory segments, one for an exact layer, one
for the mid layers and one for the lower layers. More formally
𝑚 = 𝑚1 +𝑚2 + . . . + 𝑚𝑆 , where layer 𝑖 is assigned a segment
𝑗𝑖 ∈ {1, 2, . . . , 𝑆}. The size𝑚1 is determined by the position of
the exact layer. By increasing𝑚2, the segment for the mid layers,
we can improve 𝑝 for these layers, thus improving the FPR an
larger intervals, simultaneously reducing𝑚3 and thus FPR on
the lower layers, especially for point-queries.
Summary: To handle large query ranges bloomRF typically em-
ploys the following strategy: (i) sparser bottom layers with large
word sizes (e.g. 64-bit) are packed together in one segment of
the bit-array with a single PMHF per layer; (ii) mid-layers with
small word sizes (e.g. 8-bit or smaller) are stored in a separate
and sparser segment with replicating hash-functions besides the
PMHFs to lower the error-rates; (iii) a mid-upper layer is stored
exactly in an exclusive segment; (iv) the top layers are discarded
as they saturate.
Extended Model. We now describe a general bloomRF model
to evaluate the FPR given the above optimizations. According to
the filter the DIs on each level ℓ can be classified as: (a) empty
(𝑡𝑛ℓ ); or are (b) non-empty and include a key (𝑡𝑝ℓ ); or are (c)
non-empty and do not include a key (𝑓𝑝ℓ ). Therefore, the FPR on
level ℓ is 𝑓𝑝𝑟ℓ = 𝑓𝑝ℓ/(𝑓𝑝ℓ + 𝑡𝑛ℓ ).

The number of true positives 𝑡𝑝ℓ on each level can be derived
from the distribution of the keys. For example, assuming uniform
distribution, the𝑛 keys lie in approximately𝑛 DIs on large enough
levels. Hence, the estimate: 𝑡𝑝ℓ = min(𝑛, 2𝑑−ℓ ). The numbers 𝑓𝑝ℓ
and 𝑡𝑛ℓ are estimated by recursion on the levels 𝑙𝑖 =

∑𝑖−1
𝑗=0 Δ 𝑗

corresponding to layers 𝑖 . We assume level ℓ𝑘 is stored exactly,
therefore 𝑓𝑝ℓ =0 and 𝑡𝑛ℓ =2𝑑−ℓ−𝑡𝑝ℓ , ℓ = 𝑑,𝑑−1, . . . , ℓ𝑘 .

Suppose we have computed 𝑓𝑝ℓ𝑖 and 𝑡𝑛ℓ𝑖 corresponding to
layer 𝑖 . For the layer below, i.e., layer 𝑖 − 1, we consider the levels
ℓ = ℓ𝑖 − 1, ℓ𝑖 − 2, . . . , ℓ𝑖−1. A DI on a level splits in two DIs on
the underlying level. Therefore, each DI 𝐼 on level ℓ𝑖 includes
2ℓ𝑖−ℓ DIs on level ℓ . If 𝐼 is true negative, all 2ℓ𝑖−ℓ intervals are
also true negatives. If 𝐼 is false or true positive, then some of the
2ℓ𝑖−ℓ intervals can be false positive. Since 𝑡𝑝ℓ are true positive
the number of potentially false positive intervals on level ℓ is
𝑓𝑝

𝑝𝑜𝑡

ℓ
=2ℓ𝑖−ℓ (𝑓𝑝ℓ𝑖 + 𝑡𝑝ℓ𝑖 )−𝑡𝑝ℓ .

For these intervals the corresponding bits in segment 𝑗𝑖−1 of
the bit-array will be probed. Let 𝑝 be the probability that such
a bit is set to zero. Analogous to section 5 we use the estimate
𝑝 = (1−𝐶/𝑚 𝑗𝑖−1 )𝑘

′ ·𝑛, where 𝐶 models the influence of the data
distribution and here 𝑘 ′=

∑
𝑗𝜈=𝑗𝑖−1𝑟𝜈 is the number of hash func-

tions of segment 𝑗𝑖−1. For common distributions such as uniform,
normal and zipfian we can assume 𝐶 =1 (PMHF random scatter,
Fig. 5).

For each potentially false positive DI on level ℓ one or more
bits will eventually be probed, depending on the number of hash-
functions 𝑟𝑖−1 and layer 𝑖 − 1. Let 𝑝 ′ be the probability that such
a probe yields true, then 𝑓𝑝ℓ =𝑝 ′𝑓𝑝

𝑝𝑜𝑡

ℓ
and 𝑡𝑛ℓ =2ℓ𝑖−ℓ𝑡𝑛ℓ𝑖 + (1 −

𝑝 ′) 𝑓𝑝𝑝𝑜𝑡
ℓ

. The probability 𝑝 ′ can be computed by combinatorial
formulas. For example for DIs on level ℓ𝑖−1 single bits a checked
for each hash-function. Hence, 𝑝 ′ = (1 − 𝑝)𝑟𝑖−1 . For DIs on level
ℓ𝑖−1+1 two bits must be checked. For 𝑟𝑖−1=1 we get 𝑝 ′ = 2𝑝 (1 −
𝑝) + (1 − 𝑝)2, for 𝑟𝑖−1=2 we get 𝑝 ′ = 2𝑝2 (1 − 𝑝)2 + 4𝑝 (1 − 𝑝)3 +
(1 − 𝑝)4, etc.

We apply the FPR-model to our example in Section 3. The
size of the domain is |𝐷 |=2𝑑 =16384, 𝑑 =16, and we store 𝑛=3
keys. We assume Δ = 4 and thus 𝑘 = ⌈( 𝑑 − log2𝑛 )/Δ⌉ = 4, or
Δ= (4, 4, 4, 4). We also assume one hash function per layer and
a single shared segment, which is the bit-array with 𝑚1 = 32
bits. Level ℓ4 = 𝑑 is the interval [0, 16384], which is set when
the first key is inserted. Thus, we assume it is stored exactly
(it is a single bit, which is actually unused). In our model we
estimate 𝑝 ≈ 0.683, where the relative frequency of bits set to
0 is 22/32 ≈ 0.688. As estimate for the FPR on each level we
get 𝑓𝑝𝑟 = (0, 0.95, 0.78, 0.53, 0.32, 0.27, 0.19, 0.11, 0.11, 0.09, 0.06,
0.04, 0.04, 0.03, 0.02, 0.01). So for point-queries we expect an FPR
of 0.01 (1%) and for the intervals [0, 32767], [32768, 65535] an FPR
of 0.95 (95%).
Tuning Advisor. Given standard parameters like the number of
keys 𝑛, the memory budget𝑚 and considering an (approx. max.)
query range size 𝑅, the tuning advisor computes and selects an
appropriate bloomRF configuration, comprising the parameters:
vector Δ= (Δ𝑘−1,Δ𝑘−2, . . . ,Δ0) ∈N𝑘 , number of hash-functions
𝑟𝑖 and the assigned memory segment 𝑗𝑖 per layer, while using
three segments (𝑚1,𝑚2,𝑚3). Now we describe the procedure.

First, we determine the exact level by means of a heuristic:
its size should be ≤ 60% of the memory budget 𝑚. Thus, ℓ𝑒 =
min{ℓ | 2𝑑−ℓ <0.6𝑚}. The advisor examines multiple exact level
candidates. For the sake of simplicity, here we consider only: ℓ𝑒
and ℓ𝑒 +1.

The position of the exact layer determines the vector Δ, the
number of hash-functions and the assigned memory segments
by the following heuristics: For the lower layers we use Δ𝑖 = 7,
which leads to a word-size of 64 bit and is as large as possible.
The mid layers are the transition region between lower layers
and exact level. Starting from the lower layers we reduce Δ𝑖 to
match the exact layer. As an example we consider 𝑛 = 50 · 106
keys with 14 bits/key in a domain with 𝑑 = 64 bit. The lowest
level with 2𝑑−ℓ <0.6𝑚 is 36. For the bottom levels we start with
Δ𝑖 = 7 and then reduce Δ𝑖 to match 36. This results in a vector
Δ = (2, 2, 4, 7, 7, 7, 7), which sums up to 36. We aim for as few
replicated hash-functions as possible, therefore we use only one
hash-function per layer, and only on the highest layer 2, e.g.,
𝑟 = (2, 1, 1, 1, 1, 1, 1). The heuristic applied here is: the closer we
are to the exact layer, the higher the precision has to be, and
therefore we employ smallerΔ𝑖 and use replicated hash-functions
(but as few as possible). Finally memory segment𝑚1 = 2𝑑−𝑙 is
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Figure 9: bloomRF has good performance for a variety of ranges and workload distributions in RocksDB (22 bits/key).

used for the exact,𝑚2 for the middle and𝑚3 for the bottom layers,
e.g., 𝑗 = (2, 2, 2, 3, 3, 3, 3).

Second, with all other parameters defined by the above heuris-
tics, for a given exact level it remains to determine 𝑚2, since
𝑚1+𝑚2+𝑚3=𝑚. The goal is to minimize the FPR for range-queries
of size up to 𝑅. Let 𝑓𝑝𝑟𝑚 =max ⌊log2 (𝑅) ⌋

ℓ=0 𝑓𝑝𝑟ℓ be the maximum FPR
of DIs used for ranges ≤ 𝑅. Since the largest FPR-rates result from
mid-top levels (= large intervals), small intervals (= bottom lev-
els) are under-prioritized. Thus we also consider 𝑓𝑝𝑟𝑝 = 𝑓𝑝𝑟0, i.e.
point-query FPR. The advisor makes a trade-off between lowering
the range-query FPR (𝑓𝑝𝑟𝑚) and the point-query FPR (𝑓𝑝𝑟𝑝 ), as
decreasing 𝑓𝑝𝑟𝑚 might imply higher 𝑓𝑝𝑟𝑝 . To this end, we define
and minimize the weighted squared norm 𝑓𝑝𝑟2𝑤 = 𝑓𝑝𝑟2𝑚 +𝐶2 𝑓𝑝𝑟2𝑝 .
It always holds 𝑓𝑝𝑟𝑝 ≤ 𝑓𝑝𝑟𝑚 . As compensation we can increase𝐶
to weight point-queries stronger. We determine all parameters
for our exact level candidates ℓ𝑒 and ℓ𝑒 − 1 and select the config-
uration with min. 𝑓𝑝𝑟𝑤 . The auto-tuning process is inexpensive
and takes ∼8ms. For 𝑛=50M keys, 16 bits/key and query range
|𝑅 |=1010, the advisor estimates an FPR of∼0.5% for point-queries
and ∼3% for dyadic ranges ≤ |𝑅 |.

8 DATATYPE SUPPORT
Variable-length strings. The string support in bloomRF resem-
bles SuRF-Hash [49] and considers the first seven characters in
the seven most-significant bytes. In addition, for point queries
it computes a one-byte hash-code of the rest of the string, in-
cluding the length, and places it in the least significant byte.
This way bloomRF achieves a UINT64 representation of variable
length-strings.
Floating-Point Numbers. Floating-point numbers are repre-
sented with 𝑞 bits for the mantissa 𝜇, 𝑟 bits for the exponent
𝑒 and one bit for the sign 𝑠 . For a bit combination 𝑥 the repre-
sented value is 𝑓 𝑙 (𝑥) = 𝑠 · 𝜇 · 2𝑒 . The bit combinations 𝑥 are
ordered as binary numbers. Since floats are signed, this order is
reversed for negative numbers and is therefore lost. To this end,
we use a map 𝜑 with 𝜑 (𝑥) = 𝑥 + 2𝑞+𝑟 if 𝑥𝑞+𝑟 = 0 and 𝜑 (𝑥) = 𝑥
(bitwise inverse) otherwise, which is a monotone coding, i.e.,
𝜑 (𝑥) < 𝜑 (𝑦) ⇔ 𝑓 𝑙 (𝑥) < 𝑓 𝑙 (𝑦). For all operations, we use 𝜑 (𝑥)
instead of 𝑥 . To insert 𝑥 into bloomRF, we insert𝜑 (𝑥). For a point-
query of 𝑥 we test 𝜑 (𝑥). For a range-query [𝑥,𝑦], we perform a
range-query with [𝜑 (𝑥), 𝜑 (𝑦)].
Multi-Attribute bloomRF. The ability to filter on multiple at-
tributes simultaneously is necessary for complex operations in
interactive analytics, scientific packages, IoT and AI. bloomRF
supports two-dimensional filtering with reduced precision. To
this end we concatenate the attribute-values and insert them in
both combinations. For instance, bloomRF(A,B) will concatenate
the values of A and B, and insert them as tuples <A,B> and

<B,A>. The increased space-requirements are lowered by reduc-
ing the precision of A and B, e.g. to a 32-bit integer. As a result
bloomRF can answer queries such as A<42ANDB=4711, A=42
ANDB>4711 or A=42ANDB=4711.

9 EXPERIMENTAL EVALUATION
Integration in RocksDB [30]. bloomRF has been implemented
in a standalone library and has been integrated in RocksDB v6.3.6
through a standard filter policy. The policy is extended to pass
query-range information (lower/upper bounds) to the filter by
means of slice structures. For persistence we implement our own
ser./deserialization mechanism, placing it as regular full filter
block in each compaction-disabled SST file of a block-based table
format.
Baselines. Throughout the evaluation the following baselines
are used: BFs, Prefix-BFs and fence pointers as well as state-of-
the-art point-range filters such as SuRF [43, 44, 49] and Rosetta
[29]. We perform two types of experiments. First, system-level
experiments, where all baselines are compared in RocksDB v6.3.6
to stress the overall effects in a real system. Second, standalone
experiments are performed to stress specific aspects in isolation.
Workloads. Throughout the evaluation we use a set of different
workloads. Firstly, we employ a derivative of YCSB [8] Workload
E, which is range-scan intensive. The dataset comprises 50M
64-bit integer keys, while the values are 512 bytes long. The
data is uniformly distributed, while the workloads are of normal,
uniform and zipfian distributions. We issue 105 queries of a single
fixed range-size that is specified in the respective experiments.
All point- and range-queries in this workload are empty (unless
specified otherwise), which represents the worst-case. Depending
on the workload, non-empty queries may perform better, e.g. due
to bloomRF’s early stop conditions. In fact, in a perfect system a
perfect filter would incur minimal I/O, and thus the worst-case
may overstate their impact.

Rosetta and bloomRF rely on parameter tuning methods that
compute the proper filter-configurations, for given space budgets,
number of keys and range sizes. SuRF, however, requires a suffix-
length parameter setting to tune itself to a space budget and trade
off FPR, by selecting the appropriate variant. For some settings,
we were unable to select one, especially in RocksDB. Secondly,
for the floating point experiments we use a timeseries dataset
from NASA[33]. Whereas for the multi-attribute experiments we
utilize a dataset from the Sloan Digital Sky Survey DR16 [42].
Experimental Setup. The experimental server is equipped with
an Intel E5-1620 3.50GHz, 32GB DDR4, and runs Ubuntu 16.04.
Experiment 1: bloomRF is general-purpose and can han-
dle various query ranges, from large to small.We begin by
comparing bloomRF against SuRF and Rosetta in RocksDB under
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conditions favorable to all approaches. To this end, we employ a
space budget of 22 bits/key, 50M uniformly distributed keys and
vary the query range sizes and workload distributions (Fig. 9.A1,
B1 and C1).

In terms of end-to-end probe latency, bloomRF outperforms all
baselines, due to its two-path range-lookup and its CPU-efficient
PMHF (Fig. 12.G). The sudden rise in bloomRF latency at |𝑅 |=1011
is due to approx. 1% non-empty ranges generated by the workload
driver because of the large interval size.

Overall, bloomRF also has the lowest FPR of all baselines.
Rosetta is more accurate for very short ranges (|𝑅 | ≤ 8) as they
hit its precise lower BF. Due to the error-correcting effect of its
PMHF bloomRF is more accurate than Rosetta for small ranges
of 16≤ |𝑅 | ≤ 64, which must probe larger area in its filters. The
sudden fluctuations of Rosetta can be explained with the switch
between different variants. The good FPR of bloomRF for large
ranges (e.g., 107 ≤ |𝑅 | ≤1010) is due to the ability to probe more
bits and the exact layer configurations. However, SuRF’s LOUDS-
encoding excels, for very large ranges (e.g., |𝑅 | = 1011), while
bloomRF still achieves an acceptable FPR of 0.0454, as it probes
larger areas of its mid-upper layers. Under the same settings, we
investigate the point-query FPR (Fig.9.A2, B2 and C2 shown as
figure-in-figure in Fig. 9). Rosetta exhibits the lowest point-query
FPR due to its accurate bottom filter-layer. bloomRF needs more
space for its mid-upper layers yielding slightly higher FPR. SuRF
has the highest FPR due to its trie-truncation. All PRF outperform
Prefix-BFs and fence pointers (Fig.9.D).

Insight: bloomRF can handle a broad set of query ranges and
outperforms all baselines, under various workload distributions,
addressing Problem 1 (Sect. 1).
Experiment 2: bloomRF is efficient. We continue our com-
parison, by varying the space budget in RocksDB (Fig.10). We
start from the 22 bits/key (favorable for all approaches and used
in the previous experiment) and proceed to 10 bits/key, which is
typical for standard BFs. As we go, small (Fig. 10.A-C), medium

(Fig. 10.D-F) and large (Fig. 10.G-I) range queries are performed.
We use 50M keys; data and workload are uniformly distributed.

bloomRF outperforms all baselines. It remains competitive to
Rosetta for very small ranges and bigger space budgets (≥ 18
bits/key). bloomRF also outperforms SuRF, except for very long
ranges (|𝑅 | ≥ 1011). For point-lookups in RocksDB (Fig. 10, on the
right) bloomRF is more accurate than the RocksDB BF due to the
random scatter and the error-correction. For point-queries and
2M keys, but in a standalone setting (Fig. 12.E1-E3) we compare
all PRF, the Cuckoo-Filter [16, 17] and the BF from LevelDB [19].
We vary the fingerprint sizes provided by the Cuckoo-Filter [16]
and aim for high occupancies (95%) to keep within the space
budgets.

In terms of throughput bloomRF outperforms Rosetta 7% to
44% at 22 and 10 bits/key, respectively. We elaborate by providing
a detailed breakdown of the probe-costs in RocksDB (Fig. 12.G).
We use 22 bits/key, 50M keys (2.06M per SST/filter), 105 queries,
uniform workload/data distribution. bloomRF has the lowest
CPU- and total costs.

Insight: Considering the performance and FPR at smaller space
budgets (Fig. 10, ≤ 18 bits/key), we observe that bloomRF is
efficient in terms of: (i) performance per bits/key; and (ii) FPR per
bits/key.
Experiment 3: bloomRF can handle skewed data distribu-
tions. So far we only considered uniform data distributions. Now
we relax this assumption and investigate the impact of normal
and zipfian data distributions in a standalone setting (Fig. 11). We
also vary the number of keys (103..50M), the space budget, the
query range and the workload. The color of each point in Fig.
11 denotes the best filter, while the symbol stands for the FPR
difference to the second best filter or to bloomRF, in case it is not
the best.

We observe that bloomRF can handle skewed data distributions
across various settings. For zipfian bloomRF is outperformed only
in isolated cases. This is due to the underlying structure based
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Figure 10: bloomRF is efficient, with better performance for different space budgets and query ranges in RocksDB.
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on bloom-techniques, where bits from bottom-mid layers can be
accurately probed due to its vertical error-correction, while SuRF
is truncating beyond a certain length. Rosetta (presumably its
hash functions or its variable-level design) loses efficiency with
|𝑅 | ≥ 16.

Insight: Fig. 11 depicts a holistic comparison among the PRF,
on relevant parts of the problem space. All three approaches
bring significant advantages to the design space and augment
each other. Due to its LOUDS-encoding, SuRF tends to be better
for large ranges (108 ..1011), at higher space budgets with ≥ 14
bits/key and more keys. Rosetta tends to be better for very small
query ranges with more than 16 bits/key. bloomRF is generally
applicable to various memory budgets, different number of keys,
and performs well for different data distributions and workloads
(Problem 3, Sec. 1).
Experiment 4: bloomRF is online and concurrent inser-
tions have acceptable impact on its probe-performance at
different insert/probe ratios. We now quantify the online be-
havior, by investigating the impact of concurrent insertions on
query performance and address Problem 2 (Sec. 1). To this end,
we insert 50M, not sorted or prepared, uniformly distributed
keys with different (uniform) insert/lookup ratios (x-axis) in a
standalone setting. In single-threaded settings (Fig. 12.A), the
overall throughput increases with higher insert/lookup ratios.

Hence, the impact of insertions is acceptable. A deeper analysis
in multi-threaded settings (Fig. 12.B) with varying the number of
concurrent lookup/insertion-threads shows that insertions have
marginal impact on the lookup performance per thread. The over-
all insert-throughput increases with more threads, although the
throughput per insert-thread decreases. This is not surprising as
bloomRF is a parallel data structure.

Next, we investigate the filter-construction costs (Fig. 12.C)
on the 50M, uniform dataset in RocksDB, where L0 comprises 25
SST files. We report the total creation and the serialization time
(incl. tuning). bloomRF has the lowest creation time, due to its
high insertion performance. SuRF has relatively high overhead
due to space budget tuning and trie creation.
Experiment 5:bloomRF canhandlefloats.Our floating-point
numbers dataset [33], contains positive and negative numbers.We
execute 1.8M range queries (standalone), of size 10−3. In absence
of other baselines we only investigate bloomRF (Fig. 12.D). In
absence of other baselines we only show that bloomRF achieves
an avg. FPR of 0.18 for 10-22 bits/key and 4M lookups/s.
Experiment 6: bloomRF can serve as multi-attribute filter.
We evaluate multi-attribute querying in bloomRF on a Sloan
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Figure 12: (a, b) online behavior; (c) filter creation; (d) floats; (e) point-queries; (f) dual-attribute filter; (g) cost breakdown.

Digital Sky Survey DR16 [42] dataset and extract the Objec-
tID and the Run columns. Their values roughly follow a nor-
mal distribution. In a standalone setting, we compare a multi-
attribute bloomRF(Run, ObjectID) probed with Run<300 AND
ObjectID=Const against two separate filters bloomRF(Run) for
Run<300 and bloomRF(ObjectID) for ObjectID=Const, combining
the probe-results conjunctively.

As shown in (Fig. 12.F) bloomRF(Run,ObjectID) yields better
FPR than the combined FPR of the two separate filter-lookups
bloomRF(Run) and bloomRF(ObjectID). This observation is sur-
prising since the separate filters operate on 64-bit integers, while
the multi-attribute bloomRF reduces precision and operates on
32-bit integers. The core intuition is that the FPR of bloomRF(Run,
ObjectID) depends on Z/Y, where Y and Z are the number of
data points satisfying ObjectID=Const and Run<300 AND Obec-
tID=Const respectively.

10 RELATED WORK
Bloom-Filters are well-known and with many variants [1, 5, 28,
46] covering different aspects: counting [4, 18, 41]; compress-
ibility [31]; SIMD vectorization [25, 37]; partial deletes [40]; ef-
ficient hashing [15, 23]; and data locality and novel hardware
[6, 14, 25, 27, 39]. Recently, there have been numerous novel
proposals [11, 12, 21, 35, 47], all of which are point-filters with
different properties. Pioneered by [24, 32], the concept of learned
BFs, leads to interesting applications [22, 26, 48] and is a future
direction for bloomRF.

The Adaptive Range Filter (ARF) [2] is one of the first ap-
proaches to describe the use of a simple form of dyadic num-
bering scheme to compute the covering intervals of a point. ARF,
however, relies on a binary tree as a data structure and a power-
ful set of (learning) optimizations. Like bloomRF, ARF relies on
the concept of covering the whole domain of the datatype. SuRF

[49] shows the full potential of trie-based filters (Fast Succinct
Trie) with a powerful encoding scheme (LOUDS-Dense/Sparse).
In bloomRF prefix hashing serves as an encoding scheme.

Rosetta [29], like bloomRF utilizes DIs and dyadic decompo-
sition for point-range-filtering. The concept itself is applicable
to a wider range of other applications such as stream process-
ing and summarization [9], hot/cold data separation techniques
[10] or persistent sketches [36]. The Segment Trees employed by
[9, 29, 36] help encoding interval information andmapping range-
queries into prefix-queries. bloomRF’s prefix hashing achieves
near space-optimal and computationally efficient encoding in-
terval. Another major difference to [9, 29, 36] is that bloomRF
employs PMHF to preserve local order. They reduce the number
of memory accesses when range querying and yields high range
query performance.

11 CONCLUSIONS
We introduce bloomRF as a unified PRF that effectively extends
BFs with range-lookups. We propose novel prefix hashing to en-
code range information in the hash-code of the key, and novel
PMHF for fast lookups and fewer memory accesses. We describe
basic bloomRF that is simple and tuning-free, and propose opti-
mizations for handling larger ranges. bloomRF has near-optimal
space- and constant query-complexity and outperforms existing
PRF by up to 4×.
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