
Stitcher: Learned Workload Synthesis from Historical
Performance Footprints

Chengcheng Wan1∗, Yiwen Zhu2, Joyce Cahoon2, Wenjing Wang2, Katherine Lin2, Sean Liu2,
Raymond Truong2, Neetu Singh2, Alexandra Ciortea2, Konstantinos Karanasos2,

Subru Krishnan2
1 University of Chicago, 2 Microsoft

cwan@uchicago.edu,{<name>.<surname>}@microsoft.com

ABSTRACT
Database benchmarking and workload replay have been widely
used to drive system design, evaluate workload performance, de-
termine product evolution, and guide cloud migration. However,
they both suffer from some key limitations: the former fails to
capture the variety and complexity of production workloads; the
latter requires access to user data, queries, and machine spec-
ifications, deeming it inapplicable in the face of user privacy
concerns. Here we introduce our vision of learned workload syn-
thesis to overcome these issues: given the performance profile
of a customer workload (e.g., CPU/memory counters), synthe-
size a new workload that yields the same performance profile
when executed on a range of hardware/software configurations.
We present Stitcher as a first step towards realizing this vision,
which synthesizes workloads by combining pieces from standard
benchmarks. We believe that our vision will spark new research
avenues in database workload replay.

1 INTRODUCTION
Database benchmarking and workload replay have been exten-
sively used to assess the performance of database engines and
applications, guiding system and platform design decisions. They
provide insights into performance characteristics and allow (a) de-
velopers to address performance bugs through improvements
in the engine internals (e.g., in query processing, optimization,
and storage) [1]; and (b) end users/database administrators (and
more recently cloud providers) to fine-tune configurations [2, 3]
or to identify and justify the optimal cloud service when mi-
grating legacy customers [4]. Despite their widespread use, both
approaches come with important drawbacks.
Database benchmarking. Standardized benchmarks, such as
TPC-* and YCSB [5–8], are a common practice in the industry
for measuring the performance of database systems. However,
these benchmarks have under-performed on application-specific
optimizations. With the rise of database-backed applications,
database workloads are constantly evolving [9, 10] with different
schemas and query types. A singleton standardized benchmark
is not representative of the great variety of database workloads
and cannot cover the full spectrum of analytic needs [11, 12].
Workload replay. On the other end, workload replay focuses
directly on specific workloads, and thus is more amenable when
a customized solution is required. It is able to reproduce perfor-
mance inefficiencies and identify potential service disruptions

*Work done while interning at Microsoft.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the 
26th International Conference on Extending Database Technology (EDBT), 28th 
March-31st March, 2023, ISBN 978-3-89318-093-6 on OpenProceedings.org. 
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

more precisely for a particular workload. It helps diagnose the
root cause of performance bugs and confirm the effectiveness of
a fix or re-configuration. However, workload replay suffers from
its own shortcomings.
Data accessibility. The most accurate approach for workload re-
play entails recording all user data and query history and replay-
ing the exact same operations on the same data. Prior work on
workload replay for data management systems requires full ac-
cess to data and query history [13–19]. Unfortunately, accessing
customer data and queries inevitably brings up privacy, security,
and scalability issues, rendering these techniques inapplicable in
many practical scenarios [4, 20]. Some recent works attempt to
anonymize user data but still require full access to raw data [9].
Diverse hardware specifications. Existing workload replay tech-
niques can be accurately used only on the same (or similar) hard-
ware and software configurations as that of the original workload.
This significantly limits the applicability of these approaches. It
is very often the case that a given workload has to be replayed
on a variety of settings: on-premise or on-cloud, centralized or
distributed. Replaying the same workload on all these different
configurations will result in very different performance results.
Furthermore, it is almost impossible to simulate/access the exact
same hardware settings as rigorous testing requires.
Our vision: learned workload synthesis. In this work, we in-
troduce and make concrete steps to realize our learned workload
synthesis vision: given any profile (e.g., performance, or any other
characteristics that can be measured quantitatively) correspond-
ing to a workload that was run on a particular hardware/software
configuration, synthesize a workload that has similar behavior
when executed on the same (or any other) configuration. Learned
workload synthesis carefully combines ideas from both bench-
marks and workload replay but overcomes their limitations. Us-
ing as input the performance profile of the original workload,
we: (1) tailor our generated workload to the heterogeneous cus-
tomer needs; (2) avoid accessing sensitive customer queries and
data; and (3) target multiple hardware/software configurations
for testing (details in Section 2).

Synthesizing a workload that follows a given performance
profile on a specific type of hardware is notoriously hard, and an
exhaustive approach is intractable. Inspired by construction toys
(such as LEGO [21]), we propose Stitcher, a prototype that synthe-
sizes SQL workloads by borrowing pieces of existing benchmarks
that, when executed together, mimic the performance footprint
of the original workload. To assist our search, we follow a learned
approach that predicts the performance of a synthesized work-
load on any given hardware configuration. Our goal is for the
synthetic workload to have the same characteristics (ideally in all
measurable dimensions) as the original one, even if executed on

Vision Paper

 

 

Series ISSN: 2367-2005 417 10.48786/edbt.2023.33

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.33


Target Workload:
Hardware/Software Config

Performance Counters

Learned Workload Synthesis

Synthesized
Workload

Performance 
Prediction

Piece 1 Setting 1 Piece 2 Setting 2 Hardware Perf.

TPC-C {100, … } N.A. N.A. VM 1 50G, …

YCSB {10, … } TPC-H {5, …} VM 2 60G, …

… … … … … …

Generated 
Train Data

Figure 1: Learned workload synthesis overview.

different hardware/software. Our synthetically generated work-
loads can be used for performance benchmarking, configuration
tuning and diagnostic purposes (details in Sections 3 and 4).

The preliminary results from our prototype of Stitcher are
promising, suggesting that it is possible to synthesize workloads
in this manner, as we show in Section 4. However, we are just
getting started: we consider Stitcher to be the first step in re-
alizing our learned workload synthesis vision. In Section 5, we
describe technical challenges and several avenues for extending
Stitcher. By sharing this framework, we hope it also encourages
greater research in this area to help us bring this vision to light.
Internally, the prototype of Stitcher has been used in two produc-
tion application scenarios: (1) validating the SKU recommended
for Azure migration workloads by replaying the respective syn-
thesized workloads on various SKUs to evaluate the resource
throttling [4] (the recommendation solution has been publicly
released [22]); and (2) configuring Kubernetes [23] Pods that
support SQL Server by replaying a selection of synthesized work-
loads with various characteristics (I/O intensive, large-scale data,
high concurrency).

2 LEARNEDWORKLOAD SYNTHESIS
In this section, we present our vision, also depicted in Figure 1.
Learned workload synthesis takes as input the performance pro-
file of the original workload, along with the hardware/software
configuration this was executed on, and synthesizes a workload
that has similar performance profile when executed on any other
machine. Below we describe the inputs/outputs to the problem,
the key ideas, and the challenges in building such a system.

2.1 Inputs and Outputs
Inputs. As opposed to traditional workload replay mechanisms
that require full access to customer data and query history, our
vision is to bypass this challenge by only requiring the following
inputs: (1) performance counters of the original workload in the
form of time series data (e.g., CPU, memory, IOPs, latency); and
(2) the hardware/software configuration of the machine where
these counters were collected. The performance trace collection
is supported by many (low-overhead) profiling tools [24–27].
To further protect privacy, we only record aggregated perfor-
mance data with configurable aggregation intervals, obfuscating
timestamps and removing user IDs.
Outputs. The learned synthesis’ output is a workload that “mim-
ics” the customer workload in that it shares similar performance
behavior when executed on any other machine. This synthetic
workload can be generated by taking apart components of vari-
ous standard benchmarks and re-composing parts of these SQL
scripts such that its performance behavior follows the customer’s
performance footprint. We rely on mixing-and-matching the ex-
isting benchmark suites to generate newworkloads. We make the
assumption that most workloads can be captured by a particular
combination of the massive available benchmark workloads (after
tuning their configurations, e.g., scaling factor, query frequency).

2.2 Key Ideas
One of the most important building blocks of the synthesis pro-
cess is the “learning", i.e., developing a comprehensive under-
standing of the performance profiles for different benchmark
suites executed on different hardware/software configurations.
If an exhaustive library of such observations exists, then, for
any target workload, a searching process would be sufficient
to enumerate and identify the best combination of the existing
benchmarks that result in a performance profile that best matches
that of the customer’s real workload. As it is computationally in-
tractable to execute and run all the combinations possible among
the existing benchmark scripts, we turn to machine learning (ML)
as a means to project, generalize and synthesize possible work-
loads given the limited observational (performance) data. That
gives birth to our idea of ML-based learned workload synthesis.

For such a learning process, data is paramount in order to
utilize the suite of ML tools available. More specifically, we need
workloads and their respective performance traces collected from
pre-specified hardware/software configurations. To build such
a library, we can execute an array of workloads on a set of
most dominant hardware/software configurations and record the
subsequent performance profiles. This generated performance
dataset “warm-starts” our prediction model, which we then rely
on to interpolate the performance profile of any unseen combi-
nations of synthetic workloads and hardware/software config-
urations. As more data is collected from our experiences with
customers, we can continue to re-train our model to provide
greater accuracy in generating new workloads that match the
user’s original performance footprint. To sum up, the synthe-
sis comprises two main steps (see also Figure 1): (1) generation
of training data to build libraries of performance profiles, and
(2) workload performance prediction to support the synthesis of
unseen customer workloads.

2.3 Challenges
The efficiency of our learned workload synthesis approach in cre-
ating new workloads that mimic the performance characteristics
of the input workload is thus dictated by the ability to generate:
(1) an extensive set of synthetic workload profiles, (2) an accurate
predictor for performance profiles, and (3) an efficient algorithm
to choose the optimal combination of basic benchmark pieces for
a specific hardware/software configuration.
Workload profile generation. Our ability to mimic customer
workload performance profiles with high fidelity depends on the
comprehensiveness of our internal library of performance data
that can be generated and used as the training data. We need an
efficient solution to cover different types of workloads under a
wide range of hardware/software configurations.
Performance prediction. It is infeasible to collect performance
profiles for all possible combinations of workload and config-
urations. Therefore, we need to predict the performance foot-
print, utilizing generated profiles of synthetic workloads and the
growing published performance history in literature. Different
hardware and resource throttling are additional challenges.
Search algorithm. Finding the synthetic workload that shares
the highest (predicted) profiling similarity as the customer work-
load is computationally intensive, as we need to search over
an unlimited space of configuration settings, such as different
benchmark type(s), scaling factors, etc. To improve the searching
efficiency, a large number of advanced search algorithms can be

418



Inference
Phase

Workload Profile
(Target)

Synthesized
WorkloadPerf Goal(s)

Workload Series

Predictor

Synthesizer

Training
Phase

Train
Data

Public Data

AVAILABLE 
HARDWARE

CPU Memory

…

Assembler

Time Frames

BASIC BENCH-
MARK PIECES

TPC-C TPC-H

TPC-DS

…

YCS
B Workload Profile 

Generator

Call fo
r p

redicti
on

Figure 2: Stitcher architecture.

used, such as Bayesian Optimization [28], gradient descent [29],
and graduated optimization [30].

3 STITCHER: REALIZING OUR VISION
In this section, we present Stitcher, the prototype we have built
as a first step in realizing the learned workload synthesis vision.

3.1 System Architecture
The end-to-end synthetic workload generation process of Stitcher
consists of a training phase and an inference phase (see Figure 2).

The training phase delineates the performance behavior for
each synthetic workload. For example, it helps us understand
what types of workloads are memory intensive or how to tune
our workload mixture to increase/decrease IO latency. In this
phase, we develop a Workload profile generator that executes
an extensive library of workloads (constructed by basic bench-
mark pieces) and collects their performance profiles on various
hardware/software configurations. This training phase aims at
generating the data we need to build the Predictor that we ul-
timately rely on to predict the performance profile given any
workload types and hardware/software configurations.

In the inference phase, based on the input performance coun-
ters of the customer workload (our target), an Assembler extracts
representative time-frames from the full time series data of work-
load traces and constructs performance goal(s). It then invokes
the Synthesizer, which leverages the pre-trained predictor (from
the training phase) to search for the proper mixture of standard
benchmark pieces to reconstruct a synthetic workload that, when
executed, resembles the target performance footprint.

3.2 Basic System Components
3.2.1 Basic benchmark pieces. We collect an initial set of basic

pieces from open-source database benchmarks, including TPC-
C [7], TPC-DS [6], TPC-H [5], and YCSB [31] with different
database sizes (i.e., scaling factors) that are available through the
OLTP-Bench [32].We adopt this benchmark set for our prototype,
as they cover a large range of database sizes, data schemata, and
query schemata. Stitcher framework could be easily extended to
incorporate additional basic benchmark pieces. Basic benchmark
pieces have two configurations: (1) query frequency (Frequency):
the upper limit of submitted queries from one client per second
(e.g., for TPC-C and YCSB) or per minute (e.g., for TPC-H and
TPC-DS); and (2) concurrent clients (Concurrency): the number
of active clients that submit queries continuously.

3.2.2 Workload profile generator. It conducts experiments and
collects performance profiles as training data for the Predictor,
focusing on the configuration subspace where performance is
significantly impacted by workload Frequency andConcurrency.
We use a joint enumeration and random sampling technique to
collect training data by varying the combination of basic work-
load pieces and their respective frequency and concurrency. We

execute each workload mixture for a period of time (e.g., 5 min-
utes) and collect performance counters on servers on a range
of Azure machines. For synthetic workloads that are generated
only from one basic piece from one benchmark, we test more
frequency and concurrency combinations. For synthetic work-
loads that are generated by multiple basic pieces, we randomly
sample a fraction (e.g., 1/30) of all the possible (enumerated) com-
binations. Our library could be extended to existing literature
by reporting their profiling results in the training data. Stitcher
could achieve better performance if informed of the impact of
database scaling factor and query concurrency/frequency on its
performance behavior to further filter candidates.

3.2.3 Predictor. The Predictor is a global model that takes
hardware/software configurations and workload settings, and
outputs performance prediction.
Performance counters.We believe that if the performance foot-
print of the synthetic workload matches that of the target (on
all measurable dimensions), it should then follow that the two
workloads share similar characteristics. In this prototype, we
focus on four dimensions of performance that the Microsoft
Data Migration Assistant (DMA) [22] collects: vCore usage (CPU
cores used by SQL server); memory usage (memory used by SQL
server); dataIOPs (IO operations SQL server processed per sec-
ond); and latency1 (end-to-end latency of one IO operation). Note
that Stitcher is extensible to any performance dimension. Future
work will include more (e.g., wait stats) that can help in scenar-
ios that require customer workloads to be executed on different
hardware/software such as migration (see Section 5), or even
other query characteristics (such as physical plans).
ML prediction model.Workload performance is impacted by
multiple aspects, including (1) theworkload itself: the basic bench-
mark pieces and their configuration; and (2) the system where
the workload executes (e.g., hardware specifications and software
versions). Their impacts are extremely hard to manually model
in a quantitative way, as they interfere with each other and may
cause unpredictable compatibility problems. Fortunately, with
the sufficient data collected by workload profile generator, we
are able to use ML techniques to capture their relationship.

Our prediction model was trained on the time series perfor-
mance data collected with our generator for different types of
synthesized workloads in different environments. It takes work-
load type, hardware-software combination, Freq and Con of
each basic piece as input, and outputs performance counters.

For our prototype, we started with linear models to predict
workload performance, taking into consideration that (1) we tend
to observe a linear relationship between performance and work-
load given the same (or similar) hardware/software (Section 4.2);
(2) simpler models performwell with limited training data; and (3)
linear models are naturally more explainable. We built separate
prediction models for each workload type and hardware/soft-
ware specification, mainly based on vCore number. Each model
is built upon performance counter data collected on a limited
range of hardware/software settings. It takes Freq, Con, and
Freq×Con as independent variables, and predicts vCore usage,
memory usage, ln(DataIOPs), and ln(latency). Future work will
include improving and generalizing our predictors to untested
hardware/software settings (Section 5).

3.2.4 Synthesizer. Given a customer’s performance footprint
(the target), the Synthesizer finds a workload that has the closest

1It is not the inverse of data IOPs, as SQL server may have idle time between queries.

419



ID vCPU Memory Cache Throughput Disk
D32s_v4 32 cores 128 GB 800 GB 308000 IOPs
D16as_v4 16 cores 64 GB 400 GB 154000 IOPs
D8s_v3 8 cores 32 GB 200 GB 12000 IOPs
D4s_v3 4 cores 16 GB 100 GB 6000 IOPs

2TB SSD

Table 1: Hardware platforms used in our experiments (ID
refers to machine type provided by Azure Cloud)

performance match as estimated by the Predictor. After identify-
ing the workload types that have the most similar performance,
it applies Bayesian optimization [28] on each workload type’s
candidates to find the optimal Freq and Con settings by mini-
mizing the mean squared percentage error (MSPE) between the
estimated performance and target. The Synthesizer returns the
top-𝑛 candidates with the smallest error. Depending on the appli-
cation, the Synthesizer can also put different weights on different
performance profiling dimensions.

3.2.5 Assembler. The Assembler receives the time series per-
formance data for the customer workload, extracts representative
time-frames and passes those as the target for the Synthesizer. Af-
ter the Synthesizer returns the optimal workload configurations
for each input time-frame, the Assembler replays those synthetic
workloads sequentially if required. In this prototype, we replay
the whole time series of the input performance counters when at
least one dimension of the resource usage is non-zero. Following
this conservative policy, we retain the majority of the time series
data and thus generate workloads that mimic the behavior for
the entire duration of the input performance footprint. One im-
portant future direction is to improve on this selection algorithm
to reduce the representative time periods and further increase its
efficiency. Oftentimes, we find that a significant fraction of the
performance footprint is non-critical and consists of relatively
low resource utilization, and thus does not need to be considered.

3.3 Implementation
The Stitcher framework is designed to be generalizable and agnos-
tic to various DBMS, platforms, and DBworkloads. In preliminary
experiments, we implemented a prototype on a subset of them:
Platform. The prototype is implemented for Microsoft SQL
server 2019, which we installed in a range of Azure VM types [33]
(to simulate different hardware/software configurations).
Basic benchmarkpieces.Weuse theOLTP-Bench framework [32]
to construct basic benchmark pieces, taking workload type, scale,
query frequency, and number of clients as input. We adopt OLTP-
Bench as it is an extensible database benchmarking framework
that can easily incorporate new types of database benchmark.
Performance counters. It leverages the DMA tool [22] to col-
lect performance counters for CPU, memory, IOPs, and latency,
as described in Section 3.2.3 (more counters can be added), which
is lightweight, has little overhead and can be easily installed.
Algorithm. Our prototype is implemented in Python. The Pre-
dictor uses scikit-learn [34] to train linear regression models. The
Synthesizer adopts the Bayesian optimization package [35] to
improve the search efficiency, using conservatively 100 iterations
and returning top 𝑛 = 3 candidates for comparison.

4 PRELIMINARY RESULTS
In this section, we evaluate our prototype of Stitcher and present
various insights from our experiments. We release our experi-
mental data and results online [36].

1 2 4 8 16

Concurrency

5
25

12
5

31
25Fr

eq
ue

nc
y

VCores

0

1

2

3 1 2 4 8 16

Concurrency

5
25

12
5

31
25Fr

eq
ue

nc
y

Log DataIOPS

0.0

2.5

5.0

7.5
1 2 4 8 16

Concurrency

5
25

12
5

31
25Fr

eq
ue

nc
y

Log Latency

0

2

4

Figure 3: TPC-C performance correlation with workload
frequency and concurrency (larger value has darker color)

VCores

Figure 4: Memory/VCore usage of TPC-C under different
database sizes on D16as_v4 after restarting

4.1 Experimental setup
4.1.1 Hardware platform. As the 4vCore, 8vCore and 16vCore

Azure General Purpose (GP) and Managed Instance (MI) [37],
offerings account for 98% of the total demand, we use the Azure
VMs [33] highlighted in Table 1 to provide sufficient coverage of
realistic customer hardware platforms. We use D8s_v3 instances
for the client (to submit queries) and all platforms for running
SQL Server to collect training data for the Predictor respectively.

4.1.2 Benchmark pieces. We use the following 6 benchmark
pieces: TPC-C with 10G/100G data, YCSB with 100G data, TPC-H
with 100G/300G data, and TPC-DS with 100G data. Using these
pieces, we: (1) generate workloads to train the Predictor, and
(2) generate workloads to evaluate the Synthesizer.

4.2 Performance Correlations
To gain insights on performance bottlenecks, we run TPC-C
(100G data) with different settings. Figure 3 shows its perfor-
mance (color) under different Freq (y-axis) and Con (x-axis)
values. Despite the significant noise arising from variations in
network connections and runtime, we observe a clear trend: vCore
usage, ln(DataIOPs), and ln(Latency) have an approximate linear
relationship with Freq and Con2. Hence, we can use linear re-
gression models to capture the dynamics between resource usage
(prediction targets) and workload frequency and concurrency
(inputs) per hardware configuration.

Memory usage is a special case. Our training data includes
very limited low-memory data points, as SQL server tends not to
release memory even when the workload is light. Further experi-
mentation shows that the actual memory usage (collected after
restarting the server each time when configurations change) is
correlated to the scale factor and settings of benchmark pieces.
Figure 4 demonstrates the actual memory/vCore usage of TPC-C
benchmarks under different database sizes on Azure D16as_v4
machine where on the x-axis, Freq is increasing faster than Con
(e.g., {𝑐 = 1, 𝑓 = 1}, {𝑐 = 1, 𝑓 = 2}, . . . , {𝑐 = 2, 𝑓 = 1}). We ob-
serve that the upper limit of memory consumption is closer to the
smaller value of database size and memory capacity. Therefore,
more accurate counters to capture the true memory usage can
dramatically improve the prediction even with a simple model.

2Note that by default SQL Server tends to not release memory once it has acquired
it, so memory usage remains close to machine capacity.

420



vCore Memory (G) 𝑙𝑛(DataIOPs) 𝑙𝑛(Latency) (ms)
MAPE 18% 3% 13% 12%
MAE 1.69 1.23 0.66 0.62
MAE’ 1.47 0.63 0.54 0.69
Table 2: Average error of predictor for D16as_v4

00
:00

00
:15

00
:30

00
:45

01
:00

01
:15

01
:30

01
:45

02
:00

Time (HH:MM)

0
10
20
30

Us
ed

 V
Co

re
s VCores

Goal
Actual_1
Actual_2
Actual_3

00
:00

00
:15

00
:30

00
:45

01
:00

01
:15

01
:30

01
:45

02
:00

Time (HH:MM)

0
25
50
75

100
125

M
em

or
y 

(G
B)

Memory

Goal
Actual_1
Actual_2
Actual_3

00
:00

00
:15

00
:30

00
:45

01
:00

01
:15

01
:30

01
:45

02
:00

Time (HH:MM)

0
2
4
6
8

Op
s P

er
 S

ec
on

d Log(DataIOPS)

Goal
Actual_1
Actual_2
Actual_3

00
:00

00
:15

00
:30

00
:45

01
:00

01
:15

01
:30

01
:45

02
:00

Time (HH:MM)

0
2
4
6
8

La
te

nc
y 

Pe
r O

p 
 (m

s)

Log(Latency)

Goal
Actual_1
Actual_2
Actual_3

Figure 5: Actual performance of Synthesized workloads
on D32s_v4mimicking real customer workload traces.

Insight: There exists an approximate linear relationship be-
tween benchmark configurations and performance counters.
For memory, there exists a direct mapping from the database
sizes (i.e., scaling factors), and the Freq and Con values to
memory usage.

4.3 Predictor Results
To train the predictor, our workload profile generator collected
>1,500 training data, over 250 CPU hours, covering 31 different
workload type combinations.

Table 2 shows the mean absolute percentage error (MAPE),
mean absolute error (MAE), andmedian absolute error (MAE’) for
the Predictor on D16as_v4. Overall, our prototype achieves 3-18%
error on predicting performance.Prediction error for vCore usage
is relatively low, partly because vCore usage is less sensitive to
runtime variations. DataIOPs and Latency have larger errors for
two reasons: (1) error increases when scaling back from their
logarithmic value in the linear regression model; (2) runtime
variation introduces noise to the training data.

Insight: Some resources are more challenging to predict than
others. While our trained linear models show low prediction
error for some resources, they perform poorly in accurately
capturing others.

4.4 Synthesizer Results
4.4.1 Evaluate with real customer’s workload. We first eval-

uated our synthesizer with a real Azure customer’s workload.
Stitcher takes customer’s performance series as its target, and
synthesizes three workload series, referring to the top-3 candi-
dates obtained by the Synthesizer.

Figure 5 shows the target performance, and the actual perfor-
mance achieved by synthesized workload on D32s_v4 machine.
The result shows that Stitcher is able to replay real customer’s
workload with the mean absolute percentage errors (MAPEs) for
CPU, Memory, Log(DataIOPS), Log(Latency) as 33%, 4%, 17%, and
23% respectively for the best candidate.

ID VCore Mem. 𝑙𝑛(IOPs) 𝑙𝑛(Lat.)
Same Machine D16as_v4 27% 2% 23% 18%
Stronger Machine D32s_v4 52% 16% 95% 64%

Weaker Machine D8s_v3 48% 5% 10% 15%
D4s v3 60% 5% 14% 14%

Table 3: Average error of synthesizer for D16as_v4 mim-
icking synthetic workload

These results show that Stitcher is able to synthesize new
workloads that, when replayed, exhibit relatively similar perfor-
mance behavior as that of the customer’s performance footprint
on a similar (or less powerful) machine.

4.4.2 Evaluate with synthetic workload. We further evaluated
Stitcher with 82 workloads that we randomly generated with the
basic benchmark pieces to capture a large variety of different
workload characteristics. We (1) execute the Target workloads
on D16as_v4 for 5 minutes to obtain the performance target,
(2) invoke Stitcher using these targets, collect the synthesized
workloads output by Stitcher (Synthesized), and (3) compare
the performance differences between Target and Synthesized
workload on another D16as_v4 machine.

As shown in the first row of Table 3, Stitcher has 2-27% average
error of performance counters when running the Synthesized
workload on the same machine that Targetwas originally run. In
terms of the time dimension, the performance time series of the
Synthesized workload is similar to that of the Target workload.

Insight: Stitcher is able to synthesize new workloads based
on real customer performance profiles that exhibit relatively
similar behavior on similar (or less powerful) Azure machines.

4.5 Challenges in Workload Migration
As one of the use cases of Stitcher is generating synthetic work-
loads to support migration from on-prem workloads to the cloud,
or between cloud vendors, we tested the ability of our system
in synthesizing workloads that, not only perform similarly as
that of the original workload on the same hardware/software set-
ting, but also perform similarly on platforms the customer may
want to migrate their workloads to. We thus extended the experi-
ments in Section 4.4.2 and executed the Target and Synthesized
workload on all machines in Table 1, other than D16as_v4.

As shown in Table 3, Stitcher has 48-60% error on vCore usage.
For the other performance counters, Stitcher achieves 5-15% accu-
racy on less powerful machines (D8s_v3,D4s_v3), which is similar
to that of the original machine (D16as_v4). However, Stitcher has
much higher error on a more powerful machine (D32s_v4).

This increased error is caused by the different performance
bottleneck of various hardwares. Time series performance data
do not fully capture the bottlenecks in the execution of cus-
tomer workloads. As a result, inaccuracies arise when replaying
workloads on machines that have higher resource capacity. In
our future work, the predictor would also feauturize hardware,
which can help Stitcher assemble synthetic workloads that mimic
the customers’ with higher fidelity across hardware.

5 THE ROAD AHEAD
In this paper, we demonstrate the ability of Stitcher to mix-and-
match basic benchmark pieces, such as TPC-C and TPC-DS, to
synthesize a wide range of workloads that, when executed on
similar hardware/software, mimic the customers’ performance
footprint with relatively good accuracy. Yet, much work remains
to improve Stitcher generalizability and predictor accuracy.

421



Predictor: Unseen Hardware. Our Predictor prototype does
not completely resolve the mapping challenge between (basic
pieces, hardware/software) to performance counters. Stitcher, in
its current state, does not generalize to synthesize workloads on
unseen hardware/software combinations outside the training set.
As introduced in Section 3.2.3, our prototype focus on a limited
set of popular Azure cloud machines. It trains a hardware-specific
Predictor model with training data uniquely collected from each
of these machines.

To address this limitation, we first trained models that clus-
tered machines with similar configurations and utilized these
groups for prediction. Such clustering did not significantly im-
prove our ability to accurately predict how a workload would
perform on a different hardware/software configuration, nor did
it generalize well across clusters. Additional work remains in de-
veloping a global model that predicts the performance under all
Azure cloud machines or under competing cloud hardware/soft-
ware configurations. For such a model, the hardware/ software
settings that the synthesized workload will be tested need to
become inputs/features to the predictor.

Our final goal is to build a general model that assesses multi-
ple aspects simultaneously. It includes building a predictor that
assesses how the customer’s original workload will perform on
new hardware and leveraging our synthesizer to generate work-
loads that mimic this predicted performance. Lack of extensive
(performance) data on how our set of synthesized workloads
behave when previous throttling was resolved on larger capacity
hardware remains the primary hurdle towards developing such
a global model. However, we expect the inclusion of additional
performance counters, such as wait stats and other dimensions
that capture resource throttling, will significantly improve the
performance of our Synthesizer, particularly for the predictabil-
ity under different hardware/software. These additional perfor-
mance constraints would effectively coerce our model to identify
a better combination of our benchmark pieces that results in a
performance profile that better matches that of the customer.
Predictor: Database Configurations. Database workload per-
formance is affected, not only by the hardware specifications, but
also by the database configurations. In our prototype, Stitcher
assumes that customers use default settings, but, in reality, cus-
tomers often tune configurations for better performance. Fu-
ture work will include addressing database performance-related
configurations in the Predictor model, e.g., buffer pool size and
blocked process threshold.
Predictor: Memory Consumption. Memory consumption is
related to database size, machine capacity, and execution history.
To further understand this impact, we test TPC-C benchmarks
under different database sizes, as well as, Freq & Con settings.
As some DBMS, including MS SQL server, tend not to release
memory, a light workload would still exhibit high memory usage
if it is executed after a heavy workload. To resolve this transition,
we restart the machine to refresh memory. Future work entails
investigating how to better measure memory and how to auto-
generate a more diverse set of database sizes to achieve particular
memory usage patterns.
Assembler: Warm Up Stage. Stitcher concatenates different
workloads in the time dimension neglecting the effect of database
warm-up. While the warm-up stage has a small effect with a
longer sampling window and data aggregation, it is important to
consider its impact on the synthetic workload’s footprint. This
would allow us to generate synthetic workloads with higher

fidelity to that of the customer. Future work includes taking this
warm-up effect into consideration in our synthesis algorithm.
Synthesizer: Feedback Loop. In our current design, Synthesizer
generates workloads without validation. The workload perfor-
mance should be validated by replaying the synthetic workload
on the machine where the target performance footprint was
collected (if possible). Future work thus entails developing a feed-
back loop in which we consider newworkloads that minimize the
performance difference between that of the (replayed) synthetic
workload and the target footprint.
Extend Stitcher to Various Systems. Workload replay is an
important and challenging problem for performance-sensitive
systems, including distributed systems, micro-services, and net-
work systems. While our current prototype is designed for single-
node database applications, we believe that our vision of learned
workload synthesis can be beneficial to other system domains.

6 RELATEDWORK
Previous work [5–7, 31, 38–42] has focused on designing bench-
marks for DBMS to capture different types of application sce-
narios, e.g., transaction processing [7], decision support [5, 6],
and cloud serving [31]. While they cover a number of scenarios,
real-world production workload might introduce even greater
diversity, which is difficult to capture with a single benchmark.

To resolve this issue, prior work proposes workload replay for
realistic reproduction of workload history. They trace sessions
to replay the entire workload and synchronization schemes at a
cost of considerable overhead [13–16], or use workload compres-
sion to find a representative subset [9, 17–19]. DIAMetrics [9]
is one example that scrambles customer data and query history,
anonymizes specific components, and extracts a representative
workload. While anonymized, it still requires data access to the
customer’s raw data. Other studies implement capture-and-replay
at the network [43] and OS-kernel [44] levels. Another line of
work [9, 17–19] focuses on workload compression, using a repre-
sentative subset to characterize the original one. Unlike Stitcher,
these works require full access to user data or query history.

There also exist solutions [45–48] that focus on synthesizing
testing workloads for database applications. They generate test
cases and find bugs at the application level, neglecting potential
issues at the DBMS level.

Another line of work optimizes database [49–52] and data
structures [53, 54] automatically with ML techniques, predict-
ing query performance from specific database configurations. A
recent work [55] also points out the principle of designing bench-
marks for ML-optimized databases. These works target different
problems from Stitcher.

7 CONCLUSION
Workload generation is an important means of understanding
and diagnosing system performance, which underpins platform
and application development. In this paper, we propose Stitcher,
a flexible framework for synthesizing SQL workloads that, when
executed, mimic the performance footprint of real workloads.
Stitcher synthesizes new workloads by leveraging a compre-
hensive library of basic workload scripts derived from standard
benchmarks. Synthesized workloads are demonstrated to achieve
close-to-history estimated performance on a variety of hardware/-
software settings. Preliminary results show the feasibility of this
methodology and suggest several avenues for future improve-
ment.

422



REFERENCES
[1] J. Yang, C. Yan, P. Subramaniam, S. Lu, and A. Cheung, “How not to structure

your database-backed web applications: a study of performance bugs in the
wild,” in 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pp. 800–810, IEEE, 2018.

[2] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and M. Syamala,
“Database tuning advisor for microsoft sql server 2005,” in Proceedings of the
2005 ACM SIGMOD international conference on Management of data, pp. 930–
932, 2005.

[3] G. Li, X. Zhou, S. Li, and B. Gao, “Qtune: A query-aware database tuning system
with deep reinforcement learning,” Proceedings of the VLDB Endowment, vol. 12,
no. 12, pp. 2118–2130, 2019.

[4] J. Cahoon, W. Wang, Y. Zhu, K. Lin, S. Liu, R. Truong, N. Singh, C. Wan,
A. Ciortea, S. Narasimhan, and S. Krishnan, “Doppler: A framework for auto-
mated sku recommendation in migrating sql workloads to the cloud,” PVLDB,
vol. 15, no. 12, pp. 3509–3521, 2022.

[5] T. Benchmarks, “Tpc-h.” Online document, http://tpc.org/tpch, 2021.
[6] T. Benchmarks, “Tpc-ds.” Online document, http://tpc.org/tpcds, 2021.
[7] T. Benchmarks, “Tpc-c.” Online document, http://tpc.org/tpcc, 2021.
[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-

marking cloud serving systems with ycsb,” in Proceedings of the 1st ACM
symposium on Cloud computing, pp. 143–154, 2010.

[9] S. Deep, A. Gruenheid, K. Nagaraj, H. Naito, J. Naughton, and S. Viglas, “Dia-
metrics: benchmarking query engines at scale,” ACM SIGMOD Record, vol. 50,
no. 1, pp. 24–31, 2021.

[10] Y. Zhu, M. Interlandi, A. Roy, K. Das, H. Patel, M. Bag, H. Sharma, and A. Jin-
dal, “Phoebe: A learning-based checkpoint optimizer,” PVLDB, vol. 14, no. 11,
pp. 2505–2518, 2021.

[11] H. R. Taheri, “Does the tpc still have relevance?,” 19th International Workshop
on High Performance Transaction Systems (HPTS), 2017.

[12] J. Jacobs, “Snowflake vs databricks: Tpcs-ds benchmark wars –
who cares?.” Online document, https://www.linkedin.com/pulse/
snowflake-vs-databricks-tpcs-ds-benchmark-wars-who-cares-jacobs/
?trk=public_post-content_share-article, 2021.

[13] L. Galanis, S. Buranawatanachoke, R. Colle, B. Dageville, K. Dias, J. Klein,
S. Papadomanolakis, L. L. Tan, V. Venkataramani, Y. Wang, et al., “Oracle data-
base replay,” in Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, pp. 1159–1170, 2008.

[14] K. Yagoub, P. Belknap, B. Dageville, K. Dias, S. Joshi, and H. Yu, “Oracle’s sql
performance analyzer.,” IEEE Data Eng. Bull., vol. 31, no. 1, pp. 51–58, 2008.

[15] Microsoft, “Overview of database experimentation assistant.” Online docu-
ment, https://docs.microsoft.com/en-us/sql/dea, 2021.

[16] K. Morfonios, R. Colle, L. Galanis, S. Buranawatanachoke, B. Dageville, K. Dias,
and Y. Wang, “Consistent synchronization schemes for workload replay,” Pro-
ceedings of the VLDB Endowment, vol. 4, no. 12, pp. 1225–1236, 2011.

[17] S. Chaudhuri and V. R. Narasayya, “An efficient, cost-driven index selection
tool for microsoft sql server,” in VLDB, vol. 97, pp. 146–155, Citeseer, 1997.

[18] S. Chaudhuri, A. K. Gupta, and V. Narasayya, “Compressing sql workloads,” in
Proceedings of the 2002 ACM SIGMOD international conference on Management
of data, pp. 488–499, 2002.

[19] S. Y. Philip, H.-U. Heiss, S. Lee, and M.-S. Chen, “On workload characterization
of relational database environments.,” IEEE Trans. Software Eng., vol. 18, no. 4,
pp. 347–355, 1992.

[20] A. Miranskyy, A. Hamou-Lhadj, E. Cialini, and A. Larsson, “Operational-log
analysis for big data systems: Challenges and solutions,” IEEE Software, vol. 33,
no. 2, pp. 52–59, 2016.

[21] T. L. Group, “Lego.” Online document, https://www.lego.com/, 2021.
[22] Microsoft, “Overview of data migration assistant.” Online document, https:

//docs.microsoft.com/en-us/sql/dma, 2021.
[23] C. N. C. Foundation, “Kubernetes: Production-grade container orchestration.”

Online document, https://kubernetes.io/, 2022.
[24] A. Pesterev, N. Zeldovich, and R. T. Morris, “Locating cache performance

bottlenecks using data profiling,” in Proceedings of the 5th European conference
on Computer systems, pp. 335–348, 2010.

[25] R. Chard, K. Chard, B. Ng, K. Bubendorfer, A. Rodriguez, R. Madduri, and
I. Foster, “An automated tool profiling service for the cloud,” in 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 223–232, IEEE, 2016.

[26] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya, and B. B. Zhou, “Profil-
ing applications for virtual machine placement in clouds,” in 2011 IEEE 4th
international conference on cloud computing, pp. 660–667, IEEE, 2011.

[27] J. Zhang and R. J. Figueiredo, “Application classification through monitoring
and learning of resource consumption patterns,” in Proceedings 20th IEEE
International Parallel & Distributed Processing Symposium, pp. 10–pp, IEEE,
2006.

[28] M. Pelikan, D. E. Goldberg, E. Cantú-Paz, et al., “Boa: The bayesian optimiza-
tion algorithm,” in Proceedings of the genetic and evolutionary computation

conference GECCO-99, vol. 1, pp. 525–532, Citeseer, 1999.
[29] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv

preprint arXiv:1609.04747, 2016.
[30] E. Hazan, K. Y. Levy, and S. Shalev-Shwartz, “On graduated optimization

for stochastic non-convex problems,” in International conference on machine
learning, pp. 1833–1841, PMLR, 2016.

[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-
marking cloud serving systems with ycsb,” in Proceedings of the 1st ACM
symposium on Cloud computing, pp. 143–154, 2010.

[32] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux, “Oltp-bench: An
extensible testbed for benchmarking relational databases,” PVLDB, vol. 7, no. 4,
pp. 277–288, 2013.

[33] Microsoft, “Azure virtual machines.” Online document, https://azure.microsoft.
com/en-us/free/virtual-machines/, 2021.

[34] scikit learn, “scikit-learn: machine learning in python.” Online document,
https://scikit-learn.org/stable/, 2021.

[35] F. Nogueira, “Bayesian Optimization: Open source constrained global op-
timization tool for Python.” Online document, https://github.com/fmfn/
BayesianOptimization, 2014.

[36] Microsoft, “Stitcher: Learned workload synthesis from historical performance
footprints, data release.” Online document, https://publicstitcher.blob.core.
windows.net/stitcher/stitcher_data.zip, 2022.

[37] Microsoft, “Azure sql managed instance.,” 2021. https://azure.microsoft.com/
en-us/products/azure-sql/managed-instance/.

[38] D. Bitton, D. J. DeWitt, and C. Turbyfill, “Benchmarking database systems-a
systematic approach,” tech. rep., University ofWisconsin-MadisonDepartment
of Computer Sciences, 1983.

[39] P. Boncz, A.-C. Anatiotis, and S. Kläbe, “Jcc-h: adding join crossing correlations
with skew to tpc-h,” in Technology Conference on Performance Evaluation and
Benchmarking, pp. 103–119, Springer, 2017.

[40] M. J. Carey, D. J. DeWitt, and J. F. Naughton, “The 007 benchmark,” ACM
SIGMOD Record, vol. 22, no. 2, pp. 12–21, 1993.

[41] M. J. Carey, D. J. DeWitt, J. F. Naughton, M. Asgarian, P. Brown, J. E. Gehrke,
and D. N. Shah, “The bucky object-relational benchmark,” in Proceedings of the
1997 ACM SIGMOD international conference on Management of data, pp. 135–
146, 1997.

[42] A. Dey, A. Fekete, R. Nambiar, and U. Röhm, “Ycsb+ t: Benchmarking web-scale
transactional databases,” in 2014 IEEE 30th International Conference on Data
Engineering Workshops, pp. 223–230, IEEE, 2014.

[43] E. solutions, “ireplay: Database workload capture and replay.” Online docu-
ment, https://www.exact-solutions.com/products/ireplay, 2021.

[44] K. Kim, C. Lee, J. H. Jung, and W. W. Ro, “Workload synthesis: Generating
benchmark workloads from statistical execution profile,” in 2014 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pp. 120–129, IEEE,
2014.

[45] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu, “Qagen: generating query-
aware test databases,” in Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pp. 341–352, 2007.

[46] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation for data-
base applications,” in Proceedings of the 2007 international symposium on Soft-
ware testing and analysis, pp. 151–162, 2007.

[47] K. Pan, X. Wu, and T. Xie, “Guided test generation for database applications via
synthesized database interactions,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 23, no. 2, pp. 1–27, 2014.

[48] K. Pan, X. Wu, and T. Xie, “Automatic test generation for mutation testing on
database applications,” in 2013 8th International Workshop on Automation of
Software Test (AST), pp. 111–117, IEEE, 2013.

[49] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned
index structures,” in Proceedings of the 2018 international conference on man-
agement of data, pp. 489–504, 2018.

[50] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaem-
manouil, and N. Tatbul, “Neo: A learned query optimizer,” arXiv preprint
arXiv:1904.03711, 2019.

[51] P. Negi, R. Marcus, H. Mao, N. Tatbul, T. Kraska, andM. Alizadeh, “Cost-guided
cardinality estimation: Focus where it matters,” in 2020 IEEE 36th International
Conference on Data Engineering Workshops (ICDEW), pp. 154–157, IEEE, 2020.

[52] P. Negi, R. Marcus, A. Kipf, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh,
“Flow-loss: learning cardinality estimates that matter,” in VLDB, 2021.

[53] S. Idreos, K. Zoumpatianos, S. Chatterjee, W. Qin, A. Wasay, B. Hentschel,
M. Kester, N. Dayan, D. Guo, M. Kang, et al., “Learning data structure alchemy,”
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
vol. 42, no. 2, 2019.

[54] S. Idreos and T. Kraska, “From auto-tuning one size fits all to self-designed
and learned data-intensive systems,” in Proceedings of the 2019 International
Conference on Management of Data, pp. 2054–2059, 2019.

[55] L. Bindschaedler, A. Kipf, T. Kraska, R. Marcus, and U. F. Minhas, “Towards a
benchmark for learned systems,” in 2021 IEEE 37th International Conference on
Data Engineering Workshops (ICDEW), pp. 127–133, IEEE, 2021.

423


