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ABSTRACT
Data partitioning is the key for parallel query processing in mod-
ern analytical database systems. Choosing the right partitioning
key for a given dataset is a difficult task and crucial for query per-
formance. Real world data warehouses contain a large amount
of tables connected in complex schemes resulting in an over-
whelming amount of partition key candidates. In this paper, we
present the approach of patched multi-key partitioning, allowing
to define multiple partition keys simultaneously without data
replication. The key idea is to map the relational table partition-
ing problem to a graph partition problem in order to use existing
graph partitioning algorithms to find connectivity components
in the data and maintain exceptions (patches) to the partitioning
separately. We show that patched multi-key partitioning offer
opportunities for achieving robust query performance, i.e. reach-
ing reasonably good performance for many queries instead of
optimal performance for only a few queries.

1 INTRODUCTION
Modern data analytics include queries over large amounts of data.
In order to cope with the data size, modern warehouse solutions
(either on-premise or cloud) are typically designed as massively
parallel processing (MPP) systems. The key for efficient query
processing in this context is data partitioning, i.e. distributing
chunks of data over cluster nodes in order to perform subqueries
on them in parallel.

A partitioning of a relational table is defined as a disjunct split
of tuples in the table and is realized using different partitioning
strategies.While randompartitioning or round-robin partitioning
assign tuples to partitions randomly or based on their position
in the table, value-based partitioning like hash partitioning or
range partitioning distribute data based on the values of a chosen
partition key column. The design of these partitioning strategies
also aims at fulfilling the requirements of load balancing and
exploiting partitioning information in query processing. While
random and round-robin partitioning result in nearly perfectly
balanced partition sizes, their information cannot be exploited in
query optimization. On the other hand, range partitioning can be
used for partition pruning in queries containing filters and hash
partitioning can be exploited for partition-local execution of joins
and aggregations when the partition key column matches the
join or grouping key. However, load balancing hardly depends on
the value distribution, leading to possibly imbalanced partitions
for skewed data.

Value based partitioning strategies face a severe issue: The
quality of partitioning heavily depends on the choice of the parti-
tion key to find a balanced partitioning, but also to allow partition-
local execution of queries in as many cases as possible. When
a user does not know which partition key to choose and the
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Figure 1: Groupby performance depending on matching
partition key

Figure 2: Minimized use case example: On which column
to partition the fact table on?

partition key consequently does not match the join or grouping
column in a query, data needs to be repartitioned during query
execution in order to allow parallel query execution. This repar-
titioning involves expensive network transfer between workers
and can lead to bad query performance when choosing a wrong
partitioning key, as shown for a simple aggregation query in
Figure 1. Defining multiple partition keys (i.e. having a multi-key
partitioning) is not possible here without replicating the data to
store it in different ways.

Use cases for multi-key partitioning occur frequently in real
world. Modern data warehouse applications contain a large num-
ber of fact and dimension tables combined in a complex schema.
A minimal example for a fact table referencing two dimension
tables is given in Figure 2. In addition to the foreign keys, there
might be also columns in the fact table that are frequently used for
aggregations, e.g. market segments or business units. So which
column should be used as the partitioning key? Partitioning on
one of the foreign keys results in a fast join with the respec-
tive dimension, but slower joins on other dimensions and slow
aggregations on any other grouping column. Ideally, we would
therefore like to partition the table on all dimension keys and
expected grouping keys at the same time.

Robust query performance is an increasingly important de-
sign goal for data warehouses. It aims at achieving reasonably
good (but maybe non-optimal) performance for many different
workloads. Trying to find optimal query plans and chasing the
last percentages of performance can lead to hitting worst-case
query plans in unknown workloads due to complicated query
optimizations. Robust query performance waives the aim to find
optimal query plans and focuses on avoiding bad performance.
For the example in Figure 1 robust performance could be slightly
worse than optimal performance, but consistent for all different
grouping keys. A workload-agnostic approach aims at reaching
reasonable performance for an unknown workload. We do not
want to optimize for a known workload that favors a certain set
of e.g. grouping keys.
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As partitioning has a major impact on query performance,
we present a partitioning strategy that allows the definition of
multiple partition keys without replicating the data in our paper.
We base our approach on the idea of PatchIndexes [19, 20], which
are index structures that maintain exceptions to constraints and
enable query optimizations. We define the patched multi-key
partitioning constraint, which captures the idea that a table is
partitioned on multiple partition keys when excluding a set of
exceptions for each of the columns. We show that we can find a
patched partitioning of a table by mapping the table to a graph
and applying existing graph partitioning algorithms. In our ex-
periments we show the opportunities of our approach to achieve
robust query performance for multiple partition keys and high-
light challenges and limitations for future work. Consequently,
our main contributions are as follows:

• We discuss why current partitioning schemes are not suf-
ficient for multi-key partitioning. (Sec. 3)
• We define the patched multi-key partitioning, which al-
lows to define multiple partitioning keys without data
replication. (Sec. 4)
• We show how to find a patched multi-key partitioning
using graph partitioning or iterative approaches. (Sec. 4)
• We describe how a patched multi-key partitioning can
be used in query optimization (Sec. 5) and evaluate the
implications for robust query performance. (Sec. 6)

2 RELATEDWORK
Graph partitioning. Finding a balanced graph partitioning is
known to be NP-hard [3] and typically based on graph cuts, i.e.
edge-cut or vertex-cut algorithms. Conceptually, edge-cut algo-
rithms assign vertices to partitions and remove edges from the
graph that connects vertices of different partitions. Vertex-cut ap-
proaches on the other hand assign edges to partitions and remove
vertices with adjacent edges of different partitions. The problem
is defined and surveyed in [2, 8], discussing the challenges of
distributed graph algorithms and the state-of-the-art approaches
like Metis [18], JA-BE-JA [27, 28] or DFEP [14]. With Distributed
Neighbour Exchange (DistributedNE) [15], a distributed graph
partitioning algorithm was presented recently that achieves a
proven upper bound in partition quality and outperforms the
state-of-the-art approaches, scaling to trillion edge graphs and
offering approaches for both edge-cut and vertex-cut. Recently,
[11] showed how to incrementalize existing graph partitioning
algorithms, e.g. DistributedNE, adding update support to existing
graph partitionings. In our work, we do not focus on capabilities
of graph partitioning approaches, but show how to map the prob-
lem of multi-dimensional relational data partitioning to graph
partitioning to make use of the existing approaches.
Physical database design for OLAP. Data placement has been
an investigated problem for decades, as co-locating data is cru-
cial for query performance [34]. Besides approaches for trans-
actional workloads [10, 25], physical database design for ana-
lytical workloads is typical workload driven, either transparent
for the database system [12] or integrated into a DBMS’s opti-
mizer [23]. DBDesigner [30] recommends sort keys and column
encodings besides partition keys and also takes storage footprint
and fault tolerance into account. [16] presents a learned partition
key advisor that learns and adapts while observing the work-
load and [34] presents a workload-agnostic approach besides a
workload-driven one, making decisions based on the database
schema and the full data. Amazon published a distribution key

recommender [24] based on mapping the join history of tables
to a linear program, showing that solving the problem is NP-
complete. The described approaches advise optimal partition
keys or partition strategies for a given workload, but are limited
to single-key partitionings due to limitations of the underlying
DBMS. Multi-dimensional partitioning can be achieved by hold-
ing multiple partition schemes in parallel using replication [21]
or using hierarchical partitioning [29]. Orthogonally to parti-
tioning, multi-dimensional clustering [6] or bitwise dimensional
co-clustering [5] can be used to place similar tuples close to each
other to reduce I/O effort of queries or efficiently support joins
and aggregations by exploiting the closeness of similar tuples.
In our work we envision to mitigate the limitation of DBMS’s
to a single partition key per table. We show that hierarchical
partitioning is not suitable and achieve multi-dimensional parti-
tioning without data replication. This opens the possibility for
partition advisors to consider multiple partition keys , so queries
on different partition keys can be performed without data repar-
titioning.
Robust Query Performance. Robust query performance is a
challenge in modern database optimizer design. A topic outline
and a discussion of challenges are given in [13, 32]. In general,
robust query performance describes the behaviour of a system
to deliver good query performance for many different work-
loads, but trying to avoid bad performance as much as possible.
Consequently, query optimizers should not try to strive for an
optimal query plan, but find a reasonable good plan that tolerates
wrong decisions, like cardinality or selectivity estimation errors.
Many directions exist to achieve robust performance, like run-
time collection of profiling information to allow adaptive query
performance (e.g. in [1, 17]), using constraint information, han-
dling estimation errors [4, 33] or providing only a small set of
physical operators to reduce the chance for bad decisions [32].
In our paper we aim at achieving robust performance on the
physical data layout level by using our patched multi-key parti-
tioning constraint to reduce repartitioning as much as possible.
For all chosen partition keys we only repartition a small amount
of tuples in order to achieve reasonable good performance, but
never bad performance caused by a full table repartitioning. Our
query optimization techniques are based on existing operators,
not increasing the search space of physical operator plans as a
result.
PatchIndex Overview PatchIndexes [19, 20] are generic index
structures that allow the definition of approximate constraints.
As typical database constraints like uniqueness can only be de-
fined on columns that fulfill the constraint for all tuples, the
useful information that all but a few tuples match a constraint
can’t be expressed. PatchIndexes maintain exceptions to certain
constraints as sets of patches as defined in the following and
make this information usable during query optimization and
query execution.

Definition 2.1. Set of patches
Let relation 𝑅 be a set of tuples 𝑡 , 𝑖𝑑 (𝑡) ∈ N the tuple identifier of
𝑡 and 𝑐𝑜𝑙𝑠 (𝑅) the set of columns of 𝑅. For a column 𝐶 we define
a set of patches 𝑃𝐶 ⊆ {𝑖𝑑 (𝑡) | 𝑡 ∈ 𝑅}. Based on this, we define
𝑅𝑃𝐶 = {𝑡 ∈ 𝑅 | 𝑖𝑑 (𝑡) ∈ 𝑃𝐶 } as the set of tuples of 𝑅 whose tuple
identifiers are in 𝑃𝐶 and 𝑅\𝑃𝐶 = {𝑡 ∈ 𝑅 | 𝑖𝑑 (𝑡) ∉ 𝑃𝐶 } as the set
of tuples of 𝑅 whose tuple identifiers are not in 𝑃𝐶 .

PatchIndexes maintain sets of patches in a sharded bitmap
data structure, allowing fast sequential access over an iterator
for the index scan while also offering efficient insert, update
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and delete operations. The PatchIndex scan is designed to split
tuples on-the-fly into tuples matching a constraint and tuples
not matching the constraint. It is realized using filter operators
withmodes𝑢𝑠𝑒_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 and 𝑒𝑥𝑐𝑙𝑢𝑑𝑒_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 , which iterate over
the bitmap to make the splitting decision. Consequently, both
dataflows can be optimized separately, typically by dropping
expensive operations on the tuples matching the constraint. We
showed that “nearly unique columns” and “nearly sorted columns”
can benefit from PatchIndexes by avoiding expensive distinct
aggregations or sort operators [19].

PatchIndexes are generically extendable for different con-
straints by implementing an interface for initial creation, i.e.
finding an initial set of patches, update support, i.e. maintaining
the set of patches under updates, and an optimizer rule to ap-
ply PatchIndex-based query transformations. In this paper, we
add the new constraint of a patched multi-key partitioning to
PatchIndexes. The PatchIndex approach thereby is the key tool
to enable patched multi-key partitioning, i.e. maintaining ele-
ments that do not match the partitioning criteria. Conceptually,
we map relational data to graphs in order to apply existing graph
partitioning algorithms and PatchIndexes will maintain graph
elements that are removed by them.

3 MULTI-KEY PARTITIONING
We propose definitions for a multi-key partitioning function and
a balanced partitioning and discuss drawbacks of naive ways
of achieving multi-key partitioning using hash partitioning. We
focus on multi-key partitionings for two keys. However, all state-
ments can be extended to more partition keys in an obvious
way.

3.1 Definitions
Definition 3.1. Multi-key partitioning function (2 keys)

Let relation 𝑅 be a set of tuples 𝑡 , 𝑐𝑜𝑙𝑠 (𝑅) be the set of columns
of 𝑅, columns 𝐴,𝐵 ∈ 𝑐𝑜𝑙𝑠 (𝑅) be the partition keys and 𝑛 be the
number of partitions. Further we denote 𝑡 (𝑋 ) as the value of
column 𝑋 of tuple 𝑡 . We define a multi-key partitioning function
for two partition keys as a function 𝑝 : 𝑡 ∈ 𝑅, 𝑛 ∈ N ↦→ 𝑖 ∈
{1, · · · , 𝑛} with properties:
(MK1) ∀𝑡1, 𝑡2 ∈ 𝑅 : 𝑡1 (𝐴) = 𝑡2 (𝐴) ⇒ 𝑝 (𝑡1, 𝑛) = 𝑝 (𝑡2, 𝑛)
(MK2) ∀𝑡1, 𝑡2 ∈ 𝑅 : 𝑡1 (𝐵) = 𝑡2 (𝐵) ⇒ 𝑝 (𝑡1, 𝑛) = 𝑝 (𝑡2, 𝑛)

We call (MK1) Partition locality for A and (MK2) Partition
locality for B, which intuitively means that all tuples sharing the
same attribute value in one of the partition keys are assigned to
the same partition. The partition locality is required for partition-
local execution of joins and aggregations. Only if tuples holding
the same column value for a column 𝑋 are assigned to the same
partition, we can ensure that all matching join partners in joins
or all group members in aggregations can be found in the same
partition when joining or grouping on that column 𝑋 . Conse-
quently, expensive data repartitioning is not needed in this case.
Combining (MK1) and (MK2)means that we aim at enabling this
partition-local execution for all subkeys of a combined partition
key, i.e. we want partition-local execution on both columns𝐴 and
𝐵 separately if the table was partitioned on (𝐴, 𝐵), independent
on the column values of the respective other key. Please note that
as a result of providing partition locality for each single-column
subkey of the partition key, the multi-key partition function au-
tomatically provides partition locality for all multi-key (sub)keys
of the partition key, including the whole partition key itself. This

Figure 3: Hierarchical partitioning for two keys

can be easily seen by the conjunction of (MK1) and (MK2) and
also holds for all subkeys of multi-key partition keys on more
than two columns. Besides the requirement to enable partition-
local query execution, we also require a partition function to
produce a balanced partitioning to avoid load imbalance.

Definition 3.2. Balanced partitioning
We call a partitioning of table into partitions 𝑃𝑖 with 𝑖 ∈ {1, · · · , 𝑛}
balanced with an imbalance factor 𝛼 =

max𝑖∈{1,··· ,𝑛} { |𝑃𝑖 | }
min𝑘∈{1,··· ,𝑛} { |𝑃𝑘 | } .

Obviously, we want to have an imbalance factor 𝛼 near 1 indicat-
ing a nearly balanced partitioning.

3.2 Multi-key Hash Partitioning
Hash partitioning is the most commonly used partitioning strat-
egy, as it is easy to compute and provides partition locality in
case of a single partition key. There are multiple strategies for
applying hash-partitioning on multiple keys without data repli-
cation. As a first option, the partition keys can be combined to
a surrogate key that is used as the input for hashing. Conse-
quently, partitioning on columns (𝐴, 𝐵) a tuple 𝑡 with 𝑡 (𝐴) = 𝑎
and 𝑡 (𝐵) = 𝑏 is assigned to partition 𝑃𝑖 with 𝑖 = 𝑝 (𝑎◦𝑏, 𝑛), with 𝑝
being a hash-based partitioning function mapping into the value
range {1, · · · , 𝑛} and ◦ being a function to combine key values
to a surrogate key, e.g. concatenating, interleaving or arithmetic
functions. This strategy has two drawbacks: In case of 𝐴 and 𝐵
not sharing the same data type, we need a mapping or conversion
of the column values to a unified type the partitioning function
can be applied on. More severely, we can only ensure that the
hash-based partitioning function 𝑝 assigns tuples to the same
partition if the arguments of 𝑝 are equal for both tuples. To the
best of our knowledge, there is no function ◦ that produces the
same result combining a constant 𝑎 and different values for 𝑏 and
combining a constant 𝑏 with different values for 𝑎 at the same
time. An exception here is the constant function producing an
arbitrary constant 𝑐 , which would assign all tuples to a single
partition and is therefore no option. As a result, this strategy
does not match the desired partition locality requirement.

As a second strategy for applying hash partitioning onmultiple
keys, the hash function can be applied to the keys separately and
the hashed values are combined afterwards. When partitioning
on columns (𝐴, 𝐵) a tuple 𝑡 with 𝑡 (𝐴) = 𝑎 and 𝑡 (𝐵) = 𝑏 is assigned
to partition 𝑃𝑖 with 𝑖 = (𝑝 (𝑎,𝑚) ◦ 𝑝 (𝑏,𝑚)) mod 𝑛, again with
𝑝 being a hash-based partitioning function mapping into the
value range {1, · · · ,𝑚} and ◦ being a function to combine the
hash values. Similarly to the first strategy, this strategy does
not match the partition locality requirement as there is no such
function ◦ that ensures partition locality in both arguments at
the same time.

A third option for achieving multi-key partitioning without
data replication is hierarchical partitioning, as shown for two
partition keys in Figure 3. Data is partitioned on a single key
first, and each resulting partition is further partitioned using the
remaining keys. For two partition keys, a partition 𝑃𝑖𝑘 contains
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all tuples that are assigned to partition 𝑖 according to the first key
and to partition 𝑘 according to the second key. When requiring
a partitioning on the first key in a query, a partition 𝑃𝑖 consists
of the union of all subpartitions 𝑃𝑖𝑘 , 𝑘 ∈ {1, · · · ,𝑚}, while a
partitioning on the second key is constructed by the union of
𝑃𝑘𝑖 , 𝑘 ∈ {1, · · · , 𝑛} for a partition 𝑃𝑖 . This hierarchical approach
has several drawbacks:

(1) Hierarchical partitioning is prone to skew. If there is a
correlation between partitioning keys, it might occur that
only a subset of values occur in sub-partitions after parti-
tioning on the first key. Thismight lead to skewed partition
sizes and can be shown using an example on the Common-
Government table of the PublicBI benchmark [31] that
we use in our evaluation in Section 6. Using hierarchical
partitioning with 𝑛 = 𝑚 = 4 on Vend_vendorname first
and on Co_name second leads to a partitioning where the
largest partition is 3x larger than smallest partition. Using
Bureau_name as the first partition key before Co_name
however leads to a factor 15 between the smallest and the
largest partition size. The reason for this is the column
correlation. Bureau_name is highly correlated to Co_name
(see Figure 9), so 99% of the distinct Co_name values can
be found in only one of the four partitions after the first
partition step. Vend_vendorname however does not have
a strong correlation to Co_name, so around 80% of the
unique Co_name values can be found in all partitions after
the first partitioning step, which is more similar to a ran-
dom distribution and consequently leads to more balanced
partitions after the second partitioning step.

(2) Partition responsibilities change during query execution.
An executor is responsible for partitions 𝑃𝑖_ when requir-
ing a partitioning on the first key, while being responsible
for 𝑃_𝑖 when requiring a partitioning on the second key.
Nearly all partition responsibilities are moved between
queries, making e.g. buffered data useless.

(3) The number of partitions increases rapidly with the num-
ber of columns and cores. The total number of partitions is∏𝑛𝑢𝑚_𝑐𝑜𝑙𝑠

𝑖=1 𝑛𝑖 , with 𝑛𝑖 being the number of partitions for
key column 𝑖 . In order to avoid unused cores during query
execution, we require 𝑛𝑖 ≥ 𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠 ; 1 ≤ 𝑖 ≤ 𝑛𝑢𝑚_𝑘𝑒𝑦𝑠 .
For an example machine of 128 cores and three partition-
ing keys we would need at least 221 partitions. This leads
to an non-negligible overhead in query execution due to
additional metadata and partition assignments.

(4) The order of partition columns impacts load balance.
(5) Due to changing node responsibilities for partitions, a

shared-disk approach is a requirement for hierarchical
partitioning.

Changing data responsibilities impacting buffering is a major
drawback of hierarchical partitioning. (3) and (4) could be miti-
gated by applying a physical allocation strategy of the partitions
to physical partitions, e.g. in [29]. (5) is a minor drawback here,
as data access for all nodes on all data is typically ensured by
either a cloud file system or a shared file system in an on-premise
cluster setup. The access however might be non-uniform, having
local and remote reads like in HDFS.

4 PATCHED MULTI-KEY PARTITIONING
In order to mitigate the drawbacks discussed in Section 3.2, we
relax the multi-key partitioning definition and introduce patched
multi-key partitioning, i.e. allowing exceptions to the partitioning

Algorithm 1: Iterative graph partition assignment
Input :Relation 𝑅 = {𝑡𝑖 |0 ≤ 𝑖 ≤ 𝑛},

Partition keys 𝐾 ⊆ 𝑐𝑜𝑙𝑠 (𝑅)
Output :Set of partitions 𝑃 = {𝑃𝑖 |𝑃𝑖 ⊆ 𝑅, 𝑖 ∈ N,⋃

𝑃𝑖 = 𝑅,∀𝑖, 𝑘 ∈ N : 𝑃𝑖 ∩ 𝑃𝑘 = ∅}
1 𝑃 ← {}
2 while 𝑅 \⋃ 𝑃 ≠ ∅ do
3 Δ𝑅 ← 𝑅 \⋃ 𝑃

4 𝑋 ← {}
5 𝑋 ′ ← {𝑡} for some 𝑡 ∈ Δ𝑅
6 while 𝑋 ≠ 𝑋 ′ do
7 𝑋 ← 𝑋 ′

8 for 𝑘 ∈ 𝐾 do
9 // No duplicates due to set semantics, so no

need to adapt Δ𝑅
10 𝑋 ′ ← 𝑋 ′ ∪ {𝑡 ∈ Δ𝑅 |∃𝑡 ′ ∈ 𝑋 ′ : 𝑡 (𝑘) = 𝑡 ′(𝑘)}

11 𝑃 ← 𝑃 ∪ {𝑋 } ;
12 return 𝑃

Figure 4: Sequence of the naive multi-key partitioning

constraint. We show how to find patched multi-key partitionings
using graph partitioning algorithms or iterative algorithms.1

4.1 Motivation
Based on Definition 3.1 there is a straight-forward and inevitable
approach to find a multi-key partitioning on a given dataset. This
approach is sketched in Algorithm 1 and serves as a starting
point for further discussions. The main idea is to iteratively build
data partitions by starting at a single tuple and adding tuples in
order to match (MK1) and (MK2), which means that in one step
we add all tuples with matching values in one of the partition
keys, and repeat until we do not find any tuples to add. If there
are still unassigned tuples we repeat this behaviour starting with
an unassigned tuple. The resulting partitions can then be used
directly as table partitions or assigned to physical partitions using
a physical allocation strategy as e.g. in [29]. An example sequence
of this algorithm is shown in Figure 4. Starting with tuple 𝑡1 in
the first partition 𝑃1, we add 𝑡2 in the first step as 𝑡2 also contains
the column value 𝑡2 (𝐴) = 1. The loop will now terminate after
checking that no more tuples share values for columns 𝐴 or 𝐵
with tuples in partition 𝑃1. As not all tuples are assigned yet,
we start a second partition 𝑃2 initially containing 𝑡3. 𝑡5 is added
next due to a matching value in column 𝐴 and 𝑡4 is added due to
matching value in column 𝐵. The final partitioning consequently
consists of two partitions.

We implemented the algorithm using a recursion of SQL semi-
joins and unions for initial experiments. These experiments re-
vealed the major drawbacks of the naive approach, as it produces
1Available under https://github.com/dbis-ilm/Patched_Multi-key_Partitioning.
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Figure 5: Graph constructions for example table with 3 partition keys

a single large partition for most datasets and partition keys. Even
if it discovers multiple partitions in the data, the number of phys-
ical partitions and their size is determined by this “natural” num-
ber of partitions in the given dataset. We can allocate partitions
to physical partitions to reduce the number of partitions, but we
can not fill more partitions than “naturally” discovered. However,
if we would agree that the value 𝐴 = 2 is an exception and tu-
ples holding the value 𝐴 = 2 are not necessarily assigned to the
same partition, tuple 𝑡5 would not be assigned to 𝑃2 and would
consequently form a separate partition 𝑃3. A query containing a
grouping on column 𝐵 could be executed partition-locally with-
out the need for data repartitioning. Grouping on 𝐴 also does
not require to repartition all tuples, but only the tuples holding
the exception value 𝐴 = 2. This example motivates the definition
of a patched multi-key partitioning.

4.2 Definition
We want to allow marking tuples as exceptions to the multi-key
partitioning as defined in Definition 3.1 in order to find more
balanced partitions and to be independent from the “natural”
partitions of a given dataset. Keeping in mind that PatchIndexes
allow the definition of approximate constraints as described in
Section 2 by maintaining sets of patches, we therefore relax the
definition of a multi-key partitioning as follows:

Definition 4.1. Patched multi-key partitioning (2 keys)
Let relation 𝑅 be a set of tuples 𝑡 , 𝑐𝑜𝑙𝑠 (𝑅) be the set of columns
of 𝑅, columns 𝐴, 𝐵 ∈ 𝑐𝑜𝑙𝑠 (𝑅) be the partition keys and 𝑛 be the
number of partitions. Further we denote 𝑡 (𝑋 ) as the value of
column 𝑋 of tuple 𝑡 and assume the existence of a set of patches
𝑃𝑐 for every partition key column 𝑐 ∈ {𝐴, 𝐵}. We define a patched
multi-key partition function for two partition keys as a function
𝑝 : 𝑡 ∈ 𝑅, 𝑛 ↦→ 𝑖 ∈ {1, · · · , 𝑛} with the following properties:
(PMK1) ∀𝑡1, 𝑡2 ∈ 𝑅\𝑃𝐴 : 𝑡1 (𝐴) = 𝑡2 (𝐴) ⇒ 𝑝 (𝑡1, 𝑛) = 𝑝 (𝑡2, 𝑛)
(PMK2) ∀𝑡1, 𝑡2 ∈ 𝑅\𝑃𝐵 : 𝑡1 (𝐵) = 𝑡2 (𝐵) ⇒ 𝑝 (𝑡1, 𝑛) = 𝑝 (𝑡2, 𝑛)

Intuitively, (PMK1) and (PMK2) relax the Partition locality to
tuples that are not included in the set of patches for the respective
column. The definition also does not make any claims about the
size of the set of patches, i.e. a trivial solution would be to assign
all tuples to the sets of patches. The main goal is now to construct
both a partition function and small sets of patches for the partition
key columns, such that the defined constraints are met.

4.3 Graph Partitioning
4.3.1 Overview. The naive algorithm presented in Section 4.1

showed that the problem of finding a (patched) multi-key parti-
tioning intuitively can be transferred to graph algorithms. The
constraints that once a tuple is assigned to a partition, every other

tuple sharing the same value in at least one of the partition key
columns must be assigned to the same partition, are similar to
following paths in a graph to discover its connected components.
The “natural” partitions that Algorithm 1 discovers are thereby
the connected components of a graph constructed from the tuples
of the given dataset. We formally define a mapping of relations
to graphs and exploit existing graph partitioning algorithms as a
first approach for meeting the goal of finding sets of patches and
a partitioning function such that Definition 4.1 is met. The main
concept of using graph partitioning algorithms can be depicted
as follows:

(1) Map the input table to a graph based on the partition keys.
(2) Apply a graph partition algorithm on the graph. This re-

sults in an assignment of vertices/edges to a graph parti-
tion.

(3) Map the graph partitions back to table partitions.
(4) Define set of patches based on overlapping vertices or

edges.
By defining the mapping between graphs and tables, this ap-
proach can be generalized to arbitrary graph partitioning algo-
rithms. In the following, we describe generally applicable map-
pings. Only the actual storage layout of the graph is dependent on
the expected input layout of a given graph partitioning algorithm.

4.3.2 Table to Graph Mapping. Mapping a table to a graph is
based on the chosen set of partitioning keys and can be done in
two general ways: Modeling tuples of the table as vertices or as
edges, resulting in dual representations depicted for an example
table in Figure 5 and defined as follows:

Definition 4.2. Graph Construction, Tuples as Vertices
Assume a Relation 𝑅 and a set of partition keys 𝑃 ⊆ 𝑐𝑜𝑙𝑠 (𝑅).
We define a multigraph 𝐺𝑡_𝑎𝑠_𝑣 (𝑅) = (𝑉 , 𝐸) that represents the
relation 𝑅 with 𝑉 = {𝑡 |𝑡 ∈ 𝑅(𝑃)} and 𝐸 = {(𝑢, 𝑣)𝑘 |𝑢, 𝑣 ∈ 𝑅,𝑢 ≠

𝑣, 𝑘 ∈ 𝑃 : 𝑢 (𝑘) = 𝑣 (𝑘)}.

Definition 4.3. Graph Construction, Tuples as Edges
Assume a Relation 𝑅 and a set of partition keys 𝑃 ⊆ 𝑐𝑜𝑙𝑠 (𝑅). We
define a multigraph 𝐺𝑡_𝑎𝑠_𝑒 (𝑅) = (𝑉 ′, 𝐸 ′) that represents the
relation 𝑅 with 𝑉 ′ = {𝑣 |∃𝑘 ∈ 𝑃 : 𝑣 ∈ 𝑅(𝑘)} and 𝐸 ′ = {(𝑢, 𝑣)𝑡 |𝑡 ∈
𝑅, 𝑘1, 𝑘2 ∈ 𝑃, 𝑘1 ≠ 𝑘2 : 𝑡 (𝑘1) = 𝑢 ∧ 𝑡 (𝑘2) = 𝑣}.

Intuitively, the graph 𝐺𝑡_𝑎𝑠_𝑣 (𝑅) contains a vertex for each dis-
tinct combination of partition key values of 𝑅 and an edge be-
tween two vertices for each shared partition key value. On the
other hand,𝐺𝑡_𝑎𝑠_𝑒 (𝑅) is a multipartite graph and contains a ver-
tex for each distinct partition key value and an edge between two
vertices for each tuple in 𝑅 which contains the respective parti-
tion key values. As columnsmight share column values leading to
conflicts in vertex identifiers, we use a unique mapping between
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Figure 6: Graph partitioning example workflow

partition key values and vertex identifiers in the implementation.
We defined both graph constructions as multigraphs, which could
be replaced by constructing a weighted graph with weights indi-
cating the number of tuples holding the pair of values in the case
of𝐺𝑡_𝑎𝑠_𝑒 or the number of equal partition key values in the case
of 𝐺𝑡_𝑎𝑠_𝑣 . Both approaches work similarly and the choice be-
tween them is only impacted by the expected input of the graph
partitioning algorithm. Conceptually, an edge with a large weight
indicates the same graph connectivity as multiple edges between
vertices. In Figure 5, we used the multigraph construction, so
there are two edges between the vertices (2, 4, 2) and (2, 3, 4) in
𝐺𝑡_𝑎𝑠_𝑣 or two edges between 𝐴 = 2 and𝐶 = 2 in𝐺𝑡_𝑎𝑠_𝑒 respec-
tively. The resulting temporary graphs can be larger than the
original table. With 𝑛 being the number of tuples in the base table,
𝑑𝑖 being the number of distinct values in column 𝑖 and 𝑘 being
the number of partition key columns, graph𝐺𝑡_𝑎𝑠_𝑣 = (𝑉 , 𝐸) has
size |𝑉 | = 𝑛 and 0 ≤ |𝐸 | ≤ 𝑘 ·∑𝑛−1

𝑖=1 𝑖 (depending on the common
partition key values of e tuples; minimum: all unique, maximum:
all tuples equal) and graph 𝐺𝑡_𝑎𝑠_𝑒 = (𝑉 ′, 𝐸 ′) has dimensions
|𝑉 ′ | = ∑𝑘

𝑖=1 𝑑𝑖 and |𝐸 ′ | = 𝑛 ·
∑𝑘−1
𝑖=1 𝑖 , particularly larger than 𝑛 as

tuples can be represented by multiple edges for more than two
partition key columns.

In our implementation we realized both constructions over
SQL queries to create the graph representation from a given
database table. The required graph representation is determined
by the expected input of the used graph partitioning algorithm.
In our case, we produce a flat file containing a list of edges.
Figure 6 shows an example end-to-end workflow for the graph
partitioning approach. For 𝐺𝑡_𝑎𝑠_𝑣 we use tuple identifiers as
vertex identifiers and calculate edges by performing a self join of
the table for every partition key separately and combining the
results using a union. For 𝐺𝑡_𝑎𝑠_𝑒 we use the column values of
the partition keys as vertex identifiers and apply a unique column
mapping (in the example: adding the running sum of max values
of other partition keys). We project all two-element subsets of

the partition key, apply the unique column value mapping and
union the results of every subset.

4.3.3 Graph partitioning. In the next step, we apply a graph
partitioning algorithm on the constructed graph. As discussed in
Section 2, there is the choice between vertex-cut and edge-cut
algorithms, and both alternatives can be applied to both possible
graph constructions. While vertex-cut algorithms assign edges to
partitions and cut vertices from the graph, edge-cut algorithms
assign vertices to partitions and cut edges from the graph. Cutting
the equivalent of tuples in the graph, i.e. edge-cut in 𝐺𝑡_𝑎𝑠_𝑒
and vertex-cut in 𝐺𝑡_𝑎𝑠_𝑣 , cuts whole tuples and consequently
leads to a single set of patches for the whole table. Using the
respective other variant leads to a single set of patches for each
of the partition key columns. This offers more flexibility, so we
expect smaller sets of patches when later querying columns of
the partition key separately.

The remaining two options, i.e. performing an edge-cut on
𝐺𝑡_𝑎𝑠_𝑣 or a vertex-cut on𝐺𝑡_𝑎𝑠_𝑣 also show some challenges. In
𝐺𝑡_𝑎𝑠_𝑣 , edges represent a common column value between two
tuples. Removing an edge from the graph however only has a local
impact and does not impact other edges representing the same
column value. As we described in Section 4.1 and will describe
formally when describing query execution using PatchIndexes
in Section 5.2, we need to repartition all tuples sharing a column
value that was marked as an exception. Consequently, we would
need to remove all edges with a common column value when
removing one of them, e.g. removing all edges representing𝐴 = 2
in Figure 5. Conceptually, this issue is caused by the fact that a
single column value is represented by multiple graph objects, i.e.
multiple edges in this case. On the other hand, 𝐺𝑡_𝑎𝑠_𝑒 shares a
similar challenge. Here, tuples are represented by multiple edges.
Performing a vertex-cut on 𝐺𝑡_𝑎𝑠_𝑒 assigns edges to partitions
and could therefore possibly assign a tuple to different partitions,
which leads to conflicts when mapping the graph back to the
table.
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The property of finding a balanced partitioning and minimiz-
ing the number of cutted graph objects (and minimizing the sets
of patches later) relies on the properties of the graph partitioning
algorithm. As we focus on embedding any given graph parti-
tioning algorithm into relational table partitioning in this paper,
discussions about the quality of the partitioning produced by a
choosen algorithm is out of scope of this work. As an example,
we chose to use the vertex-cut algorithm Distributed Neighbor
Extension [15] on both the𝐺𝑡_𝑎𝑠_𝑣 and the𝐺𝑡_𝑎𝑠_𝑒 construction,
comparing the effects described above. DistributedNE starts with
a random edge per partition, iteratively grows partitions in par-
allel using neighbor expansion and performs synchronisation
between the expansion rounds. The algorithm finds a local opti-
mum, but due to the random starting point selection it does not
guarantee a global optimum.

4.3.4 Graph to TableMapping. Mapping the partitioned graph
back to the relational table is the last step and includes solving
the two main goals stated in Section 4.2, namely to find a par-
tition function and sets of patches for partition key columns
in order to meet the constraints of a patched multi-key parti-
tioning. After applying the graph partitioning algorithm that
assigned graph elements to partitions we reverse the graph con-
struction by adding the assigned partition to the respective tu-
ple as an additional table column. This way, we materialize the
partitioning function as a mapping directly in the table. After-
wards we repartition the table on the graph partition column
using regular hash partitioning. DistributedNE performs a vertex-
cut, so it assigns edges to partitions. In order to reverse the
mapping described in Section 4.3.2 we create a table of schema
(𝑣𝑒𝑟𝑡𝑒𝑥1, 𝑣𝑒𝑟𝑡𝑒𝑥2, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖𝑑) from the partitioning result file
like shown in Figure 6 in order to perform the mapping again
over SQL. For 𝐺𝑡_𝑎𝑠_𝑣 we produce a mapping of partition iden-
tifiers to tuple identifiers by projecting (𝑣𝑒𝑟𝑡𝑒𝑥1, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖𝑑)
and (𝑣𝑒𝑟𝑡𝑒𝑥2, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖𝑑) and union them, before grouping on
the vertex column and computing the minimum and maximum
partition_id. If minimum and maximum match, the tuple was not
cut from the graph by the vertex cut and we can apply the parti-
tion_id. Otherwise we apply a negative partition_id and the tuple
gets assigned to the sets of patches later. For𝐺𝑡_𝑎𝑠_𝑒 we split the
table to reconstruct the two-element partition key subset based
on filter predicates (using the unique value mapping). Afterwards
we join these parts to reconstruct a mapping table of schema
(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑘𝑒𝑦_𝑐𝑜𝑙𝑢𝑚𝑛𝑠, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖𝑑). Again, we group on the
partition key columns and calculate the minimum and maximum
partition_id to discover and mark conflicts like in the 𝐺𝑡_𝑎𝑠_𝑣
case. For both cases we need to ensure that the partition_ids
calculated by the graph partitioning are also assigned to different
physical table partitions, which is not necessarily ensured, i.e.
it is not ensured that partition_ids between 1 and 𝑛 are indeed
assigned to 𝑛 different physical partitions. We therefore update
the partition_ids with values that are ensured to be assigned to
different partitions. These can be easily calculated if the hash
function used for hash partitioning is exposed over the SQL fron-
tend of the database system. The reverted mapping tables are
finally joined back with the fact table on the tuple identifier for
𝐺𝑡_𝑎𝑠_𝑣 or on the partition keys for 𝐺𝑡_𝑎𝑠_𝑒 in order to update
the materialized partition_id column.

In the last step, we need to identify the sets of patches. Graph
elements that have adjacent graph elements with different parti-
tions are exceptions, which are removed from the graph in the

graph partitioning. Similarly, we query the table for each parti-
tion key to identify partition key values holding more than one
distinct partition_id or a negative partition_id indicating a con-
flict from the graph to table mapping as described in Section 5.1.
These tuples are declared as exceptions and assigned to the set
of patches for the respective partition key column. In the upper
case of the example in Figure 6, all tuples with 𝐴 = 2 would
be included in the set of patches 𝑃𝐴 for column 𝐴, tuples with
𝐵 = 2 in 𝑃𝐵 and tuples with 𝐶 = 1 in 𝑃𝐶 respectively, because
tuples holding these values have either more than one distinct
partition_id or a negative partition_id.

4.3.5 Discussion. The approach of mapping a relational ta-
ble to a graph, using existing graph partitioning algorithms to
partition the constructed graph and infer the table partitioning
from the graph partitioning is an elegant way of combining both
worlds to apply the well-known and well-proven characteristics
of graph algorithms to relational tables. However, it also has
some drawbacks. First, the dataset must be completely loaded
before graph partitioning can be invoked. This is fundamentally
different from a typical data ingestion pipeline, where tuples are
iteratively loaded (in parallel), and decisions on partition assign-
ment are made locally to a tuple instead of considering the whole
table. Consequently, we need to repartition the table after it was
already loaded to apply the graph partitioning. Second, data lay-
outs in analytical database systems fundamentally differ from
data layouts in graph databases, so expensive data reorganisation
or data transport would be needed. In our case, we export the
constructed graph from the database in order to use it as an input
for DistributedNE. Although iterative extensions [11] exist that
would enable iterative partition assignments during loading, they
would either require reconstructing the graph when data should
be appended to an existing table or the constructed graph needs
to be maintained as a separate copy of the data during the table
lifetime. For both reasons, the approach described above might
be hardly applicable in practice, but motivates the design of a
iterative patched multi-key partitioning approach.

4.4 Iterative Patched Partitioning
Using graph partitioning algorithms require the full dataset to
be present and are difficult to integrate due to the different data
layouts of relational databases and graph systems. However, al-
gorithms like DistributedNE ensure minimal sets of cuts (which
translates to minimal sets of patches) under given balancing
constraints. In order to make the approach more usable in prac-
tice, we design an iterative patched partitioning strategy as an
alternative approach in this section which is able to decide on
partition assignments upon coming across a single tuple at the
price of loosing the optimality of the resulting partitioning. The
main idea of the approach is to iteratively build and “color” a
graph. Similar to hash partitioning, we thereby make a partition
assignment decision just in the moment the tuple is loaded into
the table. Our example algorithm shown in Algorithm 2 is based
on the 𝐺𝑡_𝑎𝑠_𝑒 construction and intuitively holds an assignment
of values to partitions for each column of the partition key. For
each tuple, we need to distinguish between three cases. If there
is no partition assignment for any of the partition key values
yet, we apply a partition function 𝑓 on it. If there are some key
values that already have an assignment (because they already
occured before) and all of these partition_ids match, the tuple
is assigned to this partition, matching the intuition that tuples
sharing a partition key value are assigned to the same partition. If
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Algorithm 2: Iterative graph partition assignment
Input : ∗𝑝𝑎𝑟𝑡_𝑘𝑒𝑦_𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑛𝑢𝑚_𝑘𝑒𝑦𝑠
Output :𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖𝑑

1 𝑙𝑜𝑜𝑘𝑢𝑝𝑠 ← 𝑝𝑎𝑟𝑡_𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑙𝑜𝑜𝑘𝑢𝑝 (𝑝𝑎𝑟𝑡_𝑘𝑒𝑦_𝑣𝑎𝑙𝑢𝑒𝑠);
2 if 𝑎𝑙𝑙𝑁𝑈𝐿𝐿𝑂𝑟𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 (𝑙𝑜𝑜𝑘𝑢𝑝𝑠) then
3 𝑝𝑎𝑟𝑡 ← 𝑓 (𝑝𝑎𝑟𝑡_𝑘𝑒𝑦_𝑣𝑎𝑙𝑢𝑒𝑠) ; // Case 1

4 else if 𝑎𝑙𝑙𝑁𝑈𝐿𝐿𝑂𝑟𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙 (𝑙𝑜𝑜𝑘𝑢𝑝𝑠) then
5 𝑝𝑎𝑟𝑡 ← 𝑓 𝑖𝑟𝑠𝑡𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (𝑙𝑜𝑜𝑘𝑢𝑝𝑠) ; // Case 2

6 else
7 𝑔𝑙𝑜𝑏𝑎𝑙 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔_𝑖𝑑𝑥 ; // Case 3: Conflict

8 while 𝑙𝑜𝑜𝑘𝑢𝑝𝑠 [𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔_𝑖𝑑𝑥] == 𝑁𝑈𝐿𝐿 OR
𝑙𝑜𝑜𝑘𝑢𝑝𝑠 [𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔_𝑖𝑑𝑥] == 𝐸𝑋𝐶𝐸𝑃𝑇 𝐼𝑂𝑁 do

9 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔_𝑖𝑑𝑥 ← (𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔_𝑖𝑑𝑥 + 1) % 𝑛𝑢𝑚_𝑘𝑒𝑦𝑠 ;
10 𝑝𝑎𝑟𝑡 ← 𝑙𝑜𝑜𝑘𝑢𝑝𝑠 [𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔_𝑖𝑑𝑥];
11 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔_𝑖𝑑𝑥 ← (𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔_𝑖𝑑𝑥 + 1) % 𝑛𝑢𝑚_𝑘𝑒𝑦𝑠 ;
12 𝑔𝑙𝑜𝑏𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 ;
13 for 𝑖 = 0; 𝑖 < 𝑛𝑢𝑚_𝑘𝑒𝑦𝑠; 𝑖 = 𝑖 + 1 do
14 if 𝑙𝑜𝑜𝑘𝑢𝑝𝑠 [𝑖] == 𝑁𝑈𝐿𝐿 then
15 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑖] .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝𝑎𝑟𝑡_𝑘𝑒𝑦_𝑣𝑎𝑙𝑢𝑒𝑠 [𝑖], 𝑝𝑎𝑟𝑡)
16 else if 𝑙𝑜𝑜𝑘𝑢𝑝𝑠 [𝑖] ≠ 𝑝𝑎𝑟𝑡 then
17 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑖] .𝑢𝑝𝑑𝑎𝑡𝑒 (

𝑝𝑎𝑟𝑡_𝑘𝑒𝑦_𝑣𝑎𝑙𝑢𝑒𝑠 [𝑖], 𝐸𝑋𝐶𝐸𝑃𝑇 𝐼𝑂𝑁 )
18 return 𝑝𝑎𝑟𝑡 ; // Partition_id for given tuple

however there are key values already assigned to a partition and
these assignments do not match, we have a conflict. This tuple
would conceptually connect two connectivity components in the
iteratively built graph. We can’t revert previous decisions to join
these connectivity components and decide for one partition key
to be the decisive key, so the tuple will be an exception for every
other column when later discovering the sets of patches. The
choice for the decisive key follows a rotating schema in order to
distribute exceptions over all partition key columns. In all cases,
we insert the assigned partition_id into the assignment for every
column that did not have an assignment before or update to the
exception marker when hitting case 3, i.e. there is a partition_id
for a value which was not chosen. The exception markers are
handled similarly to NULLs in case 1 and case 2, because they
are not decisive.

The described algorithm obviously has some drawbacks. Due
to the “local” decision in the conflict case, it is not able to find a
globally optimal partitioning with a minimum set of patches. Sec-
ond, it does not have any guarantees about partition balancing.
The first case thereby has the most impact on balancing. We track
the current sizes of each partition (not shown in Algorithm 2)
and the function 𝑓 assigns a tuple to the smallest partition in
the in order to fill partitions as equally as possible. Third, the
algorithm is sensitive to the order of tuple insertion. As a simple
example depicted in Figure 7, inserting tuples that represent a
path through a graph would assign all tuples to a single partition,
so we rely on the assumption that we hit the first case regularly
during tuple insertion to assign tuples to different partitions. In-
serting the tuple with partition keys (2, 2) in the upper case of
Figure 7 and hitting case 3, the tuple (i.e. the edge) is assigned
to the second partition according to key 𝐴 (indicated by not con-
necting the edge), so all tuples with 𝐵 = 2 will later belong to the
set of patches 𝑃𝐵 as they belong to different partitions. Due to the
rotating index for choosing the decisive column, column 𝐵 would
be chosen as the decisive column when hitting case 3 for the next

Figure 7: Order-sensitivity of iterative patched partitioning

time in order to balance patches over all partition keys. How-
ever, having a decision making process “local” to a tuple enables
on-the-fly partition assignments during data loading, avoiding
expensive conversions and repartitionings of the graph partition-
ing approach presented in Section 4.3. The algorithm is designed
as a single-threaded approach. In order to be integrated into par-
allel loading, access to the metadata structure must be secured
using locks during Algorithm 2 between reading the partition
assignments and updating them. As this is the major part of the
algorithm, an optimistic approach would be favourable here, i.e.
performing the partition assignment lookup again before updat-
ing to ensure that no updates were performed in the meantime.
In order to make it openly available, our implementation con-
tains a standalone version of the algorithm not integrated into
data loading operators inside a database kernel. The standalone
version processes input files and produces an output file with an
additional column for the computed partition_id.

5 QUERY PROCESSING
As described in Section 2, PatchIndexes are generic data struc-
tures that can be extended to arbitrary constraints by implement-
ing an interface for PatchIndex creation, maintenance under
updates and adding an optimizer rule to exploit PatchIndex in-
formation in query optimization. In the following we describe
the respective adaptions for integrating the patched multi-key
partitioning constraint.

5.1 PatchIndex Creation
After running one of the graph partitioning algorithms described
in Section 4 we create PatchIndexes on the partition key columns
in order to maintain the exceptions to the partitioning. We follow
the approach of having sets of patches per column, so we create
separate index instances on them. The sets of patches maintain
the tuple identifiers of all exceptions to the partitioning, i.e. all
tuples that have a partition key value that is present in more
than one partition or have a negative partition_id indicating a
conflict when mapping the graph back to the table. We discover
the partition key values violating the partition constraint by (1)
running an aggregation query counting the distinct partition_ids
of column values and selecting the ones having more than one
distinct partition_id and (2) running a filter query to find all
values with negative partition_ids. The union of (1) and (2) is
joined back with the table on the respective key column to find
all tuple identifiers to be inserted into the PatchIndex. In the
upper case of Figure 7 all tuples with 𝐵 = 2 are exceptions, so
tuple identifiers of tuples (1, 2) (assigned to the first partition)
and (2, 2) (assigned to the second partition) are inserted into
the PatchIndex holding the set of patches 𝑃𝐵 . Partitioning is
transparent for the PatchIndex, so an index instance is created
per partition.
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Figure 8: Patched query plans after applying the PatchIndex optimization rule (added operators highlighted)

5.2 Analytical Queries
Materializing approximate constraints with PatchIndexes follows
the idea to split query execution using the PatchIndex scan be-
tween tuples that match a certain constraint and exceptions to the
constraints[19]. The patched multi-key partitioning constraint
defined in Definition 4.1 allows us to avoid expensive reparti-
tion/shuffle operations as we know that tuples not included in
𝑃𝑋 for a given column 𝑋 match the Partition locality criteria.
Consequently, these tuples do not need to be reshuffled.

Partition locality plays an important role for aggregations
and joins. For executing a partitioned aggregation, two basic
approaches exist if the grouping column does not match the par-
tition key of the table. First, data can be reshuffled on the grouping
key and the subsequent aggregation can be executed partition-
locally. This approach introduces large network overhead for
repartitioning. Second, one could perform a pre-aggregation on
the existing partitions, then reshuffle data and perform a post-
aggregation afterwards, which is necessary as not all elements
of a group are initially placed in the same partition. Here one
needs to carefully consider the aggregation function, that is re-
quired to be decomposable, e.g. an average can’t be executed in
a stepwise fashion without breaking it into a sum and a count.
The 2-phase aggregation is favorable when data contains few dis-
tinct values according to statistics, so the additional aggregation
effort is amortized by the less effort to shuffle data. Both vari-
ants can be enhanced by the patched partitioning constraint. As
shown in Figure 8, we can skip the repartitioning (for the 1-phase
aggregation) or the pre-aggregation and repartitioning (for the
2-phase aggregation) for all tuples that are not included in the
set of patches when aggregating on a patched partition key. This
is possible because either all tuples or no tuples sharing the same
partition key value are handled as exceptions. Consequently we
reduce the number of tuples that need to be either reshuffled or
pre-aggregated and reshuffled. Splitting the datastream however
also introduces overhead. As the 2-phase aggregation is typically
chosen when the grouping column only has a small amount of
unique values, we expect that the benefit of the PatchIndex opti-
mization might be too small to amortize the overhead of added
operators. As the number of exceptions are known during query
optimization, the costs of both plans with and without the opti-
mization can be estimated and the optimizer can decide between
them. Except adding linear costs for the filter operators with
modes𝑢𝑠𝑒_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 and 𝑒𝑥𝑐𝑙𝑢𝑑𝑒_𝑝𝑎𝑡𝑐ℎ𝑒𝑠 , no changes are needed
in the cost model of an arbitrary optimizer.

Join operators can also be performed in a partitioned way if
tables are partitioned on the join key, otherwise an expensive
repartitioning is needed again. In typical data warehouse ap-
plications, many joins are performed between fact tables and
dimension tables. While the latter ones are typically partitioned
on their primary keys, choosing the partition key of fact tables
consisting of many foreign keys is typically difficult. When we
included the foreign key in the patched multi-key partitioning
and have a PatchIndex on the join column, we can again avoid
the repartitioning for all tuples not included in the set of patches.
This case however requires the second table to be co-partitioned,
which is automatically ensured by using the same partitioning
function in e.g. hash-partitioning, but is not guaranteed in our
graph partitioning approach.We therefore derive the partitioning
of the primary key side of the join from the fact table when the
foreign key was included in the multi-key partitioning compu-
tation. Consequently, dimension key values that do not belong
to the respective set of patches in the fact table derive the same
partition_id, while exceptions are assigned using common hash
partition to be co-partitioned with the fact table exceptions after
repartitioning. Deriving the partitioning is a problem for shared
dimensions, as only one fact table can be decisive for the di-
mension table partitioning. However, it is conceptually better to
repartition a smaller dimension table than a large fact table.

In contrast to hash partitioningwhere data is not required to be
reshuffled only if the partition key matches the grouping/join key,
the described optimizations work with every key that was part
of the patched multi-key partitioning. So instead of a fast query
when hitting the right key and slow queries for all other keys in
case of hash partitioning, we aim at reaching robust performance
for aggregate/join queries on all keys of the multi-key partition
key. The performance will depend on the amount of tuples that
are categorized as exceptions and assigned to the sets of patches.
Additionally, partition responsibilities of nodes do not change
when querying different partition keys, so patched multi-key
partitioning also works for shared-nothing architectures. Node-
local buffers are not invalid for different queries, which is the
major drawback of hierarchical partitioning approach described
in Section 3.

The queries shown in Figure 8 are also allowed to have addi-
tional operators below the groupby/join operator, e.g. additional
filters or projections. These additional operators would be repli-
cated to both datastreams including/excluding patches, so they
are applied to both datastreams separately. As a current limita-
tion, these operators are not allowed to be aggregations or joins,
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so the PatchIndex optimization rule is currently only applied on
the lowest aggregation/join in the query tree.

5.3 Update Queries
Updatability is an important factor to make a concept applicable
in practice. Therefore, we need to maintain the patched partition-
ing constraint also under update operations, i.e. inserts, modifies
and deletes. The PatchIndex data structure itself is designed in a
generic way. The underlying sharded bitmap structure supports
update operations and we simply need to implement an interface
to define how the set of patches is maintained under updates.
Inserts are handled similar to the initial loading, so tuples get
a partition_id assigned by the partition assignment algorithms
described in Section 4. However, it might happen that an inserted
tuple connects two connectivity components of the graph rep-
resentation, meaning that partition key column values become
exceptions. This can similarly happen for modifies on partition
key values. We discover these new exceptions using a join of
the inserted/modified tuples with the table itself, performing the
same distinct aggregation than during initial partitioning to find
values with more than one unique partition_id assigned. We keep
the join small by only scanning the inserted/modified tuples on
the one side and performing data pruning on the full table based
on the observed join keys and small materialized aggregates [22]
on the table, to avoid a full table scan. Delete operations do not
connect graph components but might split components, which
does not harm the partitioning constraint. In general update op-
erations might degenerate the graph and can lead to loosing the
optimality of the graph partitioning. By monitoring exception
rates this might lead to a recomputation of the partitioning after
some time.

6 EVALUATION
With our experiments we show that patched multi-key partition-
ings can be found in real-world datasets while comparing the
presented partitioning approaches and highlight properties of
data and algorithms that impact partition quality. Additionally
we show opportunities for query performance and outline chal-
lenges for future work. We integrated the support for patched
multi-key partitionings using PatchIndexes into the Actian Vec-
torH 6.2 system, which is based on the x100 query engine[7].
The system runs on a four node cluster, each node consisting
of a Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 256 GB RAM
and a 10 GBit/s network interface. We use the PublicBI bench-
mark dataset [31] representing real user Tableau workbooks and
picked the CommonGovernment workbook as an example. The
workbook consists of 110 GB raw data and 43 queries including
13 different group-by columns. For performance evaluation we
focus on these analytical queries, as the update mechanism is
similar to and extensively evaluated in [20].

We measure execution times for partitioning using the follow-
ing workflows. For graph partitioning we require the presence
of the full dataset. Therefore we start with a pre-loaded table,
perform the table to graph mapping, the graph partitioning and
the graph to table mapping, before repartitioning the table on the
determined partition_id. For the iterative partitioning approach
we do not require the full table. We read a fixed flat file line by
line and decide the partition assignment per tuple, so the order-
sensitivity of the iterative approach does not have an impact on
different runs in the experiments. We write the data with the

Ag_name
Bureau_name Co_name Co_state

Vend_dunsnumber
Vend_vendorname

Ag_name

Bureau_name

Co_name

Co_state

Vend_dunsnumber

Vend_vendorname

1.0 0.979 0.971 0.237 0.634 0.644

0.979 1.0 0.967 0.3041 0.588 0.599

0.971 0.967 1.0 0.946 0.488 0.492

0.237 0.3041 0.946 1.0 0.631 0.632

0.634 0.588 0.488 0.631 1.0 0.916

0.644 0.599 0.492 0.632 0.916 1.0
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Figure 9: Column correlations in CommonGovernment

added partition_id back to a flat file and load the resulting table
in a single bulk load.
Experiment 1: Partition quality. In the first experiment we
show the existence of patched multi-key partitionings. We ran
the partitioning on all pairs and triples based on the 13 grouping
columns. Table 1 shows a subset of the candidates, chosen in
order to present properties of our approach, with their respective
statistics, i.e. partitioning runtime, imbalance factor and excep-
tion rates 𝑒𝐶𝑜𝑙 = ( |𝑃𝐶𝑜𝑙 |/|𝑅 |) · 100% for both partition algorithms.
All results show the median of three runs, which is particularly
of interest for the graph partitioning algorithm starting at a ran-
dom initial partitioning. We only use the graph partitioning with
the 𝐺𝑡_𝑎𝑠_𝑒 mapping, as we observed that the selfjoin in 𝐺𝑡_𝑎𝑠_𝑣
leads to a very huge table when joining on columns with only a
few unique values and out-of-memory situations. Table 1 shows
different cases: The “ABC” columns𝐴𝑔_𝑛𝑎𝑚𝑒 , 𝐵𝑢𝑟𝑒𝑎𝑢_𝑛𝑎𝑚𝑒 and
𝐶𝑜_𝑛𝑎𝑚𝑒 only have few hundred distinct values. Consequently,
the resulting graph consists of few vertices with dense connec-
tivity. In contrast, the “vendor” columns Vend_dunsnumber and
Vend_vendorname have over 100K distinct values, leading to a
graph of many vertices with sparse connectivity. In all cases, the
number of edges is equal to the number of tuples by the definition
of 𝐺𝑡_𝑎𝑠_𝑒 .

We want to find a good partitioning indicated by both an
imbalance factor near 1 and low exception rates for all columns.
From the results we can outline properties that impact partition
quality:
Column correlation: If columns correlate, they tend to have
value combinations that are more likely than others. This leads
to graphs with parts that are more densely connected than oth-
ers and results in less exceptions when cutting edges from the
graph. If columns are not correlated, the resulting graph has a
more random distribution of edges, leading to a high number
of exceptions. Figure 9 shows correlations of the nominal “ABC”
and “vendor” columns based on the symmetric Cramér’s V[9].
We can observe that correlating columns can lead to good parti-
tionings in Table 1. 𝐶𝑜_𝑠𝑡𝑎𝑡𝑒 does not correlate with 𝐴𝑔_𝑛𝑎𝑚𝑒
or 𝐵𝑢𝑟𝑒𝑎𝑢_𝑛𝑎𝑚𝑒 columns and consequently leads to a bad parti-
tioning when included.
Number of distinct values: As the number of edges is fixed by
the number of tuples, the number distinct partition key values
determine the number of vertices and consequently the degree
of connectivity of the graph. We can can find a more balanced
partitioning with less exceptions if there are many distinct par-
tition key values in the data, which is the case for the “vendor”
columns compared to the “ABC” columns.
Number of partitions: Similar to the number of distinct val-
ues, the number of desired partitions has an impact on partition
quality. While we can find a reasonable good partitioning for
the “ABC” columns with 4 partitions, running the algorithms for
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Table 1: Runtime(in s), imbalance factor and exception rates(in %) of CommonGovernment table for different partitionings
1M Tuples 5M Tuples

Partition keys Graph Iterative Graph Iterative
Column1 Column2 Column3 Parts Time Imbal. Exc. Time Imbal. Exc. Time Imbal. Exc. Time Imbal. Exc.
Ag_name Bureau_name - 4 46 4.9 (2,0) 39 2.3 (3,0) 100 2.2 (1,0) 175 2.5 (3,0)
Ag_name Co_name - 4 43 3.2 (10,1) 39 2.1 (10,1) 102 3.1 (43,1) 174 2.9 (23,1)
Bureau_name Co_name - 4 43 3.4 (1,0) 39 2.9 (3,0) 94 3.8 (21,1) 174 3.5 (3,0)
Vend_dunsnumber Vend_vendorname - 4 241 2.9 (0,1) 39 1.1 (16,23) 1050 3.1 (1,1) 179 1.01 (17,24)
Ag_name Bureau_name Co_name 4 49 2.6 (63,27,13) 40 2.3 (8,1,1) 121 4.2 (76,51,40) 178 2.5 (7,1,1)
Ag_name Bureau_name Co_state 4 47 2.4 (98,93,99) 40 1.2 (90,49,96) 110 2.7 (99,97,99) 176 1.4 (90,43,96)
Ag_name Bureau_name - 96 102 10K (37,0) 60 15K (2,0) 215 2.6K (14,0) 198 22K (3,0)
Ag_name Co_name - 96 109 13K (82,1) 66 477 (12,1) 214 388K (85,1) 199 680 (11,1)
Bureau_name Co_name - 96 118 13K (33,1) 62 450 (3,0) 211 601K (65,1) 198 557 (3,1)
Vend_dunsnumber Vend_vendorname - 96 207 21 (1,1) 63 6.1 (21,34) 560 28 (1,3) 206 8.5 (23,35)
Ag_name Bureau_name Co_name 96 117 111 (98,95,82) 60 128K (8,1,1) 214 1.2 (100,100,100) 229 11K (20,2,1)
Ag_name Bureau_name Co_state 96 114 905 (99,95,99) 63 5.5 (92,81,96) 215 1.3 (100,100,100) 223 5.6 (92,82,97)
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Figure 10: Query runtimes on different table partitionings

96 partitions leads to very bad partitionings indicated by either
a high imbalance factor or high exception rates. Imbalance fac-
tor and exception rates are a trade-off here, as shown for, e.g.,
(𝐴𝑔_𝑛𝑎𝑚𝑒, 𝐵𝑢𝑟𝑒𝑎𝑢_𝑛𝑎𝑚𝑒) at 96 partitions and 5M tuples. The
graph partitioning leads to higher exception rates but lower im-
balance factor compared to the iterative approach. However, all
partitionings with such imbalance factors are not usable. As the
“vendor” columns contain more unique values and consequently
more vertices in the graph, they are suitable to find a partitioning
with more partitions. As a side note, the graph partitioning algo-
rithm runs slower on the “vendor” columns for 4 partitions than
for 96 partitions, as communication overhead for 4 partitions
dominate the benefit of parallelism here.
Apriori property: From the results we can also suggest that the
choice of partition key columns follow an apriori property. A
partition key of 𝑘 columns can only lead to a good partitioning
if all 𝑘 − 1 subkeys provide a good partitioning. This is shown
by the “ABC” columns in the iterative approach. While we get
a good partitioning on (𝐴𝑔_𝑛𝑎𝑚𝑒, 𝐵𝑢𝑟𝑒𝑎𝑢_𝑛𝑎𝑚𝑒,𝐶𝑜_𝑛𝑎𝑚𝑒), ex-
changing𝐶𝑜_𝑛𝑎𝑚𝑒 with𝐶𝑜_𝑠𝑡𝑎𝑡𝑒 results in a bad partitioning, as
none of the subkeys containing 𝐶𝑜_𝑠𝑡𝑎𝑡𝑒 is a good partitioning.
Graph partitioning on three columns leads to high exception
rates for the “ABC” columns due to the conflict resolution when
mapping 𝐺𝑡_𝑎𝑠_𝑒 back to the table. Due to the apriori property
the example given in Table 1 is limited to three partition key
columns, as there are no more columns that correlate with the
“ABC” columns in the dataset. Please note that this is a property
of the dataset, not of our approach.

From a runtime perspective, the graph partitioning runtime is
mainly dependent on the complexity of the graph, i.e. the number

of vertices, as it propagates partition assignments over paths in
the graph. Consequently, runtime on the “ABC” columns is signif-
icantly lower than on the “vendor” columns. The runtime thereby
splits into several parts: The mapping from table to graph takes
around 5-12s depending on the table size, running DistributedNE
takes between 2-950s depending on the graph size, mapping the
graph back to the table takes 4-9s and repartitioning the table
takes 40-70s, so for small graph sizes repartitioning is the dom-
inating part. On the other hand, iterative partitioning runtime
is mainly impacted by the number of tuples as it iteratively pro-
cesses the tuples. It is therefore constant for the same table size
independent of the chosen partition keys. Runtime splits into
iterating over the flat file and loading the resulting flat file into
the database, which took around 20s for 1M tuples or 100s for
5M tuples. The iterative approach is favorable over the graph
partitioning in the currently presented version, both in terms of
runtime and partitioning quality.

This experiment also reveals a weakness of the cur-
rent approach. Starting from a good partitionining
(𝐴𝑔_𝑛𝑎𝑚𝑒, 𝐵𝑢𝑟𝑒𝑎𝑢_𝑛𝑎𝑚𝑒), adding 𝐶𝑜_𝑠𝑡𝑎𝑡𝑒 destroys the
whole partitioning instead of just excluding the values from the
uncorrelated𝐶𝑜_𝑠𝑡𝑎𝑡𝑒 column. This is caused by the fact that the
underlying partitioning algorithm is not aware that the graph is
multipartite, i.e. it has subsets of vertices (one subset per column)
and all edges are between subsets, but never within a subset. For
our application, it would be better to simply cut a whole subset
instead of destroying the whole partitioning. In the example,
it would be better to have 100% exceptions in 𝐶𝑜_𝑠𝑡𝑎𝑡𝑒 while
keeping the good partitioning in (𝐴𝑔_𝑛𝑎𝑚𝑒, 𝐵𝑢𝑟𝑒𝑎𝑢_𝑛𝑎𝑚𝑒).
With this, queries that require a partitioning on the column
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Table 2: TPC-DS partition key column combinations and exception rates
Table Partition Key Columns Exception Rates
Item (i_item_sk, i_item_desc, i_formulation, i_product_name) (0%, 0.2%, 0%, 0.01%)
Item (i_item_sk, i_item_desc, i_formulation, i_product_name, i_manufact_id, i_manufact) (4.7%, 5.1%, 5.1%, 0%, 83%, 67%)
Store_returns (sr_customer_sk, sr_cdemo_sk, sr_ticket_number) (3.8%, 0.07%, 3.7%)
Catalog_returns (cr_refunded_customer_sk, cr_refunded_cdemo_sk, cr_returning_cdemo_sk, cr_order_number) (3.7%, 1.7%, 2.1%, 0.6%)
Catalog_returns (cr_refunded_addr_sk, cr_returning_cdemo_sk, cr_order_number) (5.2%, 2.4%, 1.1%)
Web_returns (wr_item_sk, wr_refunded_cdemo_sk, wr_returning_cdemo_sk) (5.1%, 0.8%, 0.7%)
Web_returns (wr_refunded_customer_sk, wr_refunded_cdemo_sk, wr_returning_customer_sk, wr_returning_cdemo_sk) (0.4%, 0.4%, 0.5%, 0.4%)
Web_returns (wr_refunded_cdemo_sk, wr_refunded_hdemo_sk, wr_returning_cdemo_sk, wr_returning_hdemo_sk) (1.1%, 6.2%, 1.1%, 6.2%)
Web_returns (wr_refunded_cdemo_sk, wr_refunded_addr_sk, wr_returning_cdemo_sk, wr_returning_addr_sk) (0.7%, 1.0%, 0.7%, 1.0%)
Web_sales (ws_bill_customer_sk, ws_bill_cdemo_sk, ws_bill_addr_sk, ws_ship_customer_sk, ws_ship_cdemo_sk, , ws_order_number) (13.7%, 0.7%, 22.8%, 13.2%, 0.8%, 0%)
Web_sales (ws_bill_customer_sk, ws_bill_cdemo_sk, ws_ship_customer_sk, ws_ship_cdemo_sk, ws_order_number) (7.3%, 0.4%, 7.3%, 0.4%, 0%)
Catalog_sales (cs_bill_customer_sk, cs_bill_cdemo_sk, cs_ship_customer_sk, cs_ship_cdemo_sk, cs_order_number) (8.1%, 1.7%, 8.1%, 1.6%, 0.1%)
Catalog_sales (cs_bill_cdemo_sk, cs_bill_addr_sk, cs_ship_cdemo_sk, cs_ship_addr_sk, cs_order_number) (1.8%, 17.3%, 17.3%, 17.3%, 0.1%)
Store_sales (ss_customer_sk, ss_cdemo_sk, ss_ticket_number) (10.2%, 3.8%, 0.5%)
Store_sales (ss_cdemo_sk, ss_addr_sk, ss_ticket_number) (3.4%, 18.8%, 1.2%)

cutted by the algorithm would run similar than before using
repartitioning, but queries on the remaining columns would be
accelerated.
Experiment 2: Query performance. Out of all queries of the
CommonGovernment workbook we chose two groups. Queries
9, 29 and 41 contain aggregations on Vend_dunsnumber and
Vend_vendorname, while queries 1, 11 and 12 contain aggrega-
tions on 𝐴𝑔_𝑛𝑎𝑚𝑒 , 𝐵𝑢𝑟𝑒𝑎𝑢_𝑛𝑎𝑚𝑒 and 𝐶𝑜_𝑛𝑎𝑚𝑒 . We loaded the
full dataset with hash partitionings on each of these columns
as baselines and compared them against patched multi-key par-
titionings using the iterative partitioner on (Vend_dunsnumber,
Vend_vendorname) named as 𝑝𝑎𝑡𝑐ℎ𝑒𝑑_𝑣𝑒𝑛𝑑𝑜𝑟 and (ag_name, bu-
reau_name, co_name) named as 𝑝𝑎𝑡𝑐ℎ𝑒𝑑_𝑎𝑔, which were the col-
umn combinations with useful partitionings from the first ex-
periment. All tables have 96 partitions. The results are shown in
Figure 10. We can first observe that the baselines show different
runtimes, although they are expected to perform similarly. Par-
titionings on the vendor columns are faster than partitionings
on 𝐴𝑔_𝑛𝑎𝑚𝑒 , 𝐵𝑢𝑟𝑒𝑎𝑢_𝑛𝑎𝑚𝑒 or 𝐶𝑜_𝑛𝑎𝑚𝑒 , caused by the small
amount of unique values of the latter columns leading to imbal-
anced partitionings.

Overall the partitioning that matches the grouping column of
the respective query shows the fastest runtime as expected. For
the first set of queries (9, 29, 41), the 𝑝𝑎𝑡𝑐ℎ𝑒𝑑_𝑣𝑒𝑛𝑑𝑜𝑟 partitioning
shows performance slightly worse than the best partitioning,
but better than the respective other vendor partition key. This is
exactly the behaviourwewant to achieve.We achieve a consistent
performance with a patched multi-key partitioning for this set
of queries.

For the second set of queries (1, 11, 12) we can observe a dif-
ferent behaviour. Here, the patched multi-key partitioning is not
able to achieve reasonable good performance cuased by the small
number of unique values of the partitioning columns. The ag-
gregations are performed as a two-phase aggregation and the
overhead of adding a PatchIndex scan is too large to amortize it’s
benefits. Additionally, partitions are even more imbalanced than
in the respective baselines and the exception rates are very high
as shown in the first experiment. Consequently, using a patched
multi-key partitioning on partition keys with small number of
distinct values (leading to bad imbalance factors and high excep-
tion rates) does not show the robust performance we are aiming
at and should not be used.

Besides that, robustness also means reasonable performance in
cases where partition keys do not match grouping keys. We can
observe that the 𝑝𝑎𝑡𝑐ℎ𝑒𝑑_𝑣𝑒𝑛𝑑𝑜𝑟 partitioning behaves similar
than the other vendor partitionings in the second set of queries
(1, 11, 12), while the 𝑝𝑎𝑡𝑐ℎ𝑒𝑑_𝑎𝑔 partitioning performs similarly
than the partitionings on the “ABC” columns on the first set

of queries (9, 29, 41). In conclusion we can state that patched
multi-key partitioning shows robust performance for columns
with a quite large amount of unique values. It avoids bad query
performance caused by full table repartitionings when matching
the grouping keys while performing similar to the baselines
when not matching the grouping key. Please note that the case
of replication is also covered in the experiment, i.e. one could
achieve best performance in all queries when holding replicas
for all partition keys leading to 5x storage and update cost.
Experiment 3: TPC-DS. In order to show the robustness of our
approach over different datasets, we investigated the well-known
TPC-DS[26] benchmark dataset. Although being synthetic and
therefore rarely contatining “natural” clusters we found differ-
ent useful partition key combinations in the dataset on scale
factor 1. We used the column correlation requirement and the
apriori property to find the combinations: In the fact tables we
calculated the column correlations of all interesting columns (i.e.
foreign keys or nominal values) and searched for combinations
of columns that are all pairwise correlated with a correlation of
over 0.9 and fulfill the apriori property. The resulting column
combinations are candidates and were partitioned using the it-
erative partitioning algorithm into 4 partitions. Table 2 shows
several partitionings with their respective exception rates, all
showing a partition balance factor below 1.1.

7 CONCLUSION
We introduced the concept of patched multi-key partitioning as
a solution for the multi-key partitioning problem of relational
tables. In value-based partitioning like the commonly used hash
partitioning choosing multiple partition keys is not possible with-
out replicating data. We described that hierarchical partitioning
is no reasonable solution to the problem and therefore defined
the concept of patched multi-key partitioning, which is based
on handling exceptions to the partitioning constraint using e.g.
PatchIndexes. By mapping relational tables to graphs we can use
existing graph partitioning algorithms to find a patched parti-
tioning. We described how patched multi-key partitioning can
be exploited in query execution and showed the opportunities
of the approach to achieve robust query performance for work-
loads requiring different partitionings in our evaluation.We think
patched multi-key partitioning is a promising concept for dis-
tributed query processing. In the future, we aim at designing
a graph algorithm that solves the challenges stated in the eval-
uation, especially being aware that the graph is multipartite.
Additionally, the approach should be extended to whole data-
base schemas, i.e. propagating the partitioning information over
foreign-key related tables to enable co-partitioned joins.
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