
Offset-value coding in database query processing
Goetz Graefe
Google Inc

GoetzG@Google.com

Thanh Do∗
Celonis Inc

T.Do@Celonis.com

ABSTRACT
Recent work [8] shows how offset-value coding speeds up data-
base query execution, not only sorting but also duplicate removal
and grouping (aggregation) in sorted streams, order-preserving
exchange (shuffle), merge join, and more. It already saves thou-
sands of CPUs in Google’s Napa and F1 Query systems, e.g., in
grouping algorithms and in log-structured merge-forests.
In order to realize the full benefit of interesting orderings, how-
ever, query execution algorithms must not only consume and
exploit offset-value codes but also produce offset-value codes
for the next operator in the pipeline. Our research has sought
ways to produce offset-value codes without comparing successive
output rows one-by-one, column-by-column. This short paper
introduces a new theorem and, based on its proof and a simple
corollary, describes in detail how order-preserving algorithms
(from filter to merge join and even shuffle) can compute offset-
value codes for their outputs. These computations are surpris-
ingly simple and very efficient.

1 INTRODUCTION
Tree-of-losers priority queues [11, 22] and offset-value coding [6,
20] enable the most efficient sort algorithms. When sorting a
database table with 𝑁 rows, the provable lower bound for row
comparisons is 𝑙𝑜𝑔2 (𝑁 !) ≈ 𝑁𝑙𝑜𝑔2 (𝑁 /𝑒) with 𝑒 ≈ 2.718. Exter-
nal merge sort using tree-of-losers priority queues for both run
generation and merging exceeds this lower bound by only 1-
2%. Offset-value coding truncates shared row prefixes and turns
prefix sizes into order-preserving surrogate keys. These surro-
gate keys limit the count of column value comparisons for 𝑁
rows with 𝐾 key columns to 𝑁 × 𝐾 [8]. Importantly, there is no
𝑙𝑜𝑔(𝑁 ) factor. Offset-value codes alone decide the remainder of
the 𝑙𝑜𝑔2 (𝑁 !) row comparisons.

Recent work shows how offset-value coding complements “in-
teresting orderings” [27] to speed up database query processing,
not only sorting but also duplicate removal and grouping (aggre-
gation) in sorted streams, order-preserving exchange (shuffle),
merge join, and more [8, 9]. For the full benefit of interesting
orderings, all execution algorithms relying on sort order must
also exploit offset-value coding in their comparisons of rows and
columns. Moreover, order-preserving query execution algorithms
must not only consume but also produce offset-value codes, to
be consumed and exploited by the next operator in the pipeline.

Nevertheless, computing offset-value codes in order-preserving
query execution algorithms has not received any attention, and
the onlymethod known to-date – comparing an operator’s output
row-by-row, column-by-column – is so expensive that it renders
producing offset-value across database operators much less at-
tractive or even worthless. In contrast, new, simple techniques

∗Work done at Google Inc.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

efficiently compute offset-value codes for order-preserving algo-
rithms in database query execution. The new techniques do not
require comparisons row-by-row, column-by-column; instead,
offset-value codes in the output depend only on offset-value
codes in the inputs. There is no need for additional column value
comparisons beyond those required in the operation itself, e.g.,
column value comparisons in the merge logic of merge join.
The new techniques are implemented in Google’s Napa [1] and
F1 Query [26, 28] systems.

2 RELATED PRIORWORK
The context of our work are Google’s Napa [1] and F1 Query [26,
28] systems. Napa is a data warehouse that maintains thou-
sands of materialized views in log-structured merge-forests [25].
F1 Query is a federated query processing platform that executes
SQL queries over tables in various Google storage systems such
as Spanner [7], BigTable [5], and Napa. Both Napa and F1 Query
employ sort order for efficient data access and data manipulation.

Pioneering work on sorting established the benefits of tree-of-
losers priority queues and of offset-value coding, both for run gen-
eration and external merge steps [6, 11, 20, 22]. Pioneering work
in the database field established the value of sort-based query exe-
cution, notably merge join but also duplicate removal and group-
ing [3, 10, 27]. Surveys on database query evaluation [13, 15]
cover sorting and offset-value coding but fail to recognize offset-
value coding as a significant opportunity throughout sort-based
query execution. Recent work [8, 9] fills that gap but fails to offer
efficient derivation of offset-value codes for output rows. The
present short paper fills this remaining gap.

3 BACKGROUND: OFFSET-VALUE CODING
AND TREE-OF-LOSERS PRIORITY QUEUES

A tree-of-losers priority queue [11, 22], also known as a tourna-
ment tree, embeds a balanced binary tree in an array, with the
tree’s unary root in array slot 0. It is efficient due to leaf-to-root
passes with one comparison per tree level; root-to-leaf passes
with two comparisons per tree level are not required. As in a
sports tournament where each round of competition eliminates
one contestant, the principal rules are that (i) two candidate key
values compete at each binary node in the tree and (ii) after a
comparison of two candidates, the loser remains in the node and
the winner becomes a candidate in the next tree level. Thus, in a
priority queue with 𝑁 entries, a new overall winner reaches the
root after 𝑙𝑜𝑔2 (𝑁 ) comparisons.

When merging runs, a fixed pair of runs competes at each leaf
node. Run generation merges “sorted” runs of a single row each.
Run generation by replacement selection can try to extract longer
sorted runs from the unsorted input: one additional comparison
per input row doubles the expected run size, halves the run count,
and saves one comparison per row during merging.

Figure 1, adapted from [22], shows a tree-of-losers priority
queue merging 𝐹 = 12 sorted runs. The left half with runs 0-7 is
cropped from Figure 1. The dashed boxes represent the current
candidates from runs to be merged; the solid boxes are tree nodes

Short Paper

 

 

Series ISSN: 2367-2005 464 10.48786/edbt.2023.38

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.38


Table 1: Offset-value codes in a sorted file or stream.

Rows and their Descending OVC Ascending OVC
column values offset 𝑑𝑜𝑚𝑎𝑖𝑛 − 𝑣𝑎𝑙𝑢𝑒 OVC arity − offset 𝑣𝑎𝑙𝑢𝑒 OVC
5 7 3 9 0 95 95 4 5 405
5 7 3 12 3 88 388 1 12 112
5 8 4 6 1 92 192 3 8 308
5 9 2 7 1 91 191 3 9 309
5 9 2 7 4 - 400 0 - 0
5 9 3 4 2 97 297 2 3 203
5 9 3 7 3 93 393 1 7 107

Figure 1: Strings in a tree-of-losers priority queue.

in a tree-of-losers priority queue. The example node in the top-
right corner explains the numbers in each node.

The overall smallest key value, “061”, is in the tree’s root node.
Interestingly, key value “154” is above key value “087”. After
“154” emerged as the winner from the left subtree and “061” from
the right subtree, “154” was the loser in the “final match” of this
“tournament” and was left behind. The runner-up of the right
subtree, “087”, had to remain within that subtree.

The next step in the merge logic moves key value “061” from
the tree root to the merge output. The following step gets a
new key value from input 9, the origin of key value “061”. This
successor key starts a new leaf-to-root pass at the the same leaf.
This leaf-to-root pass bubbles the next lowest key value to the
root in 𝑙𝑜𝑔2 (𝐹 ) steps: If that next key value is “092”, it wins over
“503” but loses to “087” and is left behind; then “087” wins over
“154” and reaches the root.

Offset-value coding [6] captures one row’s key value relative to
another key that is earlier in the sort sequence. Offset-value codes
are set after comparisons. A loser’s new offset is the position
where the keys first differ, e.g., a column index; the value is the
loser’s data value at that offset. Equivalently, the offset is the
size of the shared prefix. For example, a duplicate key shares the
entire key and hence has an offset equal to the key size.

Table 1 shows the derivation of descending and ascending
offset-value codes in a stream of rows in ascending order on all
columns. Each key is encoded relative to its predecessor. With
four sort columns, the arity of the sort key is 4; the domain of
each column is 1. . . 99. Descending offset-value codes take the
actual offset but the negative of the column value. Ascending
offset-value codes take the negative offset but the actual column
value. Table 1 ignores that small key domains permit encoding
multiple key columns together.

If two rows and their key values 𝐴 and 𝐵 are encoded relative
to the same key𝐶 , and if the offsets of𝐴 and 𝐵 differ, then the one

Figure 2: Offsets and values in a tree-of-losers priority
queue.

with the higher offset is earlier in the sort sequence. Otherwise,
if the two data values at that offset differ, then these data values
decide the comparison. Otherwise, additional data values in 𝐴
and 𝐵 must be compared. With offsets and values combined as
shown in Table 1, often a single integer comparison can sort two
keys 𝐴 and 𝐵 encoded relative to the same key 𝐶 .

If 𝐴 sorts lower (earlier) than 𝐵, then 𝐵 is the loser in this
comparison and can be encoded relative to the winner𝐴. If offset-
value codes decided the comparison, the offset-value code of
𝐵 relative to 𝐶 is also the offset-value code of 𝐵 relative to 𝐴.
Otherwise, the offset for 𝐵 increases by the count of column
comparisons required to determine winner and loser, and the
value is taken at that new offset. Similar rules apply if 𝐴 is the
loser in the comparison.

In a tree-of-losers priority queue with offset-value coding,
each tree node was a loser to the local winner and the local
offset-value code is relative to the local winner. Along the overall
winner’s leaf-to-root path, all key values are coded relative to its
key value.

Figure 2 shows the same key values as Figure 1 but adds offset-
value codes. In the figure, each node indicates an offset and a
character at that offset. Although an offset-value code for an
ascending sort order requires negating either the offset or the
value, this is not shown in Figure 2. In an implementation, each
node in the tree-of-losers priority queue contains only an offset-
value code and an index; strings remain in the input buffers
reachable because the index values are run identifiers.

Recall that input runs are encoded with prefixes truncated.
For example, “092” is encoded relative to its predecessor “061”.
After “061” moves from the tree root to the merge output, “092”
starts a leaf-to-root pass. Keys “503”, “087”, and “154” on this
path are all encoded relative to the prior overall winner “061”.
Offset 1 is earlier in the sort order than offset 0; therefore, “092” is

465



earlier than “503”. “503” stays in place and “092” moves up. There,
offset 1 equals offset 1, but data value ‘8’ is less than data value ‘9’;
therefore, “092” remains behind as “087” moves up. Finally, “087”
wins over “154” and reaches the root.

In this leaf-to-root pass, offset-value codes decide all three com-
parisons, two by offsets and one by data values encoded within
offset-value codes. Not a single string comparison is required and
not a single offset-value code needs re-calculation.

Merging sorted runs replaces a winner with its successor in
the same merge input. With merge inputs’ fixed assignment to
leaf nodes, a successor retraces the leaf-to-root path of the prior
overall winner. Since this successor as well as all keys on its
leaf-to-root path are encoded relative to the prior overall winner,
offset-value coding applies to all comparisons in a tree-of-losers
priority queue.

Offset-value codes decidemany comparisons in a tree-of-losers
priority queue. Column value comparisons are required only if
two rows have equal offset-value codes, with column compar-
isons starting at the offset. After such a row comparison is de-
cided, the count of column value comparisons is added to the
loser’s offset.

With 𝐾 sort columns, the sum of all offset increments is lim-
ited to 𝐾 in each row; in an input with 𝑁 rows, the sum of all
increments and thus the count of all column value comparisons
are limited to 𝑁 × 𝐾 . Importantly, there is no 𝑙𝑜𝑔(𝑁 ) multiplier.
Thus, tree-of-losers priority queue and offset-value coding guar-
antee that the effort for column value comparisons is linear in
the count of rows and in the count of sort columns, quite like the
effort for computing hash values in hash-based query execution.

Comparisons of offset-value codes are free if they are sub-
sumed in other algorithm activities and data structures. In quick-
sort, for example, the inner-most loop not only compares key
values but also looping indexes: when the loops from the left
and the right meet, the current partitioning step is complete. In
priority queues, the inner-most loop compares key values only
after testing whether there even are key values. During queue
construction, some entries might not have been filled yet; after
the end of some merge inputs, some queue entries no longer
have valid keys; and during run generation by merging many
single-row runs, there practically is only queue build-up and
tear-down.

A tree-of-losers priority queue for run generation by replace-
ment selection may hold key values −∞ and +∞ as early and
late fences, valid keys assigned to the current run, and valid
keys for the next run. These cases need some indicator field in
each queue entry, but they require only 2 bits. Even with mul-
tiple early and late fences, e.g., one for each merge input [15],
30 or 62 bits remain and can hold an offset-value code. A single
comparison instruction can test whether the two relevant keys
are valid and compare their offset-value codes: if two rows have
the same 32- or 64-bit value, then they are both valid (neither
early nor late fences), they go to the same output run, they dif-
fer from their shared base row (an earlier winner) at the same
offset, they have the same value at that offset, and the next step
must compare further columns. As the comparison of offset-value
codes is already complete when the indicator fields have been
inspected for administration of the inner-most loop, offset-value
code comparisons are free.

Offset-value coding can speed up not only merge sort but
also order-preserving exchange (merging shuffle), merge join,
set operations such as intersection, and more. For example, in a
query like “select. . . , count (distinct . . . ) group by. . . ”, the sort can

detect duplicate rows by offsets equal to the column count and,
after the sort, in-stream aggregation can detect group boundaries
by offsets smaller than the grouping key.

4 OFFSET-VALUE CODING IN RELATIONAL
QUERY EXECUTION OPERATORS

What has been missing to-date are simple and efficient tech-
niques for deriving offset-value codes in the output of database
operators other than merge sort. Surprisingly, a new theorem
and its corollary enable the wanted solution with no additional
column value comparisons beyond those required for computing
output rows.

Definitions: For key values 𝐴 and 𝐵, let 𝑝𝑟𝑒 (𝐴, 𝐵) ≥ 0 be
the length of their maximal shared prefix; let 𝑣𝑎𝑙 (𝐴, 𝑖) with 𝑖 ≥
0 be the data at offset 𝑖 within key value 𝐴;” let 𝑣𝑎𝑙 (𝐴, 𝐵) =

𝑣𝑎𝑙 (𝐵, 𝑝𝑟𝑒 (𝐴, 𝐵)) be the first difference in key value 𝐵 relative
to key value 𝐴; let 𝐴 < 𝐵 mean that 𝐴 sorts lower (earlier) than
𝐵; and let 𝑜𝑣𝑐 (𝐴, 𝐵) with 𝐴 < 𝐵 be the offset-value code of key
value 𝐵 relative to key value 𝐴, computed from 𝑝𝑟𝑒 (𝐴, 𝐵) and
𝑣𝑎𝑙 (𝐴, 𝐵) as in Table 1.

Proposition: For key values 𝐴 < 𝐵 < 𝐶 with 𝐴 ≠ 𝐵 or 𝐵 ≠ 𝐶 ,
𝑜𝑣𝑐 (𝐴, 𝐵) ≠ 𝑜𝑣𝑐 (𝐵,𝐶).

Proof (by contradiction): 𝑜𝑣𝑐 (𝐴, 𝐵) = 𝑜𝑣𝑐 (𝐵,𝐶) would imply
that𝐶 has the same data value as 𝐵 at the same offset, e.g., column
index, but this would violate the definition of offset-value codes,
which requires the maximal shared prefix.

Examples: Table 1 shows no successive equal offset-value
codes.

Theorem: For key values 𝐴 < 𝐵 < 𝐶 , in ascending offset-
value coding 𝑜𝑣𝑐 (𝐴,𝐶) = 𝑚𝑎𝑥 (𝑜𝑣𝑐 (𝐴, 𝐵), 𝑜𝑣𝑐 (𝐵,𝐶)) and in de-
scending offset-value coding𝑜𝑣𝑐 (𝐴,𝐶) =𝑚𝑖𝑛(𝑜𝑣𝑐 (𝐴, 𝐵), 𝑜𝑣𝑐 (𝐵,𝐶)).

Proof (for ascending offset-value codes in an ascending sort,
in three cases by the lengths of maximal shared prefixes): (i) If
𝑝𝑟𝑒 (𝐴, 𝐵) > 𝑝𝑟𝑒 (𝐵,𝐶), then 𝑝𝑟𝑒 (𝐴,𝐶) = 𝑝𝑟𝑒 (𝐵,𝐶), 𝑣𝑎𝑙 (𝐴,𝐶) =

𝑣𝑎𝑙 (𝐵,𝐶), and 𝑜𝑣𝑐 (𝐴,𝐶) = 𝑜𝑣𝑐 (𝐵,𝐶). With 𝑜𝑣𝑐 (𝐴, 𝐵) < 𝑜𝑣𝑐 (𝐵,𝐶),
the theorem holds. (ii) Otherwise, if 𝑝𝑟𝑒 (𝐴, 𝐵) < 𝑝𝑟𝑒 (𝐵,𝐶), then
𝑝𝑟𝑒 (𝐴,𝐶) = 𝑝𝑟𝑒 (𝐴, 𝐵), 𝑣𝑎𝑙 (𝐴,𝐶) = 𝑣𝑎𝑙 (𝐴, 𝐵), and 𝑜𝑣𝑐 (𝐴,𝐶) =

𝑜𝑣𝑐 (𝐴, 𝐵).With𝑜𝑣𝑐 (𝐴, 𝐵) > 𝑜𝑣𝑐 (𝐵,𝐶), the theoremholds. (iii) Oth-
erwise, 𝑝𝑟𝑒 (𝐴, 𝐵) = 𝑝𝑟𝑒 (𝐵,𝐶) and, by the lengths of maximal
shared prefixes, 𝑣𝑎𝑙 (𝐴, 𝐵) < 𝑣𝑎𝑙 (𝐵,𝐶). Thus,𝑝𝑟𝑒 (𝐴,𝐶) = 𝑝𝑟𝑒 (𝐵,𝐶),
𝑣𝑎𝑙 (𝐴,𝐶) = 𝑣𝑎𝑙 (𝐵,𝐶), and𝑜𝑣𝑐 (𝐴,𝐶) = 𝑜𝑣𝑐 (𝐵,𝐶).With𝑜𝑣𝑐 (𝐴, 𝐵) <
𝑜𝑣𝑐 (𝐵,𝐶), the theorem holds.

Examples: Case (i) in the proof applies to the first three rows
in Table 1. If the second row were removed, then the offset-value
codes of the third row would change in neither ascending nor
descending offset-value coding. As an example of case (ii), if the
second-to-last row were removed in Table 1, the offset-value
codes of the last row would be those of the removed row. As an
example of case (iii), if the third row were removed in Table 1, the
offset-value codes of the fourth row would remain unchanged.

Corollary (the new “filter theorem”): Our new theorem above
extends to multiple intermediate keys: for a sorted list of key
values 𝑋0 < 𝑋1 < · · · < 𝑋𝑛−1 < 𝑋𝑛 and ascending offset-value
coding, 𝑜𝑣𝑐 (𝑋0, 𝑋𝑛) =𝑚𝑎𝑥𝑖=1...𝑛𝑜𝑣𝑐 (𝑋𝑖−1, 𝑋𝑖 ).

Proof (sketch): By repeated application of the theorem.
Implication: When a filter drops rows from a sorted stream,

simple and efficient integer calculations can derive offset-value
codes for the output from offset-value codes of the input.

466



Table 2: Offset-value codes after a filter.

Rows and their Ascending OVC
column values arity − offset 𝑣𝑎𝑙𝑢𝑒 OVC
5 7 3 9 4 5 405
5 9 3 7 3 9 309

4.1 Filter
Afilter with a predicate computes offset-value codes for its output
by directly applying the “filter theorem” above: an output row’s
offset-value code is (in ascending encoding) the maximum of its
offset-value code in the input and of the offset-value codes of
rows that failed the filter predicate since the prior output row. The
same appliesmutatis mutandis for descending offset-value coding
and for offset-value coding using byte offsets within normalized
keys. Table 2 illustrates the calculation for ascending offset-value
codes with the data of Table 1, assuming that only the first input
row and the last input row satisfy the filter predicate.

4.2 Projection
Projection, i.e., removal of input columns as well as calculation
of new columns from existing columns (all within a single row),
typically does not change the sort order. “Relationally pure” pro-
jection, however, includes removal of duplicate rows, which of
course might change the sequence of rows (see Section 4.4).

If all columns in the sort key survive the projection, offset-
value codes in the output are the same as in the input. If not, the
offset must be limited to the prefix (column count) that survives.

4.3 Segmented sorting
Segmented query execution means that a single stream is divided
into segments, one after another, that can be processed one at a
time. A typical example is a stream sorted on (A, B) but required
sorted on (A, C) – one can either sort the entire stream on (A, C)
or one can segment the input on distinct values of (A) and sort
each segment only on (C). In this example, A, B, and C can be
individual columns or lists of columns.

To segment a sorted stream with offset-value codes, inspection
of these code values suffices: an offset smaller than the segmenta-
tion key indicates a segment boundary. All other offsets must be
cut to the size of the segmentation key, to be extended again by
the sort within each segment. In the example above, all offsets
within a segment are cut to the size of (A); the associated value
is the first column value of (C). Sorting a segment on (C) refines
these offset-value codes in the usual way to reflect the sort order
on (A, C). For a more concrete example using Table 1, segmenting
on the first two columns does not require any column value com-
parisons; an offset of less than two (and corresponding ranges of
offset-value codes) indicates a boundary between segments.

4.4 Duplicate removal
In a sorted stream with offset-value codes, duplicate removal
suppresses input rows with offsets equal to the arity (count of
columns). In Table 1, for example, an offset of 4 (and correspond-
ing offset-value codes) indicates a duplicate row. All other rows,
i.e., the output rows, retain their offset-value codes from the in-
put. In the duplicate-free output, no row has an offset equal to
the arity. The same applies mutatis mutandis if the sort key is
reduced based on functional dependencies [29].

4.5 Grouping and aggregation
In a stream with offset-value codes sorted on a “group by” list,
grouping aggregates input rows with offsets equal to or larger
than the “group by” list. In the aggregation output, no row has
an offset equal to or larger than the “group by” list. The output
rows retain the offset-value codes of the first row in each group
of input rows. In Table 1, for example, grouping on the first two
columns can use offset-value codes similarly to segmentation
(see Section 4.3).

4.6 Pivoting
Pivoting turns rows into columns, e.g., from (year, month, sales)
to (year, january_sales... december_sales). In many aspects, in-
cluding the set of useful algorithms, pivoting is like grouping
and aggregation. This applies in particular to the benefit of offset-
value codes in the input and the calculation of offset-value codes
in the output.

4.7 Merge join
The logic of merge join is similar to an external merge sort; hence,
it can exploit offset-value codes in its two sorted inputs. Minor
variations of merge inner join can provide all join types as well
as set operations such as intersection. The merge logic supports
cross-table equality predicates, e.g., a primary key and a foreign
key; a subsequent filter can enforce other cross-table predicates
(see Section 4.1, with caveats for semi joins and outer joins).

Semi joins (SQL “exists” sub-queries) and anti semi joins (SQL
“not exists” sub-queries) select rows from one input based on a
join predicate rather than an filter predicate within a row (see
Section 4.1). Nonetheless, the rule for setting offset-value codes
in the output is the same as given in the “filter theorem” above,
just like the derivation of Table 2 from Table 1 as discussed in
Section 4.1.

Inner joins are similar: the offset-value codes of one input are
preserved in the output, rows without match affect the offset-
value code of the next row with a match, and rows with duplicate
matches must have offset-value codes for duplicate keys.

In summary, the merge join logic is similar to a merge step
in an external merge sort: it might require comparisons of col-
umn values but it can compute offset-value codes for the output
without additional column values comparisons.

4.8 Nested-loops join, look-up join
In the “filter theorem” above, it does not matter whether input
rows fail a single-table predicate in a filter, a two-table predicate
in a semi join, or a many-table predicate in nested iteration.
Thus, the “filter theorem” above applies here just as much as
in Sections 4.1 and 4.7. Nested-loops join or lookup join can be
order-preserving. Note that there is no requirement that the join
predicate is an equality predicate. We ignore here right semi join,
right anti semi join, right outer join, and full outer join, which
leaves left semi join, left anti semi join, inner join, and left outer
join; we assume that the left input is the outer input and the right
input is the inner input.

4.9 Order-preserving shuffle
An order-preserving one-to-many “splitting” shuffle resembles
a filter with respect to each output partition (see Section 4.1),
because each output stream is a selection from the overall input
stream. An order-preserving many-to-one “merging” shuffle re-
quires the standard merge logic, very similar to a merge step in

467



an external merge sort. A tree-of-losers priority queue can ex-
ploit offset-value codes in the input and produce new offset-value
codes in the output.

4.10 Ordered scans
Data access is a source of offset-value codes as important as
sorting. All sorted scans can produce offset-value codes.

Column storage is often sorted with the leading key columns
compressed by run-length encoding. Fortunately, as described
in recent work [8], such scans can produce row-by-row offset-
value codes without sorting and even without any column value
accesses or column value comparisons. Thus, these scans can
provide offset-value codes practically for free.

Traditional b-trees readily support sorted scans. Page-wide
prefix compression [2] gives offset-value coding a head start;
compression within index leaves by next-neighbor difference,
e.g., in Shore [4], provides offset-value codes practically for free.

Today’s ubiquitous log-structured merge-forests and stepped-
merge trees [21, 25] support a sorted scan per partition, which
can include offset-value codes; a merge of such scans benefits
from offset-value codes and merge logic using a tree-of-losers
priority queue readily produces offset-value codes for the merge
output.

In non-unique secondary indexes, lists of row identifiers are
usually sorted and compressed using one of the above compres-
sion techniques and thus can deliver such lists with offset-value
codes. Range queries need to merge lists of row identifiers; again,
the merge logic consumes, benefits from, and produces offset-
value codes. Multi-dimensional b-tree access, e.g., MDAM [23],
similarly merges sorted lists of row identifiers. Sorted lists of
row identifiers are similarly useful for index intersection and
index join, i.e., “covering” a query in “index-only retrieval” with
multiple secondary indexes of the same table [18].

4.11 Summary of new techniques
In the sort-based and order-preserving query execution algo-
rithms considered above, calculation of new offset-value codes
in the operations’ output can be simple and efficient. Far from re-
quiring row-by-row column-by-column data comparisons, offset-
value codes in the output depend only on offset-value codes in
the inputs, as proven by a new theorem and a corollary. There is
no need for additional column value comparisons beyond those
performed in the operation itself, e.g., column value comparisons
in the merge logic of merge join. Ordered storage structures, e.g.,
b-trees, can preserve the effort for comparisons spent during
index creation -– they can do so by storing offset-value codes
explicitly, by prefix truncation (encoding each record relative to
its immediate predecessor), or by run-length encoding of lead-
ing sort columns. Scans over either format can readily produce
offset-value codes and, with the new techniques of this paper,
sort-based operations can easily carry them forward, i.e., produce
offset-value codes in their output derived from offset-value codes
in their input.

5 IMPLEMENTATION EXPERIENCE
This section briefly summarizes how offset-value coding is used
in F1 Query [26, 28]. At a high level, F1 Query employs offset-
value coding in its sorting logic and takes advantage of offset-
value codes in intermediate results (e.g., spilled files) and across
relational operators to further improve query performance.

The F1 sort operator uses external merge sort with tree-of-
losers priority queues and offset-value coding for both run gen-
eration and merging. Each tree entry encodes offset and value
bits in an unsigned 64-bit integer offset-value code. Invalid key
values, e.g., after a merge input is exhausted, are also folded into
this integer. In a sense, each comparison of offset-value codes is
folded into a test whether or not a run is exhausted; thus, the
comparison of offset-value codes is practically free.

Offset-value codes for rows in sorted runs are a byproduct
of run generation. These offset-value codes later improve the
efficiency of merging. For example, the merge logic inspects the
offset-value code of the next row from the winner’s input. If this
next key value has an offset equal to the number of key columns,
the row goes directly to the output buffer, bypassing the merge
logic entirely.

Since many sort-based operators (e.g., in-stream aggregation,
merge join, analytic functions, and order-preserving exchange)
can leverage offset-value codes in their inputs, F1 Query supports
carrying offset-value codes between operators. An artificial col-
umn for offset-value codes is introduced during query planning
for order-producing physical operators. Order-producing rela-
tional operators use the logic described in this paper to produce
offset-value codes in its output. The sorting techniques described
in this paper are also employed in Napa [1].

6 PERFORMANCE EVALUATION
This section tests two claims or hypotheses about offset-value
coding, sort-based query processing, and interesting orderings:

(1) Offset-value coding can speed up external merge sort and
also its consumers, e.g., in-stream aggregation, merge join,
segmentation, and order-preserving (merging) exchange.

(2) Offset-value coding together with interesting orderings
can be more efficient than hash-based query plans.

Some readers may think these claims are obviously true, but
we nonetheless wish to dispel any conceivable remaining doubt.
These hypotheses do not claim universally superior performance,
merely new performance advantages for sort-based query pro-
cessing due to offset-value coding in contexts beyond merge
sort.

In order to focus on order-based operators and offset-value
coding, all experiments use a single execution thread. The hard-
ware is an engineering workstation; more detailed specifications
are omitted on purpose. Each experiment starts with a warm
cache, i.e., input data pre-fetched into memory. The measure-
ments below come from Google’s public benchmark library [12].
Test data are synthetic yet similar to the actual data in our daily
production web analysis with many rows and many key columns.
Each key column is an 8-byte integer with only a few distinct
values.

Figure 3, in a test of hypothesis 1, shows the effort of offset-
value coding in in-stream aggregation. For fast detection of group
boundaries, the operation exploits the offset-value codes from
a preceding sort operation. This is compared to using full com-
parisons of multiple key columns. The count of input rows is
1,000,000. The ratio of input rows and output rows varies. For
example, a ratio of 1 indicates all input rows are distinct (i.e., all
groups have size 1) and a ratio of 100 indicates that on average
100 input rows contribute to each output row. All queries of the
type “select. . . , count (distinct. . . ) group by. . . ” require a two-step
process. Figure 3 shows that, within the sorted output, testing
the offset against the count of grouping columns is much faster

468



Figure 3: Group boundaries from offset-value codes.

Figure 4: Query plans for an “intersect distinct” query.

than full comparisons of multiple key columns. Thus, offset-value
codes benefit not only sorting but also other query execution
algorithms.

Figure 4 shows two query evaluation plans, one hash-based
and the other one sort-based, for a simple SQL query computing
the intersection of two tables, e.g., “select B from T1 intersect
select B from T2”. If column B is not a primary key in tables T1
and T2, correct execution requires duplicate removal plus a join
algorithm. The query plans for “intersect all” would be practically
the same, counting duplicates rather than removing them; and
similarly for set differences using “except” and “except all” syntax.
Index intersection for "and" predicates uses the same kinds of
query plans, as does index join [18] when emulating columnar
storage in data warehouses with traditional indexes (in the ideal
case, compressed).

In the hash-based plan, there are three blocking operators:
two hash aggregation operators for duplicate removal and a hash
join for set intersection. In contrast, the sort-based plan has only
two blocking operators: both are in-sort aggregation operators
for duplicate removal. The merge join computing the intersec-
tion exploits not only interesting orderings but also offset-value
codes in the output of in-sort aggregation. Conceivably, advanced
techniques could reduce the counts of blocking operators in both
sort- and hash-based query plans, e.g., integrated hashing [14, 18],
groupjoin [24], or co-group-by instead of join [9].

Figure 5 shows the performance of the plans in Figure 4. Each
input table has 100,000,000 rows; each blocking operator’s mem-
ory holds 10,000,000 rows. In a hash-based plan, duplicate re-
moval and join spill to temporary storage such that many rows
are spilled twice. In contrast, the sort-based plan spills each input
row only once. Thus, interesting orderings cut the spilling effort
in half. Moreover, offset-value codes from the in-sort aggregation
operators speed up row comparisons in the merge join.

In summary, while the queries in these experiments are simple
and common, the measurements support our two claims about
the benefits of offset-value coding in database query processing.

Figure 5: Performance of “intersect distinct” query plans.

7 SUMMARY AND CONCLUSIONS
Computing offset-value codes in order-preserving query execu-
tion algorithms has not received any attention to-date for two
reasons. First, new research has only recently widened the scope
of offset-value coding from merge sort to all sort-based query
execution algorithms and query plans, including complex join
and grouping queries. Second, the only method known to-date –
comparing an operator’s output row-by-row, column-by-column
– is so expensive that it thwarts all benefit of offset-value codes
in query execution.

A new theorem enables an alternative method for comput-
ing or propagating offset-value codes. Beyond its use here, this
new theorem already enables efficient maintenance of offset-
value codes in near-optimal sorting with tree-of-losers priority
queues [17] and in b-trees with prefix truncation (during key
deletion) [19].

With this solid foundation, calculating offset-value codes for
operator output in database query execution is surprisingly sim-
ple and very efficient. Importantly, there is no need for any col-
umn value comparisons beyond those required to compute output
rows. Offset-value coding throughout sort-based query execution
takes “interesting orderings” to their full potential, not only in
query planning but also in plan execution. In binary operations,
e.g., merge join and intersection, offset-value codes decide many
or most row comparisons, whereas in unary operations, e.g., du-
plicate removal and grouping, offset-value codes decide all row
comparisons.

Offset-value coding already saves thousands of CPUs inGoogle’s
Napa and F1 Query systems, because ingestion (run generation),
compaction (merging), and query processing in log-structured
merge-forests rely heavily on sorting and merging. We antici-
pate ever more savings in the future as sorting and merging are
essential in many data processing pipelines and in many storage
formats.

In conclusion, if storage structures are kept sorted on column
values, if query optimization considers interesting orderings, and
if query execution fully employs offset-value coding plus some
techniques from earlier work [8, 16], then sort-based query pro-
cessing can consistently be at least as efficient as hash-based
query processing. Hash-partitioning remains recommended for
parallel and distributed query execution until future innova-
tion ensures efficient, well-balanced, and failure-tolerant range-
partitioning.

ACKNOWLEDGMENTS
We thank Herald Kllapi and the reviewers for their helpful sug-
gestions.

469



REFERENCES
[1] Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan

Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Zongchang (Jim) Chen,
Ming Dai, Thanh Do, Haoyu Gao, Haoyan Geng, Raman Grover, Bo Huang,
Yanlai Huang, Zhi (Adam) Li, Jianyi Liang, Tao Lin, Li Liu, Yao Liu, Xi Mao,
Yalan (Maya) Meng, Prashant Mishra, Jay Patel, Rajesh S. R., Vijayshankar
Raman, Sourashis Roy, Mayank Singh Shishodia, Tianhang Sun, Ye (Justin)
Tang, Junichi Tatemura, Sagar Trehan, Ramkumar Vadali, Prasanna Venkata-
subramanian, Gensheng Zhang, Kefei Zhang, Yupu Zhang, Zeleng Zhuang,
Goetz Graefe, Divyakant Agrawal, Jeff Naughton, Sujata Kosalge, and Hakan
Hacıgümüş. 2021. Napa: Powering Scalable Data Warehousing with Robust
Query Performance at Google. Proc. VLDB Endow. 14, 12 (jul 2021), 2986–2997.
https://doi.org/10.14778/3476311.3476377

[2] Rudolf Bayer and Karl Unterauer. 1977. Prefix B-Trees. ACM Trans. Database
Syst. 2, 1 (1977), 11–26. https://doi.org/10.1145/320521.320530

[3] MikeW. Blasgen and Kapali P. Eswaran. 1977. Storage and Access in Relational
Data Bases. IBM Syst. J. 16, 4 (1977), 362–377. https://doi.org/10.1147/sj.164.
0363

[4] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall, Mark L.
McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon, C. K. Tan,
Odysseas G. Tsatalos, Seth J. White, and Michael J. Zwilling. 1994. Shoring Up
Persistent Applications. In Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, Minneapolis, Minnesota, USA, May 24-27,
1994, Richard T. Snodgrass and Marianne Winslett (Eds.). ACM Press, 383–394.
https://doi.org/10.1145/191839.191915

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
2008. Bigtable: A Distributed Storage System for Structured Data. ACM Trans.
Comput. Syst. 26, 2, Article 4 (jun 2008), 26 pages. https://doi.org/10.1145/
1365815.1365816

[6] W. M. Conner. 1977. Offset-value coding. In IBM Technical Disclosure Bulletin.
[7] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally
Distributed Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (aug 2013),
22 pages. https://doi.org/10.1145/2491245

[8] Thanh Do and Goetz Graefe. 2022. Robust and Efficient Sorting with Offset-
Value Coding. ACM Trans. Database Syst. (2022). https://doi.org/10.1145/
3570956

[9] Thanh Do, Goetz Graefe, and Jeffrey Naughton. 2022. Efficient sorting, du-
plicate removal, grouping, and aggregation. ACM Trans. Database Syst. 47, 4
(2022). https://doi.org/10.1145/3568027

[10] Robert Epstein. 1979. Techniques for processing of aggregates in relational
database systems. In Univ. of California at Berkeley, UCB/ERL Memorandum
M79/8.

[11] Martin A. Goetz. 1963. Internal and Tape Sorting Using the Replacement-
Selection Technique. Commun. ACM 6, 5 (May 1963), 201–206. https://doi.
org/10.1145/366552.366556

[12] Google. [n.d.]. A microbenchmark support library. https://github.com/google/
benchmark

[13] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM
Comput. Surv. 25, 2 (1993), 73–170. https://doi.org/10.1145/152610.152611

[14] Goetz Graefe. 1994. Volcano— An Extensible and Parallel Query Evaluation
System. IEEE Trans. on Knowl. and Data Eng. 6, 1 (1994), 120–135. https:
//doi.org/10.1109/69.273032

[15] Goetz Graefe. 2006. Implementing sorting in database systems. ACM Comput.
Surv. 38, 3 (2006), 10. https://doi.org/10.1145/1132960.1132964

[16] Goetz Graefe. 2011. A Generalized Join Algorithm. In Datenbanksysteme
für Business, Technologie und Web (BTW), 14. Fachtagung des GI-Fachbereichs
"Datenbanken und Informationssysteme" (DBIS), 2.-4.3.2011 in Kaiserslautern,
Germany (LNI), Theo Härder, Wolfgang Lehner, Bernhard Mitschang, Harald
Schöning, and Holger Schwarz (Eds.), Vol. P-180. GI, 267–286. https://dl.gi.
de/20.500.12116/19583

[17] Goetz Graefe. 2023. Priority queues for database query processing. In Daten-
banksysteme für Business, Technologie und Web (GI-Fachtagung BTW 2023).

[18] Goetz Graefe, Ross Bunker, and Shaun Cooper. 1998. Hash Joins and Hash
Teams in Microsoft SQL Server. In VLDB’98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27, 1998, New York City, New
York, USA, Ashish Gupta, Oded Shmueli, and Jennifer Widom (Eds.). Morgan
Kaufmann, 86–97. http://www.vldb.org/conf/1998/p086.pdf

[19] Goetz Graefe and Thanh Do. 2023. Storage and access with offset-value coding.
In preparation.

[20] Bala R. Iyer. 2005. Hardware Assisted Sorting in IBM’s DB2 DBMS. In Interna-
tional Conference on Management of Data (COMAD).

[21] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and Rama Kan-
neganti. 1997. Incremental Organization for Data Recording andWarehousing.
In VLDB’97, Proceedings of 23rd International Conference on Very Large Data
Bases, August 25-29, 1997, Athens, Greece, Matthias Jarke, Michael J. Carey,
Klaus R. Dittrich, Frederick H. Lochovsky, Pericles Loucopoulos, and Man-
fred A. Jeusfeld (Eds.). Morgan Kaufmann, 16–25. http://www.vldb.org/conf/
1997/P016.PDF

[22] Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: Sorting
and Searching (2nd. ed.). Addison Wesley Longman Publishing Co., Inc., USA.

[23] Harry Leslie, Rohit Jain, Dave Birdsall, and Hedieh Yaghmai. 1995. Efficient
Search of Multi-Dimensional B-Trees. In VLDB’95, Proceedings of 21th Inter-
national Conference on Very Large Data Bases, September 11-15, 1995, Zurich,
Switzerland, Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio (Eds.).
Morgan Kaufmann, 710–719. http://www.vldb.org/conf/1995/P710.PDF

[24] Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with
Group-By and Join by Groupjoin. Proc. VLDB Endow. 4, 11 (2011), 843–851.
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf

[25] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996),
351–385. https://doi.org/10.1007/s002360050048

[26] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis, Chan-
jun Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani Apte, FelixWeigel,
David Wilhite, Jiacheng Yang, Jun Xu, Jiexing Li, Zhan Yuan, Craig Chasseur,
Qiang Zeng, Ian Rae, Anurag Biyani, Andrew Harn, Yang Xia, Andrey Gu-
bichev, Amr El-Helw, Orri Erling, Zhepeng Yan, Mohan Yang, Yiqun Wei,
Thanh Do, Colin Zheng, Goetz Graefe, Somayeh Sardashti, Ahmed M. Aly,
Divy Agrawal, Ashish Gupta, and Shiv Venkataraman. 2018. F1 Query: Declar-
ative Querying at Scale. Proc. VLDB Endow. 11, 12 (Aug. 2018), 1835–1848.
https://doi.org/10.14778/3229863.3229871

[27] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management
System. In Proceedings of the 1979 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’79). ACM, New York, NY, USA, 23–34.
https://doi.org/10.1145/582095.582099

[28] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner,
John Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. 2013. F1: A
Distributed SQL Database That Scales. Proc. VLDB Endow. 6, 11 (Aug. 2013),
1068–1079. https://doi.org/10.14778/2536222.2536232

[29] David E. Simmen, Eugene J. Shekita, and Timothy Malkemus. 1996. Funda-
mental Techniques for Order Optimization. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996, H. V. Jagadish and Inderpal Singh Mumick (Eds.). ACM
Press, 57–67. https://doi.org/10.1145/233269.233320

470


