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ABSTRACT
Anomaly detection is an important problem in data analytics
with applications in many domains. In recent years, there has
been an increasing interest in anomaly detection tasks applied to
time series. In this tutorial, we take a holistic view on anomaly
detection in time series, starting from the core definitions and tax-
onomies related to time series and anomaly types, to an extensive
description of the anomaly detection methods proposed by differ-
ent communities in the literature. Then, we discuss shortcomings
in traditional evaluation measures. Finally, we present new solu-
tions to assess the quality of anomaly detection approaches and
new benchmarks capturing diverse domains and applications.

1 INTRODUCTION
A wide range of sensing, networking, storage, and processing
solutions enable the collection of enormous amounts of mea-
surements over time [45, 53, 59]. The recording of these mea-
surements results in an ordered sequence of real-valued data
points commonly referred to as time series. Analytical tasks over
time series data are becoming increasingly important in virtu-
ally every domain [6, 20, 30, 31, 35, 46, 48–51, 54], including
astronomy [28], biology [5], energy sciences [3], environmental
sciences [23], medicine [55], and social sciences [18].

Anomaly detection has received ample academic and industrial
attention [21, 44]. Moreover, as illustrated in Figure 1, anomaly
detection applied to time series (compared to other data types) is
attracting more interest lately. As commonly defined in the litera-
ture [7, 27], anomalies refer to data points (single points or group
of points) that do not conform to some notion of normality or an
expected behavior based on previously observed data. In practice,
anomalies can correspond to [1]: (i) noise or erroneous data (e.g.,
broken sensors), or (ii) actual data of interest (e.g., anomalous
behavior of the measured system). In both cases, detecting such
cases is crucial for many applications [2, 26].

In recent years, many research works have appeared in this
area of time-series anomaly detection. Multiple surveys and ex-
perimental benchmarks have been written to summarize and
analyze the state-of-the-art proposed methods [8, 29, 47, 52, 57].
Such surveys and benchmarks provide a holistic view of anomaly
detection methods and how they perform on benchmarks.

Therefore, based on these recent works, this tutorial provides
a comprehensive view of the task of anomaly detection in time
series. We start from terminology and definitions for time series,
anomaly, and method types to appropriate accuracy evaluation
measures. Our goal is three-fold: (i) introduce the motivations
and the challenges related to the anomaly detection task in time
series by describing a taxonomy of time series and anomaly type
usually considered in the literature, (ii) describe the category of
anomaly detection methods proposed in the literature as well as
their comparisons on recently proposed benchmarks, (iii) discuss
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Figure 1: Evolution of theGoogle interest score for anomaly
detection over time series, images, text, and video.

the different solutions to evaluate anomaly detection methods
and assess the robustness of the evaluation measures. Finally,
we discuss the open research problems and opportunities for
anomaly detection in time series.

2 TIME SERIES ANOMALY DETECTION
In this tutorial, we will go through the problem of anomaly de-
tection in time series, starting from very basic definitions of
time series and anomaly to analyzing the appropriate evaluation
measures to use for the specific case of anomaly detection.

2.1 Introduction, Motivation, and Foundations
We will start by discussing examples of scientific domains and
industrial applications that rely on large time series collections
and need to perform anomaly detection. We illustrate this variety
of domains by showing concrete time series with real anomalies
from multiple domains. Figure 2 displays multiple of examples
of time series and anomalies from various domains. In Figure 2,
ECG [41], MITDB [42], SVDB [24] are ElectroCardioGram (ECG)
in which anomalies are either irregular heartbeats or arrhythmia.
Moreover, SensorScope [61] is a collection of environmental data,
such as temperature, humidity, and solar radiation, collected
from a typical tiered sensor measurement system, and Daphnet
[4] contains the annotated readings of 3 acceleration sensors at
the hip and leg of Parkinson’s disease patients that experience
freezing of gait (FoG) during walking tasks.

While these previously described examples illustrate well the
variety of domains and application in the scope of time series
anomaly detection, we then introduce some foundational aspects
of time series and anomaly detection. We first introduce the dif-
ferent types of time series. Specifically, we define a univariate
time series as an ordered sequence of real values on a single
dimension. In this case, a subsequence can be represented as a
vector. Then, we define amultivariate time series as either a set
of ordered sequences of real values (with each ordered sequence
having the same length) or an ordered sequence of vectors com-
posed of real values. In this specific case, a subsequence is a
matrix in which each line corresponds to a subsequence of one
single dimension. Moreover, a core characteristic of time series
is their evolution with time. Therefore, we define static time
series as sequences with a fixed length. In this case, one does
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Figure 2: Example of time series from different domains with anomalies (in red) of different types [52].

not expect more values to be added and can analyze points or
subsequences simultaneously. We also define streaming time
series as sequences with an infinite length with new points or
subsequences continuously arriving. In this case, models need
to be updated dynamically as new points arriving. Finally, the
distribution of the values of a time series might change over time.
In this case, we make a distinction between stationary (i.e., with
a constant distribution of values over time) and non-stationary
(i.e., with a changing distribution of values over time) time series.
Moreover, even though the distribution of values is constant,
the normal behavior (i.e., the subsequence representing the nor-
mal and recurrent behavior, such as a normal heartbeat) might
change over time. In this case, we talk about single normality
andmultiple normalities time series.

We then introduce the different types of anomalies. There
are three types of time-series anomalies: point, contextual, and
collective anomalies. We describe them in the following section.

2.1.1 Point Anomaly. The first category, point anomalies,
refers to data points that deviate remarkably from the rest of the
data. The IOPS dataset in Figure 2 depicts an an example of point
anomaly and Figure 3(a.1.1) illustrates a synthetic example.

2.1.2 Contextual Anomaly. Then, contextual anomalies
refer to data points within the expected range of the distribution
(in contrast to point anomalies) but deviate from the expected
data distribution, given a specific context (e.g., a window). The
YAHOO dataset in Figure 2 depicts an an example of contextual
anomaly and Figure 3(a.1.2) illustrates a synthetic example.

2.1.3 Collective Anomaly. With collective anomalies, we
refer to sequences of points that do not repeat a typical (previ-
ously observed) pattern. The SVDB dataset in Figure 2 depicts
an an example of collective anomaly and Figure 3(a.2) illustrates
a synthetic example.

The first two categories, namely, point and contextual anom-
alies, are referred to as point-based anomalies, whereas collective
anomalies are referred to as subsequence anomalies.

2.1.4 Single vs. Multiple Anomalies. Then, on top of these
categories, the combination of them also matters. First, we need
to differentiate time series containing single anomalies from time
series containingmultiple anomalies. Last, themultiple time series
category has to be divided into two other categories, namely time
series containing multiple different and multiple similar anom-
alies. For instance, the MITDB and Genesis time series in Figure 2
contains multiple similar anomalies. As described in the next sec-
tion, some methods that are based on nearest-neighbor distance
might be affected by this distinction. Figure 3 illustrates all the
aforementioned anomaly types and combinations. For all these
definitions and taxonomies, we will provide explicit examples.

2.2 Existing Methods and Benchmarks
We will then dive into the existing anomaly detection methods
proposed in the literature. Due to the large variety of applications,
domains, and anomaly types, every year, a vast number of papers
appear in the literature proposing new methods for anomaly
detection in time series, and it is beyond our scope to cover
extensively here. In this tutorial, we will only briefly summarize
popular categories of methods, andwe refer the attendees to three
recent survey papers for detailed coverage of methods [8, 16, 25].

We will first mention the three main categories of methods
based on the external knowledge provided to them. First, unsu-
pervised methods take the time series as input only and are not
provided by any information relative to the normal or abnormal
behavior. Then, semi-supervised methods take as input time
series without any anomalies. In this case, the model is trained
on normal data only. Finally, supervised methods take as input
separately both normal and abnormal data. Thus, the model is
trained to discriminate the anomalies from the normality.

Then, we will describe the following categories of methods
(refer to Figure 4):

2.2.1 Distance-based Methods. The first family of method
is distance-based appraoches. These methods focus on the anal-
ysis of subsequences for the purpose of detecting anomalies in
time series, mainly by utilizing distances to a given model. For
instance, discord-based approaches use the nearest neighbor dis-
tances among subsequences [19, 22, 33, 34, 37, 38, 58, 62]. As
another example, recent methods in this category first cluster
data to obtain the normal behavior and compute the distance to
this normal behavior to detect anomalies [9–15].

2.2.2 Density-based Methods. Second, instead of measur-
ing nearest neighbor distances, density-based methods focus on
detecting globally normal or isolated behaviors. General-purpose
multi-dimensional point outlier methods have been proposed
in this category [17, 36, 39], with Isolation Forest [36] working
particularly well when extended for subsequences [11]. The lat-
ter aims to isolate instances (or time series and subsequences in
our specific case) by building random splitting trees. The longer
the depth of the tree, the more splits were necessary to isolate a
given instance. Thus, an anomaly score can be computed based
on the depth of the trees.

2.2.3 Forecasting-basedMethods. Third, forecasting-based
methods, such as recurrent neural network-based [40] or convo-
lutional network-based approach [43], have been proposed for
this task. Such methods use the past values as input, predict the
following one, and use the forecasting error as an anomaly score.

2.2.4 Reconstruction-basedMethods. Last, reconstruction-
based methods, such as the AutoEncoder-based approach [56],
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Figure 3: Synthetic examples of different types of anomalies in time series.

are trained to reconstruct the time series and use the recon-
struction error as an anomaly score. As both forecasting and
reconstruction-based categories detect anomalies using predic-
tion errors (either forecasting or reconstruction error), we can
group them into prediction-based methods.

Finally, we will discuss recent benchmarks proposed for anom-
aly detection in time series task [29, 32, 47, 52, 57]. Such bench-
marks provide a large collection of time series from various do-
mains and evaluate multiple methods belonging to the aforemen-
tioned categories. In this tutorial, we will discuss the results and
conclusions of these recent benchmarks. Figure 2 illustrates sev-
eral time series from the TSB-UAD benchmark [52] that contains
18 different datasets from different domains and applications,
with a total of more than 2000 time series.

2.3 Evaluating Anomaly Detection
In the last part of this tutorial, we will focus on evaluating anom-
aly detection accuracy. Indeed, the choice of measure to quantify
the quality of methods may also significantly bias the experi-
mental outcome. Thus, we will start by describing the evaluation
measures. Briefly, we will first discuss traditional measures, such
as Precision, Recall, and F-score, that assess the methods by as-
suming each time-series point can be marked as an anomaly
or not (e.g., by a threshold on an anomaly score). We will then
discuss range-based variants [60] that aim to overcome short-
comings of traditional measures when evaluating time series
containing subsequence anomalies. We will discuss AUC (i.e.,
Area Under the Curve) measures that, contrary to previously
mentioned measures, eliminate the need to define a threshold.
We will finally discuss VUS [47] (i.e., Volume Under the Surface)
measures that provide more robustness for time series.

Wewill conclude this section on the complex question of evalu-
ating evaluation measures. We will mainly discuss the results and
the methodology proposed in a recent benchmark for evaluation
measures [47, 52]. This benchmark proposes an experimental
evaluation of all the aforementioned measures by comparing
them with regard to (i) robustness (of labeling misalignment,
anomaly score noise, and normal/abnormal ratio), (ii) separabil-
ity (i.e., the ability to observe a significant difference between
anomaly scores of accurate and inaccurate methods), and (iii)
consistency (i.e., the ability of a measure to provide similar ac-
curacy values for a same method applied to two similar time
series). In this tutorial, we will discuss the conclusion of such an
experimental evaluation, but also its limitations and challenges.

2.4 Challenges and Conclusions
We will conclude this tutorial by summarizing the main insights
obtained from recent benchmarks on the performances anom-
aly detection methods [52] and the proper evaluation measures
to evaluate them [47]. We will discuss the new problems that
these insights opened. Finally, we will elaborate on new ideas
and research directions (such as ensembling solutions and model
selection methods) that could solve the new open problems.

Acknowledgments: Work supported in part by Meta Research.
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