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ABSTRACT
Understanding crowd behavior is crucial for energy demand-side
management. In this paper, we employ the fluid dynamics concept
potential flow to model the energy demand shift patterns of the
crowd in both temporal and spatial dimensions. To facilitate the
use of the proposed method, we implement a visual analysis
platform that allows users to interactively explore and interpret
the shift patterns. The effectiveness of the proposed method will
be evaluated through a hands-on experience with a real case
study during the conference demonstration.

1 INTRODUCTION
Due to the current energy crisis, effective urban energy man-
agement has become more urgent than ever. Improving energy
efficiency and reducing carbon emissions is a global topic that
has attracted widespread attention from governments or orga-
nizations around the world. Buildings are currently the main
contributor to energy consumption, accounting for 40-60% of
total energy consumption [2, 11]. Urban energy management to
balance demand and supply is crucial for energy efficiency. En-
ergy balance refers to a match between supply and demand at a
specific time and location. It is related not only to the operational
stability of the grid, but also to the efficient use of energy, such as
avoiding energy waste due to overproduction. However, energy
balancing is a challenging task because most controls take place
only on the production side, while much less on the demand side.
In demand-side management, the dynamics of energy demand
reflects demography, mobility, and urban spatial characteristics.
As such, it is closely related to a variety of factors, such as climate,
crowd consumption behaviors, and living habits. For example,
according to the study [5], consumer behavior can affect energy
consumption by up to 4.2% in the Netherlands. To better maintain
the balance between supply and demand, it is critical to explore
crowd consumption behaviors. However, exploration of energy
demand and crowd behavior remains in its infancy [12], which
requires more research efforts. Therefore, this research aims to
answer the following two questions: How does crowd behavior
affect urban energy demand, and how can the effects be visualized
to aid energy dispatch decisions?

Wefirst model the dynamics of urban energy demand in spatial
and temporal dimensions, and then present a visual analysis
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system for user interaction. In fluid mechanics, potential flow
[3] has been used to model flow dynamics, e.g., for water waves,
electro-osmotic flows, and groundwater flows. Changes in energy
demand have a continuum characteristic similar to that of fluid
dynamics. Inspired by this, we introduce the potential flow to
model the spatiotemporal dynamics of crowd energy demand.
That is, the patterns of energy demand shifts are represented
as potential flows and visualized on a geographic map. With
the proposed system, utilities can provision energy supply and
optimize energy distribution based on demand.

2 RELATEDWORK
In recent years, energy data management, including energy data
analysis and visualization, has attracted increasing interest in
the database community. Among others, Cerquitelli et al. [4] pro-
pose a data visualization framework, INDICE, to explore building
energy efficiency by querying analytic tasks and implement a
dashboard that allows different stakeholders to discover and in-
terpret knowledge at different spatial granularities. Acquavivay
et al. [1] collect and analyze the thermal energy consumption of
heating systems in residential and public buildings and create
an analysis platform, EDEN, to present building energy perfor-
mance indicators, with the aim of raising awareness of energy
savings. Karatzoglidi et al. [7] propose an automated energy
prediction system, Enfore, for residential buildings. The system
supports automation of data preprocessing and prediction for
univariate or multivariate time series data of energy consump-
tion. In our previous research, we propose a smart meter data
analysis system, SMAS [9], for energy demand management; and
propose an interactive visual analysis system, VAP [10], which
allows users to explore energy consumption patterns and seg-
ment customer groups according to the patterns. In addition, we
benchmark smart meter data analysis technologies [8], including
in-database, in-memory, column-store and distributed data anal-
ysis. We hope that these research efforts will increase awareness
of this emerging application in energy data management within
the database community and stimulate further research on this
topic.

3 DEMAND DYNAMICS ANALYSIS SYSTEM
Figure 1 presents an overview of the proposed visual analysis sys-
tem for exploring energy demand dynamics. The system consists
of three main building blocks, including (i) data and data process-
ing, (ii) energy demand dynamics modeling, and (iii) interactive
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Figure 1: System overview
visual analysis dashboard. The system combines various tech-
niques to effectively model energy demand shift patterns over
spatiotemporal dimensions and visualizes the patterns in a user-
friendly manner. Visual analysis is an interactive process that
allows users to first make assumptions based on their own knowl-
edge or judgment, then explore the results on the dashboard, and
finally validate the assumptions and obtain new knowledge. The
visual analysis system uses PostgreSQL as the underlying data
management system, with an extension of PostGIS to support
spatial data operations.

3.1 Data and preprocessing
The energy consumption data are electricity data, with a resolu-
tion of 12 hours and a duration of 2 years. Spatial information
including the longitude and latitude of customers was also pro-
vided. The raw data contains noise, irregularities, and missing
values. We first smooth the time series using window-based con-
volutional smoothing, which involves creating an approximation
function to smooth the noisy data and fixing the missing values
by interpolating over a curve that follows the trend of the con-
sumption time series. Then, we use a weighted sampling method
[6] to reduce bias in the data. This method adds weights to the
original data points to measure their importance: The higher
the weight, the more important they are in the data set. The
weighted sampled data will be used in the kernel density estima-
tion function in the next subsection to model the energy demand
dynamics.

3.2 Energy demand dynamics modeling
We model the dynamics of crowd energy demand using potential
flows, and show the schematic modeling process in Figure 2.
According to potential flow theory [14], external flows around
bodies are invicid (i.e., frictionless) and irrotational (i.e., the fluid
particles are not rotating) because the viscous effects are limited
to a thin layer next to the body called the boundary layer. A
potential flow can be described by means of a velocity potential
function, 𝜑 (𝑥,𝑦, 𝑧, 𝑡), where 𝑥,𝑦, 𝑧 represents the dimensions in a
3-D spatial space at the time at 𝑡 . The flow velocity is the gradient
of the velocity potential, i.e., ®𝑉 = ∇𝜑 . From vector calculus, for
any scalar,𝜑 , there is∇×∇𝜑 = 0. Consequently, there is∇× ®𝑉 = 0,
which implies that a potential flow is an irrotational flow.
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Figure 2: Schematic illustration of the modeling process

As we consider households that are spatially discrete and
distributed on a 2D map (see Figure 2), the modeling process

is based on the potential function, 𝜑 (𝑥,𝑦, 𝑡). Here, we employ
kernel density estimation (KDE) as a potential function to encode
energy consumption into a continuous representation of strength
map, defined as follows:
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where ℎ is the bandwidth; x𝑖 = (𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 )𝑇 , is the coordinate
of a household 𝑖; 𝐾 is the kernel function, which is a symmetric
multivariate density; and 𝑐𝑖 is a normalized value of average
energy consumption used to reweight demand strength with
respect to geographic distribution, which is defined as follows:

𝑐𝑖 = ⌊𝛾𝐸⌋ (2)

where 𝐸 represents the energy consumption of 𝑥𝑖 and 𝛾 is the
filter coefficient defined by the users. We select the Gaussian
kernel to estimate the demand strength because it can provide a
reasonable estimate even for a small data set, which is defined as
follows:

𝐾ℎ (x − x𝑖 ) = 𝑒−
∥x−x𝑖 ∥2

2ℎ2 (3)
With the kernel density matrix (strength map), the temporal

dynamics of the energy demand over time from 𝑡1 to 𝑡2 can be
obtained by Equation 4, which calculates the gradient of the
strength difference in demand.

Shift|𝑡1,𝑡2 = ∇(𝑓𝑡2 − 𝑓𝑡1 ) (4)

The vector flow fields (arrows) in Figure 2 represent shifts in
energy demand, where the arrow represents the direction of the
shift and the length represents the strength of the demand; the
longer the arrow, the greater the demand shift.

4 VISUAL ANALYSIS DASHBOARD
This section will first introduce the user interface, then describe
the principles of visual analysis design, the used components and
process, and finally give some examples of exploring spatiotem-
poral demand shift patterns.

4.1 User interface
Figure 3 shows the interface that allows users to interactively
explore potential flows to understand spatiotemporal demand
shift patterns. In the dashboard, view A is the control panel
and the only entry point for users to interactively explore the
dynamics of energy demand. Here, users can select any two
discrete time periods, i.e., first click the buttons on a1 and then
select the time periods of interest through drag and drop on
a3. The backend engine of the system will calculate the energy
demand shifts for the selected time periods in real time based
on the fluid dynamics model, and the results will be displayed
as the potential flows in view C, which represents the energy-
demand shift across different regions. To facilitate the use, we
have predefined several commonly-used demand shift analyses,
including daytime and nighttime, regular split periods, and the
flexible multiple time periods, which can be selected or entered
using the control components in a2. If the multiple time periods
are selected, view D will display the minimized views of the shift
patterns, also called the index view. For example, there are four
index views shown inD, including 1) 2017-01-14 to 2017-05-14; 2)
2017-04-29 to 2017-05-29; 3) 2017-05-14 to 2017-06-13; and 4) 2017-
05-29 to 2017- 06-28. When an index view is selected, it will be
displayed in the main view C. The associated quantitative profile
will be shown in view B, including total, daytime, nighttime
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Figure 3: Interactive visual analysis dashboard

(b) Q1/2017 → Q2/2017 (c) Q2/2017 → Q3/2017 (d) Q3/2017 → Q4/2017 (a) Daytime → Nighttime 

Figure 4: An example of exploring spatiotemporal shift patterns of energy demand
energy demand, the statistical distribution of daily consumption
and the consumption of households within the area.

4.2 Visual analysis and examples
As a visual analysis system, we introduce four visual elements to
represent the demand shift:
• Demand shift: It is represented by a flow map where the length
of the arrow encodes the strength of the demand shift;

• Demand-shift window: It gives the coverage of the analysis, and
its border color encodes the spatial demand shift. The window-
shape design will not obscure the map, but give the necessary
quantitative information for the demand shift;

• Demand-shift color legend: It gives the corresponding absolute
value for the spatial energy-demand shift in the grid area.
Quantitative results for the demand shift can be calculated
over spatial locations and time horizons;

• Demand-shift badge: It also encodes the spatial energy-demand
shift 𝜑 , which has the same meaning as the demand-shift win-
dow but gives a summary of demand shift in the grid area in
the index view. We use a solid grid, instead of a frame, because
it is much smaller on the visual index and more prominent.

This visual analysis design follows the Schniederman Mantra:
first the overview, zoom, and filter, then the details on demand [13].
With such a visual design, users can easily find the area of in-
terest and explore more information through interactions. For

example, the view D presents a thumbnail of the demand shift
within different periods, which is represented by a small demand
shift badge. If a user wants more detail, (s)he can simply click a
thumbnail to show the demand shift in the main view C. The vec-
tor arrows visualize the energy flow directions, while the color
of demand-shift windows represents an increase or a decrease of
energy demand.

We now show four examples of typical energy demand shift
patterns in Figure 4. Figure 4(a) represents the spatial patterns
from daytime to nighttime during a workday. The heads of the
potential arrows point to the red-colored area, which is the resi-
dential area, while the tails of the potential arrows are the com-
mercial areas on both sides of the residential area. This indicates
that the high energy demand area will shift from the commercial
area to the residential area when people go home after work.
Figure 4(b)-(d) are the energy demand shift patterns between
any two continuous quarters in 2017, and Figure 5 shows the
corresponding quantitative results of demand shift amount. It
is worth noting that from Q2 to Q3 has the highest amount of
demand shift, and the heads of the potential arrows are pointing
to the red-colored area (see Figure 4(c)). This place is the location
of Shanghai Disneyland where there are also many hotels nearby.
During the summer holidays, there is often a huge tourist flow
to this area, which may cause more energy consumption. The
other two demand shift patterns on spatial space can be seen
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Figure 5: Demand shift amount between two quarters

in Figures 4(b) and (d), and the difference in amount are both
negative. The amount difference can be explained by the weather
temperature. Typically, the weather in Shanghai is mild in Q2 and
there is no need for heating or cooling, while winter is cold and
some households use electricity for heating. Q3 is hot summer
time when a significant amount of electricity is used for cool-
ing. Therefore, Q3 is the season with the highest consumption,
followed by Q1 and Q4, while Q2 is the least.

As a result, utilities can schedule their power production and
plan supply for different time periods and areas based on demand
shift patterns and amount differences.

5 DEMONSTRATION
During the demonstration, we will showcase our proposed vi-
sual analysis system for exploring crowd energy demand shift
patterns using a real-world electricity data set. We will present
the system architecture, including the backend and frontend de-
sign and the approach to modeling energy demand dynamics.
Attendees will also see how to use the system, specifically the
visual analysis process, to discover insights and gain knowledge
through exploration. Conference attendees will then have the
opportunity to experience the system through the following two
scenarios.

S1: Exploration for district-wide demand shift patterns. In this
scenario, a user can analyze changes in demand patterns in a
specific area of interest. This scenario will provide the user with
hands-on experience using the proposed visual analysis tool and
help them correctly interpret the results. The user will use the
temporal energy demand controls on the dashboard (as seen in
A in Figure 3). The user will first toggle the auxiliary analysis
line (daily, yearly, quarterly, or monthly average demand) and
select the period of interest for analysis. Next, (s)he will define
the exploration task by selecting one of the following temporal
types: daytime-nighttime period, regularly split period, or multi-
ple periods. The user can then toggle the corresponding button,
select the period(s) of interest using a brush operation, and toggle
the compute button to generate the results listed as the demand
shift visual index in View D. Finally, the user can select an index
view to visualize more detailed demand shift patterns in View C.
The exploratory analysis results will include examples presented
in Section 4.2. The user will be asked to interpret each result
obtained, with assistance provided by us.

S2: Customized exploration for demand shift patterns and rec-
ommendation. This scenario allows the user to further explore
the spatiotemporal demand shift patterns. Based on the expe-
rience from S1, the user can customize the analysis areas and
time periods, i.e., select two or more areas on the map and two
or more time periods. The user can select different areas with

any shape simply by clicking and dragging the mouse on the
map, and then click the time split button and select different
discrete time periods. The system will automatically select the
corresponding households within the selected areas, supported
by PostGIS geometry operations in PostgreSQL. The system will
then compute the potential flow model result, and generate the
index views as shown in view D and the statistical information
in view B. The user will interpret the results and make the rec-
ommendation about energy distribution across different areas
over time, for example, the amount of electricity to be dispatched
and the dispatch time in order to achieve the supply and demand
balance. The user can also provide information on the implica-
tions of the system, such as investments in energy infrastructure,
energy policies, and changes in consumer behavior that lead to
better energy efficiency.

6 CONCLUSION
Crowd consumption behaviors can have a significant impact
on energy demand side management. In this paper, we have
created a visual analysis system that examines energy demand
shift patterns from both spatial and temporal dimensions. Using
the fluid dynamics concept, potential flows, we have modeled
energy demand dynamics and presented it in a user-friendly
format. The system enables users to explore energy demand
patterns across various regions and time periods.We presented
two demo scenarios to help users gain hands-on experience using
our system and gain insight into visual analysis on energy data.
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