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ABSTRACT

Density-based clustering is a commonly used tool in data science.

Today many data science works are utilizing high-dimensional

neural embeddings. However, traditional density-based cluster-

ing techniques like DBSCAN have a degraded performance on

high-dimensional data. In this paper, we propose LAF, a generic

learned accelerator framework to speed up the original DB-

SCAN and the sampling-based variants of DBSCAN on high-

dimensional data with angular distance metric. This framework

consists of a learned cardinality estimator and a post-processing

module. The cardinality estimator can fast predict whether a data

point is core or not to skip unnecessary range queries, while the

post-processing module detects the false negative predictions and

merges the falsely separated clusters. The evaluation shows our

LAF-enhanced DBSCANmethod outperforms the state-of-the-art

e�cient DBSCAN variants on both e�ciency and quality.

1 INTRODUCTION

Today’s data science research bene�ts signi�cantly from neural

embeddings that are high-dimensional vectors generated by deep

neural models. As a widely applied technique in data science, clus-

tering has been associated with embeddings, e.g., [22, 28] learn

e�ective passage embeddings with clustering, [19, 23] utilize

clustering to accelerate the similarity search over embeddings,

etc.

As a representative clustering algorithm, Density-Based Spa-

tial Clustering of Applications with Noise (DBSCAN) [7] has a

long history of being applied on low-dimensional spatial data (2D

or 3D). However, DBSCAN usually has a low e�ciency, caused by

the compute-intensive range queries and becoming more signi�-

cant on high-dimensional data due to the curse of dimensionality.

Speci�cally, DBSCAN considers clusters to be high-density ar-

eas separated by low-density areas. Based on this, the algorithm

repeatedly expands each cluster to its neighboring high-density

areas (where the points are called core points) until the cluster is

completely surrounded by low-density areas (where each point is

either a non-core point or a noise). For each point, DBSCAN has

to do a heavy range search to determine whether it is core or not,

which requires intensive computation and limits its application

in large-scale high-dimensional data analysis. To improve the

e�ciency of DBSCAN, previous works propose many variants,

e.g., sampling-based DBSCAN variants [5, 11, 12, 14, 21] improve

the e�ciency by executing the heaviest computation within a

small subset instead of the whole dataset, some other works re-

duce the latency by accelerating the range queries in DBSCAN

[15, 26], [1–4, 8, 9] prune unnecessary distance computation dur-

ing the clustering, etc. But many of them are designed for low

to middle dimensional data (mostly less than 100-dimensions).
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Therefore they are still not suitable for high-dimensional neural

embeddings with hundreds to thousands of dimensions (e.g., the

768-dim BERT [6] embeddings).

In this paper, we solve this problem by skipping the range

queries for non-core and noise points, given that only the num-

ber of neighbors is needed to con�rm the point is non-core or

noise. And this can be done by cardinality estimation, i.e., the

techniques to estimate the number of results before executing a

query. In multi-dimensional data management, cardinality esti-

mation is usually used to predict the number of neighbors from a

distance-based range query without executing it, and the estima-

tion results can help optimize the critical operations like range

search and similarity join. Traditional cardinality estimation for

range queries relies on sampling or kernel density estimation

[17]. Recent works apply advanced machine learning to it and

propose the learned cardinality estimation techniques. They are

normally based on regression models from non-deep regressors

(e.g., XGBoost) to deep regressors (e.g., deep neural networks),

whose input is the query point and the distance threshold (i.e.,

the range), and output is the estimated number of neighbors in

that range. By learning the data distribution, learned cardinality

estimation makes more accurate prediction than the traditional

approaches. The state-of-the-art learned cardinality estimation

methods deploy various deep regression models, e.g., Convolu-

tional neural network [18], Recursive Model Index [13, 24], Deep

Lattice Network [27], CardNet [24], SelNet [25], etc., which per-

form e�ectively on high-dimensional data. And they can achieve

high predicting e�ciency both theoretically and practically. In

theory, when a model structure is �xed, its prediction time com-

plexity is constant with the data scale, while in practice, the

models can be signi�cantly accelerated by GPU. The training

time is not an issue due to the generalization capability of the

neural models, i.e., a trained estimator can be used on any other

dataset with similar distribution. With a learned cardinality es-

timator, whether a point is core or not can be predicted before

executing the range query, by which the unnecessary computa-

tion on non-core and noise points will be e�ectively reduced.

Particularly, our approach is designed for clustering based on

angular distance, like cosine distance, and in this paper we will

not investigate other distance metrics like Euclidean distance,

due to two reasons: (1) Angular distance is worth being specif-

ically studied. In neural embedding based applications, cosine

and Euclidean distances are the dominant distance metrics for

measuring embedding similarity. So focusing on cosine distance

is enough to bene�t a wide range of applications. (2) Our idea is

theoretically more suitable for this metric. Angular distance is

usually bounded, e.g., cosine distance is within the range 0 ∼ 2,

which makes training of the cardinality estimator more e�ective

than using Euclidean distance. Speci�cally, a regressor normally

makes better predictions when the training set covers more pos-

sible input values, which is hard for Euclidean distance whose

value range is in�nite (i.e., 0 ∼ +∞), but easier for the bounded

cosine distance. For example, in our evaluation we construct
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the training set using cosine distance thresholds from 0.1 to 0.9,

which is enough to cover most cases. Therefore, other distances

are out of scope for this paper. However, our method does not

have a hard constraint on the distance metric, so we may explore

Euclidean distance in future work.

We propose LAF, a generic Learned Accelerator Framework

to speed up DBSCAN and its sampling-based variants based on

angular distance. LAF enhances the algorithm e�ciency by plac-

ing an extra cardinality estimation step before each range query.

If a point is predicted as non-core/noise, the range query for it

will be skipped to reduce the computation. This approach works

not only on DBSCAN, but also on its sampling-based variants, as

the same kind of computation waste also exists in processing the

sampled subset. LAF also includes a post-processing module to

compensate for the clustering quality loss by detecting and merg-

ing the wrongly separated clusters caused by the false negative

predictions (i.e., predicting core points as non-core/noise). To

our best knowledge, we are one of the �rst studies that improve

the e�ciency of high-dimensional DBSCAN-like clustering by

cardinality estimation. And we have open-sourced the code at

https://github.com/wyfunique/LAF-DBSCAN.

Our LAF-enhanced DBSCAN outperforms the state-of-the-

art approximate DBSCAN variants in the evaluation. Speci�-

cally, LAF-enhanced DBSCAN achieves up to 2.9x speedup for

DBSCAN and is 60% ∼ 140% faster than the state-of-the-art ap-

proximate DBSCAN variants, with high clustering quality on

high-dimensional vectors, and the selected sampling-based DB-

SCAN variant is also accelerated signi�cantly by LAF (i.e., up

to 6.7x speedup) with only tiny or no quality loss. The main

contributions of this paper are as follows:

(1) We develop LAF, a generic learned accelerator framework

to accelerate a wide range of DBSCAN-like clustering algo-

rithms.

(2) We propose a novel e�cient high-dimensional DBSCAN

algorithm using the framework.

(3) We conduct experiments on popular high-dimensional datasets

and show the high performance of our proposed algorithm

and the usefulness of LAF.

2 THE APPROACH

2.1 DBSCAN, LAF and enhanced DBSCAN

Algorithm 1 shows the DBSCAN pseudocode in black text (the

red text is inserted by LAF, which is introduced below). DBSCAN

classi�es the data points as core, non-core and noise points, de-

pending on the number of their neighbors within a range. Given

a distance function 3 (·, ·) and a distance threshold n , DBSCAN

does a range query for each data point P to �nd its neighbors

N = {& |3 (%,&) < n}. If it has at least g neighbors, point P is a

core point and the current cluster will be expanded to its neigh-

bors; otherwise P is non-core or noise, and the current cluster

will not grow from P to its neighbors. When the current cluster

cannot grow any more, the next cluster will start from some other

un-clustered core points. Such a process is repeated until there

are no more unclassi�ed (i.e., unde�ned in Algorithm 1) points.

The di�erence between non-core and noise points is whether it

has a core point neighbor. If a point itself is not core but has at

least one neighbor that is core point, then it is a non-core point

and will be part of the cluster boundary, while a noise point has

no core point neighbor and will not be classi�ed into any cluster.

For simpli�cation, in the rest of this paper we denote both of the

non-core and noise points as stop points when it is unnecessary

to distinguish between them.

LAF works as a plugin to the target algorithm: (1) The car-

dinality estimator is placed right before each range query, and

the range query will be executed only if the current point is

predicted as core. (2) The post-processing module is inserted

at the end of the clustering to detect false negative predictions

which wrongly estimate core points as not, and merge the clus-

ters separated by such false stop points. This is to compensate

for the e�ectiveness loss caused by the prediction error. Based

on LAF, we implement an e�cient high-dimensional DBSCAN,

called LAF-enhanced DBSCAN (a.k.a, LAF-DBSCAN). We show

its pseudocode in Algorithm 1 and use red text to highlight the in-

serted lines by LAF, while the other lines are the same as original

DBSCAN.We also develop LAF-DBSCAN++, an enhanced version

of DBSCAN++ [11] by LAF, to present the capability of LAF for

accelerating variants of DBSCAN. The details are discussed in

Section 3.

Basically, LAF inserts three critical functions: CardEst, Up-

datePartialNeighbors and PostProcessing, as well as a map E

recording all the points which are predicted as stop points (called

predicted stop points) and their partial neighbors. Here we use the

term “partial neighbors” because for each predicted stop point,

E does not record all its neighbors, but only a subset generated

by UpdatePartialNeighbors. CardEst is simply using cardinality

estimator to predict number of the range query results, while

the other two functions are both for the post-processing. Note

that we do not use the exact value of g with CardEst to predict

whether a point is core or not. Instead, g is multiplied with a

positive factor U to threshold the predicted cardinality, as shown

in line 6 and 22 of Algorithm 1. Here U is used to adjust the

false positive and false negative rates, such that users can control

the prediction error and manipulate the speed-quality trade-o�.

Speci�cally, when U increases, false negative rate increases as

more predictions become lower than the threshold, resulting in

higher speed and lower quality. When U decreases, false positive

rate increases, leading to lower speed and higher quality.

If a point is predicted to be stop point (line 6-9, 26-27), the

corresponding entry will be added into E, otherwise the range

query will be executed and the point will be double checked

with the query results. At the same time, E will be updated by

UpdatePartialNeighbors using the query results. Finally the post-

processing uses E to update the clustering results C.

2.2 Post-processing strategy

E records the partial neighbors (i.e., a subset of the true neighbors)

for each predicted stop point. It is �lled byUpdatePartialNeighbors

in such a way (as shown in Algorithm 2): if a predicted stop point

P= is found by another point P as neighbor, then P is also neigh-

bor of P= and will be added to E(P=). Function PostProcessing

(Algorithm 3) detects the false predicted stop points and merges

the clusters separated by those points. Speci�cally, a point P in E

is a false negative if it has at least g partial neighbors (line 2). In

such case PostProcessing will randomly select a cluster around it

as the destination cluster (line 3-4), and merge the rest wrongly

separated clusters to the destination (line 5).

3 EXPERIMENTS

3.1 Experiment settings

Environment: A Lambda Quad workstation with 28 3.30GHz

Intel Core i9-9940X CPUs, 4 RTX 2080 Ti GPUs and 128 GB RAM.
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Algorithm 1 LAF-enhanced DBSCAN (LAF-DBSCAN)

Input: Dataset D, distance function 3 ( ·, · ) , distance threshold n , mini-
mum number of neighbors g , error factor U

Output: the map from points to their cluster IDs C
1: Cluster ID c := 0
2: Map from predicted stop points to partial neighbors E:=∅
3: for each point P in D do C(P) := unde�ned

4: for each point P in D do
5: if C(P) ≠ unde�ned then continue

6: if CardEst(P) < Ug then
7: C(P) := noise
8: if P not in E then E(P) := ∅

9: continue
10: Neighbors N := RangeQuery(D, 3 , P, n)
11: E := UpdatePartialNeighbors(P, N, E)
12: if |N| < g then
13: C(P) := noise
14: continue
15: c := c + 1
16: C(P) := c
17: S := N - {P}
18: for each point Q in S do
19: if C(Q) = noise then C(Q) := c
20: if C(Q) ≠ unde�ned then continue

21: C(Q) := c
22: if CardEst(Q) ≥ Ug then
23: N := RangeQuery(D, 3 , Q, n)
24: E := UpdatePartialNeighbors(Q, N, E)
25: if |N| ≥ g then S := S ∪ N

26: else
27: if Q not in E then E(Q) := ∅

28: C := PostProcessing(C, E, g )
29: return C

Algorithm 2 UpdatePartialNeighbors

Input: Data point P, its neighbors N, the map E
Output: the updated E
1: for each neighbor P= in N do
2: if P= is in E then E(P= ) := E(P= ) ∪ {P}
3: return E

Algorithm 3 PostProcessing

Input: the map C from point to cluster, the map E, g
Output: the updated C
1: for each point P in E do
2: if |E(P)| ≥ g then
3: Randomly select a non-noise neighbor P′ in set E(P)
4: Destination cluster ID 2′ := C(P′)
5: Merge the clusters of E(P) into the destination cluster.
6: return C

Datasets: Table 1 provides an overview for our evaluation

datasets, reporting their sizes, data dimensions, error factors

used in evaluation, and their vector types. We introduce more

details here:

(1) NYTimes: 300k bag-of-words vectors of NYTimes news

articles. We randomly sample 150k vectors from them,

normalize the samples and reduce their dimension to 256

through Gaussian random projection, which is the same

way as ANN-Benchmarks1. The resulting dataset is named

NYT-150k.

(2) Glove: 1.2Mword embeddings (200-dimensional) pre-trained

on tweets. We sample 150k vectors from them and name

the sampled dataset Glove-150k.

(3) MS MARCO [16]: a benchmarking dataset for passage

retrieval, including 8.8M passages. We follow a similar

way to [23] to process this dataset, i.e., generating a 768-

dimensional embedding for each passage using the same

deep model as [23], sampling the embeddings into several

1https://github.com/erikbern/ann-benchmarks

subsets and naming them as “MS-” followed by the size

(e.g., “MS-100k” includes around 100k embeddings). In

this paper we sample 3 datasets, MS-50k, MS-100k and

MS-150k.

In addition, we normalize all the data vectors and split each

dataset into training and testing sets by a ratio of 8:2. For each

dataset, we �rst train the learned cardinality estimator on the

training set, then evaluate all the methods on the corresponding

testing set, i.e., all the reported experiment results are collected

on those testing sets.

Dataset #Points Dim U Type

NYT-150k 150,000 256 1.15 Bag-of-words
Glove-150k 150,000 200 2.0 Word embedding
MS-150k 152,185 768 7.7 Passage embedding
MS-100k 107,400 768 2.0 Passage embedding
MS-50k 53,700 768 1.5 Passage embedding

Table 1: Evaluation dataset information, including the

number of points (#Points), data dimension (Dim), error

factor U of LAF-DBSCAN on each of them, and the vector

type (Type).

Metrics: As discussed in Section 1, the distance metric in the

evaluation is cosine distance. For some baselines which support

Euclidean distance only, since all data points are normalized, we

use Equation 1 to convert cosine distance (32>B ) into Euclidean

distance (34D2 ), such that the distances in our methods are equiva-

lent to those in the baselines. For example, by the equation, when

32>B = 0.5, the equivalent 34D2 = 1.0, so if we set the distance

threshold n = 0.5 in our methods, the threshold in the baselines

will be set as 1.0.

34D2 (®D, ®E) =
√

232>B (®D, ®E) (if ∥®D∥ = ∥®E ∥ = 1) (1)

The evaluation metrics include e�ciency and e�ectiveness

metrics. For e�ciency, the metric is elapsed time of clustering

(including the cardinality estimator prediction time and excluding

its training time). For e�ectiveness, the metrics are (1) adjusted

RAND index (ARI) [10] and (2) adjusted mutual information score

(AMI) [20], computed against the ground truth. A higher score

means a better clustering quality. Here we use the clustering

results of original DBSCAN as ground truth.

Our methods: In addition to LAF-DBSCAN, we also use LAF to

accelerate a sampling-based DBSCAN variant, DBSCAN++ [11].

The resulting method is named LAF-DBSCAN++, whose goal is

to present that LAF works not only on DBSCAN but also on

its sampling-based variants (as mentioned in Section 1). So it

just acts as an auxiliary method and our major method is still

LAF-DBSCAN in the evaluation. In both methods, the cardinality

estimator model is an RMI [13] with three stages, respectively

including 1, 2, 4 fully-connected neural networks from top to

bottom stage. Each neural network has 4 hidden layers whose

widths are 512, 512, 256, and 128. Such an estimator has been

used as a strong baseline in [24], from where we borrow the code

directly. On each training set, the cardinality estimator is trained

for 200 epochs with batch size 512.

Though there are also other learned cardinality estimators,

like CardNet [24] and SelNet [25], we will not explore which

estimator is the best for our methods, as it is out of scope for

this paper. Speci�cally, the goal of this paper is to reveal the

potential of such a new idea on speeding up DBSCAN, and in

our evaluation the RMI has already performed well enough to

demonstrate the potential.
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Baselines: The baselines are described as follows:

(1) DBSCAN: the original DBSCAN. Its clustering results are

used as the ground truth for other methods.

(2) DBSCAN++ 2 [11]: an approximate DBSCAN variant that

speeds up DBSCAN by sampling the dataset and limiting

the heaviest computation within the samples. Speci�cally,

DBSCAN++ samples a subset of data points, within which

the core points are detected w.r.t. the entire dataset. Then

the clusters �rst grow around those core points within the

subset, and �nally all the unclassi�ed points outside the

subset are directly assigned to their closest core points. Our

LAF-DBSCAN++ method is built on top of DBSCAN++.

(3) KNN-BLOCK DBSCAN 3 [3]: an approximate DBSCAN

variant which improves e�ciency by pruning unnecessary

distance computation with K-nearest neighbor queries.We

denote it as “KNN-BLOCK” in the tables and �gures.

(4) BLOCK-DBSCAN 4 [2]: a method similar to KNN-BLOCK

DBSCAN, but facilitated by cover tree based range queries.

(5) d-approximate DBSCAN 5 [8, 9]: an approximate DBSCAN

variant which accelerates DBSCAN by relaxing the density

criteria with an approximation factor d (d > 0).

Our methods and the baselines are all implemented mainly in

C++.

Parameters: The key parameters in all experiments (except the

trade-o� evaluation) are set as follows, while their settings in the

trade-o� are introduced separately in Section 3.4. (1) Distance

threshold n and neighbor threshold g are set dynamically in

di�erent experiments, which will be explicitly stated. (2) For

LAF-DBSCAN, the error factor U is set in an ad-hoc manner for

di�erent datasets, as reported in Table 1. For LAF-DBSCAN++,

its U is �xed to be 1.0. (3) For DBSCAN++, the sample fraction ?

is automatically set based on the ratio of predicted core points.

Speci�cally, we �rst get the ratio of points that are predicted as

core by the cardinality estimator (denoted by '2 ), then ? = X +'2 ,

where X is a user-determined o�set ranging from 0.1 to 0.3. In our

evaluation, the �nal ? normally ranges within 0.2 ∼ 0.6. And ?

of LAF-DBSCAN++ keeps identical to DBSCAN++. (4) For KNN-

BLOCK DBSCAN, we control two parameters of the k-means tree

for KNN search: branching factor (set as 10) and ratio of leaves to

check (set as 0.6). (5) For BLOCK-DBSCAN, we control the basis

of the cover tree (set as 2) and the maximum iterations when

computing the minimum distance between inner core blocks (i.e.,

RNT in [2], set as 10). (6) For d-approximate DBSCAN, we set

d = 1.0.

3.2 Representative (n, g) and proper U selection

We select the proper n and g according to the noise ratio, i.e., the

portion of noise points in each dataset. A proper (n , g) should

lead to (1) a low to middle noise ratio and (2) enough number

of clusters, since the clustering makes no sense when too many

noises exist or most points are grouped into very few clusters.

So we do a grid search to select the values of (n , g) which make

(1) noise ratio smaller than 0.6 and (2) the number of clusters

large than 20 in most datasets. Table 2 shows part of the statistics,

where each cell includes a pair (noise ratio, number of clusters) for

the corresponding case. The cells satisfying the conditions are

highlighted, for example, (0.55, 5) and (0.6, 5) are both proper (n ,

2code available at https://github.com/jenniferjang/dbscanpp
3code available at https://github.com/XFastDataLab/KNN-BLOCK-DBSCAN
4code available at https://github.com/XFastDataLab/BLOCK-DBSCAN
5code and binary available at https://sites.google.com/view/approxdbscan, we use
the version 2.0

g ) since either of themmakes at least 2 out of 3 datasets satisfy the

conditions; while (0.5, 5) and (0.7, 5) should be avoided. Finally,

we choose three (n , g) values to report throughout this paper:

(0.5, 3), (0.55, 5) and (0.6, 5).

(&, 3 ) MS-50k MS-100k MS-150k

(0.5, 3) (0.63, 654) (0.53, 1071) (0.47, 1225)
(0.5, 5) (0.83, 174) (0.72, 348) (0.64, 380)
(0.55, 5) (0.65, 183) (0.48, 223) (0.39, 175)
(0.6, 5) (0.38, 92) (0.21, 70) (0.15, 47)
(0.7, 5) (0.005, 1) (0.0007, 1) (0.0004, 1)

Table 2: Part of the statistics about noise ratio and number

of clusters. They are collected by running DBSCAN with

di�erent n and g on each dataset. In the table each cell

below the dataset name is a pair (noise ratio, total number

of clusters), and the proper value pairs are highlighted by

bold text.

In this section we also discuss the proper setting of error factor

U . Basically, there is no quanti�able way to predict the best U , as

it depends on the dataset. The method we use for this paper is

grid search, and our observation can help guide the users: when

the vector type is �xed (e.g., dense neural embedding), U should

be larger for the larger dataset size or higher data dimension. This

can be observed in Table 1 on Glove and the three MS datasets.

The reason is probably the bias in training set. For example,

according to Table 2, with the increasing data scale, the noise

ratio decreases, meaning the fraction of core points increases.

Such a bias in trainingmakes the cardinality estimatormore likely

to predict a larger value. Therefore the U should also increase

accordingly.

3.3 E�ciency and e�ectiveness evaluation

We �rst evaluate the e�ciency and e�ectiveness of each method

on the three largest datasets, NYT-150k, Glove-150k andMS-150k.

Table 3 reports the clustering quality via ARI and AMI scores

(&, 3 ) Method NYT-150k Glove-150k MS-150k

ARI

(0.5,3)

KNN-BLOCK - 0.8597 0.6004
BLOCK-DBSCAN - 0.8825 0.4953
DBSCAN++ 0.7933 0.8129 0.4218
LAF-DBSCAN 0.7731 0.8660 0.4134
LAF-DBSCAN++ 0.7321 0.7746 0.4113

(0.55,5)

KNN-BLOCK - 0.6942 0.1862
BLOCK-DBSCAN - 0.8508 0.2283
DBSCAN++ 1.0 0.7869 0.1321
LAF-DBSCAN 1.0 0.8520 0.2309
LAF-DBSCAN++ 1.0 0.7444 0.1138

(0.6,5)

KNN-BLOCK - 0.2665 -0.0444
BLOCK-DBSCAN - 0.6399 0.0046
DBSCAN++ 1.0 0.7801 0.3687
LAF-DBSCAN 1.0 0.8797 0.2643
LAF-DBSCAN++ 1.0 0.7653 0.3519

AMI

(0.5,3)

KNN-BLOCK - 0.4994 0.4254
BLOCK-DBSCAN - 0.6613 0.3945
DBSCAN++ 0.6872 0.6369 0.3965
LAF-DBSCAN 0.7050 0.7558 0.4196
LAF-DBSCAN++ 0.6245 0.5947 0.3879

(0.55,5)

KNN-BLOCK - 0.3391 0.1738
BLOCK-DBSCAN - 0.6364 0.2626
DBSCAN++ 1.0 0.6578 0.2288
LAF-DBSCAN 1.0 0.7554 0.3017
LAF-DBSCAN++ 1.0 0.6068 0.2210

(0.6,5)

KNN-BLOCK - 0.1427 0.0390
BLOCK-DBSCAN - 0.4988 0.1259
DBSCAN++ 1.0 0.7061 0.2836
LAF-DBSCAN 1.0 0.8167 0.2763
LAF-DBSCAN++ 1.0 0.6822 0.2750

Table 3: Clustering quality (AMI and ARI scores) of the

approximate methods on the three largest datasets
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(b) n = 0.55, g = 5.
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(c) n = 0.6, g = 5.

Figure 1: Clustering time of all the methods on the three largest datasets

(&, 3 ) MS-50k MS-100k MS-150k

(0.5, 3) 864.7s/206.6s 3499.8s/882.7s 6931.1s/1669.5s
(0.55, 5) 854.7s/180.3s 3367.0s/827.6s 6595.1s/1936.6s
(0.6, 5) 753.3s/219.9s 2817.9s/1041.1s 5385.9s/2539.9s

Table 4: Clustering time of d-approximate DBSCAN vs.

DBSCAN on di�erent dataset scales. Each cell presents a

pair of time, “C1/C2”, where C1 is the time of d-approximate

DBSCAN and C2 is that of DBSCAN given the same (n, g)

and dataset.

(the higher, the better) for all the approximate methods. As the

ground truth, DBSCAN is not included in the table. And Figure 1

illustrates the clustering time of those methods. Due to unknown

bugs in KNN-BLOCK DBSCAN and BLOCK-DBSCAN, they can-

not run on NYT-150k, so their results on NYT-150k are missed in

Table 3 and Figure 1. Note that we do not include d-approximate

DBSCAN in Table 3, Figure 1 or any following experiment, due to

its signi�cantly low e�ciency on high-dimensional data. Specif-

ically, by [8], a larger d makes d-approximate DBSCAN more

e�cient, and d ranges from 0.001 to 0.1 in [8]. However, though

we have enlarged d to 1.0 in our evaluation, the method still

presents a low e�ciency which is even slower than the naive DB-

SCAN, as shown in Table 4. This means it su�ers much from curse

of dimensionality and should not be applied in high-dimensional

space. And [2] provides further explanation for this problem of

d-approximate DBSCAN.

It is observed that (1) LAF-DBSCAN and LAF-DBSCAN++

achieve the highest e�ciency in most cases. For example, LAF-

DBSCAN makes up to 2.9x acceleration to DBSCAN as well

as reaches 1.6x speed over DBSCAN++, 2.2x speed over KNN-

BLOCK DBSCAN and 2.4x speed over BLOCK-DBSCAN. (2) LAF-

DBSCAN achieves the highest quality in most cases, and in the

cases of NYT-150k where the three methods have same scores,

LAF-DBSCAN only takes 60% ∼ 70% time of DBSCAN++, as

shown in Figure 1. (3) LAF-DBSCAN++ usually has a slightly

lower quality than DBSCAN++, but gains much more on the

e�ciency (i.e., up to 6.7x acceleration to DBSCAN++), which

makes it practical with better speed-quality trade-o� capability

than DBSCAN++. (4) Due to curse of dimensionality, all methods

perform worse on MS-150k than the other datasets. Speci�cally,

higher dimension usually means more complex distribution. For

LAF, the distribution is harder to �t and more false negative

predictions (FN) are made, e.g., when n = 0.5, g = 3, the number

of FN in NYT/Glove/MS-150k are respectively 5687/2010/7425,

which has a negative correlation with the results in Table 3. More

complex distribution also makes sampling less representative and

neighbor search less e�ective, which degrades clustering quality

of the baselines too.

3.4 Speed-quality trade-o� evaluation

We use MS-150k and Glove-150k with the setting n = 0.5, g = 3

to present the speed-quality trade-o� capabilities of all the ap-

proximate methods except d-approximate DBSCAN as discussed

in Section 3.3. We adjust the performance of DBSCAN++ and

LAF-DBSCAN++ by varying the sample fraction ? , which is com-

pleted by varying the o�set X (mentioned in Section 3.1) within

0.1 ∼ 0.9, while for LAF-DBSCAN the error factor U is varied

from 1.1 to 15.0 (which is �xed as 1.0 in LAF-DBSCAN++). For

KNN-BLOCK DBSCAN, we vary the branching factor within 3 ∼

20 and the leaves ratio from 0.001 to 0.3. For BLOCK-DBSCAN,

we vary the cover tree basis from 1.1 to 5 while �x the maximum

iterations as 10.

As illustrated in Figure 2 and 3, LAF-DBSCAN and LAF-DBSCAN++

have the best speed-quality trade-o� capabilities in the high-

quality areas (e.g., where AMI > 0.4) on both Glove-150k and MS-

150k. Given that the real world normally demands a relatively

high clustering quality, we conclude that LAF-DBSCAN and LAF-

DBSCAN++ achieve better trade-o� capabilities than all the base-

lines in practice. Furthermore, on both datasets, LAF-DBSCAN++

presents a better trade-o� than DBSCAN++, meaning that LAF

signi�cantly reduces the clustering time of DBSCAN++ with a

relatively tiny quality loss, which further proves the strength and

usefulness of LAF for a wide range of DBSCAN variants.
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Figure 2: Speed-quality trade-o� curves of the approximate

methods on dataset MS-150k

3.5 Scalability evaluation

To evaluate the scalability, we run all themethods on the threeMS

datasets of di�erent scales, and report the results for n = 0.55 and

g = 5, as the results of other (n, g) are similar. The quality scores

are reported in Table 5 and the e�ciency results are reported
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Figure 3: Speed-quality trade-o� curves of the approximate

methods on dataset Glove-150k

Method MS-50k MS-100k MS-150k

ARI

KNN-BLOCK 0.7577 0.3828 0.1862
BLOCK-DBSCAN 0.7710 0.4632 0.2283
DBSCAN++ 0.7238 0.4690 0.1321
LAF-DBSCAN 0.7581 0.5524 0.2309
LAF-DBSCAN++ 0.6455 0.3077 0.1138

AMI

KNN-BLOCK 0.5708 0.2736 0.1738
BLOCK-DBSCAN 0.6134 0.3518 0.2626
DBSCAN++ 0.6264 0.4494 0.2288
LAF-DBSCAN 0.7043 0.5034 0.3017
LAF-DBSCAN++ 0.5328 0.3197 0.2210

Table 5: Clustering quality of all the approximate methods

on datasets of di�erent scales (n = 0.55, g = 5)
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Figure 4: Clustering time of all the methods on datasets of

di�erent scales (n = 0.55, g = 5)

in Figure 4 where we annotate the points of MS-150k with the

numbers of the clustering time for a clearer view. They prove

that our LAF-enhanced methods are highly e�ective and scalable,

based on these observations: (1) similar to the case of e�ciency

and e�ectiveness evaluation, here LAF-DBSCAN still achieves the

best quality in most cases, with the highest speed on the largest

dataset (whose time is the shortest 547.2s). (2) LAF-DBSCAN has

the slowest growth of clustering time when data scale increases,

which presents its higher scalability than the baselines. (3) In

most cases the quality of LAF-DBSCAN++ is close to DBSCAN++,

while in other cases they get closer quickly with the increasing

data scale, showing the higher scalability of LAF-DBSCAN++

than DBSCAN++.

(&, 3 ) Dataset MC/TC MP/TPC ASMC

(0.5, 3) NYT-150k 63/92 209/19358 3.32

(0.55, 5) Glove-150k 39/81 250/7879 6.41

(0.55, 5) MS-150k 159/176 1107/18384 6.96

Table 6: Statistics for fullymissed clusters by LAF-DBSCAN.

MC, the number of fully Missed Clusters; TC, the Total

number of groundtruthClusters;MP, the number ofMissed

data Points; TPC, the Total number of data Points belong-

ing to the groundtruth Clusters, i.e., the non-noise points;

ASMC, Average Size of the fully Missed Clusters.

3.6 Missed cluster analysis

In addition to the wrongly split cluster error discussed in Section

2, a cluster may be fully missed if all its core points are falsely

predicted to be non-core or noise. Fortunately, this fully missed

cluster error only has a negligible impact on the quality, as it

usually occurs in very tiny clusters. We choose the cases where

LAF-DBSCAN achieves the lowest quality on each dataset ac-

cording to Table 3 (i.e., (n ,g) = (0.5,3) on NYT-150k, (0.55,5) on

Glove-150k and MS-150k) and report the fully missed cluster

information in Table 6. Though in the worst cases, LAF-DBSCAN

fully misses more than 50% clusters, it still guarantee the major

clusters to be found, since the missed clusters in total include

only 1% ∼ 6% of the non-noise points. And the average size of

the missed clusters (ASMC) is too tiny (i.e., only including 3 ∼

7 points on average) to have a non-trivial impact on the overall

clustering quality. Therefore, we do not further discuss such an

error in this paper.

4 CONCLUSION AND FUTUREWORK

To improve e�ciency and scalability of high-dimensional DBSCAN-

like clustering for angular distance, we propose LAF, a generic

learned accelerator framework using learned cardinality esti-

mation techniques to reduce unnecessary range queries in the

clustering, and compensating for the quality loss by detecting

the false negative and merging the wrongly separated clusters.

Our evaluation shows that the LAF-enhanced methods do have a

signi�cantly higher e�ciency than the state-of-the-art e�cient

DBSCAN approaches with also high quality, as well as a better

speed-quality trade-o� capability than the baselines. The main

limitation of this work is the limited range of applicable distance

metrics. But since there is no hard constraint on the distance

metric, our methods are easy to adapt to other distances, which

will be explored in the future work. The future work also in-

cludes studying the impact of the cardinality estimator being

used, extensively investigating the proper U , etc.
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