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ABSTRACT
Graph pattern matching is a fundamental operation for the anal-
ysis and exploration of data graphs. In this paper, we present a
novel approach for efficiently finding homomorphic matches for
hybrid graph patterns, where each pattern edge may be mapped
either to an edge or to a path in the input data, thus allowing
for higher expressiveness and flexibility in query formulation. A
key component of our approach is a lightweight index structure
that leverages graph simulation to compactly encode the query
answer search space. The index can be built on-the-fly during
query execution and does not have to persist on the disk. Using the
index, we design a multi-way join algorithm to enumerate query
solutions without generating an exploding number of intermediate
results. We demonstrate through extensive experiments that our
approach can efficiently evaluate a broad spectrum of graph pat-
tern queries and greatly outperforms state-of-the-art approaches.
Our source code, datasets and queries are publicly available at
https://github.com/wuxyng/RIGMatch.

1 INTRODUCTION
Graphs model complex relationships between entities in a multi-
tude of modern applications. A fundamental operation for query-
ing, exploring and analyzing graphs is finding the matches of a
query graph pattern in the data graph. Graph matching is a building
block of search and analysis tasks in many application domains of
data science, such as social network analysis [14], protein interac-
tion analysis [50], cheminformatics [52], knowledge bases [1, 54]
and road network management [2].

Existing approaches are characterized by: (a) the type of edges
the patterns have, and (b) the type of morphism used to map the
pattern to the data graph. An edge in a query pattern can be either
a direct edge, which represents a direct relationship in the data
graph (edge-to-edge mapping) [4, 6, 16, 35, 40, 42, 56–58], or a
reachability edge, which represents a node reachability relation-
ship in the data graph (edge-to-path mapping) [12, 20, 21, 36, 67].
The morphism determines how a pattern is mapped to the data
graph and, in this context, it can be an isomorphism (injective
function) [6, 42, 56, 58] or a homomorphism (unrestricted func-
tion) [4, 12, 20, 36, 40]. Graph simulation [29] and its variants
[19, 38] are other ways to match patterns to data graphs.

Earlier contributions considered isomorphisms and edge-to-
edge mappings, while more recent ones focus on homomorphic
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Figure 1: Hybrid graph pattern query examples.

mappings. By allowing edge-to-path mapping on graphs, patterns
with reachability edges are able to extract matches “hidden” deeply
within large graphs which might be missed by patterns with only
direct edges. On the other hand, the patterns with direct edges can
discover important direct connections in the data graph which can
be missed by patterns with only reachability edges. We propose,
in this paper, a general framework that considers patterns which
allow both direct and reachability edges, which are called hybrid
graph patterns. This framework incorporates the benefits from
both types of edges.

Fig. 1 shows two example hybrid graph patterns from different
application domains. Double line edges denote reachability edges,
while single line edges denote direct edges. The pattern graph in
Fig. 1(a) is a query over a service provider data graph searching
for a supplier, a retailer, a whole-seller, and a bank such that the
supplier directly or indirectly supplies products to the retailer and
the whole-seller, and both of them receive directly services from
the same bank. The pattern graph in Fig. 1(b) is a query over a
bank data graph looking for individuals who performed a pattern
of direct and indirect (sequences of) money transfers between legal
or illegal accounts that can suggest a money laundering activity.

Graph pattern matching is an NP-hard problem, even for iso-
morphic matching of patterns with only direct edges [23]. Finding
the homomorphic matches of query patterns which involve reach-
ability edges on a data graph is more challenging (technically, a
homomorphism is defined for edge-to-edge mapping but we gener-
alize the term later so that it refers also to edge-to-path mapping).
Reachability edges in a query pattern increase the number of re-
sults since they are offered more chances to be matched to the data
graph compared to direct edges. Furthermore, finding matches
of reachability edges to the data graph is an expensive operation
and requires the use of a node reachability index [15, 32, 53]. De-
spite the use of reachability indexes, evaluating reachability edges
remains a costly operation. Existing approaches for evaluating pat-
tern queries with reachability relationships produce a huge number
of redundant intermediate results (that is, results for subgraphs of
the query graph which do not appear in any result for the query).
Our experiments on current systems and engines, e.g., Neo4j,
show that they do not display satisfactory performance on eval-
uating hybrid graph pattern queries with reachability edges [61].
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These results demonstrate that such systems need to be extended
with efficient reachability query evaluation support [24, 31].

Existing graph pattern matching algorithms can be broadly
classified into the following two approaches: the join-based ap-
proach (JM) [4, 12, 40, 68] and the tree-based approach (TM)
[6, 7, 25, 57, 67]. Given a graph pattern query 𝑄 , JM first de-
composes 𝑄 into a set of subgraphs. The query is then evaluated
by matching each subgraph against the data graph and joining
together these individual matches. Unlike JM, TM first decom-
poses or transforms 𝑄 into one or more tree patterns using various
methods, and then uses them as the basic processing unit. Both JM
and TM suffer from a potentially exploding number of redundant
intermediate results which can be substantially larger than the
output size of the query, thus spending a prohibitive amount of
time on examining false positives. As a consequence, existing
approaches do not scale satisfactorily when the size of the data
graph increases. Also, as our experiments show, query engines
of contemporary graph DBMSs cannot handle efficiently graph
pattern queries containing reachability edges.

In this paper, we address the problem of evaluating hybrid
graph patterns using homomorphisms over a data graph. This is
a general setting for graph pattern matching. We develop a new
graph pattern matching framework, which consists of two phases:
(a) the summarization phase, where a query-dependent summary
graph is built on-the-fly to serve as a compact search space for the
given query, and (b) the enumeration phase, where query solutions
are produced using the summary graph.

Contribution. The main contributions of the paper are as follows:
• We propose the concept of runtime index graph (RIG) to encode

all possible homomorphisms from a query pattern to the data
graph. By losslessly summarizing the occurrences of a given
pattern, a RIG represents results more succinctly. A RIG graph
can serve as a search space for the query answer. It can be
efficiently built on-the-fly and does not have to persist on disk.

• We develop a novel simulation-based technique called double
simulation for identifying and filtering out nodes of the data
graph which do not participate in the query answer. Graph
simulation based techniques have been employed previously
for filtering data graph nodes [39, 45, 64] but they are restricted
to edge-to-edge isomorphic mappings). We design an efficient
algorithm to compute double simulations. Using this filtering
method, we build a refined RIG graph to further reduce the
query answer search space. We also present tuning strategies
to improve the performance of double simulation computation
and RIG construction.

• We design an effective join-based search ordering strategy for
searching query occurrences. The search ordering strategy takes
into account both the query graph structure and data graph
statistics.

• We develop a novel algorithm for enumerating occurrences
of graph pattern queries. In order to compute the results, our
algorithm performs multiway joins by intersecting node lists
and node adjacency lists in the runtime index graph. Unlike
both the JM and TM methods, it avoids generating a poten-
tially exploding number of intermediate results and has a small
memory footprint.

• We integrate the above techniques to design a graph pattern
matching algorithm, called GM and we run extensive experi-
ments to evaluate its performance and scalability on real datasets.
We compare GM with the JM and TM approaches. The results
show that GM can efficiently evaluate graph pattern queries
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Figure 2: A hybrid graph pattern query 𝑄 , a data graph 𝐺 , a
homomorphism from 𝑄 to 𝐺 , the answer of 𝑄 on 𝐺 , and two
runtime index graphs of 𝑄 on 𝐺.

with varied structural characteristics and with tens of nodes on
data graphs, and that it outperforms by a wide margin both JM
and TM as well as modern DBMSs and query engines.

2 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we present the data model, graph pattern queries,
edge-to-edge and edge-to-path mappings and homomorphisms.
We also present concepts that are needed for the results presented
later.

Data Graph. We assume that the data is presented in the form
of a data graph defined below. We focus on directed, connected,
and node-labeled graphs. All techniques in this paper can be
readily extended to handle more general cases, such as undi-
rected/disconnected graphs and multiple labels on nodes/edges.

Definition 2.1 (Data Graph). A data graph is a directed node-
labeled graph 𝐺 = (𝑉 , 𝐸) where 𝑉 denotes the set of nodes and
𝐸 denotes the set of edges (ordered pairs of nodes). Let L be a
finite set of node labels. Each node 𝑣 in𝑉 has a label 𝑙𝑎𝑏𝑒𝑙 (𝑣) ∈ L
associated with it. □

Given a label 𝑎 in L, the inverted list 𝐼𝑎 is the list of nodes in
𝐺 whose label is 𝑎. Fig. 2(b) shows a data graph 𝐺 with labels
𝑎, 𝑏, and 𝑐. Label subscripts are used to distinguish nodes with the
same label. The inverted list of label 𝑎 in 𝐺 is 𝐼𝑎 = {𝑎0, 𝑎1, 𝑎2}.

Definition 2.2 (Node reachability). A node 𝑢 is said to reach
node 𝑣 in 𝐺 , denoted by 𝑢 ≺ 𝑣 , if there exists a path from 𝑢 to 𝑣

in 𝐺 . Clearly, if (𝑢, 𝑣) ∈ 𝐸, then 𝑢 ≺ 𝑣 . Abusing tree notation, we
refer to 𝑣 as a child of 𝑢 (or 𝑢 as a parent of 𝑣) if (𝑢, 𝑣) ∈ 𝐸, and 𝑣

as a descendant of 𝑢 (or 𝑢 is an ancestor of 𝑣) if 𝑢 ≺ 𝑣 . □
Given two nodes 𝑢 and 𝑣 in 𝐺 , in order to efficiently check

whether 𝑢 ≺ 𝑣 , graph pattern matching algorithms use some
reachability index. In most reachability indexes, the data graph
node labels are the entries in the index for the data graph [53].
Our approach can flexibly use any indexing scheme to check for
node reachability. In order to check if 𝑣 is a child of 𝑢, some basic
access method of the graph𝐺 can be used; for example, adjacency
lists.

Queries. We consider graph pattern queries that involve direct
and/or reachability edges.

Definition 2.3 (Graph Pattern Query). A hybrid graph pattern
query is a connected directed graph 𝑄 . Every node 𝑞 in 𝑄 has
a label 𝑙𝑎𝑏𝑒𝑙 (𝑞) from L. There can be two types of edges in 𝑄:
direct edges and reachability edges. □

Intuitively, a direct edge in the query represents an edge in
the data graph 𝐺 . A reachability edge in the query represents the
existence of a path in 𝐺 . Fig. 2(a) shows a hybrid graph pattern
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query 𝑄 . Single line edges denote direct edges while double line
edges denote reachability edges.

Homomorphisms. Queries are matched to the data graph using
an extension of homomorphism called ep-homomorphism (for
edge-to-path homomorphism).

Definition 2.4 (Graph Pattern ep-homomorphism to a Data
Graph). Given a graph pattern 𝑄 and a data graph 𝐺 , a ep-homo-
morphism from 𝑄 to 𝐺 is a function ℎ mapping the nodes of 𝑄
to nodes of 𝐺 , such that: (1) for any node 𝑥 ∈ 𝑄 , 𝑙𝑎𝑏𝑒𝑙 (𝑥) =
𝑙𝑎𝑏𝑒𝑙 (ℎ(𝑥)); and (2) for any edge (𝑥,𝑦) ∈ 𝑄 , if (𝑥,𝑦) is a direct
edge, (ℎ(𝑥), ℎ(𝑦)) is an edge of 𝐺 , while if (𝑥,𝑦) is a reachability
edge, ℎ(𝑥) ≺ ℎ(𝑦) in 𝐺 . □

Fig. 2(a,b) shows a homomorphism ℎ of query 𝑄 to the data
graph𝐺 . Query edges (𝐴, 𝐵) and (𝐴,𝐶) which are direct edges are
mapped by ℎ to an edge in 𝐺 . Edge (𝐵,𝐶) is a reachability edge
which is mapped by ℎ to a path of edges in 𝐺 (possibly consisting
of a single edge).

Query Answer. We call an occurrence of a pattern query 𝑄 on a
data graph 𝐺 a tuple indexed by the nodes of 𝑄 whose values are
the images of the nodes in 𝑄 under a homomorphism from 𝑄 to 𝐺 .

Definition 2.5 (Query Answer). The answer of𝑄 on𝐺 , denoted
as 𝑄 (𝐺), is a relation whose schema is the set of nodes of 𝑄 , and
whose instance is the set of the occurrences of𝑄 under all possible
homomorphisms from 𝑄 to 𝐺 . □

Fig. 2(c) shows the answer of 𝑄 on 𝐺 .

Problem statement. Given a large directed graph 𝐺 and a pattern
query 𝑄 , our goal is to efficiently find the answer of 𝑄 on 𝐺.

3 A LIGHTWEIGHT INDEX AS COMPACT
SEARCH SPACE

3.1 Runtime Index Graph
Given a pattern query 𝑄 and a data graph 𝐺 , we propose the
concept of runtime index graph to serve as a search space of the
answer of 𝑄 on 𝐺. We start be providing some definitions.

The match set 𝑚𝑠 (𝑞) of a node 𝑞 in 𝑄 is the inverted list
𝐼𝑙𝑎𝑏𝑒𝑙 (𝑞) of the label of node 𝑞. A match of an edge 𝑒 = (𝑝, 𝑞)
in 𝑄 is a pair (𝑢, 𝑣) of nodes in 𝐺 such that 𝑙𝑎𝑏𝑒𝑙 (𝑝) = 𝑙𝑎𝑏𝑒𝑙 (𝑢),
𝑙𝑎𝑏𝑒𝑙 (𝑞) = 𝑙𝑎𝑏𝑒𝑙 (𝑣) and: (a)𝑢 ≺ 𝑣 if 𝑒 is a reachability edge, while
(b) (𝑢, 𝑣) is an edge in 𝐺 if 𝑒 is a direct edge. The match set𝑚𝑠 (𝑒)
of 𝑒 is the set of all the matches of 𝑒 in 𝐺 .

If 𝑞 is a node in 𝑄 labeled by label 𝑎, an occurrence of 𝑞 in 𝐺

is the image ℎ(𝑞) of 𝑞 in 𝐺 under a homomorphism ℎ from 𝑄 to
𝐺 . The occurrence set of 𝑞 on 𝐺 , denoted as 𝑜𝑠 (𝑞), is the set of
all the occurrences of 𝑞 on 𝐺 . This is a subset of the match set
𝑚𝑠 (𝑞) containing only those nodes that occur in the answer of 𝑄
on𝐺 for 𝑞 (that is, nodes that occur in the column 𝑞 of the answer).
For instance, the occurrence set of node 𝐴 of query 𝑄 in Fig. 2
is {𝑎1, 𝑎2}. If 𝑒 = (𝑝, 𝑞) is an edge in 𝑄 , an occurrence of 𝑒 in 𝐺

is a pair (𝑢, 𝑣) of nodes from 𝐺 such that 𝑢 = ℎ(𝑝) and 𝑣 = ℎ(𝑞),
where ℎ is a homomorphism from 𝑄 to 𝐺 . The occurrence set of
𝑒 on 𝐺 , denoted as 𝑜𝑠 (𝑒), is the set of all the occurrences of 𝑒 on
𝐺 . This is the projection of the answer of 𝑄 on 𝐺 on the columns
𝑝 and 𝑞. Clearly, 𝑜𝑠 (𝑒) ⊆ 𝑚𝑠 (𝑒). In the example of Fig. 2, the
occurrence set of the edge (𝐴, 𝐵) of query 𝑄 is {(𝑎1, 𝑏0), (𝑎2, 𝑏2)}.

Definition 3.1 (Runtime Index Graph). A runtime index graph
(RIG) of pattern query 𝑄 over data graph 𝐺 is a 𝑘-partite graph
𝐺𝑄 where 𝑘 is the number of nodes in 𝑄 . For every node 𝑞 ∈ 𝑄 ,
graph 𝐺𝑄 has an independent node set, denoted 𝑐𝑜𝑠 (𝑞), such

that 𝑜𝑠 (𝑞) ⊆ 𝑐𝑜𝑠 (𝑞) ⊆ 𝑚𝑠 (𝑞). Set 𝑐𝑜𝑠 (𝑞) is called the candidate
occurrence set of 𝑞 in 𝐺𝑄 . For every edge 𝑒𝑄 = (𝑝, 𝑞) in 𝑄 , graph
𝐺𝑄 has a set 𝑐𝑜𝑠 (𝑒𝑄 ) of edges from nodes in 𝑐𝑜𝑠 (𝑝) to nodes
in 𝑐𝑜𝑠 (𝑞) such that 𝑜𝑠 (𝑒𝑄 ) ⊆ 𝑐𝑜𝑠 (𝑒𝑄 ) ⊆ 𝑚𝑠 (𝑒𝑄 ). Set 𝑐𝑜𝑠 (𝑒𝑄 ) is
called the candidate occurrence set of 𝑒𝑄 in 𝐺𝑄 .

By definition, we can have many RIGs of a given query 𝑄 on
data graph 𝐺 . Among them, the largest one is called the match
RIG of 𝑄 on 𝐺 , denoted as 𝐺𝑚

𝑄
, and the smallest one is called the

answer RIG of 𝑄 on 𝐺 , denoted as 𝐺𝑎
𝑄

. For any edge 𝑒 in 𝑄 , the
candidate occurrence set for 𝑒 in 𝐺𝑎

𝑄
is the occurrence set 𝑜𝑠 (𝑒),

while the candidate occurrence set for 𝑒 in 𝐺𝑚
𝑄

is the match set
𝑚𝑠 (𝑒). Figs. 2(d) and (e), respectively, show the match RIG and
the answer RIG for query 𝑄 on the data graph 𝐺 in Fig. 2(b).

A RIG 𝐺𝑄 losslessly summarizes all the occurrences of 𝑄 on
𝐺 as shown by the proposition below.

PROPOSITION 3.2. Let𝐺𝑄 be a RIG of a pattern query𝑄 over
a data graph 𝐺 . Assume that there is a homomorphism from 𝑄 to
𝐺 which maps nodes 𝑝 and 𝑞 of 𝑄 to nodes 𝑣𝑝 and 𝑣𝑞 , respectively,
of 𝐺 . Then, if (𝑝, 𝑞) is an edge in 𝑄 , (𝑣𝑝 , 𝑣𝑞) is an edge of 𝐺𝑄 .

By Proposition 3.2, 𝐺𝑄 encodes all the homomorphisms from
𝑄 to 𝐺 . Thus, it represents a search space of the answer of 𝑄 on
𝐺. Besides recording candidate occurrences sets for the edges
of query 𝑄 , a RIG also records how the edges in the candidate
occurrence sets can be joined to form occurrences for query 𝑄 .
We later present an algorithm for enumerating the results of 𝑄 on
𝐺 from a RIG 𝐺𝑄 .

RIG vs. other query related auxiliary data structures. A num-
ber of recent graph pattern matching algorithms also use query
related auxiliary data structures to represent the query answer
search space [6, 7, 17, 19, 25, 27]. These auxiliary data structures
are designed to support searching for (an extension of) graph sim-
ulation [19] or subgraph isomorphisms [6, 7, 17, 25, 27]. Unlike
RIG, they are subgraphs of the data graph, hence they do not
contain reachability information between data nodes, and conse-
quently, they are not capable of compactly encoding edge-to-path
homomorphic matches.

3.2 Refining a RIG using Double Simulation
Motivation. A RIG 𝐺𝑄 can contain redundant nodes and edges,
that is, nodes and edges that are not in the query answer. To further
reduce the query answer search space, we would like to refine
a RIG 𝐺𝑄 as much as possible by pruning redundant nodes and
edges. Ideally, we would like to build the answer RIG 𝐺𝑎

𝑄
before

computing the query answer. However, when 𝑄 is a graph which
is not a tree, finding 𝐺𝑎

𝑄
is a NP-hard problem.

Most existing data node filtering methods are either simply
based on query node labels [4, 40], or apply an approximate sub-
graph isomorphism algorithm [28] on query edge matches, or
use one or more subtrees of the query to filter out data nodes
violating children or parent structural constraints of subtrees
[6, 25, 57]. They are unable to prune nodes violating ances-
tor/descendant structural constraints of the input query. While
the recent node pre-filtering method [63] can prune nodes vio-
lating ancestor/descendant structural constraints, it is unable to
prune data nodes violating children or parent structural constraints.
Moreover, that pruning technique does not capture the specific
structure among those ancestors and descendants.

Inspired by the graph simulation technique used in [34, 43]
which constructs a covering index for queries over graph data, we
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Table 1: Forward (F ), backward (B), and double (FB) simu-
lation of the query 𝑄 on the graph 𝐺 of Fig. 2.

𝑞 F (𝑞) B(𝑞) FB(𝑞)
𝐴 {𝑎1, 𝑎2} {𝑎0, 𝑎1, 𝑎2} {𝑎1, 𝑎2}
𝐵 {𝑏0, 𝑏1, 𝑏2} {𝑏0, 𝑏2, 𝑏3} {𝑏0, 𝑏2}
𝐶 {𝑐0, 𝑐1, 𝑐2} {𝑐0, 𝑐1, 𝑐2} {𝑐0, 𝑐1, 𝑐2}

propose to leverage an extension of traditional graph simulation
[29] to construct a refined runtime index graph. The refined run-
time index graph can serve as a compact search space for queries
over graphs.

Double simulation. In contrast to a homomorphism, which is a
function, a graph simulation is a binary relation on the node sets
of two directed graphs. Since the structure of a node is determined
by its incoming and outgoing paths, we define a type of simu-
lation called double simulation, which takes into account both
the incoming and the outgoing paths of the graph nodes. Double
simulation extends dual simulation [38], since the later permits
only edge-to-edge mappings between nodes of the input query
pattern and the data graph.

Definition 3.3 (Double Simulation). The double simulation
FB of a query 𝑄 = (𝑉𝑄 , 𝐸𝑄 ) by a directed data graph 𝐺 = (𝑉 , 𝐸)
is the largest binary relation 𝑆 ⊆ 𝑉𝑄 × 𝑉 such that, whenever
(𝑞, 𝑣) ∈ 𝑆 , the following conditions hold:

(1) 𝑙𝑎𝑏𝑒𝑙 (𝑞) = 𝑙𝑎𝑏𝑒𝑙 (𝑣).
(2) For each edge 𝑒𝑄 = (𝑞, 𝑞′) ∈ 𝐸𝑄 , there exists 𝑣 ′ ∈ 𝑉 such

that (𝑞′, 𝑣 ′) ∈ 𝑆 and (𝑣, 𝑣 ′) ∈𝑚𝑠 (𝑒𝑄 ) .
(3) For each edge 𝑒𝑄 = (𝑞′, 𝑞) ∈ 𝐸𝑄 , there exists 𝑣 ′ ∈ 𝑉 such

that (𝑞′, 𝑣 ′) ∈ 𝑆 and (𝑣 ′, 𝑣) ∈𝑚𝑠 (𝑒𝑄 ) .

For 𝑞 ∈ 𝑉𝑄 , let FB(𝑞) denote the set of all nodes of 𝑉 that
double simulate 𝑞. In Section 3.5, we will show how to use FB
to construct a refined RIG of 𝑄 on 𝐺 .

The double simulation of 𝑄 by 𝐺 is unique, since there is
exactly one largest binary relation 𝑆 satisfying the three conditions
of Definition 3.3. This can be proved by the fact that, whenever
two binary relations 𝑆1 and 𝑆2 satisfy the three conditions, their
union 𝑆1 ∪ 𝑆2 also satisfies these conditions.

We call the largest binary relation which satisfies the conditions
1 and 2 of Definition 3.3 above forward simulation of 𝑄 by 𝐺 ,
while the largest binary relation which satisfies conditions 1 and
3 of Definition 3.3 above is called backward simulation. While
the double simulation preserves both incoming and outgoing edge
types (direct or reachability) between 𝑄 and 𝐺 , the forward and
the backward simulation preserve only outgoing and incoming
edge types, respectively.

Table 1 shows the simulations F , B, and FB of the query 𝑄

on the graph 𝐺 of Fig. 2. In particular, for the reachability query
edge (𝐵,𝐶) of 𝑄 , the matches considered for double simulation
are (𝑏0, 𝑐0), (𝑏0, 𝑐1), (𝑏1, 𝑐0), (𝑏1, 𝑐2), (𝑏2, 𝑐0), (𝑏2, 𝑐1), (𝑏2, 𝑐2).

3.3 A Basic Algorithm for Computing Double
Simulation

To compute FB, we present first a basic algorithm called FB-
SimBas (Algorithm 1). Algorithm FBSimBas is based on an exten-
sion of a naive evaluation strategy originally designed for compar-
ing graphs of unknown sizes [29, 38]. While the original method
works for edge-to-edge mappings between the given two graphs,
FBSimBas allows edge-to-path mappings from a reachability edge
in the pattern graph to a path in the data graph.

Algorithm 1 Algorithm FBSimBas for computing double simula-
tion.
Input: Data graph 𝐺 , pattern query 𝑄

Output: Double simulation FB of 𝑄 by 𝐺

1. Let 𝐹𝐵 be an array indexed by the nodes of 𝑄;
2. Initialize 𝐹𝐵 (𝑞) to be𝑚𝑠 (𝑞) for every node 𝑞 in𝑉𝑄 ;
3. repeat
4. forwardPrune();
5. backwardPrune();
6. until (𝐹𝐵 has no changes)
7. return 𝐹𝐵;

Procedure forwardPrune()
1. for (each edge 𝑒𝑄 = (𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸𝑄 and each node 𝑣𝑞𝑖 ∈ 𝐹𝐵 (𝑞𝑖 )) do

2. if (there is no 𝑣𝑞 𝑗
∈ 𝐹𝐵 (𝑞 𝑗 ) such that (𝑣𝑞𝑖 , 𝑣𝑞 𝑗

) ∈ 𝑚𝑠 (𝑒𝑄 ))
then

3. delete 𝑣𝑞𝑖 from 𝐹𝐵 (𝑞𝑖 );

Procedure backwardPrune()
1. for (each edge 𝑒𝑄 = (𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸𝑄 and each node 𝑣𝑞 𝑗

∈ 𝐹𝐵 (𝑞 𝑗 ))
do

2. if (there is no 𝑣𝑞𝑖 ∈ 𝐹𝐵 (𝑞𝑖 ) such that (𝑣𝑞𝑖 , 𝑣𝑞 𝑗
) ∈ 𝑚𝑠 (𝑒𝑄 )) then

3. delete 𝑣𝑞 𝑗
from 𝐹𝐵 (𝑞 𝑗 );

Given a query 𝑄 and a data graph 𝐺, FBSimBas implements
the following strategy: starting with the largest possible relation
between the node sets of 𝑄 and 𝐺, it incrementally disqualifies
pairs of nodes violating the conditions of Definition 3.3. The
process terminates when no more node pairs can be disqualified.

More concretely, FBSimBas works as follows. Let 𝐹𝐵 be an
array structure indexed by the nodes of𝑄. The algorithm initializes
𝐹𝐵 by setting 𝐹𝐵(𝑞) to be equal to the match set 𝑚𝑠 (𝑞) of 𝑞, for
each 𝑞 ∈ 𝑉𝑄 . The main process consists of two procedures which
iterate on the edges of𝑄 and check the conditions of Definition 3.3
in different directions. The first procedure, called forwardPrune,
checks the satisfaction of the forward condition in Definition 3.3
by visiting each edge 𝑒𝑄 = (𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸𝑄 from the tail node 𝑞𝑖 to
the head node 𝑞 𝑗 . Specifically, forwardPrune removes each 𝑣𝑞𝑖
from 𝐹𝐵(𝑞𝑖 ) if there exists no 𝑣 𝑗 ∈ 𝐹𝐵(𝑞 𝑗 ) such that (𝑣𝑖 , 𝑣 𝑗 ) is
in𝑚𝑠 (𝑒𝑄 ) . The second procedure, called backwardPrune, checks
the satisfaction of the backward condition in Definition 3.3 by
visiting each edge in the opposite direction. The above process is
repeated until 𝐹𝐵 becomes stable, i.e., no more changes can be
made to 𝐹𝐵.

An example. The table of Fig. 3(b) shows the node pruning steps
performed by Algorithm FBSimBas for the query 𝑄 of Fig. 2(a)
on the graph 𝐺2. We assume that the edges of 𝑄 are considered
in the order: (𝐴, 𝐵), (𝐴,𝐶), and (𝐵,𝐶). The first column shows the
step number. Odd numbers correspond to Procedure forwardPrune
while even numbers correspond to Procedure backwardPrune. The
other three columns show the nodes pruned at each step from the
candidate 𝐹𝐵 sets for the query nodes 𝐴, 𝐵, and 𝐶. An ‘×’ symbol
indicates that the corresponding node is pruned. Notice that 𝑄 has
an empty answer on 𝐺 . Algorithm FBSimBas detects and prunes
all the redundant nodes and hence 𝑄 has an empty RIG.
Complexity. Let |𝑉𝑄 | denote the cardinality of 𝑉𝑄 and |𝐼𝑚𝑎𝑥 |
denote the size of the largest inverted list of 𝐺. As there are 𝑉𝑄
pattern nodes for each of which at most |𝐼𝑚𝑎𝑥 | graph nodes can
be removed, FBSimBas executes at most |𝑉𝑄 | × |𝐼𝑚𝑎𝑥 | passes
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Step 𝐹𝐵 (𝐴) 𝐹𝐵 (𝐵) 𝐹𝐵 (𝐶 )
𝑎0 𝑎1 𝑎2 𝑏0 𝑏1 𝑏2 𝑏3 𝑐0 𝑐1 𝑐2

1 ×
2 × × ×
3 × × ×
4 ×
5 ×
6 ×

(b) FBSimBas

Step 𝑐𝑠 (𝐴) 𝑐𝑠 (𝐵) 𝑐𝑠 (𝐶 )
𝑎0 𝑎1 𝑎2 𝑏0 𝑏1 𝑏2 𝑏3 𝑐0 𝑐1 𝑐2

1 ×
2 × × ×
3 × × × ×
4 × ×

(c) FBSimDag

Figure 3: Node pruning of FBSimBas and FBSimDag for the
query 𝑄 of Fig. 2(a) on the graph 𝐺2.

(that is, an execution of forwardPrune followed by an execution
of backwardPrune). In each pass, it takes 𝑂 ( |𝑉𝑄 | × |𝐼𝑚𝑎𝑥 |2 ×
𝑅) to check the conditions of forward simulation and backward
simulation, where 𝑅 denotes the time for checking if a pair of
nodes in 𝐺 is a query edge match. Therefore, FBSimBas has a
combined complexity of 𝑂 ( |𝑉𝑄 |2 × |𝐼𝑚𝑎𝑥 |3 × 𝑅). Since pattern
𝑄 is typically much smaller than data graph 𝐺 , FBSimBas has a
worst-case runtime of 𝑂 ( |𝐼𝑚𝑎𝑥 |3 × 𝑅).

3.4 Efficiently Computing Double Simulation by
Exploiting the Pattern Structure

Recall that FBSimBas picks an arbitrary order to process/evaluate
the query edges. It has been shown in [39], and also verified by
our experimental study, that the order in which the edges are
evaluated has an impact on the overall runtime similar to the
impact of join order on join query evaluation. We would like to
explore the pattern structure to design a more efficient algorithm
for computing relation FB for 𝑄 by 𝐺 , which not only converges
faster because of a reduced number of iteration passes of FB-
SimBas but also reduces the computation cost. In order to do so,
we first describe an algorithm for computing FB for dag pattern
queries.
An algorithm for computing FB for dag patterns. Leveraging
the acyclic nature of the dag query pattern, we develop a multi-
pass algorithm called FBSimDag which is based on dynamic
programming. As with FBSimBas, 𝐹𝐵 is initially set to be the
largest possible relation between the nodes sets 𝑉𝑄 and 𝑉 . Unlike
FBSimBas which visits each edge of 𝑄 in two directions in each
pass, FBSimDag traverses nodes of 𝑄 by their topological order
two times, first bottom-up (reverse topological order) and then top-
down (forward topological order). During each traversal, nodes of
𝐺 violating the conditions of Definition 3.3 are removed from 𝐹𝐵.
As we will show later, the bottom-up traversal computes a forward
simulation of 𝑄 by 𝐺 , while the top-down traversal computes a
backward simulation of 𝑄 by 𝐺 . In contrast, FBSimBas traverses
pattern edges in an arbitrary order. The algorithm terminates when
no more nodes can be removed from 𝐹𝐵.

Algorithm 2 shows the pseudocode of FBSimDag. The al-
gorithm first invokes procedure forwardSim to check for nodes
𝑣𝑞 ∈ 𝐹𝐵(𝑞) which satisfy the forward simulation condition. Proce-
dure forwardSim considers outgoing query edges of𝑞 by traversing
nodes of 𝑄 in a bottom-up way. When 𝑞 ∈ 𝑉𝑄 is a sink node in 𝑄 ,
𝑣𝑞 trivially satisfies the forward simulation condition. Otherwise,
if edge 𝑒𝑄 = (𝑞, 𝑞𝑖 ) ∈ 𝐸𝑄 but there is no 𝑣𝑖 ∈ 𝐹𝐵(𝑞𝑖 ) such that
(𝑣, 𝑣𝑖 ) is in𝑚𝑠 (𝑒𝑄 ), 𝑣𝑞 is removed from 𝐹𝐵(𝑞).

Algorithm 2 Algorithm FBSimDag for computing double simula-
tion.
Input: Data graph 𝐺 , dag pattern query 𝑄

Output: Double simulation FB of 𝑄 by 𝐺

1. Lines 1-2 in Algorithm FBSimBas;
2. repeat
3. forwardSim();
4. backwardSim();
5. until (𝐹𝐵 has no changes)
6. return 𝐹𝐵;

Procedure forwardSim()
1. for (each 𝑞 ∈ 𝑉𝑄 in a reverse topological order and each

𝑣𝑞 ∈ 𝐹𝐵 (𝑞)) do
2. if (∃𝑒𝑄 = (𝑞,𝑞𝑖 ) ∈ 𝐸𝑄 s.t. for no 𝑣𝑞𝑖 ∈ 𝐹𝐵 (𝑞𝑖 ) ,

(𝑣𝑞, 𝑣𝑞𝑖 ) ∈ 𝑚𝑠 (𝑒𝑄 ) then
3. delete 𝑣𝑞 from 𝐹𝐵 (𝑞);

Procedure backwardSim()
1. for (each 𝑞 ∈ 𝑉𝑄 in a topological order and each 𝑣𝑞 ∈ 𝐹𝐵 (𝑞)) do
2. if (∃𝑒𝑄 = (𝑞𝑖 , 𝑞) ∈ 𝐸𝑄 s.t. for no 𝑣𝑞𝑖 ∈ 𝐹𝐵 (𝑞𝑖 ) ,

(𝑣𝑞𝑖 , 𝑣𝑞 ) ∈ 𝑚𝑠 (𝑒𝑄 ) then
3. delete 𝑣𝑞 from 𝐹𝐵 (𝑞);

When the bottom-up traversal terminates, FBSimDag proceeds
to do a top-down traversal of 𝑄 using procedure backwardSim.
This procedure checks whether nodes 𝑣𝑞 ∈ 𝐹𝐵(𝑞) satisfy the
backward simulation condition by considering incoming query
edges of 𝑞. When 𝑞 ∈ 𝑉𝑄 is a source node in 𝑄 , 𝑣𝑞 trivially
satisfies the backward simulation condition. Otherwise, if edge
𝑒𝑄 = (𝑞𝑖 , 𝑞) ∈ 𝐸𝑄 but there is no 𝑣𝑖 ∈ FB(𝑞𝑖 ) such that (𝑣𝑖 , 𝑣) is
in𝑚𝑠 (𝑒𝑄 ), 𝑣𝑞 is removed from 𝐹𝐵(𝑞) .

The above process is repeated until 𝐹𝐵 stabilizes, i.e., no 𝐹𝐵(𝑞),
𝑞 ∈ 𝑉𝑄 , can be further reduced. When 𝑄 is a tree pattern, a single
pass is sufficient for 𝐹𝐵 to stabilize [62].

The following theorem shows the correctness of Algorithm
FBSimDag. The proof is omitted here in the interest of space and
will appear in an extended version of the paper.

THEOREM 3.4. Algorithm FBSimDag correctly computes the
double simulation relation FB of a dag pattern query by a data
graph.

An example. The main difference of the two algorithms is that
FBSimDag considers query nodes in a (forward and backward)
topological order, whereas FBSimBas considers query nodes in
an arbitrary order. The table of Fig. 3(c) shows the node pruning
steps performed by Algorithm FBSimDag for the query 𝑄 of Fig.
2(a) on the graph 𝐺2. Comparing the table with that of Fig. 3(a),
one can see that it takes FBSimDag fewer steps than FBSimBas to
converge.
Dag+Δ: an efficient FB algorithm. Based on FBSimDag, we
design a new FB algorithm called FBSim. The algorithm first
decomposes the input graph pattern 𝑄 into a dag 𝑄𝑑𝑎𝑔 and a set
𝐸𝑏𝑎𝑐 of back edges (Δ). The main body of the algorithm has two
phases: it first calls FBSimDag to compute FB on 𝑄𝑑𝑎𝑔 . After that,
it calls FBSimBas on 𝐸𝑏𝑎𝑐 to update FB. The above process is
repeated until FB becomes stable.

While FBSim has the same worst case complexity as FBSimBas,
our experimental study in Section 5 demonstrates that our Dag+Δ
approach for computing double simulations runs faster than FB-
SimBas in many cases.

714



Algorithm 3 Algorithm BuildRIG for building a refined RIG

Input: Data graph 𝐺 , pattern query 𝑄

Output: RIG 𝐺𝑄 of 𝑄 on 𝐺

1. select();
2. for (each edge (𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸𝑄 ) do
3. expand(𝑞𝑖 , 𝑞 𝑗 );
4. return 𝐺𝑄 ;

Procedure select()
1. Use Algorithm FBSimBas or FBSim to compute FB of 𝑄 by 𝐺 ;
2. Initialize 𝐺𝑄 as a 𝑘-partite graph without edges having one

independent set 𝑐𝑜𝑠 (𝑞) for every node 𝑞 ∈ 𝑉𝑄 , where 𝑐𝑜𝑠 (𝑞) =
FB(𝑞) ;

Procedure expand(𝑝, 𝑞)
1. for (each 𝑣𝑝 ∈ 𝑐𝑜𝑠 (𝑝 )) do
2. for (each 𝑣𝑞 ∈ 𝑐𝑜𝑠 (𝑞)) do
3. if ((𝑣𝑝 , 𝑣𝑞 ) ∈ 𝑚𝑠 (𝑒𝑄 ) , where 𝑒𝑄 = (𝑝,𝑞) ∈ 𝐸𝑄 ) then
4. Connect 𝑣𝑝 to 𝑣𝑞 with a directed edge;

3.5 Efficiently Building the Refined RIG
We now present Algorithm BuildRIG (Algorithm 3) for build-

ing a refined RIG in two phases: in the node selection phase (line
1), all the RIG nodes are obtained by pruning redundant data nodes.
This is achieved by computing the double simulation relation. In
the node expansion phase (lines 2-3), the RIG nodes are expanded
with incident edges to construct the final RIG graph. During the
RIG construction, once node 𝑣𝑞 ∈ 𝑐𝑜𝑠 (𝑞) has been expanded, the
outgoing and incoming edges of 𝑣𝑞 are indexed by the parents
and children of query node 𝑞. This allows efficient intersection
operations of adjacency lists of selected nodes in the RIG graph.
These efficient intersection operations are useful in the phase of
query occurrence enumeration as we will show in Section 4.

As an example, consider building a refined RIG for query 𝑄

on graph 𝐺 in Fig. 2 using Algorithm 3. After the first phase, we
obtain the following FB relation: 𝐹𝐵(𝐴) = {𝑎1, 𝑎2}, 𝐹𝐵(𝐵) =

{𝑏0, 𝑏2} and 𝐹𝐵(𝐶) = {𝑐0, 𝑐1, 𝑐2}. The RIG generated from the
second phase is shown in Fig. 2(e). The RIG has one more edge
than the answer RIG (shown by a red dashed line), but it has fewer
nodes and edges than the match RIG (Fig. 2(d)).

Speedup convergence for simulation computation. As described
in Section 3.2, the computation of FB terminates only when no
more nodes can be pruned from the candidate occurrence sets of
the query nodes during the multi-pass process. This process can
be costly since we need to repeatedly check the candidate occur-
rence sets of the query nodes. We describe below optimizations to
speedup the convergence of the process.

First, if no change is made to candidate occurrences correspond-
ing to a subquery of 𝑄 in the last pass, then the computation on
that subquery for the current pass can be skipped. To achieve this,
we associate with each query node 𝑞 a flag indicating whether
nodes were pruned from its candidate occurrence set 𝐹𝐵(𝑞) during
the last pass. The flags are consulted in the current pass to decide
whether the computation can be skipped.

Second, as aforementioned, the node selection enforces the
existence semantics. A data node 𝑣 is retained in its candidate
occurrence set as long as there exist nodes in the parent and child
node lists that make 𝑣 satisfy the conditions of Definition 3.3.
Checking node 𝑣 in the current pass can be skipped if the nodes
guaranteeing its existence are not removed in the last pass. We
therefore design an index on the nodes in the candidate occurrence

Algorithm 4 Algorithm MJoin.

Input: Data graph 𝐺 , pattern query 𝑄, and runtime index graph
𝐺𝑄 of 𝑄 on 𝐺.

Output: The answer of 𝑄 on 𝐺.

1. Pick an order 𝑞1, . . . , 𝑞𝑛 of nodes of 𝑄 , where 𝑛 = |𝑉 (𝑄 ) |;
2. Let 𝑡 be a tuple where 𝑡 [𝑖 ] is initialized to be 𝑛𝑢𝑙𝑙 for 𝑖 ∈ [1, 𝑛];
3. enumeration(1, 𝑡 );

Procedure enumeration(index 𝑖, tuple 𝑡 )
1. if (𝑖 = |𝑉 (𝑄 ) | + 1) then
2. return 𝑡 ;
3. 𝑁𝑖 := {𝑞 𝑗 | (𝑞𝑖 , 𝑞 𝑗 ) ∈ 𝐸 (𝑄 ) 𝑜𝑟 (𝑞 𝑗 , 𝑞𝑖 ) ∈ 𝐸 (𝑄 ), 𝑗 ∈ [1, 𝑖 − 1] }
4. 𝑐𝑜𝑠𝑖 := 𝑐𝑜𝑠 (𝑞𝑖 );
5. for (every 𝑞 𝑗 ∈ 𝑁𝑖 ) do
6. 𝑐𝑜𝑠𝑖 𝑗 := {𝑣𝑖 ∈ 𝑐𝑜𝑠𝑖 | (𝑣𝑖 , 𝑡 [ 𝑗 ] ) or (𝑡 [ 𝑗 ], 𝑣𝑖 ) is an edge of 𝐺𝑄 };
7. 𝑐𝑜𝑠𝑖 := 𝑐𝑜𝑠𝑖 ∩ 𝑐𝑜𝑠𝑖 𝑗 ;
8. for (every node 𝑣𝑖 ∈ 𝑐𝑜𝑠𝑖 ) do
9. 𝑡 [𝑖 ] := 𝑣𝑖 ;

10. enumeration(𝑖 + 1, 𝑡 ));

sets of the query nodes. Specifically, the index records for each
data node 𝑣 ∈ 𝐹𝐵(𝑞) of query node 𝑞 those nodes in the candidate
sets of 𝑞’s parent and child nodes in 𝑄 that guarantee 𝑣’s existence
in 𝐹𝐵(𝑞). The index structure is maintained throughout the multi-
pass process.

4 A MULTIWAY INTERSECTION-BASED
ENUMERATION ALGORITHM

We now present our graph pattern answer enumeration algo-
rithm, called MJoin, which is shown in Algorithm 4.

High level idea. Given a query 𝑄 and data graph 𝐺 , relation
𝑐𝑜𝑠 (𝑒) contains the candidate occurrences of query edge 𝑒 on
𝐺. Conceptually, MJoin produces occurrences of 𝑄 by joining
multiple such relations at the same time. Instead of using standard
query plans that join one relation (i.e., query edge) at a time, MJoin
considers a new style of multi-way join plans which join one join
key (i.e., query node in graph terms) at a time. A query-node-at-a-
time style join plan considers only the distinct join key values if a
specific join key value occurs in multiple tuples. Also, all joins are
executed in a pipeline to avoid materializing intermediate results.
Hence, it can avoid enumerating large intermediate results that
typically occur with Selinger-style binary-joins (query-edge-at-a-
time joins in graph terms) [48].

This new style multi-way joins are called worst case optimal
joins [47] and have been exploited in recent graph matching algo-
rithms [3, 22, 59]. The main difference between MJoin and those
algorithms lies in the implementation of the new style multi-way
joins. MJoin exploits the runtime index graph𝐺𝑄 to perform multi-
way joins. We show below how this can be done by multi-way
intersecting node adjacency lists of 𝐺𝑄 .

The algorithm. Algorithm MJoin first picks a search order to
search solutions. This is a linear order of the query nodes. A search
order heavily influences the query evaluation performance. We
will discuss how to choose a good search order later. Then, MJoin
performs a recursive backtracking search to find occurrences of
the query nodes iteratively, one at a time by the given order, before
returning any query occurrences.

More concretely, let’s assume that the chosen search order is
𝑞1, . . . , 𝑞𝑛 . Let 𝑄𝑖 denote the subquery of 𝑄 induced by the nodes
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𝑞1, . . . , 𝑞𝑖 , 𝑖 ∈ [1, 𝑛]. Algorithm MJoin calls a recursive function
enumerate which searches for potential occurrences of a single
query node 𝑞𝑖 in each recursive step. The index 𝑖 of the current
query node is passed as a parameter to enumerate. When 𝑖 > 0, the
backtracking nature of enumerate entails that a specific occurrence
for the subquery 𝑄𝑖−1 has already been considered in the previous
recursive steps. The second parameter of enumerate is a tuple 𝑡 of
length 𝑛, where 𝑡 [1 : 𝑖] is an occurrence of 𝑄𝑖 . Initially, 𝑖 is set to
0 and all the values of 𝑡 are set to 𝑛𝑢𝑙𝑙 .

At a given recursive step 𝑖, function enumerate first determines
query nodes that have been considered in a previous recursive
step and are adjacent to the current node 𝑞𝑖 . These nodes are
collected in the set 𝑁𝑖 . Let 𝑐𝑜𝑠𝑖 be a node set of 𝑞𝑖 in 𝐺𝑄 , initially
set to be equal to 𝑐𝑜𝑠 (𝑞𝑖 ). To reduce the size of 𝑐𝑜𝑠𝑖 , for each
𝑞 𝑗 ∈ 𝑁𝑖 , enumerate intersects 𝑐𝑜𝑠𝑖 with the forward adjacency list
of 𝑡 [ 𝑗] in 𝐺𝑄 when (𝑞𝑖 , 𝑞 𝑗 ) is an edge of 𝑄 , or with the backward
adjacency list of 𝑡 [ 𝑗] when (𝑞 𝑗 , 𝑞𝑖 ) is an edge of 𝑄 (lines 5-7). If
after this process 𝑐𝑜𝑠𝑖 is not empty, function enumerate iterates
over the nodes in 𝑐𝑜𝑠𝑖 (line 8). In every iteration step, a node of
𝑐𝑜𝑠𝑖 is assigned to 𝑡 [𝑖] (line 9) and enumerate proceeds to the next
recursive step (line 10). If 𝑐𝑜𝑠𝑖 is empty or all the nodes in 𝑐𝑜𝑠𝑖
have been considered, enumerate backtracks to the last matched
query node 𝑞𝑖−1, reassigns an unmatched node (if any) from 𝑐𝑜𝑠𝑖−1
to 𝑡 [𝑖 − 1], and recursively calls enumerate. In the final recursive
step, when 𝑖 = 𝑛 + 1, tuple 𝑡 contains one specific occurrence for
all the query nodes and is returned as an occurrence of 𝑄 (line 2).
Data structure design considerations and implementation details
of multi-way intersections are provided in the full version of the
paper [61].

Example. In our running example, let 𝐺𝑄 be the refined RIG,
i.e., the graph of Fig. 2(e) including the red dashed edge. As-
sume the search order of 𝑄 is 𝐴, 𝐵,𝐶. When 𝑖 = 1, Algorithm
MJoin first assigns 𝑎1 from 𝑐𝑜𝑠 (𝐴) to tuple 𝑡 [1], then recursively
calls Enumerate(2, 𝑡). The intersection of 𝑎1’s adjacency list with
𝑐𝑜𝑠 (𝐵) is {𝑏0}. Node 𝑏0 is then assigned to 𝑡 [2] . When 𝑖 = 3,
since the intersection of forward adjacency lists of 𝑎1 and 𝑏0 with
𝑐𝑜𝑠 (𝐷) is {𝑐0, 𝑐1}, MJoin assigns 𝑐0 and 𝑐1 to 𝑡 [4], and returns
two tuples {𝑎1, 𝑏0, 𝑐0} and {𝑎1, 𝑏0, 𝑐2} in that order. Then, MJoin
backtracks till 𝑖 = 1, assigns the next node 𝑎2 from 𝑐𝑜𝑠 (𝐴) to 𝑡 [1]
and proceeds in the same way. It finally returns another two tuples
{𝑎2, 𝑏2, 𝑐0} and {𝑎1, 𝑏0, 𝑐2}. Note that edge (𝑏2, 𝑐1) (the red dashed
edge in Fig. 2(e)) is not filtered out by the double simulation
pruning process and its redundancy is detected only after MJoin
is executed.

Search order. A search order 𝜎 is a permutation of query nodes
that is chosen for searching query solutions. The performance of
a query evaluation algorithm is heavily influenced by the search
order [46]. As the number of all possible search orders is expo-
nential in the number of query nodes, it is expensive to enumerate
all of them.

The search order 𝜎 for query 𝑄 is essentially a left-deep query
plan [28]. The traditional dynamic programming technique would
take𝑂 (2 |𝑉𝑄 | ) time to generate an optimized join order. This is not
scalable to large graph patterns, as verified by our experimental
evaluation in Section 5.

We therefore use a greedy method to find a search order for 𝑄
leveraging statistics of 𝐺𝑄 . Our greedy method is based on the
join ordering strategy proposed in [28]. We refer to this method
as 𝐽𝑂 . 𝐽𝑂 selects as a start node of 𝜎 a node 𝑞 in 𝑉𝑄 with the
smallest candidate occurrence set 𝑐𝑜𝑠 (𝑞) in 𝐺𝑄 among the nodes
in 𝑉𝑄 . Subsequently, 𝐽𝑂 iteratively selects as the next node in 𝜎 a

node 𝑞′ of 𝑄 which satisfies the following two conditions: (a) 𝑞′ is
a new node adjacent in 𝑄 to some node in 𝜎 , and (b) 𝑐𝑜𝑠 (𝑞′) is the
smallest among all the nodes 𝑞′ satisfying condition (a). The ratio-
nale here is to enforce connectivity in order to reduce unpromising
intermediate results caused by redundant Cartesian products [7]
as well as to minimize (estimated) join costs. Different from the
original method which uses the cardinality of the inverted lists
of the data graph 𝐺 [28], 𝐽𝑂 uses the cardinality of the candidate
occurrence sets of a refined RIG 𝐺𝑄 , which provide a better cost
estimation for generating an effective search order.

In our experiments, we also implemented a well known order-
ing method called 𝑅𝐼 [9]. Unlike 𝐽𝑂 , 𝑅𝐼 generates 𝜎 based purely
on the topological structure of the given query, independently
of any target data graph. The rationale of 𝑅𝐼 is to introduce as
many edge constraints as possible and as early as possible in the
ordering. Roughly speaking, vertices that are highly connected
with vertices previously present in the ordering tend to come early
in the final ordering. In our enumerate procedure, edge constraints
will translate into intersection operations to produce candidate oc-
currence sets for the query nodes under consideration. Intuitively,
the search order chosen by 𝑅𝐼 is likely to reduce the computation
cost, since it tends to ensure the search space of enumerate would
be reduced significantly after each iteration. We examine this in-
tuition and compare the effectiveness of 𝑅𝐼 with 𝐽𝑂 for different
workloads in the experiments.

Complexity. The complexity analysis recently conducted for
worst-case optimal joins on relational data [22, 47] can be adapted
to graph pattern query processing on graph data.

Given a graph pattern query 𝑄 , let 𝑛 and 𝑚 denote the num-
ber of nodes and edges of 𝑄 respectively and 𝐺𝑄 denote a run-
time index graph of 𝑄 on data graph 𝐺. A fractional edge cover
of 𝑄 is a vector x = (𝑥1, . . . , 𝑥𝑚), x ∈ R |𝐸 (𝑄 ) | , in correspon-
dence to the edges (𝑒1, . . . , 𝑒𝑚) of Q, such that 𝑥 𝑗 > 0, for all
𝑗 ∈ [1,𝑚], and

∑
𝑒 𝑗 ∈𝐸 (𝑄 ) :𝑣𝑖 ∈𝑒 𝑗 𝑥 𝑗 ≥ 1, for all 𝑣𝑖 ∈ 𝑉 (𝑄) [47]. Let

(𝑥1, . . . , 𝑥𝑚) be a fractional cover of 𝑄 that minimizes the prod-
uct

∏
𝑒 𝑗 ∈𝐸 (𝑄 ) |𝑐𝑜𝑠 (𝑒 𝑗 ) |𝑥 𝑗 , where 𝑐𝑜𝑠 (𝑒 𝑗 ) denotes the candidate

occurrence set of the query edge 𝑒 𝑗 in 𝐺𝑄 .

THEOREM 4.1. The time complexity of Algorithm MJoin is
in 𝑂 (𝑛𝑚∏

𝑒 𝑗 ∈𝐸 (𝑄 ) |𝑐𝑜𝑠 (𝑒 𝑗 ) |𝑥 𝑗 ) and its space complexity is in
𝑂 (𝑛 ×𝑀𝑎𝑥𝐶𝑜𝑠), where 𝑀𝑎𝑥𝐶𝑜𝑠 is the cardinality of the largest
candidate occurrence node set of 𝐺𝑄 .

The proof of Theorem 4.1 is available in the full paper [61].

5 EXPERIMENTAL EVALUATION
We conduct extensive performance studies to evaluate the effec-
tiveness and efficiency of our proposed RIG-based graph pattern
matching approach.

Setup. We compare the performance of our approach, abbreviated
as GM, with the join-based approach (JM) [4, 12, 40], and the
tree-based approach (TM) [6, 7, 25, 67]. Among all the existing
algorithms in JM and TM, only the contributions [12] and [67]
are capable of directly finding homomorphisms of hybrid graph
pattern queries on data graphs. As the source code of [12] and
[67] are not publicly available, we implemented the algorithms
described in [12] and [67], abbreviated as JM and TM, respectively,
in the plots. In our implementation, we applied the node pre-
filtering technique described in [11, 67] to both approaches, JM
and TM.

For checking node reachability in the data graph, all three algo-
rithms under comparison use a recent efficient indexing scheme,
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Table 2: Key statistics of the graph datasets used.

Domain Dataset |𝑉 | |𝐸 | |𝐿 | 𝑑𝑎𝑣𝑔

Biology Yeast (yt) 3.1K 12K 71 8.05
Human (hu) 4.6K 86K 44 36.9
HPRD (hp) 9.4K 35K 307 7.4

Social Epinions (ep) 76K 509K 20 6.87
DBLP (db) 317K 1049K 20 6.62

Communication Email (em) 265K 420K 20 2.6

called Bloom Filter Labeling (BFL) [53], which was shown to
greatly outperform most existing schemes [53].

Our implementation was coded in Java. All the experiments
reported were performed on a 64-bit Linux workstation equipped
with an Intel(R) Xeon(R) processor (3.5GHz) and 32GB RAM.

Datasets. We ran experiments on six real-world graph datasets
from the Stanford Large Network Dataset Collection which have
been used extensively in previous works [22, 25, 42, 56]. The
datasets have different structural properties and come from a vari-
ety of application domain: biology, social networks, and communi-
cation networks. Table 2 lists the properties of the datasets. For the
scalability experiment, we used the DBpedia dataset provided in
the github of [60]. DBpedia is an open-domain knowledge graph
constructed from Wikipedia.

Queries. For the three biology datasets hu, hp and yt in Table 2,
we used randomly generated queries that were originally used
in [56] for finding subgraph isomorphisms. We modified those
queries by turning query edges with 50% probability (which can
be set as a parameter) into reachability edges. The number of
nodes of the queries ranges from 4 to 20 for hu, and from 4 to 32
for hp and yt.

For the other three datasets of Table 2, we used designed queries.
We generated 20 graph pattern query templates, shown in Figure
4. These query templates involve direct and reachability edges.
They have various and complex structures. The graph shapes of
the templates include chain, tree, star, and cycle, which have been
outlined as the most common shapes of queries by an analytical
study on query logs from a wide variety of real world datasets [8].
Instances (with only reachability or only direct edges) of many
of them were used in previous works [12, 40, 41]. The number
associated with each node of a query template denotes the node
id. Query instances are generated by assigning labels to nodes.
We group the 20 query templates into four classes: acyclic, cyclic,
clique, and combo patterns. We call a graph pattern query acyclic if
its corresponding undirected graph is acyclic, and cyclic otherwise.
A pattern is called combo if its undirected graph contains more
than two cycles. A pattern is called clique if its undirected graph
is complete.

Metrics. We measured the runtime of individual queries in a query
set. For query listing, this includes two parts: (1) the matching
time, which consists of the time spent on filtering vertices, build-
ing auxiliary data structures such as runtime index graphs (RIGs),
and generating query plans (or search order), and (2) the result
enumeration time, which is the time spent on enumerating occur-
rences. The number of occurrences for a given query on a data
graph can be quite large. Following usual practice [25, 56, 57], we
terminated the evaluation of a query after finding a limited number
of matches (this number was set to 107 in the experiments) cover-
ing as much of the search space as time allowed. We stopped the
execution of a query if it did not complete within 10 minutes, so
that the experiments could be completed in a reasonable amount

HQ0

HQ2 HQ3 HQ4 HQ5

HQ6 HQ7 HQ8

HQ9 HQ10HQ11 HQ12

HQ13 HQ14 HQ15 HQ16

HQ17

HQ18

HQ19

HQ1

Figure 4: Categorized graph pattern queries.

of time. We recorded the elapsed time of these stopped queries as
10 minutes.

5.1 Time Performance
We run this experiment to compare the time performance of the
three algorithms JM, TM, and GM on evaluating categorized
query instances of pattern templates from Fig. 4 as well as larger
random graph pattern queries on real world datasets.

Categorized graph patterns. Fig. 5(a) and 5(b) shows the per-
formance of GM against JM and TM for categorized graph pat-
tern queries on em and ep data graphs, respectively. We omit the
other bigger data graphs because JM and TM cannot compute the
queries either due to an out-of-memory error or due to an exten-
sively long execution time (hours). The figures show the results of
three queries from each of the acyclic, cyclic, clique, and combo
pattern classes.

The overall best performer is our approach GM, which outper-
forms JM and TM by up to two and three orders of magnitude,
respectively. Both TM and JM were unable to solve all the queries
either because of timeout or out-of-memory errors. In particular,
TM has the worst performance on the acyclic query 𝐻𝑄5 and the
combo patterns. Unlike GM which evaluates the graph pattern
directly, TM works by evaluating a tree query of the original graph
query. For each tuple of the tree query, it checks the non-tree edges
for satisfaction. Hence, its performance is enormously affected
when the number of tree solutions is very large.

JM performs badly especially on cyclic patterns and clique
patterns. It could not compute 𝐻𝑄14 on em because of an out-
of-memory error (Fig. 5(a)). For these types of queries, JM will
typically perform a large amount of computations generating re-
dundant intermediate results.

Larger graph patterns. Fig. 6(a), 6(b), and 6(c) show the results
of evaluating five random hybrid queries on the graphs hp, yt and
hu, respectively. The x-axis represents the number of nodes of
each query, and ranges from 4 to 32.

GM again significantly outperforms TM and JM. It is able to
solve all the queries, whereas both TM and JM fail on several
queries. JM had a high percentage of unresolved cases on queries
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Figure 5: Performance comparison of GM with TM and JM
using the categorized graph pattern queries.
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Figure 6: Performance comparison of GM with TM and JM
using larger graph pattern queries.

with more than 10 nodes. In three cases, JM reports an out-of-
memory error due to the large number of redundant intermediate
results generated during the query evaluation. Another reason of
the inefficiency of JM is the join plan selection. As described in
[12], in order to select an optimized join plan, JM uses dynamic
programming to exhaustively enumerate left-deep tree query plans.
For queries with more than 10 nodes, the number of enumerated
query plans can be huge.

TM has relatively good performance on hp, because it has small
candidate tuples to compute; but it failed for more than half of the
times on the dense dataset hu whose average node degree is 36.9
(Table 2).

Varying the percentage of reachability edges in queries. In this
experiment we investigate the impact of the presence of reach-
ability edges on query evaluation performance. We used the 20
graph pattern query templates of Fig. 4 and generated 6 groups of
query instances varying the percentage of reachability edges. Each
group contains 20 queries having the same percentage of reach-
ability edges. Figs. 7(a) and 7(b) show the average query time
for evaluating the queries and the percentage of solved queries
on the ep data graph, respectively. Note that the query time of
timeout queries was recorded as 10 minutes whereas the elapsed
time of out-of-memory queries was ignored. We observe that the
average query execution time tends to increase while increasing
the percentage of reachability edges. This is reasonable since the
average number of query solutions increases when the number of
reachability edges increases. As in the previous experiments, GM
has the best time performance overall and is able to solve all the
queries.

In contrast, JM is unable to solve an increasingly larger number
of queries due to out-of-memory or timeout errors when the per-
centage of reachability edges increases. This performance penalty
is mainly due to a larger number of generated redundant inter-
mediate results. TM runs slower than JM, in general, on hybrid
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Figure 7: Performance comparison of GM, TM and JM varying
the percentage of reachability query edges on ep.
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Figure 8: Elapsed time of GM evaluating queries on DBpedia
varying the number of labels.

queries. However, it significantly outperforms JM for reachability-
edge-only queries. This can be explained by the increased number
of redundant edges in this type of queries.

5.2 Scalability
In this experiment, we evaluate the scalability of GM on the DB-
pedia dataset with 4.5 million nodes and 15 million edges. We
randomly assign labels to nodes with the number of distinct labels
varying from 150 to 450. Most real-world queries on Wikidata
have a small number of edges. For instance, 73.8% and 81.2%
of queries for DBpedia have, respectively, two and four edges or
less [8]. The Wikidata Graph Pattern Benchmark (WGPB) [30]
provides 17 query patterns, which can be categorized into the
following five shapes: chain, tree, star, triangle, and square. There-
fore, for the experiment, we generated two sets of queries: one
with direct-edge-only queries and one with hybrid queries. Each
set contains five queries, one for each of the five shapes, corre-
sponding to the query templates 𝐻𝑄0, 𝐻𝑄2, 𝐻𝑄3, 𝐻𝑄6, and 𝐻𝑄7
shown in Fig. 4.

Figs. 8(a) and 8(b) report on the query time of GM on the two
sets of queries. One can observe that it is far more expensive
to evaluate hybrid queries than direct-edge-only queries. This is
due to their significantly larger number of results. Also, one can
observe that the query execution time tends to increase while
decreasing the total number of data graph labels. This is expected
since the average cardinality of the input label inverted lists in
a data graph increases when the number of distinct labels in the
graph decreases.
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Figure 9: RIG size and query time breakdown on ep.

5.3 Effectiveness of New Framework
In this subsection, we evaluate the effectiveness of our proposed
techniques and strategies for reducing the overall querying time.

RIG size. In this experiment, we examine the size of RIG graphs
achieved by different query evaluation methods. As usual, the
size of a graph is measured by the total number of nodes and
edges—the smaller the size of the RIG achieved, the better. We
design two variants of GM referred to here as GM-F and GM-T.
Unlike GM, GM-F does not compute the double simulation FB,
but only applies node pre-filtering to prune nodes from inverted
lists. Then, it builds a RIG based on the pruned inverted lists.
GM-T first transforms the graph pattern query into a tree query
and builds a refined RIG for the tree query. A similar procedure
for evaluating pattern queries is also used in [7, 25]. We compare
the sizes of the RIG graphs generated by GM, GM-T and GM-F
for different queries on data graphs. Fig. 9(a) reports on the results
for evaluating queries on the data graph ep. The Y-axis shows the
RIG graph size as a percentage of the input data graph size.

Filtering and refinement reduce the size of RIG significantly. In
all cases, GM generates the smallest RIG graph, with the average
percentage over all 20 queries on 𝑒𝑝 being around 0.4%. Notice
that query 𝐻𝑄19 has an empty answer on ep, and this case is
detected by GM at an early stage of the query evaluation. The
average percentage is around 4.2% for GM-F. This demonstrates
that the double simulation technique has much better pruning
power than the node pre-filtering. On 𝐻𝑄17 and 𝐻𝑄19, the RIG
size of GM-T is around 45× and 10× that of GM-F, respectively.
In the rest of the cases, however, the former is much smaller than
the latter.

RIG benefit and overhead. The overhead for constructing and
using a refined RIG for query result enumeration is insignificant
compared to its benefits. To experimentally verify this, we design
two variants of GM. One is GM-F introduced above. The other
one is called GM-N. Variant GM-N does not construct a RIG but
uses the simulation relation FB to directly compute the query
occurrences. As shown in Fig. 9(b), query result enumeration
by GM with a refined RIG (including the computation of the
simulation relation and the overhead for the construction of the
RIG), is up to 3 orders of magnitude faster than query result
enumeration by GM-F with an unrefined RIG as well as query
result enumeration by GM-N using directly a simulation relation.
This speedup comes from several factors including reduced search
space, filtering and refinement, and computation sharing provided
by the RIG.
Search order. In this experiment, we compare the effectiveness of
four search ordering strategies for homomorphic pattern matching:
𝐽𝑂 , 𝐵𝐽 , 𝑅𝐼 , and 𝑇𝐷. 𝐽𝑂 is described in Section 4. 𝐵𝐽 finds an
optimal left-deep join plan of the given query through dynamic

Table 3: Effectiveness of search ordering methods(query exe-
cution time in seconds).

Query em ep
RI JO BJ TD RI JO BJ TD

𝐻𝑄2 3.64 1.88 2.45 4.43 7.00 2.02 2.09 13.54
𝐻𝑄4 3.06 1.05 1.05 5.95 4.67 0.67 0.88 7.98
𝐻𝑄15 1.33 7.32 1.79 13.91 6.33 6.66 6.33 272.23
𝐻𝑄18 7.07 0.99 1.36 7.97 441.94 30.18 38.15 420.96

programming. Unlike 𝐽𝑂 and 𝐵𝐽 , 𝑅𝐼 [9] generates a search or-
der based only on the topological structure of the given query.
Roughly speaking, vertices that are highly connected with vertices
previously present in the ordering tend to come early in the final
ordering produced by 𝑅𝐼 . 𝑇𝐷 works on dag queries. It considers
the query nodes according to their topological order in the query
graph. An ordering strategy similar to this one is adopted in [25].
We integrate 𝐽𝑂 , 𝑅𝐼 , 𝐵𝐽 and 𝑇𝐷 with Algorithm MJoin which
is used by the approach GM for enumerating query occurrences
(Section 4).

Table 3 shows the experimental results comparing the four
ordering strategies for evaluating hybrid queries on graph em
and ep. Except for query 𝐻𝑄15 on graph em, JO gives the best
performance and BJ comes next. 𝐵𝐽 is able to find a good query
plan, but it does not scale to large queries with tens of nodes
[46]. 𝑅𝐼 does not perform well on most of these homomorphically
matched hybrid queries, even though it is found to be an effective
technique in recent research on subgraph isomorphism matching
[56]. Comparative results between 𝐽𝑂 and 𝑅𝐼 for evaluating direct-
edge only queries are shown in Section 5.4. Unlike 𝐽𝑂 which uses
cardinalities of node sets in RIG graphs to do cost estimation,
𝑅𝐼 produces a search order based exclusively on the topological
structure of the given query, independently of the input data graph.
𝑇𝐷 gives the worst performance in most cases.

This experimental result demonstrates that an effective search
ordering strategy for homomorphic pattern matching should take
into account both the query graph structure and the data graph
statistics.

5.4 Comparison with Systems and Engines
We compare the performance of GM with the graph query engine
RapidMatch [57]. Comparative performance results with three
other recent query engines/systems (EmptyHeaded [4], Graph-
Flow [40], and Neo4j) and can be found in the full version of the
paper [61]. All these engines/systems were designed to process
graph pattern queries whose edges are mapped with homomor-
phisms to edges in the data graph (therefore, they do not need a
reachability index). Our approach is more general since at allows
edge-to-edge and edge-to-path homomorphic mappings.

Comparison with RapidMatch. RapidMatch [57] (abbreviated
as RM here) is a recent graph query engine which outperforms the
state of the art graph matching approaches CFL [7], DAF [25] and
GraphFlow [40, 42]. The source code of RM1is publicly available
at GitHub. RM is a tree-based graph query engine that adopts
worst-case optimal (WCO) style joins in its result enumeration. It
proposes a sophisticated search order method based on the nucleus
decomposition of query graphs. To improve its enumeration effi-
ciency, RM adopts several optimizations, including advanced set
intersection methods [26, 59], the intersection caching [40, 42],
and the failing set pruning [25].

1https://github.com/RapidsAtHKUST/RapidMatch, Last accessed on 2022/09/20.
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Figure 10: Performance comparison of GM with RM for large
queries on the undirected Human data graph.

We compare RM with two variants of GM, denoted as GM-JO
and GM-RI, which use 𝐽𝑂 and 𝑅𝐼 as their respective search or-
der method. We use the recommended configuration for RM1 to
compute homomorphic matches. We follow also the experimental
setting described in [57] by setting the time limit at 5 minutes
and the max. number of matches at 105. We run the experiment
on the data graphs and query workloads used in [57]. RM con-
siders undirected graphs. Our approach, GM is more general as
it considers directed graphs. In order to compare with RM, we
replace each edge of the undirected data graph by two directed
edges in opposite direction and we use this graph as input to
GM for the experiment. Each data graph has one dense query set
(the degree of each query node is at least 3) and one sparse query
set (the degree of each query node is less than 3). Each set contains
200 connected queries with the same number of nodes.

Figs. 10(a) and 10(b) present the mean of query time on differ-
ent query sizes of dense and sparse query sets, respectively, on the
Human data graph. We choose the Human data graph since it is
a real dataset and it is very dense and most of its nodes have the
same label making the graph matching particularly challenging
[56, 57]. The number of nodes for queries on the graph varies
from 8 to 20. Query sets with 𝑖 nodes are denoted as 𝑖N. For the
dense query sets, GM-JO has, overall, the best performance. It
runs more than 2 times faster than RM on average. GM-RI runs
slightly slower than RM on average. In contrast, for the sparse
query sets, GM-JO gives the worst performance, while GM-RI
achieves up to two order of magnitude average speedup over the
other two algorithms.

An algorithm runs much slower than competing algorithms
because it generates ineffective search orders for a number of
queries. Both 𝑅𝐼 and the search order method of RM prioritize
the dense sub-structure of a query 𝑄 . When this assumption in
the heuristic search rule does not hold on the workloads, they
can generate ineffective searching orders. 𝐽𝑂 performs well on
dense queries, but worse on sparse ones because the cardinality
differences of candidate occurrence sets among query nodes tend
to be very small for sparse queries, thus making it difficult to
choose an effective search order. Advanced subgraph cardinality
estimation methods [49] can help 𝐽𝑂 to improve its search order
quality.

In summary, our experimental results on the Human graph
demonstrate that GM with two simple search order methods beats
the highly optimized RM that comes with a sophisticated search
order method, in most tested workloads, despite the fact that it is
more general since it considers directed data graphs and allows
also for edge-to-path mapping.

6 RELATED WORK
We review related work on graph pattern query evaluation algo-
rithms. Our discussion focuses on in-memory algorithms which
find all occurrences of a graph pattern in a single large data graph.
We categorize the related work by the type of morphism used to
map the patterns to the data structure.

Isomorphic mapping algorithms. A variety of algorithms have
been proposed for isomorphism-based subgraph matching [6, 7,
9, 10, 25, 28, 45, 51]. These algorithms use different techniques
for filtering candidate data nodes, ordering query nodes, enumer-
ating results and algorithm optimization. For a recent survey of
isomorphic mapping algorithms, we point the reader to reference
[56].

In this paper, we adopt homomorphisms extended so that they
can map query edges to paths in the data graph. This general
framework is not constraint by the restrictions of isomorphisms.
Many evaluation techniques designed for isomorphic mapping
algorithms do not apply to homomorphism since they focus on
reducing the search space for the case of injective mapping func-
tions and edge-to-edge mapping. For instance, several isomorphic
mapping algorithms [28, 44, 45] apply a pruning technique which
prunes candidate nodes of a query node 𝑞 based on the profile
of the neighborhood subgraph of 𝑞. The profile is essentially the
lexicographic order of labels of 𝑞 and its neighbors within a fixed
distance 𝑑 (number of hops) from 𝑞. The work of [37, 44, 45]
goes one step further and precomputes an index called d-hop (or
d-neighbor) based on the profile of each data node in 𝐺 . If the
profile of 𝑞 is a sub-sequence of that of a data node 𝑣 , then 𝑣

is considered a candidate for 𝑞. This profile-based pruning tech-
nique does not apply to homomorphisms which are not injective
mappings. Further, in order to support edge-to-path mappings the
parameter 𝑑 of the index should be set to the diameter of the data
graph. Such an extended d-hop index might not efficiently support
the pruning task on edge-to-path homomorphic mappings. Also,
previous performance studies [22, 33, 55] show that graph index-
based methods have severe scalability issues due to the index
construction and maintenance costs. Therefore, they are useful for
a restricted number of data graphs and applications. Unlike the
precomputed index structures, our lightweight RIG structure is
not subjected to these restrictions. It is query-based, and can be
efficiently built on-the-fly.

Homomorphic mapping algorithms. Existing (homomorphic)
graph pattern matching algorithms can be broadly classified into
the following two approaches: the join-based approach (JM) [4,
12, 40] and the tree-based approach (TM) [6, 7, 11, 13, 25, 36, 57,
66, 67]. Given a graph pattern query 𝑄 , JM decomposes 𝑄 into a
set of subgraphs and converts graph pattern matching to a series of
Selinger-style, pair-wise joins. Unlike JM, TM first decomposes or
transforms𝑄 into one or more tree patterns using various methods,
and then uses them as the basic processing unit.

The join-based approach. Homomorphic mapping algorithms
such as R-Join [12], EmptyHeaded [4], Graphflow [42] as well
as database management systems such as PostgreSQL, MonetDB
and Neo4j use the join-based approach. Recent theoretical results
suggest that Selinger-style, pair-wise join algorithms are asymp-
totically suboptimal for graph-pattern queries [48]. The subopti-
mality lies in the fact that Selinger-style algorithms only consider
pairs of joins at a time. Consequently, the intermediate results
can be more than the maximum output size of a query. Recently,
the development of the worst-case optimal join (WCOJ) changes
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the landscape. By scanning all relations simultaneously, the run-
ning time of WCOJ matches the worst-case output size of a given
join query [47]. The systems and query engines utilizing WCOJ
[4, 22, 40, 57] significantly outperform the classical relational
systems as well as native graph databases such as Neo4j. These
WCOJ algorithms compute multiway joins using multiway inter-
sections. Both, the pair-wise join algorithms and the recent WCOJ
algorithms consider almost exclusively edge-to-edge mappings
between queries and data.

Cheng et al. [12] proposed a JM algorithm called R-Join. An
important challenge for JM algorithms is to find a good join order.
To optimize the join order, R-Join uses dynamic programming to
exhaustively enumerate left-deep tree query plans. Due to the large
number of potential query plans, R-Join is efficient only for small
queries (less than 10 nodes). As is typical with JM algorithms, R-
Join suffers from the problem of numerous intermediate results. As
a consequence, its performance degrades rapidly when the graph
becomes larger [36]. R-Join is adopted as the underlying pattern
matching method in D-join [69] for evaluating graph patterns
whose edges carry the same connectivity constraint (a constraint
that bounds the number of nodes in the image data paths).

The EmptyHeaded system [4] decomposes the input query into
a tree of subqueries, computes each subquery using a multiway
join algorithm, and combines subquery occurrences using Yan-
nakakis’ algorithm [65]. Graphflow [40, 42] is the latest join-based
homomorphic mapping algorithm. Like EmptyHeaded, Graphflow
prunes relations based on labels. Both EmptyHeaded and Graph-
flow consider only edge-to-edge homomorphic mappings.

The tree-based approach. DagStackD [11] is a tree-based
pattern matching algorithm on directed acyclic graphs (dags).
Given a graph pattern query 𝑄 , DagStackD first finds a spanning
tree 𝑄𝑇 of 𝑄 , then evaluates 𝑄𝑇 , and filters out tuples that violate
the reachability relationships specified by the missing edges of 𝑄 .
To evaluate 𝑄𝑇 , a tree pattern evaluation algorithm is presented.

RapidMatch [57] is the most recent tree-based graph query
engine that adopts worst-case optimal (WCO) style joins in its
result enumeration. It considers only patterns with child edges.
Its matching process has three phases. In the filtering phase, RM
decomposes the input query graph 𝑄 into multiple one-level twigs
and uses them as units to eliminate data nodes that will not appear
in the final result. Next, in the search order generation phase, RM
first decomposes 𝑄 into a core structure 𝑄𝑐 and a forest structure
𝑄 𝑓 , and identifies dense subgraphs of𝑄𝑐 to construct a density tree
based on containment relationship among the dense subgraphs. It
then generates a search order using the density tree and𝑄 𝑓 as well
as the statistics of candidate node sets obtained from the filtering
phase. In the result enumeration phase RM builds a trie structure
for each edge relation in 𝑄𝑐 based on the chosen search order to
assist the computation of WCO joins.

A type of homomorphism for mapping graph patterns which
allows for edge-to-path mapping (called 𝑝-hom) was introduced
in [20]. However, this type of homomorphism was used to re-
solve a graph similarity problem between two graphs and was not

employed to address the problem of efficiently evaluating graph
pattern on data graphs. Reference [63] adopts homomorphisms
for findings the matches of graph patterns on data graphs but con-
siders only patterns with reachability edges and does not leverage
simulation to prune the graph pattern search space.

Graph simulation-based algorithms. Simulations have been im-
plemented for different graph database tasks [18, 19, 38, 39, 45,
62, 64]. The notion of dual simulation was introduced in [38].
Having a simulation preorder in a database context considering
forward and backward edges was mentioned two decades ago
[5]. Graph simulation-based graph pattern matching algorithms
have been studied in [18, 19, 38]. Unlike morphisms-based graph
pattern matching which is NP-complete, simulation-based graph
pattern matching can be performed in cubic-time. However, sim-
ulation and its extensions [18, 19] do not preserve the structural
properties in graph pattern matching and therefore, may return
excessive undesirable matches.

Simulation-based indexing techniques have already been used
for join-ahead pruning in semistructured databases [34, 43]. Simu-
lation-based pruning was proposed recently as a powerful node
pruning technique in isomorphic graph matching [37, 39, 44, 45,
64]. The goal is to use subgraph simulation or variants in order
to filter out unnecessary nodes before answering queries. Nev-
ertheless, existing simulation-based pruning techniques consider
only edge-to-edge matching, and thus cannot support hybrid graph
pattern queries like those we consider in this paper. A query evalu-
ation algorithm, proposed in [62], leverages simulation to compute
the query answer without producing any redundant intermediate
results but is restricted to tree pattern queries.

7 CONCLUSION
We have addressed the problem of efficiently evaluating hybrid
graph patterns using homomorphisms over a large data graph.
By allowing edge-to-path mappings, homomorphisms can extract
matches “hidden” deep within large graphs which might be missed
by edge-to-edge mappings of subgraph isomorphisms. We have
introduced the concept of runtime index graph (RIG) to compactly
encode the pattern matching search space. To further reduce the
search space, we have designed a novel graph simulation-based
node-filtering technique to prune nodes that do not contribute to
the final query answer. We have also designed a novel join-based
query occurrence enumeration algorithm which leverages multi-
way joins realized as intersections of adjacency lists and node
sets from the RIG. We have conducted an extensive experimental
evaluation to verify the efficiency and scalability of our approach
and showed that it largely outperforms state-of-the-art approaches.

Our future work involves investigating pattern matching in
a dynamic data graph setting where the matches of the graph
pattern are computed incrementally. We are also exploring query
optimization techniques to further improve the performance of the
hybrid pattern matching approach.
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