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ABSTRACT
In this paper, we help humanitarian organizations provide service

via mobile facilities (MFs) to migrating refugees, who attempt to

cross international borders. Over a planning horizon, we aim to opti-

mize number and routes and relocations of the MFs over a planning

horizon. The problem is represented on a network where several

refugee groups relocate in their predetermined paths throughout

the periods. To incorporate continuity of service, each refugee group

should be served at least once every fixed consecutive periods via

capacitated MFs. We aim to minimize the total cost, consisting of

fixed, service provision, and MF relocation costs, while ensuring

the service continuity requirement. We formulate a mixed integer

linear programming (MILP) model for this problem. We develop a

matheuristic and an accelerated Benders decomposition algorithm

as an exact solution method. The proposed model and solution

methods are investigated over instances we extracted from the 2020

Honduras migration crisis.

Keywords: humanitarian logistics; capacitated mobile facility loca-

tion; mobile demand; en route refugees; Benders decomposition;

matheuristic

1 INTRODUCTION
Migration, caused by worldwide economic, political, social, and

environmental unfavorable conditions, has become a global phe-

nomenon. It is defined as the movement of people from one place to

another with a long-run settling purpose [18]. According to the UN

Refugee Agency [31], a refugee is someone who has been forced to

leave his or her home country because of violence, famine, or natu-

ral disasters. The United Nations High Commissioner for Refugees

(UNHCR) reported that about 65.6, 79.5, and 82.4 million individuals
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were forcibly displaced as refugees during 2017, 2019, and 2020,

respectively [30].

Refugees are prone to several health risks. They are highly vulnera-

ble to infectious diseases [32] and are often exposed to traumas due

to poor living conditions and forced displacements [8]. According

to a survey by Morina et al. [21], post-traumatic stress and anxiety

are the most prevalent mental disorders among refugees. Besides

psychological problems, refugees also suffer from physical traumas.

Comellas et al. [8] emphasizes that the somatic distress associated

with functional disabilities warrants more attention in both studies

and practice. Clearly, providing medical care, nutrition, and shelter

alleviates the difficulties of lengthy and long-lasting displacement

for refugees.

In recent years, Mobile Facilities (MFs) have been frequently uti-

lized in providing service for an increasing number of transiting

refugees. As an example, we can consider the 2015 refugee crisis,

where according to Shortall et al. [25], about 850,000 refugees and

asylum seekers moved to Greece in 2015. With the purpose of pro-

viding health service, the “Doctors of the World" established the

refugee ferry project and provided primary health care on-board a

commercial ferry. As another example, Médecins Sans Frontieres

(MSF; Doctors Without Borders) opened a mobile clinic on the

Serbia-Hungary border and treated almost 100 people each day.

This was while about 2,000 people crossed the border every day

[13]. These examples underline the significance of providing mobile

services such as basic health care and relief item delivery.

In this paper, we focus on the provision of various services includ-

ing food, medicine, or other relief items to transiting refugees by

means of MFs. We aim to support decision making while operating

the services efficiently, by optimizing the number, locations, and

re-locations of the MFs over time. While doing so, we consider

the capacities of the facilities and the service needs as well. We

represent the problem on a directed network over several time peri-

ods such that the refugee groups entering the network in different

periods follow distinct paths defined over the nodes and arcs of

the network toward their destination nodes. Meanwhile, the MFs
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relocate on the nodes to provide services to the refugee groups at

the same node and time period, depending on their service capaci-

ties. The service provision for refugee groups should be recurrent

and the goal is to serve each refugee group at least once every

fixed number of consecutive time periods, that is determined by

the service provider, in order to maintain continuity of service over

time.

In section 2, we provide a review of the related literature. We de-

fine the MCM-FLP-MD formally in section 3 and provide a mixed

integer linear programming (MILP) model. In section 4, we de-

velop two alternative solution methods for the problem: a Network

Decomposition Matheuristic (NDM) and an accelerated Benders

decomposition (BD) approach as an exact solution method. Section

5 presents computational results. Finally, section 6 concludes with

remarks and future work directions.

2 LITERATURE REVIEW
Our problem falls into the broad category of Facility Location Prob-

lems (FLPs). Such a problem decides where to locate facilities and

how to allocate clients while minimizing the costs of serving them

[19]. According to Farahani and Hekmatfar [10], FLPs have essen-

tially four components: 1) customers, 2) facilities, 3) a network

where customers and facilities are located, and 4) a metric that

represents the travel time or distance among customers and facili-

ties. Our focus is mainly on the Mobile Facility Location Problem

(MFLP) and Mobile Facility Routing Problem (MFRP), where MFs

can re-position on a network. The MFLP has increasingly gained

researchers’ attention mainly because of its applicability in social

outreach activities. Recent surveys of MFLP in health care systems

and humanitarian logistics include Afshari and Peng [1], Ahmadi-

Javid et al. [2], Song et al. [26], and Nasrabadi et al. [22]. The MFRP

was addressed by [14] with the aim of maximizing the served de-

mand via mobile fleets over a time horizon. The authors proposed

approximate solution methods for their proposed mixed integer

program and showed that although the problem is NP-Hard, it is

polynomially solvable for the single facility case. Later on, Halper

et al. [15] introduced an integer programming formulation forMFLP

and suggested a decomposition algorithm for the formulation fol-

lowed by local neighborhood search heuristics. Most studies of

MFLP aim to minimize the total distance traveled by the facilities,

while all demand is served [11]. On the other hand, Bélanger et al.

[4] discussed recent optimization models for location, relocation,

and dispatching of medical MFs such as ambulances. The authors

noted that the equity and fairness metrics have recently become

of highest importance in this context. Our problem inherently cap-

tures these metrics since we define an identical service frequency 𝜏

to cover the needs of all refugees uniformly.

Facility capacities have been ignored in most MFLP studies. Ragha-

van et al. [23] studied the capacitated version of the MFLP (CM-

FLP) where facilities may move only once, and clients travel to

the facilities. They developed a branch-and-price algorithm and

two heuristic algorithms for this problem. Our problem extends

this study in terms of multi-period planning and the continuity of

service frequency that is explicitly accounted for.

In addition to the mobility of facilities, we focus on the mobility of

demand as well. We see that demand mobility has been captured

in the flow-interception location problem (FILP) in the literature.

In fact, the single-period FILP was initially studied by Hodgson

[16, 17] and Berman [6]. The objective of FILP is to find locations for

facilities to maximize the coverage of demand flow. Applications of

the flow-demand coverage problem lie mostly in urban areas, where

providing a service only once is sufficient to cover a customer’s

requirements, as opposed to our case. Berman [7] studied the FILP

for customers who travel in a network, not just for the purpose of

receiving service. The author divided the customers into stationary

and mobile types and considered the existence of both demand

types in their formulations. Zeng et al. [33] introduced an “integer-

friendly" generalized formulation for the flow-interception model,

which can solve several deterministic flow-interception problems.

As an extension, the multi-period FILP was introduced by Sterle

et al. [27], where some portable facilities intercept the demand flow,

and various objectives such as maximizing the intercepted demand

or minimizing the relocation costs are inspected.

Most objective functions focus onminimizing fixed or variable costs,

or total distance or travel time, or maximizing total benefit under

demand coverage. Also, the mobility of both facilities and demand

followed by periodic services has been addressed scarcely in the

literature. Among solution techniques, heuristics are prevailing

solution methods suggested for the FLP and MFLP; however, we

provide an exact solution method in addition to a heuristic solution

approach. To the best of our knowledge, the MCM-FLP-MD with

periodic service provision is introduced for the first time in this

study.

3 PROBLEM DEFINITION
In this section, we provide details of the MCM-FLP-MD by first

explaining its key elements, then followed by formulating an MILP

model for the problem. This problem is set on a connected graph

𝐺 = (𝑉 ,𝐴), where node set 𝑉 and 𝐴 indicate locations of interest

and the roads connecting them, respectively. Refugee groups follow

predetermined paths on the network beginning from a source node

and ending at a destination node. Each arc on each path is defined

in the following way: it takes only one time period to move along

the arc according to a refugee group’s transportation mode, i.e., by

walking or by a vehicle.

We denote the set of paths by 𝑃 , which is w.l.o.g. finite. For each path

𝑝 ∈ 𝑃 , 𝑙𝑝 and 𝑛𝑝𝑘 represents the number of nodes, and 𝑘𝑡ℎ node

on the path, respectively. For instance, 𝑛𝑝,1 and 𝑛𝑝,𝑙𝑝 denote the

origin and destination nodes of path 𝑝 , respectively. Every period,

each refugee group moves from a node to the next node along its

path. More than one refugee group may follow the same path by

entering the path in different periods.

Refugees typically move in groups, and follow a path that is de-

termined at the beginning of their trip. Refugees who enter the

network in the same period and follow the same path are assumed

to form one refugee group 𝑟 ∈ 𝑅 in our study. We assume the hu-

manitarian organizations that provide services can predict these

paths for planning purposes [12, 28]. We denote the path traversed

by some refugee group 𝑟 ∈ 𝑅 by 𝑝𝑟 ∈ 𝑃 , and the time period when
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they enter the path by 𝑒𝑟 ∈ 𝑇 , where 𝑇 is the set of periods on

the planning horizon and each time period can stand for a single

day. The length of the planning horizon is determined such that all

refugee groups will leave the network by period |𝑇 | +1. Considering
the path lengths and time periods when refugee groups enter the

network, we note that it is important to determine |𝑇 | precisely to

avoid unnecessary variables. Accordingly, we use Equation (1) to

calculate |𝑇 |.

𝑇 = {1, ..., |𝑇 |} , |𝑇 | = max

𝑟 ∈𝑅
{𝑙𝑝𝑟 + 𝑒𝑟 − 1} (1)

Let 𝑑𝑟 represent the demand level of refugee group 𝑟 ∈ 𝑅, which
shows their population size. To guarantee demand satisfaction

under limited capacities of MFs, a refugee group can be served

simultaneously by multiple MFs at a node. For continuity of service,

the whole population of each refugee group must be served at least

once and could partially be served several times every consecutive

𝜏 periods.

𝑀 represents the set of available MFs. Each MF 𝑚 ∈ 𝑀 has a

capacity Δ𝑚 , indicating maximum number of refugees that facility

𝑚 can serve in a single period. Not all MFs need to be used in a

solution. Thus, |𝑀 | is an upper bound on the number of required

MFs and the model decides the number of MFs to be utilized based

on service requirements. Recruited MFs can enter the network at

any time. The entrance point of an MF is the first node where it

should provide service at.

State of being at node 𝑖 ∈ 𝑉 in period 𝑡 ∈ 𝑇 is represented by “(𝑖, 𝑡)
node-time pair" for both refugees andMFs. The process of providing

service via an MF𝑚 ∈ 𝑀 at node-time pair (𝑖, 𝑡) is referred to as a

‘service act’. A solution to the problem consists of a list of service

acts for each recruited MF. In each time period, Every MF can just

show up at one node-time pair and if it provides service at that

node, it incurs a service act cost. Indeed, each service act of an MF

occurs by the presence of that MF and at least one refugee group

at a specific node-time pair. Finally, the objective function of this

problem comprises three terms: 1) the total fixed cost of utilizing

the MFs, 2) the total operating costs associated with the service acts,

and 3) the total transportation cost associated with the relocation

of MFs on the network.

3.1 Mathematical Model
We propose the following MILP to formulate the MCM-FLP-MD.

Sets:

𝑉 Set of nodes

𝑃 Set of paths

𝑅 Set of refugee groups entering the network

𝑀 Set of potential mobile facilities

𝑇 Set of time periods

Parameters:

𝑑𝑟 Population of refugee group 𝑟 ∈ 𝑅
𝑝𝑟 Path traversed by refugee group 𝑟 ∈ 𝑅 (𝑝𝑟 ∈ 𝑃 )

𝑒𝑟
Time period in which refugee group 𝑟 ∈ 𝑅 enters path 𝑝𝑟

(𝑒𝑟 ∈ 𝑇 )
𝑙𝑝 Number of nodes on path 𝑝 ∈ 𝑃
𝑛𝑝𝑘 𝑘𝑡ℎ node on path 𝑝 ∈ 𝑃 where 𝑘 = 1, ..., 𝑙𝑝

Δ𝑚 Service capacity for mobile facility𝑚 ∈ 𝑀
𝑓𝑚 Fixed cost of using mobile facility𝑚 ∈ 𝑀
𝑜𝑚 Service act operating cost for mobile facility𝑚 ∈ 𝑀
𝑐𝑖 𝑗 Traveling cost from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉
𝜏 Service frequency level in terms of number of time periods

Decision Variables:

𝐴𝑖𝑟𝑡
Fraction of population of refugee group 𝑟 ∈ 𝑅 who are planned

to receive service at node 𝑖 ∈ 𝑉 in period 𝑡 ∈ 𝑇

𝑆𝑖𝑚𝑡
1, if mobile facility𝑚 ∈ 𝑀 provides service at node 𝑖 ∈ 𝑉 in

period 𝑡 ∈ 𝑇 ; 0, otherwise

𝑋𝑖 𝑗𝑚𝑡

1, if mobile facility𝑚 ∈ 𝑀 is located at node 𝑖 ∈ 𝑉 in period

𝑡 ∈ 𝑇 and at node 𝑗 ∈ 𝑉 in period 𝑡 + 1; 0, otherwise (Since
there is no refugee group in the network in 𝑡 = |𝑇 | + 1, MFs

remain at their nodes in between 𝑡 and 𝑡 + 1 where 𝑡 = |𝑇 |)
𝑌𝑚 1, if mobile facility𝑚 ∈ 𝑀 is used; 0, otherwise

MILP Mathematical Model:
min

∑
𝑚∈𝑀

(𝑓𝑚𝑌𝑚 +
∑
𝑖∈𝑉

∑
𝑡∈𝑇

𝑜𝑚𝑆𝑖𝑚𝑡 +
∑
𝑖∈𝑉

∑
𝑗∈𝑉

∑
𝑡∈𝑇

𝑐𝑖 𝑗𝑋𝑖 𝑗𝑚𝑡 ) (2)

subject to

𝜏−1∑
𝑡
′
=0

𝐴(𝑛
𝑝𝑟 ,𝑞+𝑡

′ +1 ),𝑟 ,(𝑒𝑟 +𝑞+𝑡
′ ) ≥ 1 ∀𝑟 ∈ 𝑅, 0 ≤ 𝑞 ≤ 𝑙𝑝𝑟 − 𝜏 (3)

∑
𝑚∈𝑀

Δ𝑚𝑆𝑖𝑚𝑡 ≥
∑
𝑟∈𝑅

𝑑𝑟𝐴𝑖𝑟𝑡 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (4)

𝑆𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚𝑡 ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (5)∑
𝑗∈𝑉

𝑋 𝑗𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚 (𝑡+1) ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 = 1, ..., |𝑇 | − 1 (6)∑
𝑖∈𝑉

∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚𝑡 ≤ 𝑌𝑚 ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (7)

𝐴𝑖𝑟𝑡 ≥ 0 ∀𝑖 ∈ 𝑉 , 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (8)

𝑆𝑖𝑚𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (9)

𝑋𝑖 𝑗𝑚𝑡 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (10)

𝑌𝑚 ∈ {0, 1} ∀𝑚 ∈ 𝑀 (11)

The objective function (2) minimizes the total costs consisting of the

MF establishment costs, service act costs and relocation costs. Con-

straints (3) guarantee that each refugee group is served at least once,

and could partially be served multiple times during consecutive

𝜏 periods. Constraints (4) ensure that the total capacity provided

by MFs at each node-time pair satisfies the fractional demand of

refugee groups who are planned to receive service. Constraints (5)

indicate that an MF can provide service at a node-time pair only if

it is located there. Constraints (6) define flow conservation of MFs

among the nodes of the network from one period to the next. Con-

straints (7) determine whether an MF is used. Finally, constraints

(8)-(11) define the domains of the decision variables.

4 SOLUTION METHODS
In this section, we introduce two solution methods to solve the

MCM-FLP-MD.We first develop aNetworkDecompositionMatheuris-

tic (NDM), which requires relatively short run time compared to

89



INOC 2022, June 7-10 2022, Aachen, Germany

run times of our MILP formulation. Second, we develop an acceler-

ated Benders decomposition (BD) algorithm as an exact solution

method. We describe the NDM and the BD in detail in sections 4.1

and 4.2, respectively.

4.1 Network Decomposition Matheuristic
The Network Decomposition Matheuristic (NDM) algorithm aims

to manage the complexity associated with variables having multiple

indices by decomposing the problem based on paths. Each path

𝑝 ∈ 𝑃 traversed by some refugee groups, corresponds to a smaller

network and forms a subproblem for MCM-FLP-MD, referred to

as (𝑆𝑃𝑝 ). Instead of solving the problem over the entire network,

NDM solves 𝑛 ≤ |𝑃 | subproblems independently, each having con-

siderably tighter solution space. Results of each subproblem creates

a partial solution to the original problem, independent of other

subproblems. Aggregation of all solution pieces forms the solution

associated with the entire network.

For each subproblem (𝑆𝑃𝑝 ), 𝑅𝑝 denotes the set of refugee groups

that migrate along path 𝑝 . Also, the set of MFs required for serving

𝑅𝑝 on path 𝑝 ∈ 𝑃 is referred to as𝑀𝑝
and the minimum number of

these MFs is calculated by Equation (12).

|𝑀𝑝 | =
⌈∑

𝑟 ∈𝑅𝑝 𝑑𝑟

Δ𝜏

⌉
(12)

While solving the 𝑆𝑃𝑝 , insufficient |𝑀𝑝 | may lead to infeasible

solutions. In such cases, we can simply increment |𝑀𝑝 | by one unit

and solve the (𝑆𝑃𝑝 ) again until we reach a feasible solution. The

planning horizon for each subproblem is kept the same as that of the

original problem to facilitate the consolidation of the subproblem

solutions. The mathematical model corresponding to subproblem

𝑆𝑃𝑝 given below, is a simplified version of the MILP for the original

problem where the 𝑌𝑚 variables are excluded. By defining the sets

and parameters independently for each path, the problem size is

reduced significantly.

New Sets:

𝑉 𝑝
Set of nodes of the network that lie on path 𝑝 ∈ 𝑃

𝑅𝑝 Set of refugee groups entering path 𝑝 ∈ 𝑃

𝑀𝑝 Set of recruited mobile facilities to provide service along

path 𝑝 ∈ 𝑃

Mathematical Model:
min

∑
𝑖∈𝑉𝑝

∑
𝑚∈𝑀𝑝

∑
𝑡∈𝑇

𝑜𝑚𝑆𝑖𝑚𝑡 +
∑

𝑖∈𝑉𝑝

∑
𝑗∈𝑉𝑝

∑
𝑚∈𝑀𝑝

∑
𝑡∈𝑇

𝑐𝑖 𝑗𝑋𝑖 𝑗𝑚𝑡 +
∑

𝑚∈𝑀𝑝

𝑓𝑚 (13)

subject to

𝜏−1∑
𝑡
′
=0

𝐴(𝑛
𝑝,𝑞+𝑡′ +1 ),𝑟 ,(𝑒𝑟 +𝑞+𝑡

′ ) ≥ 1 ∀𝑟 ∈ 𝑅𝑝 , 0 ≤ 𝑞 ≤ 𝑙𝑝 − 𝜏 (14)

∑
𝑚∈𝑀𝑝

Δ𝑚𝑆𝑖𝑚𝑡 ≥
∑

𝑟∈𝑅𝑝
𝑑𝑟𝐴𝑖𝑟𝑡 ∀𝑖 ∈ 𝑉𝑝 , 𝑡 ∈ 𝑇 (15)

𝑆𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉𝑝

𝑋𝑖 𝑗𝑚𝑡 ∀𝑖 ∈ 𝑉𝑝 ,𝑚 ∈ 𝑀𝑝 , 𝑡 ∈ 𝑇 (16)

∑
𝑗∈𝑉𝑝

𝑋 𝑗𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉𝑝

𝑋𝑖 𝑗𝑚 (𝑡+1) ∀𝑖 ∈ 𝑉𝑝 ,𝑚 ∈ 𝑀𝑝 , 𝑡 = 1, ..., |𝑇 | − 1 (17)

𝐴𝑖𝑟𝑡 ≥ 0 ∀𝑖 ∈ 𝑉𝑝 , 𝑟 ∈ 𝑅𝑝 , 𝑡 ∈ 𝑇 (18)

𝑆𝑖𝑚𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝑉𝑝 ,𝑚 ∈ 𝑀𝑝 , 𝑡 ∈ 𝑇 (19)

𝑋𝑖 𝑗𝑚𝑡 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉𝑝 ,𝑚 ∈ 𝑀𝑝 , 𝑡 ∈ 𝑇 (20)

The NDM procedure is described in detail in Algorithm 1. In this

algorithm, we initially set both the number of MFs and the overall

objective value to 0. Then, for each path 𝑝 ∈ 𝑃 , we determine

the refugee groups traversing path 𝑝 and calculate the required

MFs to serve on path 𝑝 based on Equation (12). After solving the

subproblem 𝑆𝑃𝑝 , we update the list of MFs and the objective value

of the problem solved up to that point.

Algorithm 1 NDM Framework

1: 𝑁𝑁𝐷𝑀
𝑀𝐹

,𝑍𝑁𝐷𝑀 ← 0. // Total number of MFs to be used in the final solution and final objec-

tive function value.

2: for 𝑝 ∈ 𝑃 do:
3: if 𝑝 ∈ {𝑝𝑟 ; ∀𝑟 ∈ 𝑅 } then: // Checking if the path 𝑝 is traversed by refugee groups. If

true, we solve 𝑆𝑃 .
4: 𝑅𝑝 ← {𝑟 ∈ 𝑅 : 𝑝𝑟 = 𝑝 } // Defining 𝑅𝑝 .
5: Calculate |𝑀𝑝 | using Equation (12). // Calculating number of MFs to be used in path 𝑝 .

6: while True do: // Checking feasibility of the solution of 𝑆𝑃𝑝 considering |𝑀𝑝 |.
7: 𝑀𝑝 ← {𝑁𝑁𝐷𝑀

𝑀𝐹
+ 1, ..., 𝑁𝑁𝐷𝑀

𝑀𝐹
+ |𝑀𝑝 | }. // Updating the elements of set𝑀𝑝

to differentiate the MFs of subproblems.

8: Solve MILP for the subproblem 𝑆𝑃𝑝 and obtain 𝑍 (𝑆𝑃𝑝 ) if 𝑆𝑃𝑝 is feasible.

9: if 𝑆𝑃𝑝 is infeasible then:
10: |𝑀𝑝 | ← |𝑀𝑝 | + 1.
11: continue
12: end if
13: break
14: end while
15: 𝑁𝑁𝐷𝑀

𝑀𝐹
← 𝑁𝑁𝐷𝑀

𝑀𝐹
+ |𝑀𝑝 | // Updating the number of MFs used up to this iteration.

16: 𝑍𝑁𝐷𝑀 ← 𝑍𝑁𝐷𝑀 +𝑍 (𝑆𝑃𝑝 ) // Updating the costs of the network up to this iteration.
17: end if
18: end for
Output: 𝑁𝑁𝐷𝑀

𝑀𝐹
,𝑍𝑁𝐷𝑀

// Return the number of MFs and the objective value of the solution of

NDM.

4.2 Benders Decomposition Algorithm
The Benders Decomposition (BD) method was introduced in the

early 1960s as a partition-based solution strategy for large-scale

MILPs [5]. BD is successfully applied in diverse fields [24]. In the

field of transportation, Costa [9] presented a review of BD applica-

tions on network design problems, where integer and continuous

variables are mainly associated with arc selection and commodity

flow amounts, respectively. The author indicated that BD outper-

forms some traditional techniques such as Branch-and-Bound or

Lagrangian Relaxation for network design problems because of

their special structure.

In BD, the problem is divided into a restricted master problem (RMP)

and a linear subproblem (LSP). The RMP consists of constraints

that contain pure integer variables. The LSP, is obtained via fixing

the values of integer variables based on the solution of the RMP.

Iteratively, the solution of the RMP is used in the dual of the LSP,

referred to as dual subproblem (DSP) and the solution of the DSP

generates Benders feasibility or optimality cuts for the RMP. This

procedure is continued until a stopping criterion is met. The LSP,

DSP, and RMP models associated with our mathematical model are

introduced next.

LSP: (Contains the continuous decision variables 𝐴𝑖𝑟𝑡 )

min 0 (21)
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subject to

𝜏−1∑
𝑡
′
=0

𝐴(𝑛
𝑝𝑟 ,𝑞+𝑡

′ +1 ),𝑟 ,(𝑒𝑟 +𝑞+𝑡
′ ) ≥ 1 ∀𝑟 ∈ 𝑅, 0 ≤ 𝑞 ≤ 𝑙𝑝𝑟 − 𝜏 (22)

∑
𝑚∈𝑀

Δ𝑚𝑆
𝜃
𝑖𝑚𝑡 ≥

∑
𝑟∈𝑅

𝑑𝑟𝐴𝑖𝑟𝑡 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇 (23)

𝐴𝑖𝑟𝑡 ≥ 0 ∀𝑖 ∈ 𝑉 , 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (24)

In the LSP, 𝑆
𝜃
𝑖𝑚𝑡 are defined to be equal to the values of 𝑆𝑖𝑚𝑡 vari-

ables of the RMP at iteration 𝜃 . Since the 𝐴𝑖𝑟𝑡 do not contribute to

the objective function of the problem, the objective function of the

LSP is set to 0.

Dual Decision Variables: (Corresponding to const. (22) and (23))

𝑢𝑟𝑞 ∀𝑟 ∈ 𝑅, 𝑞 = 0, ..., 𝑙𝑝𝑟 − 𝜏
𝑣𝑖𝑡 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇

DSP: (Dual of the LSP model)

max

∑
𝑟∈𝑅

∑
𝑞=0,...,𝑙𝑝𝑟 −𝜏

𝑢𝑟𝑞 −
∑
𝑖∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

Δ𝑚𝑆
𝜃
𝑖𝑚𝑡 𝑣𝑖𝑡 (25)

subject to ∑
𝑚𝑎𝑥 {0,𝑘−𝜏 }≤𝑞≤𝑚𝑖𝑛{𝑘−1,𝑙𝑝𝑟 −𝜏 }

𝑢𝑟𝑞 − 𝑑𝑟 𝑣𝑛𝑝𝑟 𝑘 ,𝑒𝑟 +𝑘−1 ≤ 0 ∀𝑟 ∈ 𝑅, 𝑘 = 1, ..., 𝑙𝑝𝑟

(26)

𝑢𝑟𝑞 ≥ 0 ∀𝑟 ∈ 𝑅,𝑞 = 0, ..., 𝑙𝑝𝑟 − 𝜏
(27)

𝑣𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝑉 , 𝑡 ∈ 𝑇
(28)

We refer to the objective function of the DSP at iteration 𝜃 as𝑊 𝜃
𝐷𝑆𝑃

.

RMP: (Consists of pure binary variables and 𝜂 ≥ 0)

min

∑
𝑚∈𝑀

𝑓𝑚𝑌𝑚 +
∑
𝑖∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

𝑜𝑚𝑆𝑖𝑚𝑡 +
∑
𝑖∈𝑉

∑
𝑗∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

𝑐𝑖 𝑗𝑋𝑖 𝑗𝑚𝑡 + 𝜂 (29)

subject to

𝑆𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚𝑡 ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (30)∑
𝑗∈𝑉

𝑋 𝑗𝑖𝑚𝑡 ≤
∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚 (𝑡+1) ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 = 1, ..., |𝑇 | − 1 (31)∑
𝑖∈𝑉

∑
𝑗∈𝑉

𝑋𝑖 𝑗𝑚𝑡 ≤ 𝑌𝑚 ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (32)

𝑆𝑖𝑚𝑡 ∈ {0, 1} ∀𝑖 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (33)

𝑋𝑖 𝑗𝑚𝑡 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉 ,𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (34)

𝑌𝑚 ∈ {0, 1} ∀𝑚 ∈ 𝑀 (35)

𝜂 ≥ 0 (36)

The feasibility and optimality cuts are incorporated into the RMP

throughout the iterations according to Equations (37) and (38).

0 ≥
∑
𝑟∈𝑅

∑
𝑞=0,...,𝑙𝑝𝑟 −𝜏

𝑢𝜃𝑟𝑞 −
∑
𝑖∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

Δ𝑚𝑆𝑖𝑚𝑡 𝑣
𝜃
𝑖𝑡 “feasibility cut" (37)

𝜂 ≥
∑
𝑟∈𝑅

∑
𝑞=0,...,𝑙𝑝𝑟 −𝜏

𝑢𝜃𝑟𝑞 −
∑
𝑖∈𝑉

∑
𝑚∈𝑀

∑
𝑡∈𝑇

Δ𝑚𝑆𝑖𝑚𝑡 𝑣
𝜃
𝑖𝑡 “optimality cut" (38)

Proposition 4.1. The optimal value for 𝜂 is 0.

Proof. Since the optimal objective value of the LSP is 0, according

to the duality theory, optimal objective value of DSP must be 0.

This implies that we can directly 0 to the variable 𝜂. □

Proposition 4.2. Starting from any feasible solution, if𝑊 𝜃
𝐷𝑆𝑃

= 0

at an iteration 𝜃 , then the stopping criterion for our BD algorithm is
met and the solution of RMP in the corresponding iteration is optimal
solution of the original problem.

Proof. 𝑍𝑅𝑀𝑃
provides a lower bound (LB) for the optimal objec-

tive value. The term 𝑐𝑇𝑦 +𝑊 𝜃
𝐷𝑆𝑃

(where 𝑦 and 𝑐𝑇 represent the

binary variables (𝑆, 𝑋,𝑌 ) and their coefficients in the objective

function of the original problem, respectively), provides an upper

bound (UB). The algorithm stops when 𝐿𝐵 = 𝑈𝐵. We showed in

Proposition 4.1 that the optimal value for variable 𝜂 is 0. Letting

𝜂 = 0 implies 𝑍𝑅𝑀𝑃 = 𝑐𝑇𝑦. Therefore, we conclude that 𝐿𝐵 = 𝑈𝐵

and the algorithm stops, if𝑊 𝜃
𝐷𝑆𝑃

= 0 is obtained at any iteration

𝜃 . □

4.3 Improvements for the proposed BD
algorithm

Although BD benefits a powerful theory, the straightforward appli-

cation of classical BD is usually slow in convergence. In this section,

we applied two refinements on the proposed BD.

(1) Multi-cut implementation: At each iteration of the classic

BD, a single Benders cut is inserted to the RMP. However, the

multi-cut reformulation outperforms the single-cut approach

as it strengthens the RMP more quickly [24]. So, we generate

multiple Benders cuts by solving DSP several times at a single

iteration and insert those cuts simultaneously into the RMP.

(2) Linear RMP Relaxation: Solving the RMP is usually time

consuming and solving it to optimality in the initial iterations

is not necessary. McDaniel and Devine [20] showed that valid

Benders cuts can be generated by the solutions to the LP re-

laxation of RMP. We solve the linear relaxation of the RMP

(LR-RMP) at early iterations of the algorithm. By applying this

approach, the RMP is enriched with high-quality Benders cuts.

5 COMPUTATIONAL ANALYSIS

We implemented the MILP formulation and solution methods on

the real-life migration crisis, took place in Honduras in late 2020,

when groups of refugees began migrating from Central America,

with the hope of reaching Mexico and the USA, often on foot and

in groups known as “caravans". Guatemalan migration officials es-

timated that about 6,000 migrants, most of them Honduran, were

corralled between Chiquimula and the border with Honduras. An-

other caravan of about 4,000 refugees, mostly Honduran migrants,

had camped out near the village of Vado Hondo in Guatemala. The

migrants were traveling by a combination of walking, hitchhiking,

and bus [3, 29].

In section 4, we proposed two solution methods for the MCM-FLP-

MD. In addition to these solution methods, we directly solved the

instances via the proposed MILP formulation. We implemented the

MILP formulation and the two proposed solution methods in the

Python programming environment, Spyder Anaconda IDE 4.1.5

platform and solved them using the Pyomo optimization package

and the solver CPLEX 12.10.0.. All experiments are conducted on

a workstation with 64-bit operating system, Xenon(R) 2.60 GHz
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CPU and 128 GB of RAM (18 cores and 36 processors). Considering

instance complexities and solution specifications, 0.01% and 0.02%

optimality gaps are allowed for the medium- and large-sized in-

stances. Moreover, all instances are solved with a 6-hour (21600s)

time limit. Due to relatively short run times associated with small-

sized instances, we applied the accelerated BD procedure only to

medium- and large-sized instances.

According to Table 1, the MILP formulation is preferred for small-

sized networks with approximately 20 nodes and a time horizon of

about two weeks as it achieves optimal solutions quickly. Also, the

accelerated BD is preferred for medium-sized networks comprised

of approximately 30 nodes and with a time horizon of about 3 weeks.

Finally, the NDM is preferred when the instance sizes are large,

consisting of about 50 nodes or more and lasting for more than a

month. Finally, we observed a 2.6% objective value gap between

the NDM and MILP results among all 60 instances.

Instance Average run-time Average Obj. value ratio Solver mip Gap %
set NDM MILP BD NDM/MILP NDM/BD MILP/BD MILP BD

Small 24.8 118.2 - 1.017 - - - -

Medium 152.5 996.4 624.1 1.031 1.031 1 - -

Large 856.2 19095.2 12919.2 1.027 1.036 1.009 1.55 0.71

Table 1: Overall results corresponding to instance sets

6 CONCLUSION
In this paper, we studied a multi-period capacitated mobile facil-

ity location problem with mobile demands (MCM-FLP-MD). This

problem aims to provide recurrent humanitarian aid to en route

refugee groups during their migration in an effective manner using

capacitated Mobile Facilities (MFs). We proposed an MILP formula-

tion for the problem followed by two solution methods: a Network

Decomposition Matheuristic (NDM) and an accelerated Benders

decomposition (BD) approach as an exact solution method. Our

observations indicated that regarding tun times, the MILP formu-

lation, accelerated BD and NDM algorithm are most suitable for

solving small, medium, and large-sized instances, respectively.

A future research direction for this problem is to further improve

both the MILP model by incorporating suitable valid inequalities,

and the NDM algorithm in order to better utilize capacities of MFs

in the network. Also, incorporating uncertainties in the network, es-

pecially regarding the predetermined paths assigned to the refugees

and their displacement patterns is another research direction for

which stochastic dynamic programming can be investigated. Con-

structive heuristics and metaheuristic solution methods may also

be applicable for extensions of this problem.
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