
Towards Stronger Lagrangean Bounds for Stable Spanning Trees
Phillippe Samer

University of Bergen

Bergen, Norway

samer@uib.no

Dag Haugland

University of Bergen

Bergen, Norway

dag@ii.uib.no

ABSTRACT
Given a graph G = (V ,E) and a set C of unordered pairs of edges

regarded as being in conflict, a stable spanning tree in G is a

set of edges T inducing a spanning tree in G, such that for each{
ei , ej

}
∈ C , at most one of the edges ei and ej is inT . The existing

work on Lagrangean algorithms to the NP-hard problem of finding

minimum weight stable spanning trees is limited to relaxations

with the integrality property. We have recently initiated the combi-

natorial and polyhedral study of fixed cardinality stable sets [17],

which motivates a new formulation for stable spanning trees based

on Lagrangean Decomposition. By optimizing over the spanning

tree polytope of G and the fixed cardinality stable set polytope of

the conflict graph Ĝ = (E,C) in the subproblems, we are able to

determine stronger Lagrangean bounds (equivalent to dualizing

exponentially-many subtour elimination constraints), while lim-

iting the number of multipliers in the dual problem to |E |. This
naturally asks for more sophisticated dual algorithms, requiring the

fewest iterations possible, and we derive a collection of Lagrangean

dual ascent directions to this end.

KEYWORDS
Stable spanning trees, conflict-free spanning trees, Lagrangean

decomposition, dual ascent, fixed cardinality stable sets.

1 INTRODUCTION
Given an undirected graph G = (V ,E), with edge weights w :

E → Q, and a familyC of unordered pairs of edges that are regarded

as being in conflict, a stable (or conflict-free) spanning tree in G is

a set of edges T inducing a spanning tree in G, such that for each{
ei , ej

}
∈ C , at most one of the edges ei and ej is inT . The minimum

spanning tree under conflict constraints (MSTCC) problem is to

determine a stable spanning tree of least weight, or decide that none

exists. It was introduced by [8, 9], who also prove its NP-hardness.
Different combinatorial and algorithmic results about stable span-

ning trees explore the associated conflict graph Ĝ = (E,C), which
has a vertex corresponding to each edge in the original graph G,
and where we represent each conflict constraint by an edge con-

necting the corresponding vertices in Ĝ . Note that each conflict-free
spanning tree inG is a subset of E which corresponds both to a span-

ning tree in G and to a stable set (or independent set, or co-clique:

a subset of pairwise non-adjacent vertices) in Ĝ . Therefore, one can
equivalently search for stable sets in Ĝ of cardinality exactly |V | − 1

which do not induce cycles in the original graph G.
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We have recently initiated the combinatorial study of stable sets

of cardinality exactly k in a graph [17], where k is a positive integer

given as part of the input. There are appealing research directions

around algorithms, combinatorics and optimization for problems

defined over fixed cardinality stable sets. Also from an applications

perspective, conflict constraints arise naturally in operations re-

search andmanagement science. Stable spanning trees, in particular,

model real-world settings such as communication networks with

different link technologies (which might be mutually exclusive in

some cases), and utilities distribution networks. In fact, the latter

is a standard application of the quadratic minimum spanning tree

problem [1], which generalizes the MSTCC one.

Exact algorithms to find stable spanning trees have been in-

vestigated for a decade now, building on branch-and-cut [6, 18],

or Lagrangean relaxation [7, 20] strategies. Consider the natural

integer programming (IP) formulation for the MSTCC problem:

min

∑
e ∈E

wexe (1)

s.t.

∑
e ∈E(S )

xe ≤ |S | − 1, for each S ⊊ V , S , ∅, (2)∑
e ∈E

xe = |V | − 1, (3)

xei + xej ≤ 1, for each

{
ei , ej

}
∈ C, (4)

xe ∈ {0, 1} , for each e ∈ E. (5)

While a considerable effort in the development of branch-and-cut

algorithms led to more sophisticated formulations and contributed

to a better understanding of our capacity to solve MSTCC instances

by judicious use of valid inequalities, the existing Lagrangean al-

gorithms are limited to the most elementary approach. Namely, a

relaxation scheme dualizing conflict constraints (4), which thus has

the integrality property. We review other aspects of the correspond-

ing references in Section 2.

The present paper takes the standpoint that the development

of a full-fledged Lagrangean strategy to find stable spanning trees

is an unsolved problem. While we recognize different merits of

previous work, we argue that it is worth investigating stronger

Lagrangean bounds for the MSTCC structure: exploring more cre-

ative relaxation schemes, designing improved dual methods, all the

while harnessing the progress in IP computation.

The main idea of this paper is to offer an alternative starting

point for this problem. In Section 3, we call attention to a stronger

relaxation scheme, based on Lagrangean Decomposition. We explain

how classical results from the literature guarantee the superiority

of such a reformulation: both with respect to the quality of dual

bounds, when compared to the straightforward relaxation, and

with regard to the number of multipliers, when compared to an

alternative framework to determine the same bounds (relax-and-cut
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dualizing violated subtour elimination constraints (2) dynamically).

The decomposition naturally leads to the dual ascent paradigm

to solve the Lagrangean dual problem, and Section 4 is devoted

to presenting maximal ascent directions. These are fundamental

ingredients in tailored methods guaranteeing monotone bound

improvement when optimizing the Lagrangean dual.

We see the opportunity for renewed interest in Lagrangean De-

composition in light of the progress in mixed-integer linear pro-

gramming (MILP) computation. Given the impressive speedup of

MILP solvers over the past two decades, Dimitris Bertsimas and

Jack Dunn are among a group of distinguished researchers who

make a case for (exact) optimization over integers as the natu-

ral, correct model for several tasks within machine learning and

towards interpretable artificial intelligence. This is the theme of

their recent book [2]; see also [3, 4]. We are interested in explor-

ing whether this philosophy (challenging assumptions previously

deemed computationally intractable) should also imply less hesita-

tion towards designing Lagrangean algorithms that exploit subprob-

lems for which, albeit strongly NP-hard, specialized solvers attain

good performance. In the particular case of the MSTCC problem,

one could leverage state-of-the-art branch-and-cut algorithms for

stable sets (in particular, of fixed cardinality) to find stable spanning

trees more efficiently by means of Lagrangean Decomposition, such

as we outline in this paper.

In summary, our contributions are the following.

(1) We bring attention to the quality of different Lagrangean

bounds for the MSTCC problem as an inviting margin for

designing improved algorithms, and we discuss the advan-

tages, in theory, of a reformulation based on Lagrangean

Decomposition.

(2) We determine a collection of Lagrangean dual ascent direc-

tions for optimizing the Lagrangean dual problem corre-

sponding to the newMSTCC reformulation, hence contribut-

ing towards a new family of algorithms and dual bounds for

the problem.

2 DRAWBACKS OF EXISTING LAGRANGEAN
APPROACHES FOR MSTCC

The work of [20] contributes in many research directions about

stable spanning trees, including particular cases which are polyno-

mially solvable, feasibility tests, several heuristics, and two exact

algorithms based on Lagrangean relaxation. The first formulation

is the straightforward one we mentioned, dualizing all conflict

constraints (4); they denote the corresponding dual bound L∗. The
second approach relaxes a subset of inequalities (4): using an ap-

proximation to the maximum edge clique partitioning problem [10],

this scheme dualizes a subset of conflict constraints such that the

remaining conflict graph is a collection of disjoint cliques; the re-

sulting dual bound is denoted ℓ∗. The authors argue that the latter

reformulation is stronger than the former, and present extensive

computational results justifying their claims.

Unfortunately, the Lagrangean dual bounds L∗ and ℓ∗ in [20] are

in fact identical, as we show next. The first relaxation clearly has

the integrality property, as the remaining constraints correspond

to a description of the spanning tree polytope or, equivalently, to

bases of the graphic matroid of G. The second relaxation scheme

is designed so that the conflict constraints which remain in the

subproblem of relaxation ℓ∗ induce a collection of disjoint cliques

in Ĝ. The subproblem thus corresponds to the intersection of two

matroids: the graphic matroid of G and the partition matroid of

subsets of E that intersect the enumerated cliques in Ĝ at most once.

It follows that the second relaxation also has the integrality property

[15, Theorem III.3.5.9], and consequently, L∗ and ℓ∗ both equal the

optimal objective function value in the continuous relaxation of

(1)−(5) [15, Corollary II.3.6.6]. In this perspective, the computational

results in Tables 2–4 of [20] diverge from what Lagrangean duality

theory prescribes.

Recently, [7] presented thorough computational experiments of

a new Lagrangean algorithm for the MSTCC problem. They use

the same relaxation scheme dualizing all conflict constraints, and

focus on a combination of dual ascent and the subgradient method

to compute the Lagrangean bound, namely, L∗ in [20], equal to the

LP-relaxation of (1) − (5). In Table 1 of [7], the performance of the

new algorithm is compared to the results published in [20]. That is,

the issue we analyse above regarding the computational results of

[20] is repeated as a baseline of the new numerical evaluation.

Another drawback of the new algorithm is that dual ascent steps

are intertwined with subgradient optimization. While not incorrect,
this choice undermines the advantages of a strategy to solve the

dual problem in fewer iterations. A passage from a classical work of

Guignard and Rosenwein [14] is conclusive: “An ascent procedure
may also serve to initialize multipliers in a subgradient procedure. This
scheme is particularly useful at the root node of an enumeration tree.
However, an ascent method cannot guarantee improved bounds over
bounds obtained by solving the Lagrangean dual with a subgradient
procedure.”

Moreover, the ascent steps rely on a greedy heuristic, and not

on maximal ascent directions, i.e. optimal step size in a direction

of bound increase; see Definition 4.1. In the algorithm of [7], if

a conflicting pair of edges exists in a Lagrangean solution, the

multiplier adjustment is derived from the observation that the dual

bound shall improve by at least the increased cost of replacing one

of the edges by its cheapest successor (in a list of edges ordered by

current costs). The authors remedy the resulting low adjustment

values by alternating subgradient optimization iterations and the

ascent procedure.

We stress again that references [7] and [20] have many virtues

and present concrete contributions to the MSTCC literature. Our

only remark is that the first Lagrangean strategy designed to im-

prove upon the LP-relaxation bound is matter-of-factly yet to be

introduced. In the next sections, we offer an interesting approach

to tackle this challenge.

3 LAGRANGEAN DECOMPOSITION
Renaming the variables in (4) as y, and introducing linking con-

straints xe = ye for each e ∈ E, we have the same formulation.

Now, dualizing the linking constraints with Lagrangean multipliers

λ ∈ Q |E |
, we arrive at the Lagrangean Decomposition formulation:

z(λ)
def

= min

x ∈Fsp.tree(G)
(w − λ)⊺x + min

y∈Fkstab(Ĝ, |V |−1)

λ⊺y (6)
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where Fsp.tree(G) is given by∑
e ∈E(S )

xe ≤ |S | − 1, for each S ⊊ V , S , ∅, (7)∑
e ∈E

xe = |V | − 1, (8)

xe ∈ {0, 1} , for each e ∈ E, (9)

and F
kstab

(Ĝ, |V | − 1) is given by∑
e ∈E

ye = |V | − 1, (10)

yei + yej ≤ 1, for each

{
ei , ej

}
∈ C, (11)

ye ∈ {0, 1} , for each e ∈ E. (12)

The Lagrangean dual problem is to determine the tightest such

bound:

ζ
def

= max

λ∈Q|E |
{z(λ)} . (13)

The first systematic study of Lagrangean Decomposition as a

general purpose reformulation technique was presented by Guig-

nard and Kim [13]. They indicate earlier applications of variable

splitting/layering, especially [19] and [16]. See also the outstanding

presentation in [12, Section 7].

One of the main virtues of the decomposition principle over

traditional Lagrangean relaxation schemes is that the bound from

the Lagrangean decomposition dual is equal to the optimum of the

primal objective function over the intersection of the convex hulls of

both constraint sets [13, Corollary 3.4]. The decomposition bound

is thus equal to the strongest of the two Lagrangean relaxation

schemes corresponding to dualizing either of the constraint sets.

In our application to the MSTCC problem, we recognize the

integrality of the spanning tree formulation described by (7) − (8)

over x ∈ Q |E |
. Hence the decomposition bound matches that of

the stronger scheme where constraints (10) − (11) enforcing fixed

cardinality stable sets are kept in the subproblem (which is thus

convexified), and all subtour elimination constraints (7) are dualized.

This means that we can compute stronger Lagrangean bounds,

while limiting the number of multipliers in the dual problem to

|E |, instead of dealing with exponentially-many multipliers e.g. in
a relax-and-cut approach.

We defend the advantages of breaking the original problem into

two parts, exploiting their rich combinatorial and polyhedral struc-

tures, so as to derive stronger dual bounds. The price of this strategy

is to solve a strongly NP-hard subproblem, which naturally leads to

more sophisticated dual algorithms, requiring the fewest iterations

possible. Customized dual ascent is a technique that integrates nat-

urally with Lagrangean decomposition [13], and may be the key

ingredient towards effective computation of such stronger bounds.

4 LAGRANGEAN DUAL ASCENT
In this section we present the main contributions of the paper. In

what follows, let ei ∈ Rm denote the standard unit vector in the

i-th direction, let conv S denote the convex hull of a set S , and let

ext Q denote the set of extreme points of a given polyhedron Q.

We let

Psp.tree(G)
def

= conv Fsp.tree(G)

denote the spanning tree polytope of a graph G, and let

C(G,k)
def

= conv F
kstab

(G,k)

denote the polytope of stable sets of cardinality k in G. Note that
Psp.tree and C are bounded (polytopes contained in the 0,1 hyper-

cube), and do not contain extreme rays.

The Lagrangean dual function z : Q |E | → Q is an implicit

function of λ. It is determined by the the lower envelope of{
(w − λ)⊺xr + λ⊺ys : xr ∈ ext Psp.tree(G),

ys ∈ ext C(Ĝ, |V | − 1)

}
.

Hence, it is piecewise linear concave, and differentiable almost

everywhere, with breakpoints at λ′ such that the optimal solution

of z(λ′) is not unique.
Such breakpoints are the key ingredient in the dual ascent par-

adigm to solve a Lagrangean dual problem. In particular, the fol-

lowing kind of point deserves special attention to guide progress

in this framework.

Definition 4.1. Amaximal ascent direction of the Lagrangean

dual function z : Qm → Q at λr is a vector u ∈ Qm in a direction

of increase from z(λr ), i.e.

z(λr + u) > z(λr ),

such that λ + u is a breakpoint of z, i.e.

z(λr + u) ≥ z(λr + αu), for all α ∈ Q.

A maximal ascent direction determines an optimal multiplier

adjustment in a given direction of increase of the Lagrangean dual

function. It need not correspond to a steepest ascent direction from

z(λr ), in general.

The technique of optimizing the Lagrangean dual function by

means of ascent directions uses the formulation structure to de-

termine monotone bound improving sequences of multipliers. It

was pioneered by [5] and [11] in the context of the facility location

problem. An actual algorithm of this kind thus relies on analysing

the specific problem and the information available from subprob-

lem solutions. Nevertheless, we found it instructive to summarize

and systematically review the following instructions as a guiding
principle of Lagrangean decomposition based dual ascent:

i. Update multiplier λe corresponding to a violation xe , ye
ii. in the sense of improving the Lagrangean dual bound,

iii. analysing the implications of changes in λe alone,
iv. so as to induce alternative subproblem solutions

v. while avoiding bound-decreasing effects.

Although one cannot hope for a pragmatic, problem-independent

algorithm, this principle is the intuitive foundation of the arguments

that follow.

So as not to overload notation, we omit the transposition symbol

in the remainder of the text, whenever it is clear from the context

e.g. in vector products like (w − λr )⊺ xr .
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Theorem 4.2. Let (xr ,yr ) be an optimal solution of subproblem
z(λr ), such that xre = 0 < 1 = yre . Define the non-negative quantities

∆re
def
= min

{
λry : y ∈ Fkstab(Ĝ, |V | − 1),ye = 0

}
− λryr , (14)

∂re
def
= min

{
(w − λr )x : x ∈ Fsp.tree(G),xe = 1

}
−
(
w − λr

)
xr .
(15)

If min

{
∆re , ∂

r
e
}
, 0, then min

{
∆re , ∂

r
e
}
· ee is a maximal ascent

direction of z at λr .

Proof.

(i.) Given that xre = 0 and yre = 1, increasing λre corresponds to

increasing the dual bound, until alternative optimal solutions

where that hypothesis fails are induced. Specifically,

z(λr + ϵee ) > z(λr ) (16)

for all ϵ > 0 such that

xr ∈ argmin

{(
w −

(
λr + ϵee

) )
x : x ∈ Fsp.tree(G)

}
, (17)

yr ∈ argmin

{ (
λr + ϵee

)
y : y ∈ F

kstab
(Ĝ, |V | − 1)

}
. (18)

As long as ϵ can be made positive, ϵee is a direction of increase
from z(λr ). The necessity of conditions (17) and (18) follows

from noting that the contribution of the e-th variables xe and

ye to z, (
we −

(
λre + ϵee

) )
xe +

(
λre + ϵee

)
ye ,

remains constant as we increase ϵ after xe joins, or ye leaves,

an optimal solution. For, if xe = ye = 1, meaning that the

coefficient of edge e is attractive enough in (17), any further

increase +ϵye is cancelled by −ϵxe . Moreover, if xe = ye = 0,

which means that the coefficient of vertex e is no longer attrac-
tive enough in (18), further increasing ϵ in

(
λre + ϵee

)
ye = 0

has no effect.

(ii.) To determine ϵ such that we find a breakpoint of z, we use
the limiting conditions (17), (18).

For xr to no longer be the unique optimum in (17), the cost

of edge e decreases so much that an alternative solution

x̃ ∈ Fsp.tree(G) which includes e is determined. Note that x̃ is

well-defined, as the choice of edges in a minimum spanning

tree where e is fixed a priori does not depend on the cost of e
(all other costs are kept unchanged). Also note that, since the

existing solution is such that xre = 0, the cost of x̃ is no less

than that of xr . The difference is precisely ∂re in (15).

If ∂re = 0, the bound cannot be improved by adjusting λre , as
an alternative minimum spanning tree including e is readily
available; equivalently, we should have ϵ = 0 in part (i). If

∂re > 0, it is the maximum increase in λre (i.e. decrease in the

cost of edge e in the x subproblem) before x̃ becomes optimal

and z starts to decrease. That is, enforcing (17) yields

ϵ ≤ ∂re . (19)

(iii.) For yr to no longer be the unique optimum in (18), the cost of

vertex e increases so much that an alternative fixed cardinality

stable set ỹ ∈ F
kstab

(Ĝ, |V | − 1) which does not include e is
determined.

Analogous to the situation in part (ii), ỹ is well-defined be-

cause the multipliers corresponding to all other vertices are

kept constant: choosing ỹ amounts to finding a minimum cost

fixed cardinality stable set in Ĝ−e . Also, its cost is no less than
that of yr , the existing optimal solution to the y subproblem.

The difference is exactly ∆re in (14).

If ∆re = 0, no bound improvement by changing λre is possible,

as an alternative fixed cardinality stable set of least cost not

including e is readily available; i.e. we should have ϵ = 0

in part (i). On the other hand, if ∆re > 0, it is the maximum

increase in λre before ỹ becomes optimal and z stops increasing.
That is, enforcing (18) yields

ϵ ≤ ∆re . (20)

(iv.) In conclusion, if min

{
∆re , ∂

r
e
}
= 0, then ϵ = 0 and ϵee fails to

be a direction of increase from z(λr ). Otherwise, we combine

bounds (19) and (20) into (16):

∀ϵ > 0, z(λr +min

{
∆re , ∂

r
e
}
· ee ) ≥ z(λr + ϵee ),

showing that λr +min

{
∆re , ∂

r
e
}
· ee is a breakpoint of z, and

min

{
∆re , ∂

r
e
}
· ee is a maximal ascent direction.

□

To determine a minimum spanning tree with edge e = {i, j}
fixed a priori in part (ii), we may contract that edge in G. If the
contraction operator is defined so as to allow parallel edges between

the new vertex ij and k ∈ N (i) ∩N (j), where N (u) ⊂ V denotes the

neighbourhood of vertex u, we must ensure that not more than one

edge between two vertices is chosen (e.g. in Kruskal’s algorithm;

this is not an issue in Prim’s method). Now, if the contraction

operator forbids parallel edges, we make an unambiguous choice

in the original graph G by recognizing the proper edge ({i,k} or
{j,k}) yielding the correct spanning tree.

A maximal ascent direction from Lagrangean solutions where

xre = 1 but yre = 0 is derived by an argument analogous to that of

Theorem 4.2. The next proof if thus significantly streamlined.

Theorem 4.3. Let (xr ,yr ) be an optimal solution of subproblem
z(λr ), such that xre = 1 > 0 = yre . Define the non-negative quantities

∆re
def
= min

{
λry : y ∈ Fkstab(Ĝ, |V | − 1),ye = 1

}
− λryr , (21)

∂re
def
= min

{
(w − λr )x : x ∈ Fsp.tree(G),xe = 0

}
−
(
w − λr

)
xr .
(22)

If min

{
∆re , ∂

r
e
}
, 0, then min

{
∆re , ∂

r
e
}
· (−ee ) is a maximal ascent

direction of z at λr .

Proof. Decreasing λre corresponds to increasing the dual bound,
in this case. Hence, ϵ(−ee ) is a direction of increase from z(λr ), as
long as ϵ can be made positive in

z
(
λr + ϵ(−ee )

)
> z

(
λr

)
, (23)

where

xr ∈ argmin

{[
w −

(
λr + ϵ(−ee )

) ]
x : x ∈ Fsp.tree(G)

}
, (24)

yr ∈ argmin

{[
λr + ϵ(−ee )

]
y : y ∈ F

kstab
(Ĝ, |V | − 1)

}
. (25)

For yr to no longer be the unique optimum in (25), the cost of

vertex e decreases enough for an alternative solution including e to
be determined. Since all other multipliers are kept constant, such

point ỹ ∈ F
kstab

(Ĝ, |V | − 1) corresponds to a minimum cost stable
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set of cardinality |V | − 2 in Ĝ − N [e], that is, the conflict graph
where the closed neighbourhood of vertex e is removed. As the

existing solution is such that yre = 0, the cost of ỹ is no less than

that of yr . The difference is precisely ∆re in (21).

Now, for xr to no longer be the unique optimum in (24), the cost

of edge e increases as far as determining an alternative minimum

spanning tree not including e . Let x̃ ∈ Fsp.tree(G) denote that point,
which corresponds to a minimum spanning tree in G − e , since all
other multipliers are held constant. The cost of x̃ is no less than

that of xr , the existing optimal solution to the x subproblem. The

difference is exactly ∂re in (22).

Ifmin

{
∆re , ∂

r
e
}
= 0, then ϵ = 0, and ϵ(−ee ) fails to be a direction

of increase from z(λr ). Otherwise, we have

∀ϵ > 0, z
(
λr +min

{
∆re , ∂

r
e
}
· (−ee )

)
≥ z

(
λr + ϵ(−ee )

)
,

showing that λr + min

{
∆re , ∂

r
e
}
· (−ee ) is a breakpoint of z, and

min

{
∆re , ∂

r
e
}
· (−ee ) is a maximal ascent direction. □

5 CONCLUDING REMARKS
We bring attention to a research question that we consider both

attractive and promising. Stable spanning trees comprise appeal-

ing combinatorial and polyhedral structures, and designing a La-

grangean algorithm that may yield stronger dual bounds to optimal

stable trees is an open problem. This paper presents the first steps

in a sensible direction: Lagrangean Decomposition inducing a non-

integral relaxation, coupled with carefully designed dual ascent.

Our development relies on the solid foundation that the pioneers

of Lagrangean duality in IP have laid, through which we are able to

justify the shortcomings of existing approaches and the virtues of

the one we propose. We also make an effort for our exposition of the

design principle of Lagrangean dual ascent to be fairly tutorial, and

for the main proof of the maximal ascent direction to be instructive.

The definitive proof of concept should be actually computing

the stronger bounds and finding optimal stable spanning trees in

computationally challenging benchmark instances more efficiently.

We are currently crafting an implementation of the method outlined

in this paper. Regardless of the success of our current efforts and one

particular algorithm, we stand in the position put forth at the end

of the Introduction. In light of the progress in MILP computation, it

seems worthwhile to further investigate the strategy of Lagrangean

Decomposition based on harder subproblems, possibly replacing

the common sense boundary of weakly NP-hard choices by the

weaker requirement that our choice be computationally tractable.
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