Industrial & Application Paper

O

proceedings

Unsupervised Graph-based Entity Resolution for Accurate and
Efficient Family Pedigree Search

Nishadi Kirielle, Charini

Nanayakkara, Peter Christen
nishadi.kirielle@anu.edu.au
The Australian National University
Canberra, ACT 2600, Australia

ABSTRACT

Tremendous progress has been made in medical research in re-
cent years to detect, treat, and prevent a variety of commonly
occurring cancers. There is now a shift towards better identifying
and understanding cancers and other diseases that occur very
rarely in a population. One approach to investigate such rare dis-
eases is to look at a patient’s family history through genealogical
as well as genetic research. The Genetics Genealogy Team, part
of Public Health Scotland, has been providing a unique service
exploring family pedigrees (family trees) using birth, death, and
marriage certificates going back to 1855. Thus far searches have
been manually exploring each digitised record individually which
can be time consuming and labour intensive. Here we present
a prototype application for automated family pedigree search
that is based on unsupervised graph-based entity resolution tech-
niques combined with approximate query matching and ranking
methods to efficiently and accurately extract and visualise family
pedigrees from searched birth or death certificates. We describe
the steps of our application, and how we anonymise sensitive
personal data to allow it being used for training and educational
purposes. Our prototype application and an anonymised data set
are available at: https://dmm.anu.edu.au/SNAPS/

1 INTRODUCTION

Entity resolution (ER), also known as data or record linkage [11],
is the process of identifying and linking records that refer to the
same entities within one or across several databases. If applied on
a single database the task is known as duplicate detection [46]. ER
has applications in many domains, ranging from health and social
science research to national censuses, crime and fraud detection,
public health surveillance, and national security [14, 39, 53].

The main challenge of ER is that generally no unique en-
tity identifiers (such as social security or patient numbers) are
available in the databases to be linked. Therefore, attributes that
partially identify entities, known as quasi-identifiers (QIDs) [14],
need to be compared to link records with similar QID values that
provide evidence that two records may refer to the same entity.
For databases containing records about people, the QIDs used
for ER commonly include personal names, addresses, dates of
birth, and so on [52]. However, it is challenging to resolve such
databases because QID values can change over time, and typo-
graphical errors as well as spelling variations occur commonly
with personal data [11].

To make ER scalable to large databases, blocking, indexing,
and filtering techniques [54] can be applied where similar records
are grouped into blocks and only records in the same block

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Chris Dibben, Lee Williamson,

Eilidh Garrett
chris.dibben@ed.ac.uk
University of Edinburgh
Edinburgh EH8 9XP, UK

498

Claire Manson
claire. manson@phs.scot
Public Health Scotland
Edinburgh EH12 9EB, UK

are compared. The compared record pairs are then classified
into matches (two records referring to the same entity) and non-
matches (two records referring to two different entities) using
a decision model [11]. Such decision models generally consider
the similarities calculated between QID values, and possibly also
the relationship information available between records [6, 19].
These decision models can be as simple as a single similarity
threshold, be based on probabilistic models [23], or they can be
sophisticated machine learning classifiers such as deep learning
or graph-based clustering approaches [4, 31, 44].

The majority of ER approaches assume the batch linkage of
static databases [11]. Only limited research has explored how
query records containing details of an entity can be linked in
(near) real-time with a database that consists of records about
known entities [7, 13, 56]. In such a context, the challenges in-
clude fast similarity calculations between a query record and
selected candidate records in a database, as well as the accurate
ranking of the most likely matching candidate records (rather
than classifying record pairs into matches and non-matches). In
this paper we describe such a query-based ER application aimed
at generating family pedigrees (family trees) for patients who
have familial cancer or other inherited genetic conditions [8].

The Genetics Genealogy Team of Public Health Scotland pro-
vides a unique service for patients with a potential familial cancer
or other inherited genetic condition by supplying accurate and
comprehensive family history research for patients who have
been referred to a clinical genetics service!. The determination
and management of risk is dependent on the quality of the fam-
ily information genetics clinicians have to work with. The team
explores the statutory records (births, death, and marriage certifi-
cates) held by the National Records of Scotland since 1855, with
the aim to build a family pedigree for a patient which they com-
bine with data from the NHS (National Health Service) Scotland
registers. This will provide high quality data to enable geneti-
cists to conduct a more complete risk assessment for a patient
and their families [8]. Risk assessment for patients may result in
gene testing, prophylactic surgery, screening appropriate to the
determined risk, or reassurance and discharge from the care of
clinical genetics services, using the UK’s NHS resources in the
most appropriate manner.

Currently the Genetics Genealogy Team query the Scottish
statutory records via the Scotland’s People web interface?, re-
trieve the corresponding certificates and manually compile a fam-
ily pedigree by linking individuals from across certificates [8, 34].
This is a time consuming and labour intensive process.

Our work is part of the Digitising Scotland (DS) project?, which
has recently completed the transcription of all Scottish birth,
death, and marriage certificates from 1855 to 1973, in total around

1See: https://www.isdscotland.org/Health-Topics/Cancer/Genetics- Genealogy/

2See: https://www.scotlandspeople.gov.uk/
3See: https://digitisingscotland.ac.uk/

10.48786/edbt.2022.44

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.44

24 million certificates. Once linked, the complete DS database
will allow the investigation of issues such as inter-generational
social mobility or the changing demography across the period
of industrialisation, among many other research questions. Note
that no ground truth links between certificates are available for
this database. Compared to existing linked multi-generational
population databases that cover up-to four generations [28], the
DS database will provide detailed information for up-to six gen-
erations, assuming a generation length of around 30 years.

Our aim is to employ our application on this DS database
of the full population of Scotland, and provide an efficient and
accurate service for the Genetics Genealogy Team to investigate
the inheritability and genetic patterns of diseases for patients
with familial cancer or other inherited genetic conditions.

In our work, in an offline phase we employ unsupervised
graph-based ER techniques to first generate an entity graph from
which we then create a pedigree graph. The main difference be-
tween the entity graph and the pedigree graph is that the latter
includes relationships between different entities over multiple
generations. In the offline phase we address several challenges in
ER that are fundamental to linking records about people: chang-
ing QID (attribute) values, different relationships, ambiguities,
partially matching groups, and wrong links. We elaborate further
on these challenges in Section 2, and in Section 4 we highlight
the novel approaches we develop to solve these challenges.

In the context of our application, we can only apply unsuper-
vised learning techniques due to the lack of ground truth data.
Manually obtaining true matches and non-matches for training
of supervised techniques such as recently proposed deep learning
methods [36, 43, 44, 65] would be a time consuming and expen-
sive process that would require extensive domain knowledge
about historical Scottish vital records. This process of manually
generating ground truth data is known to often result in limited,
biased, and incomplete ground truth data [3, 58].

In the online querying phase, for a given query record we
first identify the most similar individuals in the pedigree graph
generated from birth, death, and marriage certificates in the
offline phase. For an individual selected by the user we then build
their family pedigree by linking the record of this individual with
those of their family members across several generations.

As we outline in Figure 1, our application to efficiently and ac-
curately generate family pedigrees from search queries (referred
to as SNAPS which stands for ScotlaNd fAmily Pedigree Search)
consists of five steps. In Sections 4 to 6 we describe the main of-
fline steps (to link records, generate the pedigree graph, and build
the keyword and string similarity indices). In Sections 7 and 8
we then discuss the processing of queries, as well as the genera-
tion and visualisation of family pedigrees (trees). The linking of
records consists of several steps, where dependencies, temporal
constraints, missing and erroneous values, as well as ambiguities
are considered in an unsupervised iterative process. The query
processing facilitates both exact and approximate string match-
ing [11, 47] to account for the uncertainty of users with regard
to spelling variations of names and locations [11, 37].

Privacy and confidentiality restrictions have so far prevented
us from remotely accessing the full DS database. We therefore
evaluate our prototype on two Scottish data sets from the Isle
of Skye and Kilmarnock containing birth, death, and marriage
certificates from 1861 to 1901 [58]. These data sets have been
extensively curated manually by domain experts, and partial
ground truth data are available which allows us to also evaluate
the linkage quality of our prototype.

499

Online (query—time)

Offline
Birth, death, and

Data entry

Family pedigree | :
Iy i |marriage certificates

Query results
A

Web interface with tAree tabs Graph—based

entity resolution

i [Merged dependency
: graph

i 1

¥
Search Ranked ‘ Selected ‘ Family
query query . .
values results entity pedigree
\ / \ /‘ Pedigree graph
X generation
Query Family
processing and pedigree
ranking generation
: | Index
\ \‘ * : generation
Similarity | | Keyword Pedigree :
index index graph :

Figure 1: SNAPS architecture where the offline steps, to
generate the entity and pedigree graphs, and the keyword
and similarity indices, are shown in blue (right side), while
the online query processing and ranking, and the family
pedigree generation steps, are shown in green (left side).

An important aspect to facilitate testing, training, as well as
public demonstrations of an application such as ours is to allow
open access. Because SNAPS will be applied on a large database
that contains real birth, death, and marriage certificates of the
Scottish population, in Section 9 we describe an approach to
anonymise a graph that represents such a population.

2 DATA CHARACTERISTICS AND ENTITY
RESOLUTION CHALLENGES

An important aspect to discuss in ER for family pedigree search
is the characteristics of the data sets we use in our application. In
this section we discuss the characteristics of person data using
examples from the Isle of Skye (IOS) and Kilmarnock (KIL) data
sets and the DS database. The challenges for resolving such data
are however generic to many demographic data sets including
statutory records and census snapshots.

The IOS and KIL data sets are both samples of the full DS
database and contain birth, death, and marriage certificates of
the populations of the Isle of Skye and the town of Kilmarnock,
respectively, over the period from 1861 to 1901. Both have been
extensively curated and semi-manually linked (using database
queries to extract possible links) by experts in the domain of
linking such historical data [58]. Their semi-automatic approach
was heavily biased towards certain types of links, such as links
between birth parents, as their interests were in identifying chil-
dren by the same mother to facilitate the analysis of child mortal-
ity [59]. This resulted in incomplete and biased ground truth data,
an issue that is also known with other (historical) data sets about
people [3]. However, this manual curation and linkage is not
scalable to the full DS database which contains around 24 million
certificates, requiring us to employ unsupervised methods for
linking the DS database.

Existing graph-based ER techniques [6, 19, 35, 40] have diffi-
culties achieving high linkage quality on person data of changing
QID values, different relationships found at different points in
time, the ambiguity of QID values, partially matching record
groups, and wrong links. Temporal record linkage techniques [33,

Table 1: Missing value counts and QID value frequencies
(minimum, average, and maximum) of deceased people in
the I0S and KIL data sets, and the full DS database.

Dataset QID Missing QID value frequencies
(Entities) attribute values Min Avr Max
10S First name 426 1 218 1,089
12,285 Surname 3 1 277 1,027
Address 143 1 123 227
Occupation 7,018 1 9.0 730
KIL First name 241 1 5.8 1,837
23,715 Surname 3 1 9.0 520
Address 5,873 1 139 806
Occupation 16,846 1 4.4 425
DS First name 56,387 1 1338 520,685
8,289,592 Surname 7,299 1 509 112,673
Address 10,730 1 3.3 71,456
Occupation 4,795,995 1 9.0 78,823

41], on the other hand, only consider QID values changing over
time but not these other challenges associated with linking per-
son data. We now discuss these challenges in more detail.

When resolving entities in typical ER scenarios, such as linking
publication records from two bibliographic databases, the QID
values of a publication (like its title, authors, venue, and year) are
static but potentially have some spelling variations or abbrevia-
tions [6, 19, 35, 40]. However, when linking records about people
their QID values tend to change over time. For example, people
can move around and therefore their addresses change. Similarly,
surnames (mostly of women) can change after marriage. Along
with missing values, as we show in Table 1, such changing QID
values make ER of person data challenging.

Another challenge specific to person data is the different roles
and relationships that we encounter in the different types of
certificates, and where as a result an individual can have different
roles and relationships at different points in time. For example,
assume we want to link a mother in a birth certificate to her own
birth certificate (where she has the role of the baby). In the initial
birth certificate, the mother has a relationship to her spouse and
baby, but in her own birth certificate she has a relationship to her
parents. Therefore, these two certificates have no relationships
in common. The different relationships and roles encountered in
person data and how to employ them in an unsupervised way is
a challenge that we address with our techniques.

Disambiguation of different entities having common QID val-
ues is another challenge in resolving person data. From Table 1
we can see that person records in the IOS and KIL data sets and
the DS database have a high average frequency in most shown
QID attributes. To elaborate more on the ambiguity of QID val-
ues found in person records, in Figure 2 we show the frequency
distributions of the 100 most common values of selected QIDs
for deceased persons in the IOS and KIL data sets. These distribu-
tions are very skewed, where the most common first name and
surname each occur in over 8% of all records in the IOS data set.

Finally, we discuss the partial match group problem. When,
for example, we have two birth certificates of siblings, we should
link their parents since they represent the same two individuals.
However, we should not link the two siblings as they refer to
two different individuals. This is challenging because most of the
QID values of these siblings will likely be the same, such as their
surname and street address. We consider this as the partial match

500

(a) Isle of Skye (b) Kilmarnock

—— First names
—-— Last names
Addresses

103

Frequency
=
3
-
<

Frequency
g

=
o

10t

0 20 40 60 80 100 0 20 40 60 80 100
Values sorted by frequency Values sorted by frequency

Figure 2: Frequency distribution of the 100 most common
first names, surnames, and addresses of deceased people
in the Isle of Skye (I0S) and Kilmarnock (KIL) data sets.

group problem because only some records in a group should be
linked and resolved as referring to the same entity.

3 PROBLEM DEFINITION AND
APPLICATION OVERVIEW

We now define the problem of our graph-based ER application
for family pedigree search. Let R be a set of records from birth (B),
death (D), and marriage (M) certificates, where each record r € R
has a role, such as a baby (Bb) and its mother (Bm) and father
(Bf) on a birth certificate, or a deceased person (Dd) and their
mother (Dm) and father (Df), and possibly their spouse (Ds), on
a death certificate. We refer to a cluster of records R, C R as an
entity o € O that represents a real-world individual.

Problem definition: Given a set of records, R, and a query
record, g, containing a mandatory first and surname, and option-
ally a gender, year, and a location, the family pedigree search
problem is to find the set O4 C O of entities in O that have the
highest similarities with q along with their family pedigrees Py.

Figure 1 shows the architecture of SNAPS which has an online
and an offline component, consisting of the following main steps
which we describe in detail in Sections 4 to 8.

(1) Graph-based entity resolution: This key step in SNAPS
is aimed at linking records r € R, where each r corresponds
to a single occurrence of an individual on a certificate, such
as a baby, a bride, or a deceased person. We aim to associate
the corresponding entity, o € O (that represents a real-world
individual) to the correct set of linked records (a record cluster)
R, C R. For this, we represent R as a dependency graph [19],
a directed graph Gp = (N, E), that consists of a set of nodes,
N = N4 U Np, that represent either pairs of QID (attribute)
values (atomic nodes, N4), or pairs of records that possibly refer
to the same entity (relational nodes, Ng); and a set of edges,
E, that represent the relationships between these nodes where
an edge direction indicates a dependency. To link records and
associate the linked record clusters to the corresponding entities,
we iteratively merge the nodes in the dependency graph Gp.

(2) Pedigree graph generation: We then generate a pedigree
graph, Gp, to represent the relationships between the entities
associated with the record clusters in Gp. The nodes in this graph
are the entities, o € O, while the edges represent relationships be-
tween entities, such as motherOf (Mof), fatherOf (Fof), spouseOf
(Sof), and childOf (Cof).

(3) Index generation: To improve the efficiency of query
processing and ranking, we generate two index structures. The
keyword index, K, maps QID values, such as first names and
surnames, to entities o € O to facilitate fast query processing.

To speed-up the matching of QID values in a query record ¢
with values in the keyword index K, and to allow for efficient
approximate string matching, we furthermore pre-calculate and
store the similarities between pairs of strings [13].

(4) Query processing and ranking: In the online phase, a
query record q is first matched with QID values in the keyword
index, K. For each entity o € O that has a string match on at least
one of first name or surname (and possible other matching QID
values), we then calculate an overall match score and present the
top ranked entities in O to the user.

(5) Family pedigree extraction and visualisation: When
a user selects an individual through the web interface, this step
extracts the pedigree, p, of this entity from Gp, and generates a
family tree visualisation for that pedigree.

4 GRAPH-BASED ENTITY RESOLUTION

The core of SNAPS is the unsupervised graph-based ER step
that will link records appearing on birth, death, and marriage
certificates. We cannot employ supervised learning techniques
due to the lack of ground truth data available, and the costs
and challenges involved in manually obtaining true matches and
non-matches in the context of (historical) personal data [58]. Su-
pervised ER techniques commonly also require a large amount of
training data to obtain good results [4, 20]. We therefore propose
an unsupervised graph-based ER solution that addresses the chal-
lenges we discussed in Section 2, such as changing QID values,
different relationships encountered at different points in time,
ambiguities of QID values, and the partial match group problem.

We now present the main steps of SNAPS: dependency graph
generation, bootstrapping, and merging.

4.1 Dependency Graph Generation

Because we are modelling records in a dependency graph, Gp,
as defined in Section 3, if all possible record pairs and QID value
pairs are added into this graph then it can get very large. We
therefore conduct blocking to reduce the comparison space and
obtain record pairs that are potential matches. We employ a
locality sensitive hashing based blocking technique in SNAPS
that maps similar QID value pairs to the same hash value to group
likely matches [54]. Then we consider record pairs in each block
to generate Gp in two phases.

First, only QID value pairs that have a (string) similarity [11] of
atleast a threshold ¢, are added to Gp along with their similarities
as atomic nodes, N 4. The similarities between QID values in
atomic nodes are assumed to be between 0 (completely different
values) and 1 (same values), where we calculate these similarities
using approximate string comparison functions, such as Jaro-
Winkler or edit distance [11], as appropriate to the values in a
QID attribute. Next, relational nodes, Ny are added based on two
filtering steps. We first filter record pairs of impossible role types,
such as pairs with different genders, and then we filter pairs by
constraints as we discuss further in Section 4.2.2.

For example, in Figure 3, r1, ry, and r3 are a Bb, Bm, and Bf
extracted from a birth certificate, while rq, rs, rg, and r7 are a Dd,
Dm, Df, and Ds extracted from a death certificate. These records
are represented in a dependency graph, Gp. One possibility is
that the birth baby r; dies and becomes the deceased person r4 in
the death certificate. In that scenario, the nodes (r1, r4), (r2,75),
and (r3, rg) will be added to the graph Gp as relational nodes
with relationship edges between these nodes. Likewise, we add
all other possible nodes and their relationships to Gp.

501

(a) Input: Record extraction from certificates

(b) Graph Generation

Smith, Taylor

Figure 3: Dependency graph generation, where we show
atomic nodes in green and relational nodes in pink. The in-
put are the records extracted from two birth and two death
certificates, showing the relationships motherOf (Mof), fa-
therOf (Fof), spouseOf (Sof), and childOf (Cof).

4.2 Bootstrapping and Merging

Bootstrapping and merging are the key steps where we link
records iteratively. Prior to describing these steps, we outline
the key techniques that we employ in these steps below: global
propagation of QID (attribute) values and constraints, leveraging
ambiguity of QID values, adaptive leveraging of relationship
structure, and dynamic refining of record clusters.

4.2.1 Global Propagation of QID Values (PROP-A). As we dis-
cussed in Section 2, the first challenge is changing QID values
where values such as names and addresses can change over time.
When an attribute value changes over time, this change makes
it difficult to decide if two records refer to the same entity. To
solve this problem, we check the QID values of the entities asso-
ciated with records to make those link decision. We consider this
propagation of QID values in the ER process as positive evidence.

Assume the records ry, r4, and rg in Figure 3 (a) refer to the
same entity, o1, and this entity has changed her surname after
marriage. Therefore, her baby record r; (Bb) has her maiden sur-
name, Smith, while her death record, r4(Dd) and her birth mother
record, rg(Bm), have her married surname. Assume (ry, r9) is al-
ready merged as in Figure 4 (b) and associated with the entity o4,
which has all QID values of r; and r9. Then, when we consider
the node (r1,r4), because r; now has the associated entity o1, we
compare all QID values of r4 with the corresponding values of 01
to find the best matching atomic nodes with highly similar values.
As the surname of r1 is Smith and of r4 isTaylor, the node (r1,r4)
is already associated with the atomic node (Smith, Taylor). When
we compare the surname of ry4, Taylor, with the surnames of oy,
and assuming sim(Tayler, Taylor) > sim(Smith, Taylor) based
on a string similarity functions [11], we remove the edge from
the atomic node (Smith, Taylor) and add a new edge from the
node (Tayler, Taylor). In this way, even if an individual changes
their name or address, we can still identify them because of the
propagation of QID values.

4.2.2 Global Propagation of Constraints (PROP-C). The sec-
ond challenge is the different relationships that we encounter
in records at different points in time. Since these relationships
are between different entities, we cannot directly compare the
corresponding records when making link decisions. However,
in SNAPS we utilise such different relationships as negative evi-
dence for any subsequent links by modelling the characteristics

(a) Bootstrapping

Smith, Taylor

(b) Iterative Merging

)

Bm:rq

() Merged Dependency Graph

Sumame
Smith
Tayler

Figure 4: (a) Bootstrapping where groups of nodes that
have a high average similarity (greater than a predefined
threshold) are merged. (b) Merging step where nodes are
merged applying techniques such as propagation of QID
value changes. For example, node (r,r4) is updated with
the surname atomic node (Tayler,Taylor).

of relationships as constraints. For example, the time difference
between a birth baby (Bb) becoming a birth mother (Bm) should
be (biologically) at least 15 and at most around 55 years [58].
Similarly, we can also add such constraints for other role pairs
based on domain knowledge [12]. As these constraints are related
to temporal aspects, we refer to them as temporal constraints.

Furthermore, there can be constraints that are based on the
properties of certain relationships. For example, in Figure 4, since
r1(Bb) is being linked with r4(Dd), r; cannot be linked to any
other deceased person such as rj2(Dd) (and vice versa) because
a person can have only one birth and only one death record. We
refer to such constraints as link constraints as they are related
to the links between entity roles. These link constraints can be
one-to-one and one-to-many based on the pairs of entity roles
they are applied on. Because these constraints are likely domain
dependent, they need to be manually specified by domain experts
or learned from training data to be used with SNAPS.

This technique of propagating QID values and constraints
has first been proposed by Dong et al. [19]. The novelty in our
propagation method is that we make a global propagation of
changing QID values whereas Dong et al. used an exhaustive
search to merge relational nodes in the dependency graph Gp.

4.2.3 Leverage Ambiguity of QID Values (AMB). The next chal-
lenge we discussed in Section 2 is the ambiguity of QID values
encountered in person records, where many entities potentially
share the same QID values such as common surnames or city
names [11]. To address this challenge we incorporate ambiguity
into the similarity calculations between two records. We specif-
ically calculate a similarity score, s, for each node in the graph
Gp consisting of an atomic similarity, s, and a disambiguation
similarity, s;, defined as:

wat - sy (ri, 1j) + we - sc(ri, rj) + wg - SE(7i, 1)
sa(ri,r j) = s
wp + wWe + WE
log, (101/(ri-f +1j.f)) @
log, |O] ’

s(ri,rj) =y - sa(ri,rj) + (1 —y) - sq(ri, 7)), 3)
where 0 < y < 1 is the weight distribution for the two similarity
components, s, and sy, as we describe next.

To calculate s, we consider all incoming atomic nodes of a
relational node. Each atomic node has a score that represents the
similarity of two QID values. The contribution of different QID

value similarities will affect differently towards the calculation of
sq. For example, in person records, QID values such as first names

M)

sa(ri, Vj) =

502

are more important because they are more complete and stable
over time, whereas QID values such as occupation or address can
be missing and can change over time [33].

To this end, we categorise attributes into Must, Core, and Extra
attributes, based on their importance in the ER process deter-
mined using domain knowledge or data characteristics, such as
completeness [14, 50, 58]. For two records to be classified similar,
they need to have highly similar values in the Must attributes
(such as first name), but they can have a comparatively lower
similarity in Core attributes (like surname). Extra attributes (such
as occupation) provide further evidence of similarities between
records. We calculate an atomic similarity as shown in Equa-
tion (1), where sy, sc, and sg represent the average of atomic
node similarities of the Must, Core, and Extra attribute categories,
while wys, we, and wg represent their corresponding weights.

Disambiguation similarity, sy, accounts for the ambiguity of
QID (attribute) values. If the pair of records in a node has QID
values that occur frequently in the data set, then a high atomic
similarity, s4, of the node is not significant compared to a pair
of records having less frequent (or even unique) QID values. For
example, if Smith occurs commonly in a data set and Taylor occurs
only a few times, then two records having the name Taylor have
a higher likelihood of referring to the same individual compared
to two records having the same name Smith.

As link decisions are dependent on each other, we need to
prioritise unique record pairs such that they are processed be-
fore ambiguous pairs. As this is similar to the concept of inverse
document frequency used in information retrieval, we use a nor-
malised score of inverse document frequency [60] as the disam-
biguation similarity s;. Let r;.f and r;.f be the two frequencies
of a combination of several QID values of two records in a node.
If the number of unique records in the data set is |O|, we define
sq as per Equation (2).

Assume that node (r1,r4) in Figure 4 has three incoming
atomic nodes, a surname node (Tayler, Taylor), a first name
node (Mary, Mary), and a city node (KIlmor, Kilmore) with node
similarities of 0.9, 1.0, and 0.9, respectively. Assuming we set
wyg, we, and wg as 0.5, 0.3, and 0.2, respectively (based on do-
main knowledge) and consider first name (Mary, Mary) as a
must attribute, surname (Tayler, Taylor) as a core attribute, and
city (Klmor, Kilmore) as an extra attribute. Then, we can calcu-
late sq(r1,74) as W = 0.95 using Equation (1).
Similarly, assuming rq.f = 45, r4.f = 12, and |O| = 100, using
log, (100/(45+12)) _ (o

Tog, (100)

Bhattacharya and Getoor [6] have explored ambiguity of static
attribute values in relational clustering for collective ER. How-
ever, they have not investigated how to incorporate disambigua-
tion while propagating link decisions, or when attribute values
can change over time.

Equation (2) we can calculate sz(rq, r4) as

4.2.4 Adaptive Leveraging of Relationship Structure (REL). To
leverage relationship structures in the ER process, recent ap-
proaches have proposed different methods such as the use of
average similarity of the relationally connected groups [49] or
using a separate similarity component with an individual weight
given to the similarity of relationally connected nodes [6, 19].
Both of these methods have limitations in resolving the partial
match group problem we discussed in Section 2. For example,
assume a group of two siblings and their parents. We need to
merge the two parent nodes but not the sibling node. The sibling
node will have a lower similarity as it refers to two different
individuals. If we consider any of the methods from the literature,

then this sibling node will reduce the chances of the two parent
nodes getting merged since the lower similarity of the sibling
node reduces the overall similarity.

Therefore, in SNAPS we employ a novel iterative approach
to exploit the relational structure of records. In merging nodes,
we consider the average similarity of connected groups of nodes.
Therefore, when we consider merging the node (r1,r4) in Fig-
ure 4, we consider the average similarity of the whole group
including (rg, r5) and (r3, rg). If both neighbouring nodes have
high similarities then this provides strong evidence that (rq, r4)
represents the same entity.

The novelty in this technique is in the iterative merging pro-
cess. For example, in Figure 4 assume that ry and rq2 are two sib-
lings. Therefore, the node, (r1, r12) has a lower similarity because
it represents two entities. Now when we consider the group of
nodes, (r1,r12), (r2,r13), and (rs, r14), in the first iteration these
nodes are not merged due to the low average similarity (because
the two siblings are different entities). Therefore, in the next
iteration we remove the node with the lowest similarity, (r1, r12),
which is the sibling node. The remaining parent nodes are then
merged because they have a high average similarity.

4.2.5 Dynamic Refining of Record Clusters (REF). The propa-
gation of link decisions can lead to poor linkage quality if two
records that refer to two different entities are linked together.
To remove such wrong links, we employ a novel refining step
after each of the bootstrapping and merging steps. We create an
individual graph for each entity that captures the records of an
entity and their links. We apply the graph measure based error
identification proposed by Randall et al. [57] on these graphs with
the hypothesis that loosely connected groups of records (such
as chains) are more likely to contain errors compared to densely
connected groups (such as cliques). Unmerging of likely wrong
links allows correct records to be linked in the next iteration.

We use the graph measures of bridges and density to identify
loosely connected record clusters. A bridge is an edge that will
disconnect the graph if removed; and density, d, is measured by
the number of edges out of the total number of possible edges
in a graph [57], calculated as d = 2|E’|/(|N’| - (|[N’| = 1)), where
E’ and N’ are the edges and nodes of the graph associated with
the entity. For a graph having at least three records, we calculate
the density and if it is less than a threshold, t;, we remove the
node with the lowest degree. For a node group with more than
tn records, we split the record cluster by any existing bridges.

4.2.6 Bootstrapping and Merging Steps. We now describe how
to employ these techniques in our bootstrapping and merging
steps. The bootstrapping step is basically to merge the highly sim-
ilar relational nodes. Therefore, we merge only nodes in groups
(leaving the singletons), where the average atomic similarities
of all nodes in a group must be at least the bootstrap thresh-
old which we set to t;, = 0.95 (based on initial experiments) to
achieve highly similar bootstrap links, as illustrated in Figure 4
(a). We only consider groups having high average similarities at
this stage rather than individuals because groups can provide
more relationship evidence than individuals.

The merging step proceeds by maintaining a priority queue
of node groups. The queue is initialised by all relational node
groups in Gp, giving precedence to larger groups and then to
the groups that have a high average similarity of nodes. In every
iteration, we perform merging of the top node group in the queue.
For each node in that group, we check if a node is valid to be
merged based on temporal and link constraints. This is where we

503

Algorithm 1: Pedigree Graph Generation

Input:

-Gp: Merged dependency graph
Output:

-Gp: Pedigree graph

1: Gp = Graph()

2: for n € Ng do:

3: if n.isMerged then:

4: o = Gy.getEntity(n)
5 if 0 ¢ Gp.nodes then:
6: Gp.addNode(o)
7
8

// Initialise Gp to an empty graph

// Iteration to add nodes

// If the node is merged

// Get entity associated with the node

// If entity o is not in Gp

// Add node for this entity

// Tteration to add edges with relationships
// If the node is merged

// Get entity associated with the node

: forn € N do:
if n.isMerged then:
9: o = Gy.getEntity(n)

10: for p € {mother, father, spouse, child} do:

11: NP = Gg.getNeigbourNode(n, p) // Neighbours with relationship p
12: forn, € NZ do: // Tteration through neighbours
13: if n,.isMerged then: // If the node is merged

// Get entity associated with the node
// Add edge

0, = Gg.getEntity(n,)
Gp.addEdge(o,0,, relationship = p)
16: return Gp

utilise the technique of global propagation of constraints (PROP-
C) to validate record pairs by applying constraints based on
previous links. The previous links may or may not have associated
an entity o € O to records in a node. If the records in a node
are associated with two different entities, we validate the node
by applying constraints on every possible record pair between
the entities to merge those two entities. Otherwise, we apply
constraints between the original records.

For each node that satisfies the constraints, we propagate the
QID value changes of the node using the technique PROP-A and
then calculate its new similarity based on the technique AMB.
We then calculate the average similarity of the node group. If it
is lower than a predefined threshold, t,,, we remove the node
with the lowest similarity and recalculate the average similarity.
Similarly, if there is any node that violates any constraints, then
this node is also removed from the node group based on the
REL technique. We do this iteratively until either we find a node
group that satisfies the constraints with an average similarity
of at least f,;, and merge it, or until the node group becomes a
pair. We continue the merging process until all the node groups
in the queue are processed. After each of the bootstrapping and
merging steps we perform dynamic refining of record clusters
(REF) to remove any wrong links in the record clusters.

5 PEDIGREE GRAPH GENERATION

Our final task is to retrieve family pedigrees for each individual
entity. In particular, we generate a pedigree graph, Gp, utilising
the merged nodes and associated entities from Gp.

The pedigree graph generation, shown in Algorithm 1, first
iterates through the nodes in Gp and selects merged nodes in
lines 2 and 3. As these merged nodes are associated with an entity
o € O, we add the node to Gp if it is not already in Gp (lines 4 to
6). As each entity o is associated with either a single or multiple
nodes in Gp, o by now has a set of records from R where each
record refers to a different role in a certificate. Therefore, we also
add the QID values of the associated records of an entity, such as
its first names, surnames, and locations, to the nodes in Gp.

The edges in Gp reflect the relationships among the entities
o € O. Therefore, we again iterate through the nodes of Gp to
find the neighbouring relationships of an entity and add edges to
Gp in lines 7 to 15. For a node in Gp, we get the associated entity
in line 9, and check if neighbouring nodes also have associated
entities in lines 10 to 14. If there exists any neighbouring node

that has an associated entity, we add an edge between those
two entities in Gp with their relationship p (line 15). In the
pedigree graph we generate, we consider the relationships of
mother, father, spouse, and child. The final pedigree graph, Gp, is
then used in Section 8 to extract family pedigrees (family trees).

6 KEYWORD AND SIMILARITY INDEX
GENERATION

To speed-up query processing and ranking, from the pedigree
graph we generate a keyword index and a string similarity in-
dex. The keyword index, K, captures the mapping between QID
(attribute) values and entities, o € O. For QIDs such as first
name and surname, gender, birth/death year, and location, this
index holds the corresponding entity identifiers that map to the
nodes in the pedigree graph, Gp. The keyword index is used in
query processing and ranking to find the entities that have the
corresponding query strings that were provided by the user.

To speed-up the retrieval of approximate matches, we employ
a similarity-aware index, S [13]. In the offline phase we pre-
calculate the similarities between all pairs of string QID values
(names and locations) in the keyword index, K, that share at least
one bigram (two-character substring [11]). For every string value
in K, we keep all other values in K that have a normalised string
similarity of at least sy, with 0 < s; < 1, using the Jaro-Winkler
approximate string comparison function [11]. Comparing a string
with itself would result in a similarity of 1, while comparing two
strings that have no letter in common would result in a similarity
of 0. We set s; = 0.5 because this will retrieve approximate
matches that have adequate similarity, while at the same time
limiting the size of the generated similarity-aware index S, and
therefore the number of generated candidate matches [13].

7 QUERY PROCESSING AND RANKING

As shown in Figure 1, the first step of the online component of
SNAPS is to process user queries and rank the retrieved entities
from the pedigree graph containing QID values based on their
overall similarities to the given query values. A user query as
entered on the web interface shown in Figure 5 will contain a
first name and surname (mandatory), the type of records (birth
or death) to be searched, and optionally a gender, year (of birth or
death), and a location (such as a parish or district name). These
are the details of the individual for which the user wants to
retrieve a family pedigree from Gp.

In common with any ER method [11, 21], uncertainty in the
actual spelling of names, or the years and locations of the birth or
death of a person, means that a user query can contain inaccurate
QID values with misspellings in strings or wrong year values.
Only retrieving entities that have exact matching values could
miss the true matching person the user is searching for.

We employ approximate string matching functions [11] to
allow for variations in names and locations. We generate an
accumulator M [5], where we first retrieve from the keyword
and similarity indices, K and S, the identifiers of all entities from
the pedigree graph, Gp, that have a match on first name and/or
surname. We consider both exact and approximate string matches,
and we sum the match scores of the two name QIDs for these
entities [13], as we describe below. We require matching names
because otherwise the query result set can contain entities that
have an exact match on year, gender, and location, but their
names are very different (which would not be useful).

504

Scotland Family Pedigree Search Tool

nayakkara, Nishadi Kirielle, and Peter Christen

ANU Research School of Computer Science

DataEntry | QueryResults Family Pedigree

Anonymised dataset used for querying

Please enter data for querying *Required field

Description of values to enter Parameter settings

Search Birth or Death records* ® Birth O Death

Forename* [bougias |

Surname | Macdonald |

Gender © Male O Female

Year range From:| 1854 v | To:| 1894 ~

Parish/District ‘ ‘

| Submit |

Figure 5: Data entry tab with example query values.

If a QID value in a query does not occur in K, then we retrieve
all values in K that share at least one bigram with the query value,
and calculate the similarities between the query value and the
retrieved values. We keep pairs with a similarity of at least s; and
add them to S to speed-up future queries of the same value.

We then refine the retrieved candidate matches in the accumu-
lator M (a set of entity identifiers from the keyword index K that
have exact or approximate name matches) with their correspond-
ing matching gender, year, and location (if such query values
were provided by the user). If these query values are empty we
assume the user is willing to consider any entity in the result set
irrespective of their QID values (for example, entities with any
location). If a query value is provided for year, gender, and/or
location, then we retrieve the entity identifiers from K that have
this value, and increase the match scores of all corresponding
entities in M [5]. We however do not add new entities to the
accumulator as these would not have matching name values.

At the end of this process, each entity in the accumulator M
has a set of (exactly or approximately) matched QID values, with
a corresponding match score for each value provided in the query.
For a given entity o € M, its match score, s,, will be the weighted
sum of similarities over its QID values that were provided in the
query, s, = ZaEAq Wwq - sim(qq, 04). Here, g4 and o, are the query
and entity value in attribute a, respectively, Ag is the set of QID
attributes (from first name, surname, year, gender, and location)
for which a value was provided through the query interface, and
sim() is a string similarity function.

The individual attribute match scores can be assigned weights,
wg, indicating their importance. For example, first name and
surname can be assigned a higher weight than location because
name values that match provide more evidence that an entity is
relevant to a given query compared to the location of a birth or
death record (which might not be exactly known by the user).
While we currently set these match weights manually, in future
work we aim to learn optimal match weights [23] based on ground
truth data.

We then rank the entities 0 € M based on their overall match
scores, and select the top m entities with the highest scores.
These m entities are then passed back to the web interface and
presented to the user as a ranked list. We normalise the overall
match scores into a percentage, with 100% indicating an entity
from the pedigree graph, Gp, matches exactly on all QID values
provided by the user in their query.

Scotland Family Pedigree Search Tool

Charini Nishadi Kirielle, and Peter Christen

ANU Research School of Computer Science

DataEntry | QueryResults | Famiy Pedigree

Query input:

Search birth or

sy death records

Forename Surname Gender Year range

Douglas Macdonald m 1854 t0 1894 b

Query results retrieved from birth records:

Match
percentage

Explore

Parish
record

Forename Surname Gender Event year

doyd macdougall m 1868 portree 83.17 [Explore |
doyd macdougall m 1891 duirinish 83.17 | Explore |
doyd macdougall m 1871 duirinish 83.17 | Explore |
doyd madgar m 1874 snizort 80.54 | Explore |
doyd martone m 1874 duirinish 79.86 | Explore |
doytmoufid macdougall m 1878 kilmuir 79.75 [Explore |
dmarlolaric macdougall m 1860 strath 79.69 [Explore |
doyd medufford m 1870 snizort 79.63 | Explore |
doyd martinat m 1872 duirinish 79.34 | Explore |
doyd martinat m 1865 duirinish 79.34 [Explore |

Colour codes:

. Exact match to input value . Approximate match to input value . Input value not provided

Figure 6: Screenshot of SNAPS showing ranked results for
the example query ‘Douglas Macdonald’ shown in Figure 5.

We show QID values in different colours to highlight exact
and approximate matches, as shown in Figure 6. This will allow
the user to make an informed selection of an entity, or modify
their search query.

8 FAMILY PEDIGREE TREE EXTRACTION
AND VISUALISATION

As the user obtains a ranked list of matched records (each corre-
sponding to an entity in the pedigree graph Gp) from the query
processing and ranking step, as shown in Figure 6 they can select
to explore one of the listed entities. Exploring will extract the
family pedigree, p, for the selected entity from Gp which was
generated in the offline component of SNAPS.

In order to extract the family pedigree for a particular entity,
we first retrieve the entity from Gp (its node), and then, based on
the number of generations g required, we extract the neighbour-
ing nodes up-to g hops away. We currently set g = 2, however
larger values are possible. The nodes located 1 hop away are the
entities one generation before or after (parents and children),
whereas nodes located 2 hops away are the entities two gener-
ations away (grand parents and grand children). The extracted
family pedigree is provided to the user on the web interface both
in textual form, as well as a graphical family tree?. The family
pedigrees shown in Figures 7 and 8 are hierarchical trees where
higher levels indicate older generations, and where gender is
shown by different colours.

9 GRAPH DATA ANONYMISATION

The statutory records used by the Genetics Genealogy Team
of Public Health Scotland for determining the risk of inherited
genetic conditions are real-world personal data. If exposed to the
public these may reveal sensitive personal details and therefore
pose a threat to the privacy of individuals [14]. We therefore

4See: https://github.com/adrienverge/familytreemaker

505

Bejal Peralta
byear’=1810
dyear=1874, dparish=portree
death_cause=Colon cancer

Doyd Peralta

Gaurav Macdougall

Bejal Perlette

Disanti Macdougall
byear®=1832/1833
dyear=1884, dparish=portree
death_cause=unkown

Rajshree Peralta | myear=1863

byear*=1832/1833

DOYD MACDOUGALL
byear=1868
dyear=1888, dparish=portree
death_cause=Colon cancer

Figure 7: Graphical family pedigree for the selected (top
ranked) record of ‘Doyd Macdougall’ from Figure 6.

Hector Munro
bycar*=1826
dyear=1890, dparish=kilmuir
death_cause=Lung cancer

Donald Madgar
byear*=1810
dyear=1888, dparish=kilmuir
death_cause=Heart attack

Flora Mackay Marion Mcinnis

Mary Munro/Mary Anne
byearr=1863

Jonathan Madgar
byear*=1848

DOYD MADGAR
byea=1874
bparish=snizort

Figure 8: A family pedigree of a baby, ‘Doyd Madgar’.

cannot make the original Scottish data publicly available via our
SNAPS web interface as this would violate the data protection
regulations in Scotland. Developing anonymisation techniques
for protecting sensitive information in data, such that sensitive
data sets are rendered safe for conducting research and building
applications such as our web interface, is therefore vital for the
advancement of science. While many anonymisation approaches
have been proposed [18], the majority of them compromise the
human interpretability and patterns in a data set in order to
preserve its privacy [64, 66]. However, in applications such as
ours, where family pedigrees are generated, it is important to
preserve the structure and characteristics of the original data set
in the anonymised version as well, such as the preservation of
string similarities across names.

Since family pedigrees are graph data representations, we
use a graph anonymisation technique [45] to anonymise the
sensitive Scottish data set such that the human interpretability
and the similarities between QID (attribute) values in the sensitive
original data set are preserved.

This graph anonymisation technique initially maps QID val-
ues of the sensitive graph data set to QID values from a public
data source using a cluster-based mapping approach. Following
this approach, we separately cluster female first names, male first
names, and surnames in the sensitive and public data sets, such
that highly similar names appear in the same cluster and dissimi-
lar names in different clusters. Subsequently, each sensitive name
value cluster is mapped to the best matching public name value
cluster, where a best match is determined by how similar the
intra-cluster similarity values are across clusters. Once cluster
mapping is completed, it is possible to determine which public
name value is to be used as a replacement for each sensitive
name value. We used name QID values from a publicly available
US voter database (see: https://dl.ncsbe.gov) for anonymisation.
Furthermore, we shift all date values by a global offset to hide
the actual years of birth and death to ensure anonymity [45].

Table 2: Characteristics of the data sets used in the experimental evaluation.

Data set Role pair Interpretation (links between) Number of records Record True

Role-1 Role-2 pairs matches
Isle of Skye Bp-Bp Birth parents in birth certificates 34,272 34,272 436,518 83,132
(I0S) [58] Bp-Dp Parents in birth and death certificates 34,272 23,938 628,141 38,662
Kilmarnock Bp-Bp Birth parents in birth certificates 74,948 74,948 1,571,991 135,346
(KIL) [58] Bp-Dp Parents in birth and death certificates 74,948 45,186 2,357,625 80,819

Some causes of death can be highly sensitive and potentially
identify individuals, for example if locations or causes of acci-
dents, or criminal aspects of a death are described. To anonymise
such sensitive causes of death, we employ an approach inspired
by k-anonymity [61], where we first identify all frequent causes
of death strings that occur at least k > 1 times. For each cause
of death string that is rare and occurs less than k times we then
find the most similar string using the Jaccard coefficient based
approximate string similarity [11], and we replace the rare cause
of death string with its most similar frequent string.

In order to prevent odd causes of death, such as men dying of
ovarian cancer or infants of old age, we apply this anonymisation
approach gender specific as well as stratified on age categories.
As appropriate for our historical data, we specify young for ages
up-to 20 years, middle for ages 20 to 40, and old for 40 years
and over. We set k = 10 as this provided us with a reasonably
anonymised data set while still having around 100 frequent death
causes (and over 2,000 rare death causes). If no frequent similar
death cause can be found based on the age and gender restrictions
we set a specific rare death cause to not known.

The SNAPS web interface made available to the general public
for educational and training purposes does not facilitate search-
ing for real-world Scottish people due to the application of the
graph anonymisation methods we describe here. Rather, as we
previously explained, it retrieves people with names from the
US voter database, and their corresponding pedigrees. A fam-
ily pedigree search tool based on an anonymised data set that
preserves the structure of the original sensitive Scottish data is
useful in training new users, for educational demonstrations, and
for assessing the efficiency and effectiveness of SNAPS. Such an
implementation also enhances the transparency of what institu-
tions such as Public Health Scotland do with personal data, and
is instrumental in obtaining the trust and approval of a wider
audience for the invaluable work they conduct.

10 EXPERIMENTAL EVALUATION

In this section we conduct experiments to evaluate the linkage
quality and efficiency of the SNAPS application.

Data Sets: We evaluated SNAPS on the two real data sets from
the Isle of Skye (I0S) and the town of Kilmarnock (KIL) [58] as
we described in Section 2. Both contain birth, death, and marriage
certificates from 1861 to 1901 as characterised in Table 2. From
each certificate, we extracted records r € R that correspond to
individuals, as we described in Section 4. Similar to other histori-
cal data sets [2, 25], these two data sets have a small number of
unique name values, as well as numerous transcription errors
and name variations, that make the problem challenging [12].

Demographers with expertise in linking such data have cu-
rated and linked both the I0S and KIL data sets [58]. Their semi-
automatic approach is biased towards certain types of links, such

506

as Bp-Bp (links between birth parents across two birth certifi-
cates) and Bp-Dp (links between birth parents and death parents),
as their research interests were in identifying siblings of the same
mother and exploring child mortality. Therefore, we show results
of Bp-Bp for which we have directly curated ground truth links,
along with results for Bp-Dp which we inferred through indirect
Bb-Dd true links.

For scalability experiments we use the publicly available Bra-
bant Historical Information Center (BHIC) data set [10] because
our other data sets are quite small. This data set contains civil
certificates from North Brabant, a province of the Netherlands,
in the period from 1759 to 1969. However, we cannot show the
linkage quality of the BHIC data set as there is no ground truth
data available.

Implementation and Parameter Settings: We implemented
SNAPS in Python 2.7 and all offline components were executed
on a server running Ubuntu 18.04 with 64-bit Intel Xeon 2.10 GHz
CPUs and 512 GBytes of memory, while the SNAPS web interface
was deployed using Apache 2.4.38 Debian server and PHP 7.3.11.
To facilitate repeatability, the code and the anonymised data sets
are available from: https://dmm.anu.edu.au/SNAPS/.

In the graph-based ER step described in Section 4 and for
all baselines, we employed indexing based on locality sensitive
hashing [54] to block records and find likely matches. Then, in
the record pair comparison step, we used similarity functions
such as Jaro-Winkler for names and the Jaccard coefficient for
other textual strings [11] to compare QID values between records.
For numerical comparisons we used the maximum absolute dif-
ference [11], while for comparing addresses in the IOS data set
we geocoded addresses [37] and calculated similarities based on
the distances between two locations. Due to the absence or low
quality of addresses we did however not consider geocoding for
the KIL and BHIC data sets.

Based on a parameter sensitivity analysis, we set the default
merging threshold to t,;, = 0.85, the atomic node similarity thresh-
old to t; = 0.9, the weighting distribution in the similarity score
to y = 0.6, and for graph measures we set the thresholds t,, = 15
(bridges) and t; = 0.3 (density). We provide further details of our
parameter sensitivity analysis on the SNAPS web site.

Baselines: Because we do not have any end-to-end family
pedigree search system to compare SNAPS with, we evaluated
its graph-based ER approach with three other ER baselines.

(1) Attr-Sim provides basic pairwise similarity based linking
to obtain a baseline similar to traditional record linkage [11].

(2) Dep-Graph is an implementation similar to the collective
ER approach proposed by Dong et al. [19] that propagates link
decisions in the ER process, where we apply the same set of
temporal and link constraints as we employed in SNAPS.

(3) Rel-Cluster is a similar implementation to the method pro-
posed by Bhattacharya and Getoor [6] that employs ambiguity of

Table 3: Ablation analysis for SNAPS that shows how each key technique in the application affects linkage quality.

Data Set Role Pair SNAPS without PROP-A and PROP-C without AMB without REL without REF

P 98.73 86.79 99.22 99.88 98.02
10S Bp-Bp R 94.70 95.20 93.56 61.58 94.87

F* 93.56 83.15 92.89 61.53 93.08

P 86.44 72.56 89.72 0.00 85.28
10S Bp-Dp R 92.87 93.24 88.62 0.00 93.14

F* 81.06 68.93 80.45 0.00 80.24

Table 4: Precision (P), Recall (R), and F*-measure results
of SNAPS compared to the baselines (averages + standard
deviations).

Data Set SNAPS Attr Dep- Rel- Magellan
(Role Pair) Sim Graph Cluster
10S P 98.73 63.67 90.87 93.59 77.9 + 33.4
(Bp-Bp) R 94.70 88.41 65.26 63.72 72.9 + 35.1
F* 93.56 58.76 61.25 61.06 60.4 + 38.6
10S P 86.44 43.05 0.00 80.91 67.8 £ 37.9
(Bp-Dp) R 92.87 72.32 0.00 49.19 622+ 414
F* 81.06 36.96 0.00 44.07 46.1 + 40.4
KIL P 97.81 30.26 54.81 71.81 69.6 + 40.1
(Bp-Bp) R 89.52 89.13 74.93 71.92 62.7 £ 46.7
F* 87.76 29.18 46.32 56.09 51.6 £ 45.9
KIL P 74.36 11.05 28.95 30.35 63.9 + 36.1
(Bp-Dp) R 89.57 90.49 70.69 43.18 61.8 + 44.1
F* 68.44 10.93 25.85 21.69 45.6 + 39.4

QID values in the ER process. We used the same set of temporal
and link constraints as with SNAPS for this baseline.

(4) Magellan is a state-of-the-art supervised ER system [17],
where we selected four classifiers (a SVM, a random forest, a
logistic regression, and a decision tree) and averaged their linkage
quality results, where these four achieved the best performance
in our experiments among the classifiers available in Magellan.

Linkage Quality: To assess the quality of links in family
pedigrees, we use precision, P = TP/(TP + FP), and recall, R =
TP/(TP+FN), where TP is the number of true matches classified
as matches, FP is the number of true non-matches classified as
matches, and FN is the number of true matches classified as non-
matches [11]. We do not use the F-measure as recent research
has found that it is not suitable for measuring linkage quality
in ER [29] because the relative importance given to precision
and recall in the F-measure depends on the number of classified
matches. Instead we use an alternative for F-measure, the F*-
measure [30], calculated as F* = TP/(TP + FP + FN), which
is more interpretable and is a monotonic transformation of the
F-measure.

Table 4 shows precision, recall, and F*-measure results of
SNAPS compared to the four baselines detailed above. As can
be seen, SNAPS is able to outperform all baselines. For both the
IOS and KIL data sets, SNAPS obtains high precision, recall, and
F* results for the role pair Bp-Bp. For Bp-Dp it has a small drop
in results which is because we have an incomplete (inferred or
biased) set of ground truth links for the Bp-Dp role pair [58].

The Attr-Sim baseline shows poor linkage quality for all of
the data sets. This is a good indication that traditional pairwise
linkage is not sufficient to address the challenges associated
with resolving records with person data. Dep-Graph [19] and

507

Rel-Cluster [6] are two collective ER baselines. We can see that
both of these approaches show poor linkage quality results com-
pared to SNAPS even though they exploit relationship informa-
tion. The Dep-Graph baseline propagates QID value changes and
constraints in the process of resolving entities. However, in a
context where ambiguities occur Dep-Graph fails because it does
not perform disambiguation. Similarly, it does not deal with the
problems of partial match groups and incorrect links that SNAPS
addresses. This is also a reason behind the lower results for the
Rel-Cluster baseline. While Rel-Cluster addresses the problem
of ambiguity it does not deal with changing QID values, partial
match groups, or incorrect links.

We present the results for Magellan as averages with standard
deviations since we used four different classifiers and multiple
settings to generate the training and testing data sets. Since we
have different role pairs in both the IOS and KIL data sets, we
trained Magellan in two different ways. First, we trained it only
on record pairs of the specific role pair that is being tested, and
second we trained it on the full data set. We considered the
second approach because in most practical scenarios it is likely
to train a classifier on record pairs of all role pair types due to
the availability of incomplete ground truth data. From Table 4
we can see that Magellan has a higher standard deviation in
these two settings. It obtains better results compared to SNAPS
when trained only on the data from the specific role pair type,
however in practical scenarios not enough training data might
be available for each pair of role types. On the other hand, when
trained on records of all role pair types then Magellan achieves
poorer linkage quality. These results illustrate the sensitivity of
supervised learning methods with regard to the type of training
data used, while the unsupervised approach we employ in SNAPS
consistently obtains better linkage results.

Table 3 provides an ablation analysis for SNAPS that shows
how important each novel key technique is towards obtaining
high quality ER results. We include results only for the IOS data
set due to the limited space available. We show results with one
novel key technique employed in SNAPS (discussed in Section 4.2)
removed at a time. Since both PROP-A and PROP-C propagate
link decisions, we consider them as a single component in this
analysis. Therefore we show results without PROP-A and PROP-C,
without AMB, without REL, and without REF, separately.

When we removed PROP-A and PROP-C we neither propagate
positive nor negative evidence in the linkage process, and we
can see that the F*-measure results drop up-to 12%. This drop
occurs because we do not consider any QID value changes and
constraints. This indicates that the propagation of link decisions
is necessary to obtain high quality linkage results for person data
where value changes do occur and constraints can be applied.

To remove the effect of ambiguity (AMB) from SNAPS we
then removed the disambiguation similarity from the similarity
calculation and calculated overall similarities only based on QID

Table 5: Runtime results (in seconds) for offline component of SNAPS and baselines.

Data Set [nal [nr| SNAPS Attr-Sim Dep-Graph Rel-Cluster Magellan
10S 74,851 2,992,834 372 50 176 358 10,059
KIL 1,565,730 11,190,176 1,945 178 1,207 7,663 9,632

Table 6: Runtimes of the offline component of SNAPS for different graph sizes of the BHIC data set generated for different
time periods. Linkage time is the total of bootstrapping and merging steps.

Time Number of Number of Generate Generate Bootstrap Iterative Merging Linkage time (ms) Linkage time (ms)
Period Nodes Edges N4 time (s) Ngtime(s) time (s) time (s) per node per edge
1900 - 1935 22,928,967 41,121,771 20,642 1,438 896 23,155 1.0 0.6
1890 - 1935 42,398,382 80,524,946 28,881 2,172 1,685 113,143 2.7 1.4
1880 - 1935 68,739,033 134,057,215 36,033 3,910 3,013 299,123 4.4 2.3
1870 - 1935 100,907,697 199,588,456 39,113 6,062 5,423 660,896 6.6 33

similarity by setting y = 1 in Equation (3). In Table 3 we can see
that recall dropped up-to 4% when disambiguation similarity was
removed, which is because ambiguous record pairs with high
QID similarity are linked wrongly, thereby preventing the correct
ones from being linked with enforced constraints.

Then we removed the adaptive leveraging of relationship struc-
ture (REL). It is interesting to see that the Bp-Dp role pair has zero
results for all linkage quality measures. This has happened be-
cause of the existence of partial match groups when we consider
the birth parents to death parents role pair. At the bootstrap-
ping step none of the groups having the Bp-Dp role pair have
been linked due to the partial match groups. That is why in the
merging process none of the correct ones have been linked.

Finally, we removed dynamic refining (REF) of entity clusters
from SNAPS resulting in precision to drop for both role pairs.
The drop in the obtained results is small as we only have small
clusters in these data sets. With larger data sets that contain
bigger clusters the improvement with REF will be larger because
the record clusters will be larger.

Scalability: First, we evaluate the runtime of the offline com-
ponent of SNAPS compared to the baselines in Table 5. Attr-Sim
has the best runtimes for both data sets because it simply links
records without considering any relationships. The next best
runtimes are from Dep-Graph [19]. SNAPS takes more time com-
pared to Dep-Graph because it addresses all challenges specified
in Section 2, whereas Dep-Graph addresses only the problems
of changing QID values and different relationships. Rel-Cluster
has longer runtimes compared to both SNAPS and Dep-Graph
because of the iterative clustering method employed. The worst
performing baseline is Magellan (these runtimes are averages
for the four supervised classifiers and two different settings we
described above) as it consumes much time for training the super-
vised classification models. Overall, the runtimes of SNAPS are
comparatively better than the other baselines given it addresses
all challenges specific to personal data.

Next, we evaluate the scalability of the offline component of
SNAPS by comparing the runtimes on different sized data sets in
Table 6. For that we vary the time periods of records considered
for generating the graph with the BHIC data set. These runtimes
indicate that the merging step accounts for the largest component
of the overall runtime because it is the most time consuming step
that involves most of the key techniques described in Section 4.
To measure the scalability we use total linkage time. Considering
the values of linkage times per node and per edge, we can see

508

Table 7: Minimum, average, median, and maximum time
in seconds for querying and extracting family pedigrees.

Task Minimum Average Median Maximum
Querying 1.32 1.34 1.33 1.40
Pedigree extraction 0.66 0.74 0.74 0.92

that our proposed framework has a near linear scalability with
both, which indicates that SNAPS can scale to large graphs.

Table 7 shows the minimum, average, median, and maximum
number of seconds taken for querying and for extracting family
pedigrees. As shown in the table, both querying and pedigree
extraction can be done in well under two seconds, whereas do-
ing the same task manually would have taken several days of
laborious manual work. This attests to the efficiency with which
family information can be retrieved with SNAPS.

11 RELATED WORK

We now describe related work, with a focus on ER of familial and
historical data, query-time ER, and graph-based ER techniques.
Family pedigrees are increasingly being used in various biomed-
ical research fields, ranging from psychology to sleep research [32,
42]. Various ER solutions have been proposed for resolving famil-
ial networks. Kouki et al. [40] proposed a collective ER approach
for building familial networks based on probabilistic soft logic.
Furthermore, Antonie et al. [2] and Folkman et al. [24] proposed
supervised ER systems specific for genealogical studies. However,
the limited ground truth data available in most genealogical stud-
ies [22, 58] prevents supervised learning systems to be applied,
while manually generating ground truth data is time and labour
intensive [11], and generally a large number of true matches and
non-matches are required to obtain high quality ER results [4, 20].
Query time ER has been discussed in the literature where the
focus for execution time is considered similarly important to
that of accuracy. Bhattacharya and Getoor [7] pioneered query
time collective ER by identifying and resolving only the records
that are most useful for a query. While this approach provided
a promising solution, because it only considered a small neigh-
bourhood of a query record, it lacks the relational information
propagation as well as the exploitation of the ambiguity we in-
corporate in our application. Christen et al. [13] and Ramadan
et al. [56] proposed indexing techniques to match query records

with entities from a real-world database in real-time. In our ap-
plication we employ the similarity-aware index proposed in [13]
to speed-up the retrieval of approximate matches in the query
processing step.

Graph-based ER approaches are an improvement over pairwise
classification approaches that do not exploit relational informa-
tion [26] in the ER process. Kalashnikov et al. [35] proposed a
random walk based reference disambiguation approach to iden-
tify the entity of each record, while Dong et al. [19] employed a
dependency graph-based approach to propagate link decisions
in the ER process which is the closest to our approach in SNAPS.
Bhattacharya and Getoor [6] used relational information between
different types of entities by employing an iterative cluster merg-
ing process using a relationship graph. However, unlike SNAPS,
none of these approaches perform propagation of link decisions
to account for dynamically changing attribute values in a context
with ambiguous records, relationships with different constraints
that can change over time, and partial match groups.

Recently, more focus has been given to supervised ER [38, 51]
since these approaches provide promising results when suffi-
cient ground truth data are available. Magellan is one of those
frameworks that supports end-to-end ER [38]. More recent work
includes deep learning approaches [9, 44, 48] to resolve entities.
The main drawback of these approaches is the difficulty to obtain
ground truth data. For example, in our SNAPS application we
cannot perform manual linkage to obtain ground truth data for
the full DS database we described in Section 2 due to privacy and
confidentiality regulations of person data [14]. Similar challenges
arise when applying semi-supervised ER techniques such as ac-
tive learning [15, 16, 36, 55] that query external sources to resolve
challenging training cases, or crowd-based approaches [1, 27, 63]
that employ hybrid machine and human-based systems for re-
solving entities.

To the best of our knowledge, none of the existing solutions
provide an end-to-end system for family pedigree search that
includes an online query-time interface and an offline unsuper-
vised ER component which addresses the challenges of ambiguity,
temporal constraints, and relationship aspects to link records.

12 CONCLUSIONS AND FUTURE WORK

We have presented the SNAPS application that combines an un-
supervised graph-based entity resolution (ER) approach with a
query method that allows for approximate string matching. Our
application is aimed at providing support for the Genetics Ge-
nealogy Team of Public Health Scotland, who currently manually
query Scottish birth, death, and marriage certificates to compile
family pedigrees (family trees) for patients who have familial
cancer or other inherited genetic conditions. Our application
will automate much of this time consuming and labour intensive
process and provide high quality family pedigrees in a matter of
a few seconds. Future expansions can include assistance for gen-
eral practitioners to efficiently obtain the family health histories
of their patients.

While aimed at this specific health application in Scotland, the
underlying graph-based ER techniques and the query processing
and ranking methods are general and can be applied on any data
sets that contain birth, death, and marriage certificates.

Privacy regulations currently prevent remote access to the
Digitising Scotland database covering the full population of Scot-
land. Therefore, to assess the quality of our ER and query ap-
proaches, we have evaluated SNAPS on two smaller historical

509

data sets from the Isle of Skye and Kilmarnock, respectively, for
which partial ground truth are available [58]. We also used the
historical BHIC data set [10] for scalability experiments since
this is a considerably larger data set compared to the two small
Scottish data sets. Our unsupervised ER approach is able to obtain
precision up-to 98.7%, recall up-to 94.7%, and F*-measure results
up-to 93.6%, respectively, while query processing and extracting
family pedigrees is accomplished on average in less than 1.4 and
0.8 seconds, respectively.

We also described an approach to anonymise a graph data
set of birth, death, and marriage certificates [45]. This allows us
to provide a publicly available version of our application that
can be used for training and educational purposes on data that
have similar characteristics as the sensitive real data they are
based on. The anonymisation approach replaces first names and
surnames in such ways that the similarities between groups of
names are maintained, while all years (such as of births, deaths, or
marriages) are shifted by a certain (kept secret) offset to maintain
the temporal distances between vital events. Rare causes of death
are replaced by a frequent cause that is most similar.

As future work, we aim to improve the scalability of our ap-
plication with the aim to make it usable with a population-scale
database of millions of records, and to incorporate geographical
distances into the query process (to allow users to limit searches
to certain geographical regions) by geocoding the addresses avail-
able on certificates [37]. We also plan to investigate how census
data can be incorporated into our ER techniques to improve
linkage quality.

A broader user study, including on larger databases, is planned
for later in 2022 to improve both the web interface as well as the
generation of family pedigrees. We aim to incorporate interactive
access to the actual original certificates (digitised images) held
by the National Records of Scotland, and incorporate feedback
from domain experts on correctly and wrongly generated family
trees. Such feedback can then be employed within an active
learning based framework to improve the quality of generated
links [15, 55, 62].

ACKNOWLEDGEMENTS

We like to thank Thilina Ranbaduge for help in developing the web
interface, Alice Reid and Ros Davis (University of Cambridge) for their
work on the Isle of Skye and Kilmarnock data sets, and Kellas Campbell
(University of Edinburgh) for providing the statistics of the Digitising
Scotland database. This work was partially supported by ESRC grants
ES/K00574X/2 Digitising Scotland and ES/L007487/1 Administrative Data
Research Centre Scotland.

REFERENCES

[1] Asma Abboura, Soror Sahrl, Mourad Ouziri, and Salima Benbernou. 2015.
CrowdMD: Crowdsourcing-based Approach for Deduplication. In IEEE Big-
Data. IEEE, Santa Clara, USA, 2621-2627.

Luiza Antonie, Kris Inwood, Daniel J Lizotte, and] Andrew Ross. 2014. Track-
ing people over time in 19th century Canada for longitudinal analysis. Machine
learning 95, 1 (2014), 129-146.

Martha J Bailey, Connor Cole, Morgan Henderson, and Catherine Massey.
2020. How well do automated linking methods perform? Lessons from US
historical data. Journal of Economic Literature 58, 4 (2020), 997-1044.

Nils Barlaug and Jon Atle Gulla. 2021. Neural Networks for Entity Matching:
A Survey. ACM TKDD 15, 3 (2021), 1-37.

Ricardo J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up
all pairs similarity search. In WWW. ACM, Banff, Canada, 131-140.

Indrajit Bhattacharya and Lise Getoor. 2007. Collective Entity Resolution in
Relational Data. ACM TKDD 1, 1 (2007), 5-es.

Indrajit Bhattacharya and Lise Getoor. 2007. Query-time entity resolution.
JAIR 30 (2007), 621-657.

(2]

(3

[4

o

5

3

=
A

&

=

[10]

(11

[12]

=
&

[14]

[15

[16]

(17]

[18]

[19]

[20

[21]

[22]

[23

[24]

[25

[26]

[27

[28

™~
X

[30

[31]

[32

[33

[34]

[35

[36]

[37

David H Brewster, Alison Fordyce, and Roger] Black. 2004. Impact of a cancer
registry-based genealogy service to support clinical genetics services. Familial
Cancer 3, 2 (2004), 139-141.

Ursin Brunner and Kurt Stockinger. 2020. Entity matching with transformer
architectures-a step forward in data integration. In EDBT. Copenhagen, Den-
mark.

Brabant Historical Information Center. 2021. Genealogie. Retrieved June 29,
2021 from https://opendata.picturae.com/organization/bhic

Peter Christen. 2012. Data Matching — Concepts and Techniques for Record
Linkage, Entity Resolution, and Duplicate Detection. Springer, Heidelberg.
Peter Christen. 2016. Application of Advanced Record Linkage Techniques for
Complex Population Reconstruction. arXiv preprint arXiv:1612.04286 (2016).
Peter Christen, Ross Gayler, and David Hawking. 2009. Similarity-Aware
Indexing for Real-Time Entity Resolution. In CIKM. ACM, Hong Kong, 1565-
1568.

Peter Christen, Thilina Ranbaduge, and Rainer Schnell. 2020. Linking Sensitive
Data. Springer, Heidelberg.

Peter Christen, Dinusha Vatsalan, and Qing Wang. 2015. Efficient entity
resolution with adaptive and interactive training data selection. In ICDM.
IEEE, Atlantic City, 727-732.

Victor Christen, Peter Christen, and Erhard Rahm. 2019. Informativeness-
Based Active Learning for Entity Resolution. In Workshop on Data Integration
and Applications, held at PKDD/ECML. Springer, Wiirzburg, 125-141.

AnHai Doan, Pradap Konda, Paul Suganthan GC, Yash Govind, Derek Paulsen,
Kaushik Chandrasekhar, et al. 2020. Magellan: toward building ecosystems of
entity matching solutions. Commun. ACM 63, 8 (2020), 83-91.

Josep Domingo-Ferrer, David Sanchez, and Jordi Soria-Comas. 2016. Database
Anonymization: Privacy Models, Data Utility, and Microaggregation-based Inter-
model Connections. Morgan and Claypool Publishers.

Xin L. Dong, Alon Halevy, and Jayant Madhavan. 2005. Reference reconcilia-
tion in complex information spaces. In SIGMOD. ACM, Baltimore, 85-96.
Xin L. Dong and Theodoros Rekatsinas. 2018. Data integration and machine
learning: A natural synergy. VLDB Endowment 11, 12 (2018), 2094-2097.

Xin L. Dong and Divesh Srivastava. 2015. Big Data Integration. Morgan and
Claypool Publishers.

Soren Edvinsson and Elisabeth Engberg. 2020. A Database for the Future:
Major Contributions from 47 Years of Database Development and Research at
the Demographic Data Base. Historical Life Course Studies (2020).

Ivan P. Fellegi and Alan B. Sunter. 1969. A Theory for Record Linkage. 7.
Amer. Statist. Assoc. 64, 328 (1969), 1183-1210.

Tyler Folkman, Rey Furner, and Drew Pearson. 2018. GenERes: A Genealogical
Entity Resolution System. In DINA workshop held at ICDM. IEEE, Singapore,
495-501.

Zhichun Fu, Peter Christen, and Jun Zhou. 2014. A graph matching method
for historical census household linkage. In PAKDD. Springer, Tainan, 485-496.
Lise Getoor and Ashwin Machanavajjhala. 2013. Entity resolution for Big
data. In SIGKDD. ACM, Chicago, 1527-1527.

Yash Govind, Erik Paulson, Palaniappan Nagarajan, Paul Suganthan G. C.,
AnHai Doan, Youngchoon Park, Glenn M. Fung, Devin Conathan, Marshall
Carter, and Mingju Sun. 2018. Cloudmatcher: A Hands-off Cloud/Crowd
Service for Entity Matching. VLDB Endowment 11, 12 (2018), 2042-2045.
Naomi C Hamm, Amani F Hamad, Elizabeth Wall-Wieler, Leslie L Roos,
Oleguer Plana-Ripoll, and Lisa M Lix. 2021. Multigenerational Health Re-
search using Population-Based Linked Databases: An International Review.
International Journal of Population Data Science 6, 1 (2021).

David J. Hand and Peter Christen. 2018. A note on using the F-measure for
evaluating record linkage algorithms. Stats and Comp 28, 3 (2018), 539-547.
David J. Hand, Peter Christen, and Nishadi Kirielle. 2021. F*: An Interpretable
Transformation of the F-measure. Machine Learning 110, 3 (2021), 451-456.
Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J Miller. 2009.
Framework for evaluating clustering algorithms in duplicate detection. VLDB
Endowment 2, 1 (2009), 1282-1293.

William D. Hill, Ruben C Arslan, Charley Xia, Michelle Luciano, Carmen
Amador, et al. 2018. Genomic analysis of family data reveals additional genetic
effects on intelligence and personality. Molecular Psychiatry 23, 12 (2018),
2347-2362.

Yichen Hu, Qing Wang, Dinusha Vatsalan, and Peter Christen. 2017. Improving
temporal record linkage using regression classification. In PAKDD. Springer,
Jeju, 561-573.

ISD Scottish Genetics Genealogy Service. 2018. Annual Report 2018. https:
//www.isdscotland.org/Health-Topics/Cancer/Genetics- Genealogy/

Dmitri V. Kalashnikov and Sharad Mehrotra. 2006. Domain-independent data
cleaning via analysis of entity-relationship graph. TODS 31, 2 (2006), 716-767.
Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019.
Low-resource Deep Entity Resolution with Transfer and Active Learning. In
Annual Meeting of the ACL. ACL, Florence, 5851-5861.

Nishadi Kirielle, Peter Christen, and Thilina Ranbaduge. 2019. Outlier Detec-
tion Based Accurate Geocoding of Historical Addresses. In AusDM. Springer,
Adelaide, 41-53.

510

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]
[61]
[62]

[63]

[64]

[65]

[66]

Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,
Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al.
2016. Magellan: Toward building entity matching management systems. VLDB

Endowment 9, 12 (2016), 1197-1208.
Pradap Konda, Sanjay Subramanian Seshadri, Elan Segarra, Brent Hueth, and

AnHai Doan. 2019. Executing Entity Matching End to End: A Case Study. In
EDBT. Lisbon, 489-500.

Pigi Kouki, Jay Pujara, Christopher Marcum, Laura Koehly, and Lise Getoor.
2019. Collective entity resolution in multi-relational familial networks. KAIS
61, 3 (2019), 1547-1581.

Pei Li, Xin L. Dong, Andrea Maurino, and Divesh Srivastava. 2011. Linking
temporal records. VLDB Endowment 4, 11 (2011), 956-967.

AK Licis, DM Desruisseau, KA Yamada, SP Duntley, and CA Gurnett. 2011.
Novel genetic findings in an extended family pedigree with sleepwalking.
Neurology 76, 1 (2011), 49-52.

Michael Loster, Ioannis Koumarelas, and Felix Naumann. 2021. Knowledge
Transfer for Entity Resolution with Siamese Neural Networks. jDIQ 13, 1
(2021), 1-25.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, et al. 2018. Deep learning for entity matching: A
design space exploration. In SIGMOD. ACM, Houston, 19-34.

Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge. 2020. An
Anonymiser Tool for Sensitive Graph Data. In CIKM EYRE workshop. Galway.
Felix Naumann and Melanie Herschel. 2010. An Introduction to Duplicate
Detection. Morgan and Claypool Publishers.

Gonzalo Navarro. 2001. A guided tour to approximate string matching. Comput.
Surveys 33, 1 (2001), 31-88.

Hao Nie, Xianpei Han, Ben He, Le Sun, Bo Chen, Wei Zhang, Suhui Wu, and
Hao Kong. 2019. Deep Sequence-to-Sequence Entity Matching for Heteroge-
neous Entity Resolution. In CIKM. ACM, Beijing, China, 629-638.
Byung-Won On, N. Koudas, Dongwon Lee, and D. Srivastava. 2007. Group
Linkage. In IEEE ICDE. IEEE, Istanbul, 496-505.

Toan C. Ong, Michael V. Mannino, Lisa M. Schilling, and Michael G. Kahn.
2014. Improving Record Linkage Performance in the Presence of Missing
Linkage Data. Journal of Biomedical Informatics 52 (2014), 43-54.

Matteo Paganelli, Francesco Del Buono, Pevarello Marco, Francesco Guerra,
and Maurizio Vincini. 2021. Automated Machine Learning for Entity Matching
Tasks. In EDBT. Nicosia, 325-330.

Fabian Panse, André Dijjon, Wolfram Wingerath, and Benjamin Wollmer.
2021. Generating Realistic Test Datasets for Duplicate Detection at Scale
Using Historical Voter Data. In EDBT. 570-581.

George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas.
2021. The Four Generations of Entity Resolution. Synthesis Lectures on Data
Management 16, 2 (2021), 1-170.

George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Pal-
panas. 2020. Blocking and Filtering Techniques for Entity Resolution: A Survey.
Comput. Surveys 53, 2 (2020), 1-42.

Kun Qian, Lucian Popa, and Prithviraj Sen. 2017. Active learning for large-scale
entity resolution. In CIKM. ACM, Singapore, 1379-1388.

Banda Ramadan, Peter Christen, Huizhi Liang, and Ross W Gayler. 2015.
Dynamic sorted neighborhood indexing for real-time entity resolution. JDIQ
6,4 (2015), 1-29

Sean M Randall, James H Boyd, Anna M Ferrante, Jacqueline K Bauer, and
James B Semmens. 2014. Use of graph theory measures to identify errors in
record linkage. Computer Methods and Programs in Biomedicine 115, 2 (2014),
55-63.

Alice Reid, Ros Davies, and Eilidh Garrett. 2002. Nineteenth-century Scot-
tish demography from linked censuses and civil registers: A ‘sets of related
individuals’ approach. History and Computing 14, 1-2 (2002), 61-86.

Alice Reid, EM Garrett, Chris Dibben, and Lee Williamson. 2016. Gender
specific mortality trends over the epidemiological transition: a view from the
British mainland 1850-2000. (2016), 73-88.

Stephen Robertson. 2004. Understanding inverse document frequency: on
theoretical arguments for IDF. Journal of Documentation 60, 5 (2004), 503-520.
Pierangela Samarati. 2001. Protecting respondents identities in microdata
release. IEEE TKDE 13, 6 (2001), 1010-1027.

Yufei Tao. 2018. Entity matching with active monotone classification. In
SIGMOD-SIGACT-SIGAI PODS. ACM, Houston, 49-62.

Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. 2012.
CrowdER: Crowdsourcing Entity Resolution. VLDB Endowment 5, 11 (2012),
1483-1494.

Li-E. Wang and Xianxian Li. 2018. A graph-based multifold model for
anonymizing data with attributes of multiple types. CaS 72 (2018), 122-135.
Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching
using Pre-trained Deep Models and Transfer Learning. In WWW. ACM, San
Francisco, USA, 2413-2424.

Bin Zhou, Jian Pei, and WoShun Luk. 2008. A Brief Survey on Anonymization
Techniques for Privacy Preserving Publishing of Social Network Data. SIGKDD
Explor. Newsl. 10, 2 (Dec. 2008), 12-22.

