
RingBFT: Resilient Consensus over Sharded Ring Topology
Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv Krishnan, Mohammad Sadoghi

Exploratory Systems Lab
University of California, Davis

ABSTRACT

The recent surge in federated data management applications has
brought forth concerns about the security of underlying data and
the consistency of replicas in the presence of malicious attacks. A
prominent solution in this direction is to employ a permissioned
blockchain framework that is modeled around traditional Byzan-
tine Fault-Tolerant (Bft) consensus protocols. Any federated
application expects its data to be globally scattered to achieve
faster access. But, prior works have shown that traditional Bft
protocols are slow.

This has led to the rise of sharded-replicated blockchains. Ex-
isting Bft protocols for these sharded blockchains are efficient
if client transactions require access to a single-shard, but face
performance degradation if there is a cross-shard transaction that
requires access to multiple shards. As cross-shard transactions
are common, to resolve this dilemma, we present RingBFT, a
novel meta-Bft protocol for sharded blockchains. RingBFT re-
quires shards to adhere to the ring order, and follow the principle
of process, forward, and re-transmit while ensuring the commu-
nication between shards is linear. Our evaluation of RingBFT
against state-of-the-art sharding Bft protocols illustrates that
RingBFT achieves up to 18× higher throughput, gracefully scales
to nearly 500 globally distributed nodes, and achieves a peak
throughput of 1.2 million transactions per second.

1 INTRODUCTION

A growing interest in federated data management illustrates an in-
creased demand for multi-party database management [9, 16, 61].
In these multi-party systems, a common database is maintained
by several parties. As all of these parties cannot be at the same
location, so the system needs to be decentralized, which implies
that the database is distributed. There are two key ways in which
a distributed database can be managed by multiple parties: repli-
cation and sharding [36, 38, 39, 57, 60, 66].

In a replicated system, each party holds a copy of the database.
As a result, the effects of each client transaction are replicated
across all the parties (replicas). In a sharded system, each party
maintains a subset (shard) of the database. Hence, each party can
independently handle incoming client transactions that require
access to its shard.

One of the factors that advocates the use of replicated databases
is their ability to handle failure of one or more replicas. This ne-
cessitates the need for keeping all the replicas at the same state.
To achieve this task, databases employ crash-fault tolerant pro-
tocols such as Paxos [48] and Raft [55] to help all replicas reach
a common order for each client transaction. However, one or
more replicas can get compromised due to a malicious attack. A
compromised replica may wish: (i) to exclude transactions of
some clients, (ii) to make the system unavailable to clients, and
(iii) to make replicas inconsistent. These malicious attacks are so

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

4 16 32
0

200K
400K
600K
800K
1M

1.2M
1.4M

Number of Nodes

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

Scalability

RingBFT
RingBFTX
Pbft
Sbft
HotStuff
Rcc
PoE
Zyzzyva

Figure 1: Comparing scalability of different Bft protocols.

In this figure, we depict throughput of single-primary,

multiple-primaries, geographically-scalable, and shard-

ing Bft protocols. For RingBFT, we require each shard to

have number of replicas stated on x-axis.

common that one estimate shows that cyberattacks alone cost
the U.S. economy around $57 billion dollars in 2016 [54]. As a
result, not all the replicas can be trusted.

A recent solution to guarantee secure federated data man-
agement is through the use of permissioned blockchain tech-
nology [31, 37]. These permissioned blockchains require their
replicas to agree on the order for each transaction by partici-
pating in a Byzantine-Fault Tolerant (Bft) consensus protocol.
Post consensus, each replica logs the ordered transaction in a
block that is part of an immutable append-only ledger–blockchain.
A blockchain is termed as immutable because each new block
includes the hash of the previous block, and it allows verifying
the state of the participating replicas.

In this paper, we present a novel meta-Bft protocol RingBFT
that guards against Byzantine attacks, achieves high through-
put, and incurs low latency. Our RingBFT protocol explores the
landscape of sharded-replicated databases, and helps to scale per-
missioned blockchains, which in turn helps in designing efficient
federated data management systems. RingBFT aims to make
consensus inexpensive even when transactions require access
to multiple shards. In the rest of this section, we motivate our
design choices. To highlight the need for RingBFT, we will be
referring to Figure 1, which illustrates the throughput attained by
the system when employing different Bft consensus protocols.

1.1 Challenges for Efficient BFT Consensus

Existing permissioned blockchain applications employ traditional
Bft protocols to achieve consensus among their replicas [3, 4,
10, 46]. Over the past two decades, these Bft protocols have
undergone a series of evolutions to guarantee resilience against
Byzantine attacks, while ensuring high throughput and low la-
tency. The seminal work by Castro and Liskov [10, 11] led to the
design of the first practical Bft protocol, Pbft, which advocates
a primary-backup paradigm where primary initiates the consen-
sus and all the backups follow primary’s lead. Pbft achieves
consensus among the replicas in three phases, of which two

Series ISSN: 2367-2005 298 10.48786/edbt.2022.17

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.17

require quadratic communication complexity. Following this,
several exciting primary-backup protocols, such as Zyzzyva [47],
Sbft [23], and PoE [29], have been proposed that try to yield
higher throughputs from Bft consensuses. We use Figure 1 to
illustrate the benefits of these optimizations over Pbft. Prior
works [2, 33] have illustrated that these single primary protocols
are essentially centralized and prevent scaling the system to a
large number of replicas.

An emerging solution to balance load among replicas is to em-
ploy multi-primary protocols like Honeybadger [53] and Rcc [30,
32] that permit all replicas to act as primaries by running multi-
ple consensuses concurrently. However, multi-primary protocols
also face scalability limitations as despite concurrent consensuses,
each transaction requires communication between all the replicas.
Moreover, if the replicas are separated by geographically large
distances, then these protocols incur low throughput and high
latency due to low bandwidth and high round-trip time. This led
to the design of topology-aware protocols, such as Steward [2]
and Geobft [33], which cluster replicas based on their geograph-
ical distances. For instance, Geobft expects each cluster to first
locally order its client transaction by running the Pbft protocol,
and then exchange this ordered transaction with all the other
clusters. Although Geobft is highly scalable, it necessitates total
replication, which forces communicating large messages among
geographically distant replicas.

1.2 The Landscape for Sharding

To mitigate the costs associated with replicated databases, a com-
mon strategy is to employ the sharded-replicated paradigm [56].
In a sharded-replicated database, the data is distributed across a
set of shards where each shard manages a unique partition of the
data. Further, each shard replicates its partition of data to ensure
availability under failures. If each transaction accesses only one
shard, then these sharded systems can fetch high throughput as
consensus is restricted to a subset of replicas.

AHL [15] was the first permissioned blockchain system to
employ principles of sharding. AHL’s novel design helps to scale
blockchain systems to hundreds of replicas across the globe and
achieve high throughput for single-shard transactions. To tackle
cross-shard transactions that require access to data in multiple
shards, AHL designates a set of replicas as a reference commit-
tee, which globally orders all such transactions. Following AHL’s
design, Sharper [4] presents a sharding protocol that eliminates
the barrier to rely on the reference committee for ordering cross-
shard transactions, but necessitates global and quadratic commu-

nication among all replicas of all the participating shards.
Why RingBFT? Decades of research in database community

has illustrated that cross-shard transactions are common [14, 17,
39, 66]. In fact, heavy presence of these cross-shard transactions
has led to development of several concurrency control [8, 39,
57] and commit protocols [24, 36, 62]. Hence, in this paper, we
present our RingBFT protocol that significantly reduces the costs
associated with cross-shard transactions.

Akin to AHL and Sharper, RingBFT assumes that the read-
write sets of each transaction are known prior to the start of
consensus. Given this, RingBFT guarantees consensus for each
cross-shard transaction in at most two rotations around the
ring. In specific, RingBFT envisions each shard participating in
multiple circular flows or rings, simultaneously. For each cross-
shard transaction, RingBFT follows the principle of process, for-
ward, and re-transmit. This implies that each shard performs

consensus on the transaction and forwards it to the next shard.
This flow continues until each shard is aware of the fate of the
transaction. However, the real challenge with cross-shard trans-
actions is to manage conflicts and to prevent deadlocks, which
RingBFT achieves by requiring cross-shard transactions to travel
in ring order. Despite all of this, RingBFT ensures communi-
cation between the shards is linear, exhibiting a neighbor-to-
neighbor communication. This minimalistic design has allowed
RingBFT to achieve unprecedented gains in throughput and has
allowed us to scale Bft protocols to nearly 500 nodes globally.
The benefits of our RingBFT protocol are visible from Figure 1
where we run RingBFT in a system of 9 shards with each shard
having 4, 16 and 32 replicas. Further, we show the throughput
with 0 (RingBFT) and 15% (RingBFTX) cross-shard transactions.
We now list down our contributions.

(1) We present a novelmeta-Bft protocol for sharded-replicated
permissioned blockchain systems that requires participating shards
to adhere to the ring order. We term RingBFT as “meta” because
it can employ any single-primary protocols within each shard.

(2) Our RingBFT protocol presents a scalable consensus for
cross-shard transactions that neither depends on any centralized
committee nor requires all-to-all communication.

(3) We show that the cross-shard consensus provided by Ring-
BFT is safe, and live, despite any Byzantine attacks.

(4) We evaluate RingBFT on our ResilientDB1 framework [26–
29, 32, 33, 35, 58] against two state-of-the-art Bft protocols
for permissioned sharded systems, AHL [15], and Sharper [4].
Our results show that RingBFT easily scales to 428 globally-
distributed nodes, and achieves up to 18× and 4× times higher
throughput than AHL and Sharper, respectively.

2 CROSS-SHARD DILEMMA

For any sharded system, ordering a single-shard transaction is
trivial as such a transaction requires access to only one shard. As a
result, achieving consensus on a single-shard transaction requires
running a standard Bft protocol. Further, single-shard transac-
tions support parallelism as each shard can order its transaction
in parallel, this without any communication between shards.

On the other hand, cross-shard transactions are complex. Not
only do they require communication between shards but also
their fate depends on the consent of each of the involved shards.
Further, two or more cross-shard transactions can conflict if they
require access to the same data. Such conflicts can cause one
or more transactions to abort or worse, can create a distributed
deadlock in a Byzantine setting. Hence, we need an efficient
protocol to order these cross-shard transactions, which ensures
that the system is both safe and live.

Designated Committee (AHL).One way to order cross-shard
transactions is to designate a set of replicas with this task. AHL
defines a reference committee that assigns an order to each cross-
shard transaction, which requires running Pbft protocol among
all the members of the reference committee [15]. Next, reference
committee members run the Two-phase commit (2pc) protocol
in a geo setting with all the replicas of involved shards. Notice
that the 2pc protocol requires: (1) each shard to send a vote to
the reference committee, (2) reference committee collects these
votes and takes a decision (abort or commit), and (3) each shard
implements the decision. Firstly, this solution requires each shard

1 ResilientDB is open-sourced at https://resilientdb.com/ and its source-code is
available at https://github.com/resilientdb/resilientdb.

299

to run the Pbft protocol to decide on the vote. Secondly, the ref-
erence committee needs to run Pbft again to reach a common
decision. Finally, these multiple phases of 2PC require all-to-all
communication between the replicas of each shard and the repli-
cas of the reference committee; hence, we can no longer utilize
the low latency and high bandwidth available within the same
data center or region, and the effect of quadratic communica-
tion is further amplified due to the limited bandwidth across
geographical regions.

Initiator Shard (Sharper). Another way to process a cross-
shard transaction is to designate one of the involved shards as
the initiator shard. Sharper [4] employs this approach by requir-
ing each cross-shard transaction to be managed by the primary
replica of one of the involved shards. This initiator primary pro-
poses the transaction to the primaries of other shards. Next, these
primaries propose this transaction within their own shards. Fol-
lowing this, there is an all-to-all quadratic communication among
all replicas of all the involved shards in the geo setting.

3 SYSTEM MODEL

To explain our RingBFT protocol in detail, we first lay down
some notations and assumptions. Our system comprises of a set
S of shards where each shard S provides a replicated service.
In specific, each shard S manages a unique partition of the data,
which is replicated by a set RS of replicas.

In each shard S, there are F ⊆ RS Byzantine replicas, of which
NF = RS \ F are non-faulty replicas. We expect non-faulty
replicas to follow the protocol and act deterministic, that is, on
identical inputs, all non-faulty replicas must produce identical
outputs. We write z = |S | to denote the total number of shards
and n = |RS |, f = |F |, and nf = |NF | to denote the number of
replicas, faulty replicas, and non-faulty replicas, respectively, in
each shard.

Fault-Tolerance Requirement. Traditional, Bft protocols
such as Pbft, Zyzzyva, and Sbft expect a total replicated system
where the total number of Byzantine replicas are less than one-

third of the total replicas in the system. In our sharded-replicated
model, we adopt a slightly weaker setting where at each shard
the total number of Byzantine replicas are less than one-third of
the total replicas in that shard. In specific, at each shard S, we
expect n ≥ 3f+1. This does not imply that we want each shard to
have an equal number of replicas. Each shard can have a different
number of replicas till less than one-third are byzantine. This
requirement is in accordance with existing works in Byzantine
sharding space [4, 15].

Cross-Shard Transactions. Each shard S ∈ S can receive a
single-shard or cross-shard transaction. A single-shard transac-
tion for S leads to intra-shard communication, that is, all the mes-
sages necessary to order this transaction are exchanged among
the replicas of S. On the other hand, a cross-shard transaction
requires access to data from a subset of shards (henceforth we
use the abbreviation cst to refer to a cross-shard transaction).
We denote this subset of shards as I where I ⊆ S, and refer to it
as involved shards. Each cst can be termed as simple or complex.
A simple cst is a collection of fragments where each shard can
independently run consensus and execute its fragment. On the
other hand, a complex cst includes dependencies, that is, an
involved shard may require access to data from other involved
shards to execute its fragment.

Deterministic Transactions.Wedefine a deterministic trans-
action as the transaction forwhich the data-items it will read/write

are known prior to the start of the consensus [57, 66]. Given a de-
terministic transaction, a replica can determine which data-items
accessed by this transaction are present in its shard.

Ring Order.We assume shards in setS are logically arranged
in a ring topology. In specific, each shard S ∈ S has a position
in the ring, which we denote by id(S), 1 ≤ id(S) ≤ |S |. RingBFT
employs these identifiers to specify the flow of a cst or ring
order. For instance, a simple ring policy can be that each cst is
processed by the involved shards in the increasing order of their
identifiers. RingBFT can also adopt other complex permutations
of these identifiers for determining the flow across the ring.

Authenticated Communication.We assume that each mes-
sage exchanged among clients and replicas is authenticated. Fur-
ther, we assume that Byzantine replicas are unable to impersonate
non-faulty replicas. Notice that authenticated communication
is a minimal requirement to deal with Byzantine behavior. For
intra-shard communication, we employ cheap message authenti-

cation codes (MACs), while for cross-shard communication we
employ digital signatures (DS) to achieve authenticated commu-
nication. MACs facilitate symmetric cryptography by requiring
each pair of communicating nodes to share a secret key. We expect
non-faulty replicas to keep their secret keys hidden. DS follow
asymmetric cryptography. In specific, prior to signing a message,
each replica generates a pair of public-key and private-key. The
signer keeps the private-key hidden and uses it to sign a message.
Each receiver authenticates the message using the corresponding
public-key. Although MACs are cheaper than DS, they cannot
guarantee non-repudiation. We require non-repudiation property
during cross-shard communication as it helps to prove that the
message communicated was sent by the sender and the message’s
contents were not fabricated.

In the rest of this manuscript, if a messagem is signed by a
replica r using DS, we represent it as ⟨m⟩r to explicitly identify
replica r. Otherwise, we assume that the message employs MAC.

To ensure message integrity, we employ a collision-resistant
cryptographic hash function H (·) that maps an arbitrary value
v to a constant-sized digest H (v) [44]. We assume that there is
a negligible probability to find another value v ′, v , v ′, such
that H (v) = H (v ′). Further, we refer to a message as well-formed

if a non-faulty receiver can validate the DS or MAC, verify the
integrity of the message digest, and determine that the sender of
the message is also the creator.

4 RINGBFT CONSENSUS PROTOCOL

To achieve efficient consensus in sharded-replicated databases,
we employ our RingBFT protocol. While designing our RingBFT
protocol, we set following goals:

(G1) Inexpensive consensus of single-shard transactions.
(G2) Flexibility of employing different existing consensus pro-

tocols for intra-shard consensus.
(G3) Deadlock-free two-ring consensus of deterministic cross-

shard transactions.
(G4) Cheap communication between globally distributed shards.
We define the safety and liveness guarantees provided by our

RingBFT protocol.

Definition 4.1. LetS be a system of shards and RS be a set of
replicas in some shard S ∈ S. Each run of a consensus protocol in
this system should satisfy the following requirements:
Involvement Each S ∈ S processes a transaction if S ∈ I.
Termination Each non-faulty replica in RS executes a transac-

tion.

300

2 2 2
Shard S Shard U Shard V

gClient c1
T1

gClient c2
T2

gClient c3
T3

Pbft
Pbft

Pbft
g Client c1

v1

g Client c2
v2

g Client c3
v3

Figure 2: RingBFT consensus for single-shard transactions.

Each of the three shards S, U, and V receive transactions

T1, T2, and T3 from their respective clients c1, c2, and c3
to execute. Each shard independently run Pbft consensus,

and sends responses to respective clients.

Non-divergence (intra-shard) All non-faulty replicas in RS ex-
ecute the same transaction.

Consistence (cross-shard) Each non-faulty replica in S exe-
cutes a conflicting transaction in same order.

In traditional replicated systems, non-divergence implies safety,
while termination implies liveness. For a sharded-replicated sys-
tem like RingBFT, we need stronger guarantees. If a transac-
tion requires access to only one shard, safety is provided by
involvement and non-divergence, while termination sufficiently
guarantees liveness. For a cross-shard transaction, to guarantee
safety, we also need consistency apart from involvement and
non-divergence, while liveness is provided using involvement
and termination.

RingBFT guarantees safety in an asynchronous setting. In
such a setting, messages may get lost, delayed, or duplicated,
and up to f replicas in each shard may act Byzantine. However,
RingBFT can only provide liveness during periods of synchrony.
Notice that these assumptions are no harder than those required
by existing protocols [4, 10, 15].

4.1 Single-Shard Consensus

To order and execute single-shard transactions is trivial. For
this task, RingBFT employs one of the many available primary-
backup consensus protocols and runs them at each shard. In the
rest of this section, without the loss of generality, we assume that
RingBFT employs the Pbft consensus protocol to order single-
shard transactions. We use the following example to explain
RingBFT’s single-shard consensus.

Example 4.2. Assume a system that comprises of three shards
S, U, and V. Say client c1 sendsT1 to S, c2 sendsT2 to U, and client
c3 sends T3 to V. On receiving the client transaction, the primary
of each shard initiates the Pbft consensus protocol among its
replicas. Once each replica successfully orders the transaction, it
sends a response to the client. Such a flow is depicted in Figure 2.

It is evident from Example 4.2 that there is no communica-
tion among the shards. This is the case because each transaction
requires access to data available inside only one shard. Hence,
ordering single-shard transactions for shard S requires running
the Pbft protocol among the replicas of S without any synchro-
nization with other shards.

2 2

2 2

Shard S Shard U

Shard V Shard W

g g
Client c1 Client c2

TS,U,V

process
forward

TU,V,W

process

forward

Figure 3: RingBFT’s concurrent consensus of two cross-

shard transactions TS,U,V and TU,V,W across four shards.

The prescribed ring order is S → U → V → W.

4.2 Cross-Shard Consensus: Process &

Forward

In this section, we illustrate how RingBFT guarantees consensus
of every deterministic cross-shard transaction (cst) in at most two

rotations across the ring. To order a cst, RingBFT requires shards
to adhere to the ring order, and follow the principle of process,
forward, and re-transmit while ensuring the communication be-
tween shards is linear. We use the following example to illustrate
what we mean by following the ring order.

Example 4.3. Assume a system that comprises of four shards
S, U, V, and W where the ring order has been defined as S →

U → V → W. Say client c1 wants to process a transaction TS,U,V
that requires access to data from shards S, U, and V, and client
c2 wants to process a transaction TU,V,W that requires access
to data from shards U, V, and W (refer to Figure 3). In this case,
client c1 sends its transaction to the primary of shard S while
c2 sends its transaction to primary of U. On receiving TS,U,V,
replicas of S process the transaction and forward it to replicas of
U. Next, replicas of U process TS,U,V and forward it to replicas
of V. Finally, replicas of V process TS,U,V and send it back to
replicas of S, which reply to client c1. Similar flow takes place
while ordering transaction TU,V,W.

Although Example 4.3 illustrates RingBFT’s design, it is un-
clear how multiple concurrent cst are ordered in a deadlock-free
manner. We explain this next.

4.2.1 Cross-shard Transactional Flow. RingBFT assumes shards
are arranged in a logical ring. For the sake of explanation, we
assume the ring order of lowest to highest identifier. For each cst,
we denote one shard as the initiator shard, which is responsible
for starting consensus on the client transaction. How do we select
the initiator shard? Of all the involved shards a cst accesses, the
shard with the lowest identifier in ring order is denoted as the
initiator shard.

RingBFT also guarantees consensus for each deterministic
cst in at most two rotations across the ring. This implies that for
achieving consensus on a deterministic cst, each involved shard
S ∈ I needs to process it at most two times. Notice that if a cst
is simple, then a single rotation around the ring is sufficient to
ensure that each involved shard S safely executes its fragment.

Prior to presenting our RingBFT’s consensus protocol that
safely orders each cst, we sketch the flow of a cst in Figure 4.
In this figure, we assume a system of four shards: S, U, V, and
W where id(S) < id(U) < id(V) < id(W). The client creates a
transaction TS,U,W that requires access to data in shards S, U, and
W and sends this transaction to the primary pS of S. On receiving

301

r1

r2

r3

pS

c

r1

r2

r3

pU

r1

r2

r3

pV

r1

r2

r3

pW

TS,U,W

Local Pbft

Consensus

on TS,U,W

Local Pbft

Consensus

on TS,U,W

Local Pbft

Consensus

on TS,U,W

Execute

Execute

Execute

Local

Request

Local

Replication
Forward Local

Sharing

Local

Replication

Global

Sharing

Local

Sharing

Local

Replication

Global

Sharing

Local

Sharing

Client

Response

S

U

V

W

Round 1 Round 2

Figure 4: Representation of the normal-case flow of RingBFT in a system of four shards where client sends a cross-shard

transaction TS,U,W that requires access to data in three shards: S, U, and W.

this transaction, pS initiates the Pbft consensus protocol (local
replication) among its replicas. If the local replication is successful,
then all the replicas of S lock the corresponding data. This locking
of data-items in the ring-order helps in preventing deadlocks.
Next, replicas of S forward the transaction to replicas of shard
U. Notice that only linear communication takes place between
replicas of S and U. Hence, to handle any failures, replicas of U
share this message among themselves. Next, replicas of U also
follow similar steps and forward transaction toW. AsW is the last
shard in the ring of involved shards, it goes ahead and executes
the cst if all the dependencies are met. Finally, replicas of shards
S and U also execute the transaction and replicas of S send the
result of execution to the client.

4.3 Cross-Shard Consensus Algorithm

We use Figure 5 to present RingBFT’s algorithm for ordering
cross-shard transactions. Next, we discuss these steps in detail.

4.3.1 Client Request. When a client c wants to process a
cross-shard transaction TI , it creates a ⟨TI⟩c message and sends
it to the primary of the first shard in ring order. As part of this
transaction, the client c specifies the information regarding all the
involved shards (I), such as their identifiers and the necessary
read-write sets of each shard. Notice that the client signs this
message using DS to prevent repudiation attacks.

4.3.2 Client Request Reception. When the primary pS of shard
S receives a client request TI, it first checks if the message is
well-formed. If this is the case, then pS checks if among the
set of involved shards I, S is the first shard in ring order. If this
condition is met, then pS assigns this request a linearly increasing
sequence number k , calculates the digest ∆, and broadcasts a
Preprepare message to all the replicas RS of its shard. In the
case when S is not the first shard in the ring order, pS forwards
the transaction to the primary of the appropriate shard.

4.3.3 Pre-prepare Phase. When a replica r ∈ RS receives the
Preprepare message from pS, it checks if the request is well-
formed. If this is the case and if r has not agreed to support any
other request from pS as the k-th request, then it broadcasts a
Prepare message in its shard S.

4.3.4 Prepare Phase. When a replica r ∈ RS receives identical
Prepare messages from nf distinct replicas, it gets an assurance
that a majority of non-faulty replicas are supporting this request.
At this point, each replica r broadcasts a Commit message to all
the replicas in S. Once a transaction passes this phase, the replica
r marks it prepared.

4.3.5 Commit and Data Locking. When a replica r receives
well-formed identical Commit messages from nf distinct replicas
in S, it checks if it also prepared this transaction at same sequence
number. If this is the case, RingBFT requires each replica r to
lock all the read-write sets that transaction TI needs to access in
shard S. In RingBFT, we allow replicas to process and broadcast
Prepare and Commit messages out-of-order, but require each
replica to acquire locks on data in transactional sequence order.
This out-of-ordering helps replicas to continuously perform use-
ful work by concurrently participating in consensus of several
transactions. To achieve these tasks, each replica r tracks the
maximum sequence number (kmax), which indicates the sequence
number of the last transaction to lock data. If sequence number k
for a transaction TI is greater than kmax + 1, we store the trans-
action in a list π until transaction at kmax + 1 has acquired the
locks. Once the kmax + 1-th transaction has acquired locks, we
gradually release transactions in π until there is a transaction
that wishes to lock already locked data-fragments. We illustrate
this through the following example.

Example 4.4. Assume the use of following notations for four
transactions and the data-fragments they access at shard S: T1,a ,
T2,b , T3,a , and T4,c . For instance, T1,a implies that transaction

302

Initialization:

// kmax :=0 (maximum sequence number in shard S)
// ΣI := ∅ (set of data-fragments of each shard)
// π := ∅ (list of pending transactions at a replica)

Client-role (used by client c to request transaction TI) :
1: Sends ⟨TI ⟩c to the primary pS of shard S.
2: Awaits receipt of messages Response(⟨TI ⟩c , k, r) from f + 1 replicas of S.
3: Considers TI executed, with result r , as the k -th transaction.

// This event is only triggered at the primary replica of each shard.
Primary-role (running at the primary pS of shard S) :

4: event pS receives ⟨TI ⟩c do

5: if S ∈ I ∧ id(S) = FirstInRingOrder(I) then
6: Calculate digest ∆ := H (⟨T ⟩c).
7: Broadcast Preprepare(⟨TI ⟩c , ∆, k) in shard S (order at sequence k).
8: else

9: Send to primary pU of shard U, U ∈ S ∧ id(U) = FirstInRingOrder(I)

// This event is only triggered at a non-primary replica.
Non-Primary Replica-role (running at the replica r of shard S) :

10: event r receives Preprepare(⟨TI ⟩c , ∆, k) from pS such that:
message is well-formed, and r did not accept a k -th proposal from pS . do

11: Broadcast Prepare(∆, k) to replicas in RS .

// Following events are triggered at every replica irrespective of whether it is the primary
or a non-primary replica.
Replica-role (running at any replica r of shard S) :

12: event r receives well-formed Prepare(∆, k) messages from nf replicas in S do

13: Broadcast ⟨Commit(∆, k)⟩r to replicas in RS .

14: event r receives nf m := ⟨Commit(∆, k)⟩q messages such that:
each messagem is well-formed and is sent by a distinct replica q ∈ RS . do

15: U be the shard to forward such that id(U) = NextInRingOrder(I).
16: A := set of DS of these nf messages.
17: if k = kmax + 1 // Forward to next shard then

18: Lock data-fragment corresponding to ⟨TI ⟩c .
19: Send ⟨Forward(⟨TI ⟩c , A,m, ∆,)⟩r to replica o, where o ∈ RU ∧ id(r) = id(o)
20: else

21: Store ⟨Forward(⟨TI ⟩c , A,m, ∆,)⟩r in π .
22: while π ! = ∅ // Pop out waiting transaction. do
23: Extract transaction at kmax + 1 from π (if any).
24: if Corresponding data-fragment is not locked then

25: kmax = kmax + 1
26: Follow lines 18 and 19.
27: else

28: Store transaction at kmax in π and exit the loop.

// Locally share any message from previous shard.
29: event r receives messagem := ⟨message-type⟩q such that:

m is well-formed and sent by replica q, where
id(U) = PrevInRingOrder(I), q ∈ RU ∧ id(r) = id(q) do

30: Broadcastm to all replicas in S.

// Forward message from previous shard.
31: event r receives f + 1m′ := ⟨Forward(⟨TI ⟩c , A,m, ∆)⟩q such that:

eachm′ is well-formed; and set A includes valid DS from nf replicas form. do
32: if Data-fragment corresponding to ⟨TI ⟩c is locked // Second Rotation then

33: Execute data-fragment of ⟨TI ⟩c and add to log.
34: Push result to set ΣI .
35: Release the locks from corresponding data-fragment.
36: V be the shard to forward such that id(V) = NextInRingOrder(I).
37: Send ⟨Execute(∆, ΣI)⟩r to replica o, where o ∈ RV ∧ id(r) = id(o).
38: else if r = pS // Primary initiates consensus then
39: Broadcast Preprepare(⟨TI ⟩c , ∆, k′) in shard S (order at sequence k′).

40: event r receivesm′ := ⟨Execute(∆, ΣI)⟩q such that:
m′ is sent by replica q, where q ∈ RU ∧ id(r) = id(q) do

41: if Already executed ⟨TI ⟩c // Reply to client then
42: Send client c the result r .
43: else

44: Follow lines 33 to 37.

Figure 5: The event-based normal-case algorithm of Ring-
BFT. Depending on the type of message the primary

replica or a non-primary replica receives, specific events

are triggered.

at sequence 1 requires access to data-item a. Next, due to out-
of-order message processing, assume a replica r in S receives nf
Commit messages for T2,b , T3,a , and T4,c before T1,a . Hence,
π = {T2,b ,T3,a ,T4,c }. Once r receiving nf Commit messages
for T1,a , it locks data-item a and extracts T2,b from π . As T2,b
wishes to lock a distinct data-item, so r continues processing

T2,b . Next, r moves to T3,a but it cannot process T3,a due to lock-
conflicts. Hence, it places back T3,a in π and stops processing
transactions in π until lock is available for T3,a .

Notice that if the client transaction TI is a single-shard trans-
action, it requires access to data-items in only this shard. In such
a case, this commit phase is the final phase of consensus and each
replica executes TI and replies to the client when the lock for
the corresponding data-item is available.

4.3.6 Forward to next Shard via Linear Communication. Once
a replica r in S locks the data corresponding to cst TI, it sends
a Forward message to only one replica q of the next shard in
ring order. As one of the key goals of RingBFT is to ensure
communication between two shards is linear, so we design a
communication primitive that builds on top of the optimal bound
for communication between two shards [33, 42]. We define Ring-
BFT’s cross-shard communication primitive as follows:

Linear Communication Primitive. In a systemS of shards,
where each shard S,U ∈ S has at most f Byzantine replicas, if
each replica in shard S communicates with a distinct replica
in shard U, then at least f + 1 non-faulty replicas from S will
communicate with f + 1 non-faulty replicas in U.

Our linear communication primitive guarantees that to reliably
communicate a message m between two shards requires only
sending a linear number of messages in comparison to protocols
like AHL and Sharper which require quadratic communication.
Using this communication primitive, to communicate messagem
from shard S to shard U, we need to exchange only n messages.

So, how does RingBFT achieve this task? We require each
replica of S to initiate communication with the replica of U having
the same identifier. Hence, replica r of shard S sends a Forward
message to replica q in shard U such that id(r) = id(q). By send-
ing a Forward message, r is requesting q to initiate consensus
on ⟨TI⟩c . For q to support such a request, it needs a proof that
⟨TI⟩c was successfully ordered in shard S. Hence, r includes the
DS on Commit messages from nf distinct replicas (Line 16).

Until now, we assumed that each shard has an equal number
of replicas. If we forgo this assumption, it will not affect the intra-
shard consensus, that is, the Bft consensus protocol running at
each shard remains unchanged. Further, the transaction execution
explained in the next section also remains unaffected. The only
visible change occurs in our linear communication primitive.
However, even this change does not impact the correctness of our
RingBFT protocol as our linear communication primitive builds
on the optimal bound for communication between two shards,
which permits shards to have a different number of replicas while
guaranteeing linear communication complexity [33, 42].

Finally, in Section 5.1.2, we illustrate how our linear commu-
nication primitive can handle attacks by byzantine replicas.

4.3.7 Execution and Final Rotation. Once a client request has
been ordered on all the involved shards, we call it one complete

rotation around the ring. This is a significant event because it
implies that all the necessary data-fragments have been locked
by each of the involved shards. If a cst is simple, then each
shard can independently execute its fragment without any further
communication between the shards. In the case a cst is complex,
at the end of the first rotation, the replicas of the first shard in
ring order (S) will receive a Forward message from the replicas
of the last shard in ring order.

Next, the replicas of S will attempt to execute parts of trans-
action, which are their responsibility. Post execution, replicas

303

of S send Execute messages to the replicas in next shard using
our communication primitive. Notice that the Execute message
includes updated write sets (ΣI), which help in resolving any
dependencies during execution. Finally, when the execution is
completed across all the shards, the first shard in ring order
replies to the client.

5 UNCIVIL EXECUTIONS

In previous sections, we discussed transactional flows under the
assumption that the network is stable and replicas will follow the
stated protocol. However, any Byzantine-Fault Tolerant protocol
should provide safety under asynchronous settings and liveness
in the period of synchrony even if up to f replicas are Byzantine.

RingBFT offers safety in an asynchronous environment. To
guarantee liveness during periods of synchrony, RingBFT offers
several recovery protocols, such as checkpoint, retransmission,
and view-change, to counter malicious attacks. The first step in
recovery against any attack is detection. To do so, we require each
replica r to employ a set of timers. When a timer at a replica r
timeouts, then r initiates an appropriate recovery mechanism. In
specific, each replica r sets following timers:

• Local Timer – To track successful replication of a trans-
action in its shard.

• Transmit Timer – To re-transmit a successfully repli-
cated cross-shard transaction to next shard.

• Remote Timer – To track replication of a cross-shard
transaction in the previous shard.

Each of these timers is initiated at the occurrence of a distinct
event and its timeout leads to running a specific recovery mecha-
nism. When a local timer expires, then the corresponding replica
initiates replacement of the primary of its shard (view-change),
while a remote timer timeout requires the replica to inform the
previous shard in ring order about the insufficient communi-
cation. This brings us to following observation regarding the
consensus offered by RingBFT:

Proposition 5.1. If the network is reliable and the primary of

each shard is non-faulty, then the Byzantine replicas in the system

cannot affect the consensus protocol.

Notice that Proposition 5.1 holds implicitly as no step in Fig-
ure 5 depends on the correct working of non-primary Byzantine
replicas; in each shard S, local replication of each transaction is
managed by the primary of S and communication between any
two shards S and U involves all the replicas. This implies that we
need only consider cases when the network is unreliable and/or
primary is Byzantine. We know that RingBFT guarantees safety
even in unreliable communication and requires a reliable net-
work for assuring liveness. Hence, we will illustrate mechanisms
to tackle attacks by Byzantine primaries. Next, we illustrate how
RingBFT resolves all the possible attacks it encounters.

(A1) Client Behavior and Attacks. In the case, the primary
is Byzantine and/or network is unreliable, client is the key entity
at loss. Client requested the primary to process its transaction,
but due to an ongoing Byzantine attack, client did not receive
sufficient responses. Clearly, client cannot wait indefinitely to
receive valid responses. Hence, we require each client c to start a
timer when it sends its transaction TI to the primary pS of shard
S. If the timer timeouts prior to c receiving at least f + 1 identical
responses, c broadcasts TI to all the replicas r ∈ RS of shard S.

When a non-primary replica r receives a transaction from c,
it forwards that transaction to pS and waits on a timer for pS

to initiate consensus on TI. During this time, r expects pS to
start consensus on at least one transaction from c, otherwise
it initiates view-change protocol. Notice that a Byzantine client
can always forward its request to all the replicas of some shard
to blame a non-faulty primary. Such an attack will not succeed
as if c sends to r an already executed request, r simply replies
with the stored response. Moreover, if r belongs to some shard
S, which is not the first shard in ring order, then r ignores the
client transaction.

(A2) Faulty Primary and/orUnreliable network.A faulty
primary can prevent successful consensus of a client transaction.
Such a primary can be trivially detected as at most f non-faulty
replicas would have successfully committed the transaction (re-
ceived at least n − f Commit messages).

An unreliable network can cause messages to get lost or indefi-
nitely delayed. Such an attack is difficult to detect and non-faulty
replicas may blame the primary.

Each primary represents a view of a shard. Hence, the term
view-change is often used to imply primary replacement. Notice
that each shard in RingBFT is a replicated system. Further, Ring-
BFT is a meta-protocol, which employs existing Bft protocols,
such as Pbft, to run consensus. These properties allow RingBFT
to use the accompanying view-change protocol. Specifically, in
this paper, we use Pbft’s view change protocol (for MAC-based
authentication) to detect and replace a faulty primary [11].

A replica r ∈ RS initiates the view-change protocol to replace
its primary pS in response to a timeout. As discussed earlier in
this section, there are two main causes for such timeouts: (i) r
does not receive nf identical Commit messages from distinct
replicas, and (ii) pS fails to propose a request from client c.

(A3) Malicious Primary. A malicious primary p can ensure
that up to f non-faulty replicas in its shard S are unable to make
progress (in dark). Under such conditions, the affected non-faulty
replicas will request a view-change, but they will not be success-
ful as the next primary may not receive sufficient ViewChange
messages (from at least nf replicas) to initiate a new view. Fur-
ther, the remaining f + 1 non-faulty replicas will not support
such ViewChange requests as it is impossible for them to dis-
tinguish between this set of f non-faulty replicas and the actual
f Byzantine replicas.

To ensure these replicas in dark make progress, traditional pro-
tocols periodically send checkpoint messages. These checkpoint
messages include all client transactions and the corresponding
nf Commit messages since the last checkpoint.

5.1 Cross-Shard Attacks

Until now, we have discussed attacks that can be resolved by
replicas of any shard independent of the functioning of other
shards. However, the existence of cross-shard transactions un-
ravels new attacks, which may span multiple shards. We use the
term cross-shard attacks to denote attacks that thwart successful
consensus of a cst, First, we describe such attacks, and then we
present solutions to recover from these attacks.

In RingBFT, we know that the consensus of each cst follows
a ring order. In specific, for a cross-shard transaction TI , each of
its involved shards S,U ∈ I first run a local consensus and then
communicate the data to the next shard in ring order. Earlier in
this section, we observed that if at least f + 1 non-faulty replicas
of any shard are unable to reach consensus on TI, then that
shard will undergo local view-change. Hence, we are interested
in those cross-shard attacks where neither the involved shards are

304

Replica-role (running at the replica q of shard U) :
1: event Remote timer of q timeouts such that:

q has received at most f ⟨Forward(⟨TI ⟩c , A,m, ∆,)⟩r messages, where
id(S) = PrevInRingOrder(I), r ∈ RS do

2: Send ⟨RemoteView(⟨TI ⟩c , ∆)⟩q to replica o, where o ∈ RS ∧ id(q) = id(o)

3: event r receives messagem := ⟨RemoteView(⟨TI ⟩c , ∆)⟩q such that:
m is well-formed and sent by replica q, where

id(U) = NextInRingOrder(I), q ∈ RU ∧ id(r) = id(q) do

4: Broadcastm to all replicas in S.

5: event r receives f + 1 ⟨RemoteView(⟨TI ⟩c , ∆)⟩q messages do

6: Initiate Local view-change protocol.

Figure 6: The remote view-change algorithm of RingBFT.

able to trigger local view change by themselves, nor are they able

to execute the transaction and reply to the client. This can only
occur when all the involved shards of a cross-shard transaction
TI , either successfully completed consensus on TI , or are unable
to initiate the consensus on TI . Next, we describe these attacks.

Assume RS and RU represent the sets of replicas in shards S
and U, respectively.

(C1) No Communication. Under a no communication at-
tack, we expect that the replicas in RS are unable to send any
messages to replicas of RU .

(C2) Partial Communication. Under a partial communica-
tion attack, we expect that at least f + 1 replicas in RU receive
less than f + 1 Forward messages from replicas in RS .

Both of these attacks could occur solely due to an unreliable
network that causes message loss or indefinite message delays.
Further, a malicious primary can collude with an adversarial
network to accelerate the frequency of such attacks. In either
of the cases, to recover from such cross-shard attacks, all the
involved shards may need to communicate among themselves.

5.1.1 Message Retransmission. In RingBFT, to handle a no
communication attack, affected replicas of the preceding shard
retransmit their original message to the next shard in ring order.
Specifically, when a replica r of shard S successfully completes
the consensus on transaction TI, it sets the transmit timer for
this request prior to sending the Forward message to replica Q
of shard U (next shard in ring order). When the transmit timer
of r timeouts, it again sends the Forward message to q.

5.1.2 Remote ViewChange. A partial communication attack
could be either due to a Byzantine primary or unreliable network.
If the primary pS of shard S is Byzantine, then it will ensure that
at most f non-faulty replicas replicate a cross-shard transaction
TI (S,U ∈ I), locally. As a result, replicas of next shard U will
receive at most f Forward messages. Another case is where the
network is unreliable, and under such conditions, replicas of U
may again receive at most f Forward messages.

From Figure 5, we know that when replica q of shard U receives
a Forward message from replica r of shard S such that id(r) =
id(q), then q broadcasts this Forward message to all the replicas
in U. At this point, RingBFT also requires replica q to start the
remote timer. If any replica q in shard U does not receive identical
Forward messages from f + 1 distinct replicas of shard S, prior
to the timeout of its remote timer, then q detects a cross-shard
attack and sends a RemoteViewmessage to the replica r of shard
S, where id(r) = id(q). Following this, r broadcasts the received
RemoteView message to all the replicas in S. Finally, when any
replica r of shard S receives RemoteView messages from f + 1
replicas of U, it supports the view change request and initiates
the view-change protocol. We illustrate this process in Figure 6.

Triggering of Timers. In RingBFT, we know that for each cross-
shard transaction, each replica r of S sets three distinct timers.
Although each timer helps in recovering against a specific attack,
there needs to be an order in which they timeout. As local timers
lead to detecting a local malicious primary, we expect a local
timer to have the shortest duration. Further, a remote timer helps
to detect a lack of communication due to which it has a longer
duration than local timers. Similarly, we require the duration of
retransmit timer to be the longest.

6 RINGBFT GUARANTEES

We now state the safety, liveness, and no deadlock guarantees
provided by our RingBFT protocol.

Proposition 6.1. Let Ri , i ∈ {1, 2}, be two non-faulty replicas

in shard S that committed to ⟨Ti ⟩ci as the k-th transaction sent by

p. If n > 3f , then ⟨T1⟩c1 = ⟨T2⟩c2 .

Proof. Replica ri only committed to ⟨T⟩ci after ri received
identical Commit(∆,k) messages from nf distinct replicas in S.
Let Xi be the set of such nf replicas and Yi = Xi \ F be the
non-faulty replicas in Xi . As |F | = f , so |Yi | ≥ nf − f . We
know that each non-faulty replica only supports one transaction
from primary p as the k-th transaction, and it will send only
one Prepare message. This implies that sets Y1 and Y2 must not
overlap. Hence, |X1 ∪ X2 | ≥ 2(nf − f). As |X1 ∪ X2 | = nf , the
above inequality simplifies to 3f ≥ n, which contradicts n > 3f .
Thus, we conclude ⟨T1⟩c1 = ⟨T2⟩c2 . □

Theorem 6.2. No Deadlock: In a system S of shards, where

S,U ∈ S and S , U, no two replicas r ∈ S and q ∈ U that order

two conflicting transactions TI1 and TI2 such that S,U ∈ I1 ∩ I2
will execute TI1 and TI2 in different orders.

Proof. We know that RingBFT associates an identifier with
each shard and uses this identifier to define a ring order. Let
id(S) < id(U), and the ring order be defined as lowest to highest
identifier. Assume that the conflicting transactions TI1 and TI2
are in a deadlock at shards S and U, where S,U ∈ I1 ∩ I2. This
implies that each non-faulty replica r ∈ S has locked some data-
item for TI1 that is required by TI2 while each non-faulty replica
q ∈ U has locked some data-item for TI2 that is required by TI1
or vice versa.

As each transaction TIi , i ∈ [1, 2] accesses S and U in ring
order, so each transaction TIi was initiated by S. This implies that
the primary of S would have assigned these transactions distinct
sequence numbers ki , i ∈ [1, 2], such that k1 < k2 or k1 > k2
(k1 = k2 is not possible as it will be detected as a Byzantine
attack). During the commit phase, each replica r will put the
transaction with larger sequence number ki in the π list and
lock the corresponding data-item (Figure 5, Line 23), while the
transaction with smaller ki is forwarded to the next shard U.
The transaction present in the π list is only extracted once the
data-item is unlocked. Hence, there is a contradiction, that is,
shards S and U will not suffer deadlock. □

Theorem 6.3. Safety: In a systemS of shards, where each shard

S ∈ S has at most f Byzantine replicas, each replica r follows the

Involvement, Non-divergence, and Consistence properties. Specifi-

cally, all the replicas of S execute each transaction in the same order,

and every conflicting cross-shard transaction is executed by all the

replicas of all the involved shards in the same order.

305

Proof. Using Proposition 6.1 we have already illustrated that
RingBFT safely replicates a single-shard transaction, despite a
malicious primary and/or unreliable network. In specific, any
non-faulty replica R ∈ RS will only commit a single-shard trans-
action if it receives Commit messages from nf distinct replicas
in RS. When a non-faulty replica receives less than nf Commit
messages, then eventually its local timer will timeout and it will
participate in the view-change protocol. Post the view-change
protocol, any request that was committed by at least one non-
faulty replica will persist across views.

Similarly, we can show that each cross-shard transaction is
also safely replicated across all replicas of all the involved shards.
In RingBFT, each cross-shard transaction TI is processed in
ring order by all the involved shards I. Let shards S,U ∈ I and
id(S) < id(U) such that ring order is based on lowest to highest
identifier. Hence, replicas of shard U will only start consensus
on TI if they receive Forward messages from f + 1 distinct
replicas of S. Further, each of these Forward messages includes
DS from nf distinct replicas of S on identical Commit messages
corresponding to TI, which guarantees that TI was replicated
in S. If the network is unreliable and/or primary of shard S is
Byzantine, then replicas of U will receive less than f+1 Forward
messages. In such a case, either the remote timer at replicas of
U will timeout, or one of the two timers (local timer or transmit
timer) of replicas of S will timeout. In any case, following the
specific recovery procedure, replicas of U will receive a sufficient
number of Forward messages. □

Theorem 6.4. Liveness: In a systemS of shards, where each

shard S ∈ S has at most f Byzantine replica, if the network is reli-
able, then each replica r follows the Involvement and Termination

properties. Specifically, all the replicas continue making progress,

and good clients continue receiving responses for their transactions.

Proof. In the case of a single-shard transaction, if the primary
is non-faulty, then each replica will continue processing client
transactions. If the primary is faulty, and prevents a request from
replicating by allowing at most f replicas to receive Commit
messages, then such a primary will be replaced through view-
change protocol, following which a new primary will ensure
that the replicas continue processing subsequent transactions.
Notice that there can be at most f such faulty primaries, and the
system will eventually make progress. If the primary is malicious,
then it can keep up to f non-faulty replicas in dark, which will
continue making progress through periodic checkpoints. In the
case of a cross-shard transaction, there is nothing extra that a
faulty primary pS can do than preventing local replication of
the transaction. If pS does that, then as discussed above, pS will
be replaced. Further, during any communication between two
shards, primary has no extra advantage over other replicas in the
system. Further, the existence of transmit and remote timers help
replicas of all the involved shards to keep track of any malicious
act by primaries. □

7 EVALUATION

In this section, we evaluate our RingBFT protocol. To do so, we
implement RingBFT on our high throughput yielding permis-
sioned blockchain fabric, ResilientDB [26–29, 32, 33, 35, 58].
ResilientDB associated a multi-threaded pipelined architecture
with each replica, which helps to optimally design a consensus
protocol. For implementation details, we refer the reader to the
full version of this paper [59].

For experimentation, we deploy ResilientDB onGoogle Cloud
Platform (GCP) infifteen regions acrossfive continents, namely:
Oregon, Iowa, Montreal, Netherlands, Taiwan, Sydney, Singapore,
South Carolina, North Virginia, Los Angeles, Las Vegas, London,
Belgium, Tokyo, and Hong Kong. In any experiment involving
less than 15 shards, the choice of the shards is in the order we
have mentioned above. We deploy each replica on a 16-core N1
machine having Intel Broadwell CPUs with a 2.2GHz clock and
32GB RAM. For deploying clients, we use the 4-core variants
having 16GB RAM. For each experiment, we equally distribute
the clients in all regions.

Benchmark. To provide workload for our experiments, we
use the Yahoo Cloud Serving Benchmark from the BlockBench
suite (YCSB) [13, 18] . Each client transaction queries a YCSB
table with an active set of 600 k records. For our evaluation, we
adopt transactions that read and modify existing records. Prior
to each experiment, each replica initializes an identical copy of
the YCSB table. YCSB workloads help us to create cross-shard
client transactions with varying degrees of conflict, while other
workloads aim to evaluate the cost of executing a transaction,
which is orthogonal to our RingBFT consensus.

Existing Protocols. In all our experiments, we compare the
performance of RingBFT against two other state-of-the-art shard-
ing Bft protocols, AHL [15] and Sharper [4]. In Section 2, we
highlighted key properties of these protocols. Like RingBFT,
both AHL and Sharper employ Pbft to achieve consensus on
single-shard transactions. Hence, all three protocols have identi-
cal implementations for replicating single-shard transactions. For
achieving consensus on cross-shard transactions, we follow the
respective algorithms and modify ResilientDB appropriately.

WANBandwidth andRound-Trip Costs.As themajority of
experiments take place in a geo-scaled WAN environment span-
ning multiple continents, available bandwidth and round-trip
costs between two regions play a crucial role. Prior works [2, 33]
have illustrated that if the available bandwidth is low and round-
trip costs are high, then the protocols dependent on a subset
of replicas face performance degradation. In the case of AHL,
the reference committee is responsible for managing cross-shard
consensus, while for Sharper, the primary of coordinating shard
leads the cross-shard consensus. Hence, both of these proto-
cols observe low throughput and high latency in proportion to
available bandwidth and round-trip costs. Although RingBFT
requires cross-shard communication in the form of Forward and
Execute messages, the system is comparably less burdened as all
the replicas participate equally in this communication process.

Standard Settings. Unless explicitly stated, we use the fol-
lowing settings for all our experiments. We run with a mixture
of single-shard and cross-shard transactions, of which 30% are
cross-shard transactions. Each cross-shard transaction accesses
all the 15 regions, and in each shard we deploy 28 replicas, that
is, a total of 420 globally distributed replicas. The number of key-
value pairs accessed by each transaction varies in accordance
with the number of regions accessed. For example, if a trans-
action accesses three regions, then it accesses three key-value
pairs. In these experiments, we allow up to 50K clients to send
transactions. Further, we require clients and replicas to employ
batching and create batches of transactions of size 100.

The sizes of messages communicated during RingBFT consen-
sus are: Preprepare (5408B), Prepare (216B), Commit (269B),
Forward (6147B), Checkpoint (164B), and Execute (1732B).

306

Note: Our RingBFT protocol provides support for standard
multi-statement transactions that are widely adopted by deter-
ministic databases [36, 39, 57, 60, 66]. Hence, the complexity of
designing RingBFT is similar to running an application on top
of a deterministic database. Hence, we believe a developer would
not face any new challenges.

Through our experiments, we want to answer the following:
(Q1) What is the effect of increasing the number of shards on

consensus provided by RingBFT?
(Q2) How does varying the number of replicas per shard af-

fects the performance of RingBFT?
(Q3) What is the impact of increasing the percentage of cross-

shard transactions on RingBFT?
(Q4) How does batching affect the system performance?
(Q5) What is the effect of varying the number of involved

shards in a cross-shard transaction on RingBFT?
(Q6) What is the impact of varying number of clients on con-

sensus provided by RingBFT?
(Q7) How do faulty primary and view change affect the per-

formance of RingBFT?
Scaling Number of Shards. For our first set of experiments,

we study the effect of scaling the number of shards. In specific, we
require clients to send cross-shard transactions that can access
from 3, 5, 7, 9, 11, and 15 shards, while keeping other parameters
at the standard setting. We use Figures 7 (I) and (II) to illustrate
the throughput and latency metrics.

RingBFT achieves 16× and 4× higher throughput than AHL
and Sharper in the 15 shard setting, respectively. An increase in
the number of shards only increases the length of the ring while
keeping the amount of communication between two shards at
constant. As a result, for RingBFT, we observe an increase in la-
tency as there is an increase in time to go around the ring, namely,
a linear neighbor-to-neighbor communication. From three shards
to 15 shards, the latency increases from 1.17s to 6.82s. Notice
that the throughput for RingBFT is nearly constant since the
size of shards and the amount of communication among shards
are constant. This is a consequence of an increase in the number
of shards that can perform consensus on single-shard transac-
tions in parallel. Although on increasing the number of shards,
there is a proportional increase in the number of involved shards
per transaction, the linear communication pattern of RingBFT
prevents throughput degradation.

In the case of AHL, the consensus on cross-shard transactions
is led by the reference committee, which essentially centralizes
the communication in the global setting and affects the system
performance. In contrast, Sharper scales better because there
is no single reference committee leading all cross-shard consen-
suses. However, even Sharper sees a fall in throughput due to
two rounds of communication between all replicas of all the in-
volved shards. For a system where all the shards are globally
scattered, quadratic communication complexity and communica-
tion between all the shards impacts the scalability of the system.

Scaling Number of Replicas per Shard.We now study the
effects of varying different parameters within a single shard. Our
next set of experiments aim to increase the amount of replication
within a single shard. In specific, we allow each shard to have 10,
16, 22, and 28 replicas. We use Figures 7 (III) and (IV) to illustrate
the throughput and latency metrics.

These plots reaffirm our theory that RingBFT ensures up to
16× higher throughput and 11× lower latency than the other two
protocols. As the number of replicas in each shard increases, there
is a corresponding decrease in throughput for RingBFT. This

decrease is not surprising because RingBFT employs the Pbft
protocol for local replication, which necessitates two phases of
quadratic communication complexity. This, in turn increases the
size (and as a result cost) of Forward messages communicated
between shards.

In the case of AHL, the existence of a reference committee acts
as a performance bottleneck to an extent that 30% cross-shard
transactions involving all the 15 shards subsides the benefits due
to reduced replication (10 or 16 replicas). Sharper also observes
a drop in its performance as it relies on Pbft, and is unable to
scale at smaller configurations due to expensive communication
that requires an all-to-all communication between the replicas
of involved shards. To summarize: RingBFT achieves up to 4×
and 16× higher throughput than Sharper and AHL, respectively.

Varying percentage of Cross-shard Transactions. For our
next study, we allow client workloads to have 0, 5%, 10%, 15%,
30%, 60%, and 100% cross-shard transactions. We use Figures 7
(V) and (VI) to illustrate the throughput and latency metrics.

When the workload contains no cross-shard transactions, it
simply indicates a system where all the transactions access only
one shard. In this case, all the three protocols attain the same
throughput and latency as all of them employ Pbft for reach-
ing consensus on single-shard transactions. They achieve 1.2

Million txn/s throughput among 500 nodes in 15 globally dis-
tributed regions. With a small (5%) introduction of cross-shard
transactions in the workload, there is a significant decrease for
all the protocols. The amount of decrease is in accordance to the
reasons we discussed in previous sections. However, RingBFT
continues to outperform other protocols. In the extreme case of
100% cross-shard workload, RingBFTachieve 4× and 18× higher
throughput and 3.3× and 7.8× lower latency than Sharper and
AHL, respectively.

Varying the Batch Size. Next, we study the impact of batch-
ing transactions on system performance. We require the three
protocols to run consensus on batches of client transactions with
sizes 10, 50, 100, 500, 1K, and 5K. We use Figures 7 (VII) and (VIII)
to illustrate the throughput and latency metrics.

As the number of transactions in a batch increases, there is a
proportional decrease in the number of consensuses. For example,
with a batch size of 10 and 100 for 5000 transactions, we need
500 and 50 instances of consensus. However, larger batches also
cause an increase in latency due to the increased cost of commu-
nication and time for processing all the transactions in the batch.
Hence, we observe an increase in throughput on moving from
small batches of 10 transactions to large batches of 1K transac-
tions. On further increase (after 1.5K), the system throughput
hits saturation and eventually decreases as benefits of batching
are over-shadowed by increased communication costs.

Starting from the batch size of 10, on increasing the batch
size, the throughput increases up to 27× in RingBFT because,
with less communication and fewer messages, we are processing
more transactions. This trend lasts until the system reaches its
saturation point in terms of communication and computation,
which is the batch size of 1.5K for RingBFT. Once the system
is at filling its network bandwidth, adding more transactions
to the batch will not increase the throughput because it cannot
process more, and sending those batches will be a bottleneck for
the system. Ideally, it should get constant after some point but
because of implementation details and queuing, it drops slightly
after some time.

Ideally, we expect the latency to also decrease with an increase
in batch size. However, for RingBFT, more transactions in a batch

307

RingBFT Sharper AHL

3 5 7 9 11 15
0

20K

40K

60K

80K

Number of Shards (s)

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

(I) Impact of Shards (Throughput)

3 5 7 9 11 15
0.0

20.0

40.0

60.0

80.0

Number of Shards (s)
La
te
nc
y
(s)

(II) Impact of Shards (Latency)

10 16 22 28
0

50K

100K

150K

200K

Number of Nodes Per Shard (n)

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

(III) Impact of Nodes per Shards (Throughput)

10 16 22 28
0.0

20.0

40.0

60.0

80.0

Number of Nodes Per Shard (n)

La
te
nc
y
(s)

(IV) Impact of Nodes per Shards (Latency)

0 5 10 15 30 60 100

2K

10K

50K

200K

1M

Cross-Shard Workload Rate

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

(V) Impact of X-Shard Workload Rate (Throughput)

0 5 10 15 30 60 100
0.0

50.0

100.0

Cross-Shard Workload Rate

La
te
nc
y
(s)

(VI) Impact of X-Shard Workload Rate (Latency)

10 50 100 500 1K 1.5K
0

50K

100K

150K

200K

Batch Size

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

(VII) Impact of Batch Size (Throughput)

10 50 100 500 1K 1.5K
0.0

50.0

100.0

150.0

Batch Size

La
te
nc
y
(s)

(VIII) Impact of Batch Size (Latency)

1 3 6 9 15

10K

50K

200K

1M

Involved Shards

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

(IX) Impact of Involved Shards (Throughput)

1 3 6 9 15
0.0

20.0

40.0

60.0

80.0

Involved Shards

La
te
nc
y
(s)

(X) Impact of Involved Shards (Latency)

3K 5K 10K 15K 20K
0

20K

40K

60K

80K

Clients

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

(XI) Impact of Inflight Transactions (Throughput)

3K 5K 10K 15K 20K
0.0

50.0

100.0

Clients

La
te
nc
y
(s)

(XII) Impact of Inflight Transactions (Latency)

Figure 7: Measuring system throughput and average latency on running different Bft sharding consensus protocols.

implies more time spent processing the transactions around the
ring. This causes an increase in latency for the client. To sum-
marize: Using the optimal batch size improve the throughput of
RingBFT, Sharper and AHL, 27×, 45×, and 3× respectively.

Varying Number of Involved Shards. We now keep the
number of shards fixed at 15 and require all clients to create trans-
actions that access a subset of these shards. In specific, clients
send transactions that access 1, 3, 6, 9, and 15 shards. As our
selected order for shards gives no preference to their proximity
to each other (to prevent any bias), our clients select consecutive
shards in order to generate the workload.

We use Figures 7 (IX) and (X) to illustrate the throughput and
latency metrics. As expected, all three protocols observe a drop
in performance on the increase in the number of involved shards.
However, RingBFT still outperforms the other two protocols.
As we increase the number of involved shards, the performance
gap between RingBFT and the other two protocols increases. As
shown in the graph, with three shards involved, RingBFT has a
4% performance gap, increasing to 4× with 15 shards involved.

Varying Number of Clients. Each system can reach opti-
mal latency only if it is not overwhelmed by incoming client
requests. In this section, we study the impact of the same by
varying the number of incoming client transactions through a
gradual increase in the number of clients from 5K to 20K. We use
Figures 7 (XI) and (XII) to illustrate resulting throughput and la-
tency metrics. As we increase the number of clients transmitting
transactions, we observe a 15−20% increase in throughput, reach-
ing the saturation point. Having more clients causes a decrease
between 7% and 9%, which is a result of various queues being full
with incoming requests, which in turn causes a replica to perform
extensive memory management. Due to similar reasons, there

is a significant increase in latency as the time to process each
request has increased proportionally. We observed 32.75s, 58.21s,
and 59.64s increase in RingBFT, Sharper, and AHL respectively.
Despite this, RingBFT scales better than other protocols even
when the system is overwhelmed by clients.

Impact of Primary Failure. Next, we evaluate the effect of
replacing a faulty primary in different shards. For this experiment,
we run experiments with 9 shards and allow workload to consist
of 30% cross-shard transactions. We use Figure 8 to show the
throughput attained by RingBFT when the primary of the first
three shards fail, and the replicas run the view change protocol
to replace the faulty primary. The primaries of these shards fail
at 10s , and the system’s average throughput starts decreasing
while other shards are processing their clients’ requests. RingBFT
observes a 15% decrease in throughput and post view change; it
again observes an increase in throughput.

Impact of Complex Cross-Shard Transactions.Until now,
we have experimentedwith simple cstwhere for a given cst each
shard could independently execute its data-fragment. However,
a sharded system may encounter a complex cst where each
shard may require access to data (and needs to check constraints)
present in other shards while executing its data-fragment. These
data-access dependencies require each shard to read the data
from remote shards.

Our RingBFT protocol performs this task by requiring each
shard to send its read-write sets along with the Forward mes-
sage. In this section, we study the cost of communicating the
read-write sets of a complex cst on our RingBFT protocol. We
use Figure 9 to illustrate the throughput and latency metrics on
varying the number of data-access dependencies from 0 to 64
distributed randomly across 15 shards. These figures illustrate

308

0 10 20 30 40 50 60 70 80 90 100110
Time

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

Impact of Primary Failure in Three Shards

Figure 8: RingBFT’s throughput under the primary failure of

three shards out of nine. (s = 10) primary fails; (s = 20) replicas
timeout and send view-change messages; (s = 30) new primary

starts the new view; (s = 35) system’s throughput start increasing

and returns back to normal at s = 55.

that our RingBFT protocol provides reasonable throughput and
latency even for a cst with extensive dependencies.

Note that we have not included Sharper and AHL in Figure 9
as supporting complex cst is not covered in [4, 15] and remains
as an open problem. For example, to support remote reads, first,
there must be a consensus on the remote shard to agree on the
requested operations and their values. Second, on the receiving
end, there must be another local consensus on the values re-
ceived. If the remote values are not received, then a consensus
is needed to detect failures in order to invoke remote recovery
to restore liveness. Now Sharper has a single global consensus
that coordinates among all shards and their replicas. Thus, ex-
tending Sharper is nontrivial because it is unclear as to when
and how the additional remote consensuses and recoveries could
be invoked. In the case of AHL, due to its 2PC design, invoking
remote consensus on each shard to process remote read is simple,
but it is challenging to invoke remote view change when the
network is unreliable or the primary of the remote shard behaves
maliciously. Moreover, keeping the question of feasibility aside,
we observe that in Figure 7(I), at 15 shards, the throughputs of
both Sharper and AHL are under 20K while RingBFT sustains
80K transactions/second. However, in Figure 9, when we scale
up to 64 remote operations across 15 shards, RingBFT yields a
throughput of at least 45K transactions/second, surpassing both
baselines with no remote operations.

8 RELATEDWORK

In Section 1, we presented an overview of different types of Bft
protocols. Further, we have extensively studied the architecture
of state-of-the-art permissioned sharding Bft protocols, AHL
and Sharper. We now summarize other works in the space of
Byzantine Fault-Tolerance consensus.

Traditional Bft consensus The consensus problems such as
Byzantine Agreement and Interactive Consistency have been
studied in literature in great detail [19–22, 64, 65]. With the intro-
duction of Pbft-powered BFS—a fault-tolerant version of the net-
worked file system [40]—by Castro et al. [10, 11] there has been
an unprecedented interest in the design of high-performance Bft
consensus protocols. This has led to the design of several con-
sensus protocols that have optimized different aspects of Pbft,
e.g, Zyzzyva, Sbft, and PoE, as discussed in the Introduction. To
further improve on the performance of Pbft, some consensus
protocols consider providing less failure resilience [1, 51, 52],

RingBFT

8 16 32 48 640

20K

40K

60K

80K

00
Number of Remote Reads

Each Txn Requires

To
ta
lT

hr
ou

gh
pu

t(
tx
n/

s)

(I) Impact of Remote Reads (Throughput)

8 16 32 48 640.0

5.0

10.0

15.0

00.0
Number of Remote Reads

Each Txn Requires

La
te
nc
y
(s)

(II) Impact of Remote Reads (Latency)

Figure 9: RingBFT’s throughput and latency on encounter-

ing complex cross-shard transactions with dependencies

varying from 0 to 64.

focused on a theoretical framework to support weaker consis-
tency and isolation semantics such as dirty reads and committed
reads [43], or rely on trusted components [6, 12, 34].

Bahsoun et al. [5] presented an adaptive Bft protocol that
permits switching the type of Bft consensus protocol as per
the system requirements. Guerraoui et al. [25] introduced the
StretchingBFT protocol that aims to improve on Pbft by arrang-
ing replicas in a ring-like topology where each replica commu-
nicates with its two neighbors. Our RingBFT is a meta-protocol
that can utilize any of these Bft protocol to achieve optimal
intra-shard consensus. Hence, these protocols complement our
design. Further, these protocols cannot scale to hundreds of repli-
cas scattered across the globe, and this is where our vision of
RingBFT acts as a resolve.

Permissionless Sharded Blockchains Permissionless space in-
cludes several sharding Bft consensus protocols, such as Con-
flux [49], Elastico [50], MeshCash [7], OmniLedger [45], and
Spectre [63]. All of these protocols require each of their shards to
run either the Proof-of-Work or Proof-of-Stake protocol during
some phase of the consensus. As a result these protocols offer
a magnitude lower throughput than both AHL and Sharper,
which are included in our evaluation.

In our recent sharding work, we have developed a comprehen-
sive theoretical framework to study a wide range of consistency
models and isolation semantics (e.g., dirty reads, committed reads,
serializability) and communication patterns (e.g., centralized vs.
distributed) [43]. We have further developed a hybrid sharding
protocol intended for the permissionless setting optimized for
the widely used unspent transaction model [41].

9 CONCLUSIONS

In this paper, we present RingBFT–a novel meta-Bft protocol
for permissioned sharded blockchains. For a single-shard trans-
action, RingBFT performs as efficient as any state-of-the-art
sharding Bft consensus protocol. However, existing sharding
Bft protocols face severe fall in throughput when they have
to achieve consensus on a cross-shard transaction. RingBFT re-
solves this situation by requiring each shard to participate in at
most two rotations around the ring. In specific, RingBFT expects
each shard to adhere to the prescribed ring order, and follow the
principle of process, forward, and re-transmit, while ensuring the
communication between shards is linear. We implement Ring-
BFT on our efficient ResilientDB fabric, and evaluate it against
state-of-the-art sharding Bft protocols. Our results illustrates
that RingBFT achieves up to 18× higher throughput than the
most recent sharding protocols and easily scales to nearly 500
globally-distributed nodes.

309

REFERENCES

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Re-
iter, and Jay J. Wylie. 2005. Fault-scalable Byzantine Fault-tolerant Services. In
Proceedings of the Twentieth ACM Symposium on Operating Systems Principles.
ACM, 59–74. https://doi.org/10.1145/1095810.1095817

[2] Yair Amir, Claudiu Danilov, Jonathan Kirsch, John Lane, Danny Dolev, Cristina
Nita-Rotaru, Josh Olsen, and David Zage. 2006. Scaling Byzantine Fault-
Tolerant Replication to Wide Area Networks. In International Conference on

Dependable Systems and Networks (DSN’06). 105–114. https://doi.org/10.1109/
DSN.2006.63

[3] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CA-
PER: A Cross-application Permissioned Blockchain. Proc. VLDB Endow. 12, 11
(2019), 1385–1398. https://doi.org/10.14778/3342263.3342275

[4] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019.
SharPer: Sharding Permissioned Blockchains Over Network Clusters. (2019).
https://arxiv.org/abs/1910.00765v1

[5] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. 2015. Making BFT
Protocols Really Adaptive. In 2015 IEEE International Parallel and Distributed

Processing Symposium. 904–913. https://doi.org/10.1109/IPDPS.2015.21
[6] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids on Steroids:

SGX-Based High Performance BFT. In Proceedings of the Twelfth European

Conference on Computer Systems. ACM, 222–237. https://doi.org/10.1145/
3064176.3064213

[7] Iddo Bentov, Pavel Hubáček, Tal Moran, and Asaf Nadler. 2017. Tortoise
and Hares Consensus: the Meshcash Framework for Incentive-Compatible,
Scalable Cryptocurrencies. (2017). https://eprint.iacr.org/2017/300

[8] P. A. Bernstein and N. Goodman. 1983. Multiversion Concurrency Control -
Theory and Algorithms. ACM TODS 8, 4 (1983), 465–483.

[9] Matthias Butenuth, Guido v. GÃűsseln, Michael Tiedge, Christian Heipke,
Udo Lipeck, and Monika Sester. 2007. Integration of heterogeneous geospatial
data in a federated database. ISPRS Journal of Photogrammetry and Remote

Sensing 62, 5 (2007), 328 – 346. https://doi.org/10.1016/j.isprsjprs.2007.04.003
Theme Issue: Distributed Geoinformatics.

[10] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Toler-
ance. In Proceedings of the Third Symposium on Operating Systems Design and

Implementation. USENIX, USA, 173–186.
[11] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance

and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4 (2002), 398–461.
https://doi.org/10.1145/571637.571640

[12] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.
Attested Append-only Memory: Making Adversaries Stick to Their Word. In
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems

Principles. ACM, 189–204. https://doi.org/10.1145/1294261.1294280
[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing. ACM, 143–154.
https://doi.org/10.1145/1807128.1807152

[14] J. C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-
Distributed Database. In 10th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 12). USENIX Association, 261–264.
[15] Hung Dang, Tien Tuan AnhDinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding.
In Proceedings of the 2019 International Conference on Management of Data.
ACM, 123–140. https://doi.org/10.1145/3299869.3319889

[16] A. Deshpande and J. M. Hellerstein. 2002. Decoupled query optimization for
federated database systems. In Proceedings 18th International Conference on

Data Engineering. 716–727. https://doi.org/10.1109/ICDE.2002.994788
[17] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,

N. Verma, and M. Zwilling. 2013. Hekaton: SQL Server’s Memory-optimized
OLTP Engine. ACM, 1243–1254. https://doi.org/10.1145/2463676.2463710

[18] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and
Kian-Lee Tan. 2017. BLOCKBENCH: A Framework for Analyzing Private
Blockchains. In Proceedings of the 2017 ACM International Conference on Man-

agement of Data. ACM, 1085–1100. https://doi.org/10.1145/3035918.3064033
[19] Danny Dolev. 1982. The Byzantine generals strike again. Journal of Algorithms

3, 1 (1982), 14–30. https://doi.org/10.1016/0196-6774(82)90004-9
[20] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on Information Exchange

for Byzantine Agreement. J. ACM 32, 1 (1985), 191–204. https://doi.org/10.
1145/2455.214112

[21] Michael J. Fischer and Nancy A. Lynch. 1982. A lower bound for the time
to assure interactive consistency. Inform. Process. Lett. 14, 4 (1982), 183–186.
https://doi.org/10.1016/0020-0190(82)90033-3

[22] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibil-
ity of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (1985),
374–382. https://doi.org/10.1145/3149.214121

[23] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny
Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin
Tomescu. 2019. SBFT: A Scalable and Decentralized Trust Infrastructure.
In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN). IEEE, 568–580. https://doi.org/10.1109/DSN.2019.00063
[24] Jim Gray. 1978. Notes on Data Base Operating Systems.
[25] Rachid Guerraoui, Nikola Knezevic, Vivien Quema, and Marko Vukolic. 2010.

Stretching BFT. Infoscience EPFL.
[26] Suyash Gupta. 2020. Resilient and Scalable Architecture for Permissioned

Blockchain Fabrics. In Proceedings of the VLDB 2020 PhD Workshop co-located

with the 46th International Conference on Very Large Databases (CEURWorkshop

Proceedings), Vol. 2652. CEUR-WS.org.
[27] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2019.

An In-Depth Look of BFT Consensus in Blockchain: Challenges and Opportu-
nities. In Proceedings of the 20th International Middleware Conference Tutorials,

Middleware. ACM, 6–10. https://doi.org/10.1145/3366625.3369437
[28] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2020.

Building High Throughput Permissioned Blockchain Fabrics: Challenges and
Opportunities. Proc. VLDB Endow. 13, 12 (2020), 3441–3444. https://doi.org/10.
14778/3415478.3415565

[29] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2021.
Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation.
In Proceedings of the 24th International Conference on Extending Database

Technology, EDBT. OpenProceedings.org, 301–312. https://doi.org/10.5441/
002/edbt.2021.27

[30] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2019. Brief An-
nouncement: Revisiting Consensus Protocols through Wait-Free Paralleliza-
tion. In 33rd International Symposium on Distributed Computing, DISC (LIPIcs),
Vol. 146. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 44:1–44:3. https:
//doi.org/10.4230/LIPIcs.DISC.2019.44

[31] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. Fault-Tolerant
Distributed Transactions on Blockchain. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S01068ED1V01Y202012DTM065

[32] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. RCC: Resilient
Concurrent Consensus for High-Throughput Secure Transaction Processing.
In 37th IEEE International Conference on Data Engineering, ICDE. 1392–1403.
https://doi.org/10.1109/ICDE51399.2021.00124

[33] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow. 13,
6 (2020), 868–883. https://doi.org/10.14778/3380750.3380757

[34] Suyash Gupta, Sajjad Rahnama, Shubham Pandey, Natacha Crooks, and Mo-
hammad Sadoghi. 2022. Dissecting BFT Consensus: In Trusted Components
we Trust! CoRR abs/2202.01354 (2022). arXiv:2202.01354

[35] Suyash Gupta, Sajjad Rahnama, and Mohammad Sadoghi. 2020. Permissioned
Blockchain Through the Looking Glass: Architectural and Implementation
Lessons Learned. In 40th IEEE International Conference on Distributed Comput-

ing Systems, ICDCS. 754–764. https://doi.org/10.1109/ICDCS47774.2020.00012
[36] Suyash Gupta and Mohammad Sadoghi. 2018. EasyCommit: A Non-blocking

Two-phase Commit Protocol. In Proceedings of the 21st International Confer-

ence on Extending Database Technology, EDBT. OpenProceedings.org, 157–168.
https://doi.org/10.5441/002/edbt.2018.15

[37] Suyash Gupta and Mohammad Sadoghi. 2019. Blockchain Transaction Pro-
cessing. In Encyclopedia of Big Data Technologies. Springer, 1–11. https:
//doi.org/10.1007/978-3-319-63962-8_333-1

[38] Suyash Gupta and Mohammad Sadoghi. 2020. Efficient and non-blocking
agreement protocols. Distributed Parallel Databases 38, 2 (2020), 287–333.
https://doi.org/10.1007/s10619-019-07267-w

[39] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker. 2017. An Evaluation
of Distributed Concurrency Control. Proc. VLDB Endow. 10, 5 (2017), 553–564.
https://doi.org/10.14778/3055540.3055548

[40] Thomas Haynes and David Noveck. 2015. RFC 7530: Network File System
(NFS) Version 4 Protocol. (2015). https://tools.ietf.org/html/rfc7530

[41] Jelle Hellings, Daniel P. Hughes, Joshua Primero, and Mohammad Sadoghi.
2020. Cerberus: Minimalistic Multi-shard Byzantine-resilient Transaction
Processing. (2020). https://arxiv.org/abs/2008.04450

[42] Jelle Hellings and Mohammad Sadoghi. 2019. The fault-tolerant cluster-
sending problem. (2019). https://arxiv.org/abs/1908.01455

[43] Jelle Hellings andMohammad Sadoghi. 2021. ByShard: Sharding in a Byzantine
Environment. Proc. VLDB Endow. 14, 11 (2021), 2230–2243.

[44] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography

(2nd ed.).
[45] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,

Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decen-
tralized Ledger via Sharding. In 2018 IEEE Symposium on Security and Privacy

(SP). 583–598. https://doi.org/10.1109/SP.2018.000-5
[46] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. 2007. Zyzzyva: Speculative Byzantine Fault Tolerance. SIGOPS Oper.
Syst. Rev. 41, 6 (2007), 45–58. https://doi.org/10.1145/1323293.1294267

[47] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2010. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Trans.

Comput. Syst. 27, 4, Article 7 (2010), 39 pages. https://doi.org/10.1145/1658357.
1658358

[48] Leslie Lamport. 1998. The Part-time Parliament. (1998).
[49] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao.

2018. Scaling Nakamoto Consensus to Thousands of Transactions per Second.
(2018). https://arxiv.org/abs/1805.03870

[50] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A Secure Sharding Protocol For Open Blockchains.

310

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-

nications Security. ACM, 17–30. https://doi.org/10.1145/2976749.2978389
[51] Dahlia Malkhi and Michael Reiter. 1998. Byzantine quorum systems.

Distributed Computing 11, 4 (1998), 203–213. https://doi.org/10.1007/
s004460050050

[52] Dahlia Malkhi and Michael Reiter. 1998. Secure and scalable replication in
Phalanx. In Proceedings Seventeenth IEEE Symposium on Reliable Distributed

Systems. IEEE, 51–58. https://doi.org/10.1109/RELDIS.1998.740474
[53] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

Honey Badger of BFT Protocols. In Proceedings of the 2016 ACM SIGSAC Con-

ference on Computer and Communications Security (CCS ’16). ACM, 31âĂŞ42.
https://doi.org/10.1145/2976749.2978399

[54] The Council of Economic Advisers. 2018. The Cost of Malicious Cyber Activity

to the U.S. Economy. Technical Report. Executive Office of the President of
the United States. https://www.whitehouse.gov/wp-content/uploads/2018/03/
The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf

[55] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In ATC.

[56] M. Tamer Özsu and Patrick Valduriez. 2020. Principles of Distributed Database
Systems. Springer. https://doi.org/10.1007/978-3-030-26253-2

[57] Thamir Qadah, Suyash Gupta, and Mohammad Sadoghi. 2020. Q-Store: Dis-
tributed, Multi-partition Transactions via Queue-oriented Execution and
Communication. In Proceedings of the 23rd International Conference on Ex-

tending Database Technology, EDBT. OpenProceedings.org, 73–84. https:
//doi.org/10.5441/002/edbt.2020.08

[58] Sajjad Rahnama, Suyash Gupta, Thamir Qadah, Jelle Hellings, and Mohammad
Sadoghi. 2020. Scalable, Resilient and Configurable Permissioned Blockchain
Fabric. Proc. VLDB Endow. 13, 12 (2020), 2893–2896. https://doi.org/doi.org/10.
14778/3415478.3415502

[59] Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv Krishnan, and Moham-
mad Sadoghi. 2021. RingBFT: Resilient Consensus over Sharded Ring Topology.
CoRR abs/2107.13047 (2021). arXiv:2107.13047

[60] Mohammad Sadoghi and Spyros Blanas. 2019. Transaction Processing on

Modern Hardware. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00896ED1V01Y201901DTM058

[61] Amit P. Sheth and James A. Larson. 1990. Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases. ACM
Comput. Surv. 22, 3 (Sept. 1990), 183âĂŞ236. https://doi.org/10.1145/96602.
96604

[62] Dale Skeen. 1982. AQuorum-Based Commit Protocol. Technical Report. Cornell
University.

[63] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2016.
SPECTRE: A Fast and Scalable Cryptocurrency Protocol. (2016).
https://eprint.iacr.org/2016/1159.

[64] Gadi Taubenfeld and Shlomo Moran. 1996. Possibility and impossibility
results in a shared memory environment. Acta Informatica 33, 1 (1996), 1–20.
https://doi.org/10.1007/s002360050034

[65] Gerard Tel. 2001. Introduction to Distributed Algorithms (2nd ed.). Cambridge
University Press.

[66] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for
Partitioned Database Systems. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data (SIGMOD). ACM, 1–12.
https://doi.org/10.1145/2213836.2213838

311

