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ABSTRACT
Estimating query result cardinality is a central task of cost-based
database query optimizers, enabling them to identify and avoid
excessively large intermediate results. While cardinality estima-
tion has been studied extensively in relational databases, re-
search in the setting of graph databases has been more limited.
In this paper, we address the problem of cardinality estimation
for subgraph matching on property graph databases. Our novel
cardinality estimation technique starts from a small amount of
statistical information about node labels and relationship types,
which is propagated along the graph query pattern in terms of
label probabilities. Additionally, estimation quality can be im-
proved by providing information about labels or properties to
our technique, if available. In our experimental evaluation, we
compare our approach to state-of-the-art cardinality estimation
techniques for subgraph matching for property graph, RDF, and
relational databases, and we demonstrate that our technique of-
fers the best trade-off between accuracy and efficiency.

1 INTRODUCTION
Cardinality estimation is themost important factor in cost-based
query optimization [33].Without (reasonably) accurate cardinal-
ity estimates, a query optimizer is unable to compute the cost of
a candidate execution plan in order to reliably predict its execu-
tion time [18]. Failing to do so can lead to the selection of a sub-
optimal or even catastrophic execution plan. At the same time,
the calculation of cardinality estimates needs to be fast (ideally
� 1 ms) as it will be applied to a large number of subplans dur-
ing the enumeration of plan candidates. Finally, cardinality esti-
mation also needs to be able to work from base statistics that can
be managed efficiently. As a consequence, a well-balanced trade-
off between accuracy and efficiency is a key requirement in the
design of an effective cardinality estimation technique. While in
the setting of relational database systems cardinality estimation
is a well-studied problem [14, 15, 19, 23, 29, 37, 46], similar efforts
in the setting of graph database systems are relatively recent and
few [9, 24, 26, 27, 35].

The specific focus of this paper is cardinality estimation of
subgraph matching queries in property graph databases. Sub-
graph matching is an important class of graph queries that has
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Figure 1: Comparison of the trade-off between accuracy
and efficiency of our technique to the state of the art

wide-ranging applications. For example, Sahu et al. [32] found
that the five graph problems that are most relevant to both re-
searchers and practitioners all involve subgraphmatching. Addi-
tionally, subgraph matching is a central concept in graph query
languages such as SPARQL [38] for RDF data and GQL [8], a new
standard query language for property graph data, which will be
based on openCypher [13], PGQL [1], and G-CORE [3].

In this paper, we present a novel technique to estimate the re-
sult cardinality of subgraph matching queries that is specifically
designed for property graph databases. Our technique requires
only a small amount of statistical information about node labels
and relationship types. While this information is slightly more
complex than the information used by Neo4j, our closest com-
petitor, it can still be collected with very little overhead while
yielding a substantial improvement in accuracy. In addition, our
technique can also use optional information about label hierar-
chy and label disjointness to further improve estimates. At the
core of our technique is a statistical model that defines how infor-
mation is propagated and transformed along a pattern in order
to estimate the result cardinality.

Themain contribution of this paper is to demonstrate that our
cardinality estimation technique achieves amore balanced trade-
off between accuracy and efficiency than state-of-the-art tech-
niques. Figure 1 plots median q-error (accuracy) vs. median run-
time of the cardinality estimator (efficiency). The results clearly
indicate that there is, to the best of our knowledge, no competi-
tor that dominates our novel cardinality estimation technique,
denoted as A-LHD, in terms of this trade-off. The specific tech-
nical contributions of this paper are as follows.
• We specify the statistical information required by our ap-
proach and identify additional information that can op-
tionally be used to improve accuracy (Section 4).
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• Wepresent a cardinality estimationmodel that defines for
each operator of a simple algebra how it manipulates the
statistical information (Section 5).
• We evaluate the accuracy and efficiency of our technique
w.r.t. state-of-the-art approaches and study if additional
statistical information improves estimations (Section 6).

We begin with a discussion on the state of the art in cardinal-
ity estimation techniques for subgraph matching in Section 2.
We then formalize the property graph model and present our al-
gebra that can represent subgraph matching queries in Section 3.
Concluding remarks are given in Section 7.

2 RELATEDWORK
While cardinality estimation has been studied extensively in the
context of relational databases [14], the research on cardinality
estimation on graph databases and, in particular on property
graphs, has been much more limited [27]. Most existing meth-
ods focus on cardinality estimation for graph queries on RDF
graphs [24, 35, 36].

Characteristic Sets [24] is the cardinality estimation method
used by the high-performance triplestore RDF-3X [25]. The char-
acteristic set of a node is the set of types of its edges and func-
tions as an identifier, i.e., nodes with the same set represent the
same type of entity. By maintaining the counts of all unique sets,
result cardinality is estimated as follows. First, the query pat-
tern is decomposed into non-overlapping star subpatterns the
cardinality of which is given by the precomputed counts. Then
all remaining joins between edge endpoints are estimated using
the independence assumption. While Characteristic Sets can be
used for cardinality estimation on property graphs, it is not a
good fit. In contrast to RDF graphs where all aspects of an entity
have to be modeled using edges (triples), property graphs addi-
tionally offer properties and labels. The fact that property graph
patterns do not often neatly decompose into stars, along with
the high number of potentially correlated joins, lead to severe
underestimation of result cardinality.

Another approach for cardinality estimation on RDF graphs
is to compute estimations over graph summaries [7, 10, 21, 43].
SumRDF [35] is a recent work in this area that provides highly
accurate estimations together with guaranteed error bounds.
SumRDF first builds a graph summary by merging together sim-
ilar nodes in the RDF graph and recording edge multiplicities.
Naturally, the size of the summary, that is dictated by multiple
parameters, strongly influences both the estimation results and
the runtime. As Park et al. [27] discuss in their study, SumRDF
produces fairly accurate estimations, but the graph summary
can grow very large, which renders the approach slow.

With regard to cardinality estimation on property graphs, Gu-
bichev [9] pioneered the technique that has been adopted by
Neo4j. Gubichev’s approach requires the maintenance of the fol-
lowing statistical information: a) for each label ℓ , the number of
nodes with label ℓ , and b) for every label ℓ , relationship type 𝑡 ,
and direction 𝛼 , the count of all node-relationship pairs (𝑛, 𝑟 )
such that 𝑛 has label ℓ , 𝑟 has type 𝑡 and direction 𝛼 , and 𝑛 is
an endpoint of 𝑟 . The cardinality of very small patterns is es-
timated from these statistics directly. The cardinality of larger
patterns is estimated by combining partial estimates and upper
bounds on the cardinality of subpatterns. In contrast to ourwork,
in order to combine partial estimates, Gubichev’s approach al-
ways assumes that relationships are independent, which often
leads to underestimation of the result cardinality. Yakovets et

al. [4, 42, 44] have also proposed methods for cardinality esti-
mation on property graphs. However, despite being lightweight
and producing good estimates, these methods are limited to car-
dinality estimation for path patterns.

Another line of research aims at the adaptation of techniques
from relational to graph databases [27, 39]. Park et al. [27]
adaptedWander Join [19], a sampling-based approach for online
aggregation, for cardinality estimation of subgraph matching
queries. Wander Join performs a predefined number of random
walks to gather samples and estimate the cardinality of the given
pattern. This makes Wander Join quite flexible as the number of
walks determines the trade-off between accuracy and runtime.
However, as we show in our experimental evaluation, when con-
figured to produce estimates as accurate as our approach, the
runtime of Wander Join is very high, thus making the approach
unsuitable for query optimization. Paradies et al. [26] employ
two techniques that come from the relational model, i.e., the de-
tection of soft functional dependencies and histograms that rep-
resent node degree distributions. This approach however consid-
ers neither node labels nor relationship types, and can only be
used to estimate the cardinality of patterns of up to two nodes.

Finally, several cardinality estimation techniques have been
proposed for XQuery processing in XML databases [20, 28, 40,
45]. As these techniques exploit properties specific to XML data
(e.g., strictly tree-structured data), they are not directly applica-
ble to property graph databases.

3 SUBGRAPH MATCHING
Our approach is designed for graph databases that store informa-
tion according to the Property Graph Model. We adapt the defini-
tion of property graphs by Angles [2] to match the specifications
of the data model that we use throughout this paper.

Definition 3.1 (Property Graph). A property graph is a directed
labeled multigraph 𝐺 = (𝑁, 𝑅, 𝑃, 𝐿,𝑇 , 𝜌, 𝜋, 𝜆, 𝜏) where: 𝑁 is a fi-
nite set of nodes; 𝑅 is a finite set or relationships; 𝑃 is a set of
properties, i.e., key-value pairs; 𝐿 is a set of node labels;𝑇 is a set
of relationship types; 𝜌 : 𝑅 → 𝑁 × 𝑁 is a function that assigns
nodes to relationships; 𝜋 : 𝑁 ∪ 𝑅 → P(𝑃) is a function that
assigns properties to nodes and relationships; 𝜆 : 𝑁 → P(𝐿) is
a function that assigns sets of labels to nodes; 𝜏 : 𝑅 → 𝑇 is a
function that assigns types to relationships.

Figure 2 shows a property graph representing a fictional net-
work that we use as a running example.

3.1 Subgraph Matching Queries
A subgraph matching query 𝑞 on a property graph 𝐺 takes a
graph pattern as input Π and returns a set of matching property
subgraphs. In what follows, we formally define these concepts.

Definition 3.2 (Property Subgraph). A property subgraph, or
simply subgraph, of a property graph𝐺 = (𝑁, 𝑅, 𝑃, 𝐿,𝑇 , 𝜌, 𝜋, 𝜆, 𝜏)
is a directed labeled multigraph𝐺 ′ = (𝑁 ′, 𝑅′, 𝑃 ′, 𝐿′,𝑇 ′, 𝜌, 𝜋, 𝜆, 𝜏)
with 𝑁 ′ ⊆ 𝑁 , 𝑅′ ⊆ 𝑅, 𝑃 ′ ⊆ 𝑃 , 𝐿′ ⊆ 𝐿, and 𝑇 ′ ⊆ 𝑇 , such that
∀𝑟 ∈ 𝑅′ : (𝜌 (𝑟 ) = (𝑛, 𝑛′)) ⇒ 𝑛, 𝑛′ ∈ 𝑁 ′.

Definition 3.3 (Graph Pattern). A graph pattern over a prop-
erty graph𝐺 = (𝑁, 𝑅, 𝑃, 𝐿,𝑇 , 𝜌, 𝜋, 𝜆, 𝜏) is a directed labeled multi-
graph Π = (𝑁Π, 𝑅Π, 𝑃, 𝐿,𝑇 , 𝜌Π, 𝜋Π, 𝜆Π, 𝜏Π), where 𝜌Π , 𝜋Π , and
𝜆Π are defined analogously to 𝜌 , 𝜋 , and 𝜆, respectively, and
𝜏Π : 𝑅Π → P(𝑇 ) assigns a set of possible types to each rela-
tionship in the pattern.
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Figure 2: Example property graph

Definition 3.4 (Subgraph Matching Query). Given a graph pat-
tern Π = (𝑁Π, 𝑅Π, 𝑃, 𝐿,𝑇 , 𝜌Π, 𝜋Π, 𝜆Π, 𝜏Π), a property graph 𝐺 =
(𝑁, 𝑅, 𝑃, 𝐿,𝑇 , 𝜌, 𝜋, 𝜆, 𝜏), and a function 𝛿 : 𝑅Π → 0|1 that assigns
to each relationship its directedness, i.e., whether its direction
must be preserved when matching the pattern against a graph
𝐺 , a subgraph matching query, or simply graph query, 𝑞(𝐺,Π, 𝛿)
returns the set 𝑀 of all mappings (functions) 𝜇 : (𝑁Π ∪ 𝑅Π) →
(𝑁 ∪ 𝑅) s.t.
•

(∪𝑣∈𝑁Π 𝜇 (𝑣),∪𝑒∈𝑅Π 𝜇 (𝑒), 𝑃, 𝐿,𝑇 , 𝜌, 𝜋, 𝜆, 𝜏
)
is a subgraph

of 𝐺 that is homomorphic to Π subject to 𝛿 ,
• ∀𝑒, 𝑒 ′ ∈ 𝑅Π : 𝑒 ≠ 𝑒 ′ ⇒ 𝜇 (𝑒) ≠ 𝜇 (𝑒 ′) (“edge isomor-
phism”),
• ∀𝑣 ∈ 𝑁Π : 𝜋 (𝜇 (𝑣)) ⊇ 𝜋Π (𝑣) ∧ 𝜆(𝜇 (𝑣)) ⊇ 𝜆Π (𝑣),
• ∀𝑒 ∈ 𝑅Π : 𝜋 (𝜇 (𝑒)) ⊇ 𝜋Π (𝑒) ∧ 𝜏 (𝜇 (𝑒)) ∈ 𝜏Π (𝑒).

The size of the result set of a subgraph matching query 𝑞 over a
property graph 𝐺 is called the result cardinality.

To define the results of a graph pattern match we use the se-
mantics of Neo4j (sometimes called “Cyphermorphism”), which
uses homomorphism semantics for matching nodes and isomor-
phism semantics for matching relationships. This means that
two distinct nodes in the pattern may be mapped to the same
node in the subgraph, but no two distinct relationships in the
patternmay bemapped to the same relationship in the subgraph.

3.2 Property Graph Algebra
The method presented in this paper estimates the cardinality
of the whole graph pattern incrementally. In each step, an ad-
ditional component of the pattern (e.g., existence of a relation-
ship or a node label) is considered. In order to derive efficiently
computable estimation formulas for the steps in this process we
map them to a set of operators from a sample property graph al-
gebra that is based on the work of Hölsch and Grossniklaus [11].
Our algebra has the sole purpose of defining the result of a sub-
graph matching query 𝑞(𝐺,Π, 𝛿) the cardinality of which we
want to estimate, rather than specifying the evaluation of a gen-
eral graph query. The operators of our algebra use node and re-
lationship variables to track node and relationship matches re-
spectively. Operators can introduce additional variables and ref-
erence previously introduced ones by name. Variables can map
to multiple nodes and relationships and, thus, one expression
can match multiple subgraphs. For instance, consider the graph
pattern shown below that is matched against the property graph
from our running example in Figure 2.

𝑣2 𝑣1 𝑣3𝑒1:likes 𝑒2:likes

:Person

An expression corresponding to this graph pattern can be repre-
sented by the following operator sequence.

©𝐺
𝑣1

𝜎𝑣1 :Person
𝜀
𝑣1

𝑒1:likes−−−−−−−→ 𝑣2
𝜀
𝑣1

𝑒2:likes−−−−−−−→ 𝑣3

To estimate the cardinality of a result set we start from base sta-
tistics which are updated iteratively as operators from the ex-
pression representing the graph pattern are processed.

In what follows, we define how our algebraic operators ma-
nipulate the result, while we specify in Section 5 how they affect
result cardinality and label probability. The result of an expres-
sion 𝑋 is denoted by res(𝑋 ).
GetNodes operator The GetNodes operator produces the
set of mappings corresponding to all single node subgraphs of
the property graph 𝐺 :

res(©𝐺
𝑣 ) := {{𝑣 ↦→ 𝑛} | 𝑛 ∈ 𝑁 }.

Node variable 𝑣 can be matched to any node of 𝐺 . For instance,
in the property graph𝐺 of our running example in Figure 2, the
result of res(©𝐺

𝑣 ) is the set that contains six subgraphs, each
one containing a distinct node of𝐺 , and 𝑣 refers to any of these
nodes.
LabelSelection operator The LabelSelection operator
𝜎𝑣:ℓ takes an expression R as input and returns only those of
its results that correspond to subgraphs for which the node
matched by node variable 𝑣 has label ℓ .

res(𝜎𝑣:ℓ (R)) := {𝜇 | 𝜇 ∈ res(R) ∧ ℓ ∈ 𝜆(𝜇 (𝑣))}.
For instance, consider graph 𝐺 in our running example in Fig-
ure 2 and assume that the input to the LabelSelection opera-
tor are all the single node subgraphs of𝐺 . For the label ‘Person’,
the result of 𝜎𝑣:Person (©𝐺

𝑣 ) contains the single node subgraphs
associated with B, C and E, i.e., the nodes that have the label
‘Person’. Node variable 𝑣 refers to any node in {B,C, E}.
PropertySelection operator The PropertySelection op-
erator 𝜎′

𝑣 {𝜙 } takes an expression R as input and returns only
those of its results that correspond to subgraphs for which the
node matched by node variable 𝑣 has all properties in the set
𝜃 ⊆ 𝑃 . Hence, the result of PropertySelection is

res(𝜎′𝑣 {𝜃 } (R)) := {𝜇 | 𝜇 ∈ res(R) ∧ 𝜃 ⊆ 𝜋 (𝜇 (𝑣))}.

Consider graph 𝐺 in Figure 2. The result for
𝜎′
𝑣 {name: ’Tim’} (©

𝐺
𝑣 ) contains one mapping in which 𝑣 is

mapped to node 𝐹 .
Expand operator The Expand operator takes an expressionR
as input and expands those mappings in res(R) that have rela-
tionships 𝑟 of types 𝑇 ′ ⊆ 𝑇 and direction 𝛼 ∈ {→, ∗,←}. The
result of the Expand contains one mapping per input mapping
and qualifying relationship.

res(𝜀
𝑣
𝑒 :𝑇 ′
𝛼 𝑣′
(R)) := { 𝜇 ∪ {𝑒 ↦→ 𝑟, 𝑣 ′ ↦→ 𝑛} | 𝜇 ∈ res(R)

∧ 𝑟 ∈ 𝑅 ∧ (𝜇 (𝑣), 𝑛) ∈ 𝜌𝛼 (𝑟 ) ∧ 𝜏 (𝑟 ) ∈ 𝑇 ′ },

where we set 𝜌→ (𝑟 ) := {(𝑛, 𝑛′)}, 𝜌← (𝑟 ) := {(𝑛′, 𝑛)}, 𝜌∗ (𝑟 ) :=
{(𝑛, 𝑛′), (𝑛′, 𝑛)} for 𝜌 (𝑟 ) = (𝑛, 𝑛′).
For instance, consider again the graph 𝐺 of our running exam-
ple in Figure 2. If the input res(R) of the Expand operator only
contains the mapping {𝑣 ↦→ E} corresponding to the single-
node subgraph of 𝐸, then the result of 𝜀

𝑣
𝑟 :likes−−−−−−→ 𝑣′

(R) will be
{{𝑣 ↦→ E, 𝑟 ↦→ r4, 𝑣 ′ ↦→ C}, {𝑣 ↦→ E, 𝑟 ↦→ r7, 𝑣 ′ ↦→ F}}. Now,
𝑣 refers to the starting point of each newly added relationship,
and 𝑣 ′ refers to the end point of the same relationship.
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MergeOn operator The MergeOn operator 5𝑣=𝑣′ takes an
expression R and unifies two node variables from its result.
In other words, for two given node variables 𝑣, 𝑣 ′ MergeOn
chooses only those mappings from res(R) where variables 𝑣 and
𝑣 ′ refer to exactly the same node, and omits 𝑣 ′. Hence, the result
of MergeOn is

res(5𝑣=𝑣′ (R)) := { 𝜇\{𝑣 ′ ↦→ 𝜇 (𝑣 ′)} | 𝜇 ∈ res(R) ∧ 𝜇 (𝑣) = 𝜇 (𝑣 ′) }.

For instance, consider the evaluation of the following expression
on graph 𝐺 of our running example in Figure 2.

𝜀
𝑣1

𝑒3:attends−−−−−−−−−→ 𝑣4

(
𝜀
𝑣2

𝑒2:assistantOf−−−−−−−−−−−−−→ 𝑣3

(
𝜀
𝑣1

𝑒1:likes−−−−−−−→ 𝑣2

(
©𝐺

𝑣1

)))
After evaluating this expression, res(R) will contain a mapping
𝜇={𝑣1 ↦→ E, 𝑒1 ↦→ r4, 𝑣2 ↦→ C, 𝑒2 ↦→ r5, 𝑣3 ↦→ D, 𝑒3 ↦→ r5, 𝑣4 ↦→
D}. Since node D is reachable via two different paths from node
E, two node variables map to D. This means that 𝜇 represents a
cyclic subgraph. To ensure that all results have this property, the
MergeOn operator 5𝑣3=𝑣4 (R) is applied. In practice,MergeOn
is the operator that allows us to express cyclic graph patterns.

4 STATISTICAL INFORMATION
In this section, we describe the types of statistical informa-
tion used in our cardinality estimation technique and give an
overview of how the proposed algorithm propagates this infor-
mation along a graph pattern to estimated result cardinality.

4.1 Required Statistical Information
Our cardinality estimation technique requires the following sta-
tistical information about nodes and relationships of a property
graph 𝐺 = (𝑁, 𝑅, 𝑃, 𝐿,𝑇 , 𝜌, 𝜋, 𝜆, 𝜏):

(1) for each label ℓ ∈ 𝐿, the number of nodes having ℓ , i.e.,

NC (ℓ) = |𝜎𝑣:ℓ (©𝐺
𝑣 ) |

(2) the number of relationships with direction 𝛼 ∈ {→, ∗,←}
of type 𝑡 ∈ 𝑇 from nodes with label ℓ𝑖 ∈ 𝐿 to nodes with
label ℓ𝑗 ∈ 𝐿, i.e.,

RC𝛼 (ℓ𝑖 , 𝑡, ℓ𝑗 ) = |𝜎𝑣′:ℓ𝑗 (𝜀𝑣𝑟 :𝑡𝛼 𝑣′
(𝜎𝑣:ℓ𝑖 (©𝐺

𝑣 ))) |

RC𝛼 (ℓ𝑖 , 𝑡, ∗) = |𝜀
𝑣
𝑟 :𝑡
𝛼 𝑣′
(𝜎𝑣:ℓ𝑖 (©𝐺

𝑣 )) |

RC𝛼 (∗, 𝑡, ℓ𝑗 ) = |𝜎𝑣′:ℓ𝑗 (𝜀𝑣𝑟 :𝑡𝛼 𝑣′
(©𝐺

𝑣 )) |

RC𝛼 (∗, 𝑡, ∗) = |𝜀
𝑣
𝑟 :𝑡
𝛼 𝑣′
(©𝐺

𝑣 ) |

In comparison to Gubichev’s work [9] that has been adopted by
Neo4j, our technique requires slightlymore information. Instead
of counting (ℓ, 𝑡)-pairs, our approach maintains (ℓ𝑖 , 𝑡, ℓ𝑗 )-triple
counts. Instead of linearly, the required space is worst-case qua-
dratic in the number of distinct node labels. However, the worst
case only occurs when a graph contains relationships with very
diverse sets of labels attached to the source and target nodes.
In graphs that (mostly) adhere to some schema, one would not
expect to find all label combinations for the two nodes in a re-
lationship. As such, the overall space required is still expected
to be small as data sets with more than a hundred distinct node
labels are rare.

4.2 Optional Statistical Information
Our technique can use additional statistical information w.r.t the
labels and the properties of a graph to improve estimations.

Course

Seminar

Person

Student Tutor Teacher

Figure 3: Distribution of node labels

4.2.1 Additional Label Information. Most existing graph
database systems including Neo4j assume statistical indepen-
dence of node labels, which is not a realistic assumption in prac-
tice. To explore this further, consider a property graph 𝐺 =
(𝑁, 𝑅, 𝑃, 𝐿,𝑇 , 𝜌, 𝜋, 𝜆, 𝜏), and labels ℓ𝑖 , ℓ𝑗 ∈ 𝐿. Also, let P(𝑣 :ℓ) be
the probability that any randomly chosen node which variable
𝑣 maps to has label ℓ . For the relationship between two labels
ℓ𝑖 , ℓ𝑗 ∈ 𝐿, we distinguish the following cases:

(1) ℓ𝑖 is a sublabel of ℓ𝑗 , i.e., every node that has label ℓ𝑖 also
has label ℓ𝑗 but not necessarily vice-versa. Hence we have

P(𝑣 :ℓ𝑖 ∩ 𝑣 :ℓ𝑗 ) = P(𝑣 :ℓ𝑖 ) .
If ℓ𝑖 is a sublabel of ℓ𝑗 we write ℓ𝑖 ≼ ℓ𝑗 .

(2) ℓ𝑖 and ℓ𝑗 are disjoint, i.e., no node has both labels ℓ𝑖 and ℓ𝑗 .
Hence we have

P(𝑣 :𝑙𝑖 ∩ 𝑣 :ℓ𝑗 ) = 0.

(3) ℓ𝑖 and ℓ𝑗 are overlapping, i.e., nodes that have label ℓ𝑖 may
or may not have label ℓ𝑗 and vice-versa. In this case we
assume statistical independence, thus we have

P(𝑣 :ℓ𝑖 ∩ 𝑣 :ℓ𝑗 ) ≈ P(𝑣 :ℓ𝑖 ) · P(𝑣 :ℓ𝑗 )
Figure 3 shows the distribution of the node labels in our run-
ning example. We observe that Seminar is a sublabel of Course,
Student, Tutor and Teacher are sublabels of Person, while la-
bels Student and Tutor are overlapping.

Information about sublabels is stored using the label hierar-
chy data structure 𝐻𝐿 . For ease of reading, given a label ℓ we
denote by𝐻𝑁 (ℓ) the node of𝐻𝐿 that ℓ is associated with. Given
a property graph 𝐺 = (𝑁, 𝑅, 𝑃, 𝐿,𝑇 , 𝜌, 𝜋, 𝜆, 𝜏), 𝐻𝐿 of 𝐺 stores all
labels in 𝐿 in a hierarchical fashion such that:
• the root node of𝐻𝐿 is associated with ∗, i.e., a virtual label
that acts as superlabel to all labels in 𝐿,
• if for two labels ℓ𝑖 and ℓ𝑗 we have that ℓ𝑖 is a sublabel of
ℓ𝑗 then 𝐻𝑁𝑖 is a descendant of 𝐻𝑁 𝑗 .

𝐻𝐿 is utilized for cardinality estimation as follows. Given a set
of labels 𝐿𝑣 ⊆ 𝐿 and a node variable 𝑣 , let P(∩ℓ∈𝐿𝑣𝑣 :ℓ), i.e., the
probability that any node which 𝑣 maps to is associated with all
labels in 𝐿𝑣 , be the probability we wish to estimate. By access-
ing 𝐻𝐿 , we determine all pairs of labels ℓ𝑖 , ℓ𝑗 ∈ 𝐿𝑣 that are in a
sublabel relationship. For every ℓ𝑗 that is a sublabel of ℓ𝑖 we have

P(𝑣 :ℓ𝑖 ∩ 𝑣 :ℓ𝑗 ) = P(𝑣 :ℓ𝑗 ).
Hence, to compute P(∩ℓ∈𝐿𝑣𝑣 :ℓ) we can disregard all labels ℓ𝑖 ∈
𝐿𝑣 such that ∃ℓ𝑗 ∈ 𝐿𝑣 : ℓ𝑗 ≼ ℓ𝑖 , as the probability that a node has
label ℓ𝑖 is already covered by its sublabels. Figure 4 illustrates the
label hierarchy of our running example.

Information about disjoint labels is stored using the label par-
tition data structure. The label partition of𝐺 is a set of pairwise
disjoint sets of labels DL = {𝐷1, ..., 𝐷𝑚} such that for every pair
ℓ𝑖 , ℓ𝑗 where ℓ𝑖 ∈ 𝐷𝑖 , ℓ𝑗 ∈ 𝐷 𝑗 and 𝑖 ≠ 𝑗 , ℓ𝑖 and ℓ𝑗 are disjoint. For
instance, the label partition of our running example is:

{{Seminar, Course}, {Student, Tutor, Teacher, Person}}.
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Figure 4: Label hierarchy of our running example

Given again a set of labels 𝐿𝑣 ⊆ 𝐿, a node variable 𝑣 , and P(𝑣 :𝐿𝑣)
the probability we wish to estimate, we utilize the label partition
DL to determine if there exists a pair of labels ℓ𝑖 , ℓ𝑗 ∈ 𝐿𝑣 such that
ℓ𝑖 and ℓ𝑗 are disjoint. If so, we immediately determine that

P(∩ℓ∈𝐿𝑣𝑣 :ℓ) = P(𝑣 :ℓ𝑖 ∩ 𝑣 :ℓ𝑖 ) = 0.

Thus, a single disjoint pair of labels in 𝐿𝑣 is sufficient to deter-
mine that no node mapping to 𝑣 can have all labels in 𝐿𝑣 .

Consider again our running example (Figure 2). Assume we
want to estimate the probability P(∩ℓ∈𝐿𝑣𝑣 :ℓ) of any node which
variable 𝑣 maps to having all labels 𝐿𝑣 = {Person, Student,
Teacher}. First, we disregard label Person from 𝐿𝑣 as both
Student and Teacher are its sublabels. Then, we observe that
labels Student and Teacher are disjoint, hence

P(∩ℓ∈𝐿𝑣𝑣 :ℓ) = P(𝑣 :Student ∩ 𝑣 :Teacher) = 0.

Similarly, for 𝐿′𝑣 = {Person, Student, Tutor} we have

P(∩ℓ∈𝐿′𝑣𝑣 :ℓ) ≈ 𝑃 (𝑣 :Student)· P(𝑣 :Tutor)

as Student and Tutor are overlapping sublabels of Person.
As the focus of this paper is on cardinality estimation, we

do not present any new techniques to obtain and maintain this
optional statistical information. However, since both the Label
Hierarchy and the Label Partition assume the existence of a
schema, existing techniques for schema inference [17] and de-
pendency discovery [16] can be used to gather such information.
Furthermore, in most cases, schema evolution can be expected
to be very infrequent compared to updates in the data. In sce-
narios without an (explicit or implicit) schema or a schema that
changes frequently, this optional information is not expected to
be useful and can be omitted.

4.2.2 Additional Property Information. Two aspects of prop-
erties are of interest for the cardinality estimation process,
namely (1) the existence of the property key and (2) the cor-
rect value. To take into account the existence of property keys,
we maintain statistics about pairs of property key/type for re-
lationships and property key/label for nodes (and additionally
wildcards ∗ instead of label/type). Since estimating cardinality
based on properties is essentially the same problem as estimat-
ing the selectivity of a selection in relational systems, we follow
the approach of the open-source RDBMS PostgreSQL [30], i.e.,
we store raw counts, numbers of distinct values, and the tenmost
frequent values together with their respective frequencies. This
could potentially lead to huge amounts of statistics being kept.
However, labels/types and property keys attached to nodes and
relationships tend to be highly correlated in practical applica-
tions, so only small subsets of the full cross products have to be
stored. Based on these statistics we can estimate the selectivity
𝑠𝑒𝑙 : (𝐿∪𝑇 ∪ {∗}) ×𝑃 → [0, 1], namely the probability 𝑠𝑒𝑙 (𝑙𝑡, 𝑝)
that a node or relationship has a certain property 𝑝 given that it
has the specified label or relationship type 𝑙𝑡 .

4.3 Propagation of Statistical Information
Recall that our estimation technique represents the graph pat-
tern Π of a subgraph matching query 𝑞(𝐺,Π, 𝛿) as an operator
sequence that evaluates to the result of 𝑞. To estimate the result
cardinality, our technique starts from the initial operator, i.e., a
GetNodes operator, and iteratively considers each subsequent
operator. Every prefix of the operator sequence corresponds to a
subpattern 𝜋𝑖 . During cardinality estimation, for each such sub-
pattern 𝜋𝑖 our approach maintains

• the estimated result cardinality 𝐶 of 𝜋𝑖 and
• a mapping 𝑀 that assigns to every pair (𝑣, ℓ) the la-
bel probability P[𝜋𝑖 ] (𝑣 :ℓ) that a randomly chosen node
bound to node variable 𝑣 has label ℓ ∈ 𝐿.

The number of label probabilities |𝑀 | maintained by our tech-
nique for each subsequence is equal to the current number of
node variables multiplied by the number of labels in 𝐿.

To compute the result cardinality and the mapping for a sub-
pattern 𝜋𝑖 , we consider the result cardinality and the mapping
of the previous subsequence 𝜋𝑖−1, the available statistical infor-
mation, and the type of the subsequent operator. Note that each
additional operator potentially affects the probabilities of all la-
bels on all node variables. However, updating the mappings for
all variables would require a quadratic number of estimations.
Hence, since we aim for a trade-off between efficiency and ac-
curacy, we update the mappings only of variables directly men-
tioned by the operator.

Algorithm 1 gives the pseudocode of our cardinality estima-
tion technique. The algorithm takes an operator sequence𝑂𝑝 as
input and computes the cardinality 𝐶 of the result evaluated by
𝑂𝑝 using the statistics we described above. First, the estimated
cardinality 𝐶 and label probability mapping 𝑀 are initialized in
Line 1. Then, between Lines 2 and 17 the operators of the input
sequence are examined one by one. The previous operator’s es-
timated cardinality 𝐶prev and the mappings 𝑀prev are stored in
Line 3, and 𝑀 and 𝐶 are then updated between Lines 4 and 16
depending on the current operator 𝑂𝑝𝑖 . We elaborate on how
the estimated result cardinality 𝐶 and mapping 𝑀 is computed
for each operator in Section 5. Finally, the estimated result car-
dinality 𝐶 is returned in Line 17.

Since our technique estimates result cardinality in a greedy
fashion, the order in which operators are processed can influ-
ence the quality of the resulting estimations. While determining
the best ordering is out of the scope of our work, we employ
heuristics to avoid propagating information along long chains of
relationships. We start by choosing the node variable with the
highest overall degree as the starting point. Then we expand the
pattern in breadth-first order. Label and property selections are
introduced as early as possible. Relationships that would close
cycles are deferred until the end, at which point their respective
Expand operators as well as the required MergeOn operators
are introduced. In a preliminary experiment, we compared the
order created by our heuristic method against 100 randomly gen-
erated orders per query. The results showed that our order ranks
on average in the top-30% among the randomly generated ones
in terms of accuracy.

5 CARDINALITY ESTIMATION TECHNIQUE
For each of the operators introduced in Section 3.2, we define
how its result cardinality is estimated in relation to its input
and how label probabilities change as a result of the operator.
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Algorithm 1: Cardinality Estimation Algorithm
Input: Operator sequence 𝑂𝑝 = 〈𝑂𝑝1, . . . ,𝑂𝑝𝑚〉
Output: Estimated cardinality 𝐶

1 𝐶 ← 0,𝑀 ← ∅
2 for 𝑖 ∈ {1, . . . ,𝑚} do
3 𝐶prev ← 𝐶 ,𝑀prev ← 𝑀

4 switch 𝑂𝑝𝑖 do
5 case ©𝐺

𝑛 do // Section 5.1
6 𝐶 ← 𝑁𝐶 (∗)
7 𝑀 ←

{
(𝑛, ℓ) ↦→ 𝑁𝐶 (ℓ)

𝑁𝐶 (∗)

��� ℓ ∈ 𝐿 }
8 case 𝜎𝑛:ℓ do // Section 5.2
9 𝐶 ← 𝐶prev ·𝑀prev [𝑛:ℓ]

10 update𝑀 using𝑀prev

11 case 𝜎′
𝑛{𝜙 } do // Section 5.3

12 (𝐶,𝑀) ← propSelCard(𝜎′
𝑛{𝜙 },𝐶prev, 𝑀prev)

13 case 𝜀
𝑛

𝐿→𝑛′
do // Section 5.4

14 (𝐶,𝑀) ← expandCard(𝜀
𝑛

𝐿→𝑛′
,𝐶prev, 𝑀prev)

15 case 5𝑛𝑖=𝑛 𝑗 do // Section 5.5
16 (𝐶,𝑀) ← mergeCard(5𝑛𝑖=𝑛 𝑗 ,𝐶prev, 𝑀prev)

17 return 𝐶

Note that to determine the result cardinality and the label prob-
abilities for each operator, we assume the availability of the op-
tional statistical information described in Section 4.2. If either or
both of 𝐻𝐿 and 𝐷𝐿 are not available, they can be substituted as
𝐻𝐿 = {ℓ → ∗ | ℓ ∈ 𝐿} and 𝐷𝐿 = {𝐿}, respectively. If no prop-
erty statistics are available, all property selectivities 𝑠𝑒𝑙 (·, ·) are
estimated as 10%.

5.1 Estimation for GetNodes
Result cardinality. The result cardinality of the GetNodes op-

erator is given by the number of nodes in the database, i.e.,���©𝐺
𝑣

��� = NC (∗) .

New label probabilities. The probability of drawing a node
matched by 𝑣 having a label ℓ from the result of GetNodes
equals the fraction of nodes in the database having label ℓ , i.e.,

P[©𝐺
𝑣 ] (𝑣 :ℓ) =

NC (ℓ)
NC (∗) .

This applies for all labels ℓ ∈ 𝐿.

5.2 Estimation for LabelSelection
Result cardinality. The result cardinality of the LabelSelec-

tion operator is given by the probability of a node matched by
𝑣 in the input R having the label ℓ multiplied by the size of the
input, i.e.,

|𝜎𝑣:ℓ (R)| = P[R](𝑣 :ℓ) · |R|

New label probabilities. We derive the new label probabilities
for a label ℓ ′ after the LabelSelection operator of a label ℓ .
- Case 1: ℓ = ℓ ′

In the result of the LabelSelection all nodes matched by 𝑛
have the label ℓ . Hence, if ℓ = ℓ ′ then

P[𝜎𝑣:ℓ (R)] (𝑣 :ℓ ′) = 1.

- Case 2: ℓ ≠ ℓ ′ and ℓ ≼ ℓ ′

Similar to Case 1, in the result of LabelSelection all nodes
matched by 𝑛 have the label ℓ . Since ℓ is a sublabel of ℓ ′, then,
by definition, all nodes matched by 𝑣 also have label ℓ ′, i.e.,

P[𝜎𝑣:ℓ (R)] (𝑣 :ℓ ′) = 1 iff ℓ ≼ ℓ ′.

- Case 3: ℓ ≠ ℓ ′ and ℓ ′ ≼ ℓ

If ℓ ′ is a sublabel of ℓ , all the nodes in the result of LabelSe-
lection that have label ℓ ′ have ℓ as well. Hence, we have

P[𝜎𝑣:ℓ (R)] (𝑣 :ℓ ′) =
P[R](𝑣 :ℓ ′ ∩ 𝑣 :ℓ)

P[R](𝑣 :ℓ) =
P[R](𝑣 :ℓ ′)
P[R](𝑣 :ℓ)

- Case 4: ℓ , ℓ ′ are overlapping

If labels ℓ and ℓ ′ are overlapping, we have

P[𝜎𝑣:ℓ (R)] (𝑣 :ℓ ′) =
P[R](𝑣 :ℓ ∩ 𝑣 :ℓ ′)

P[R](𝑣 :ℓ)

≈ P[R](𝑣 :ℓ) · P[R](𝑣 :ℓ ′)
P[R](𝑣 :ℓ) = P[R](𝑣 :ℓ ′)

- Case 5: ℓ , ℓ ′ are disjoint
Finally, if labels ℓ and ℓ ′ are disjoint, we have

P[𝜎𝑣:ℓ (R)] (𝑣 :ℓ ′) =
P[R](𝑣 :ℓ ∩ 𝑣 :ℓ ′)

P[R](𝑣 :ℓ) = 0

5.3 Estimation for PropertySelection
Given the expression 𝜎′

𝑣 {𝜃 } (R), we first determine if 𝑣 refers to
a node or a relationship variable. In order to be able to treat both
cases alike, we gather all labels or types that can be attached to
nodes or relationships matched by the variable, i.e.,

𝐿′ =

{
{ℓ | ℓ ∈ 𝐿 ∧ P[R](𝑣 :ℓ) > 0} if 𝑣 is a node variable
𝜏Π (𝑣) otherwise

Result cardinality. We calculate the result cardinality as the
cardinality ofRmultiplied by the selectivity of the property pred-
icate 𝜃 , which we estimate as the average over selectivities esti-
mated for each of the possible labels or types. To counteract cat-
astrophic underestimation, we assume that multiple predicates
on the same node are correlated and choose the selectivity of the
most selective one among them.���𝜎′𝑣 {𝜃 } (R)��� = |R | · P[R](𝑃 ′ ⊆ 𝜋 (𝜇 (𝑣)))

≈ |R| ·min
𝑝∈𝜃

{
avg𝑙𝑡 ∈𝐿′ 𝑠𝑒𝑙 (𝑙𝑡, 𝑝) if 𝐿′ ≠ ∅
𝑠𝑒𝑙 (∗, 𝑝) otherwise

New label probabilities. If 𝑣 is a relationship variable, we do
not change the label probabilities for any nodes. If 𝑣 is a node
variable instead, we set the probabilities of labels for which a
selectivity of 0% is estimated to zero and scale the others’ prob-
abilities by the inverse of the overall selectivity.

P[𝜎′𝑣 {𝜃 } (R)] (𝑣 :ℓ) ≈


P[R](𝑣 :ℓ) if 𝑣 is a rel. variable
0 if min𝑝∈𝜃 𝑠𝑒𝑙 (ℓ, 𝑝) = 0
P[R](𝑣 :ℓ) |R |���𝜎′𝑣{𝜃 } (R) ��� otherwise

In practice we limit the probabilities to the range [0, 1].
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5.4 Estimation for Expand
To estimate the cardinality of the Expand operator, we firstmake
the assumption that similar nodes, e.g., nodes with the same la-
bel, have similar degree. More specifically, by using the required
statistics described in Section 4.1, the average degree of a node
𝑛 ∈ 𝑁 with label ℓ ∈ 𝐿 by considering only relationships of di-
rection 𝛼 ∈ {→, ∗,←} and relationship types𝑇 ′ ⊆ 𝑇 , where the
adjacent node has label ℓ ′, is:

deg
ℓ
𝑇 ′
𝛼 ℓ′

=
∑
𝑡 ∈𝑇 ′ RC𝛼 (ℓ, 𝑡, ℓ ′)

NC (ℓ)

while for nodes that do not have any label, we assume that their
node degree equals the average degree of all nodes of the prop-
erty graph𝐺 . Consequently, for any input expression R we have���𝜎𝑣′:ℓ′ (𝜀

𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(𝜎𝑣:ℓ (R))

)��� ≈ |𝜎𝑣:ℓ (R)|·deg
ℓ
𝑇 ′
𝛼 ℓ′

(1)

while for nodes not having any label, we have�����𝜎𝑣′:ℓ′ (𝜀𝑣𝑟 :𝑇 ′𝛼 𝑣′

(
R\

⋃
ℓ′∈𝐿

𝜎𝑣:ℓ′ (R)
))�����≈

�����R\⋃
ℓ∈𝐿

𝜎𝑣:ℓ (R)
�����·deg∗𝑇 ′𝛼 ℓ′

. (2)

Result cardinality. To estimate the result cardinality of the Ex-
pand operator, we first consider a label partitionDL as described
in Section 4.2, and we sort the labels ℓ in each cluster 𝐷𝑖 ∈ DL in
descending order of the product P[R](𝑣 :ℓ) · 1

NC (ℓ) . This way la-
bels that cover most of the nodes matched by 𝑣 in R and whose
number of nodes in the database is closest to |R | have higher
order. If the product is the same for two labels, the label ℓ with
higher P[𝑅] (𝑣 :ℓ) comes first. In what follows, as the ordering
is essential for the estimation, we treat clusters 𝐷𝑖 ∈ DL as or-
dered lists. Also, for ease of exposition, we use P(𝑣 :ℓ) instead of
P[R](𝑣 :ℓ).

Having ordered every cluster 𝐷𝑖 ∈ DL, for each labeled node
𝑛 matched by 𝑣 we determine its representative label as the label
ℓ𝑟 ∈ 𝜆(𝑛) that occurs first in 𝐷𝑖 . The degree of each node is then
estimated as the average degree deg

ℓ𝑟
𝑇 ′
𝛼 ∗

of all nodes having the

same representative label.
Subsequently, we divide the set of input subgraphs into two

subsets. In the first subset, we put those subgraphs where the
nodes matched by 𝑣 have at least one label. In the second subset,
we put the subgraphs where the nodes matched by 𝑣 have no
label. Hence, the exact cardinality of the Expand operator is

���𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R)

���=������𝜀𝑣𝑟 :𝑇 ′𝛼 𝑣′

(⋃
ℓ∈DL

𝜎𝑣:ℓ (R)
)������+

������𝜀𝑣𝑟 :𝑇 ′𝛼 𝑣′

(
R\

⋃
ℓ∈DL

𝜎𝑣:ℓ (R)
) ������. (3)

In order to estimate the first summand of Equation 3 using
the available statistics, we rewrite it as a sum over the clusters
𝐷𝑖 of the label partition DL. Subsequently, for each label ℓ𝑖 𝑗 ∈
𝐷𝑖 , we count the number of subgraphs produced by the Expand
operator applied on the nodes in R that have label ℓ𝑖 𝑗 , but do
not have any of the labels ℓ𝑖1, . . . , ℓ𝑖 ( 𝑗−1) . Therefore, the degree
of nodes that have ℓ𝑖 𝑗 as their representative label is estimated
as deg

ℓ𝑖 𝑗
𝑇 ′
𝛼 ∗

.

For the first summand of Equation 3 we have���𝜀
𝑣
𝑟 :𝑡
𝛼 𝑣′

(∪ℓ∈𝐿𝜎𝑣:ℓ (R)
) ���

≈
|DL |∑
𝑖=1

���𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′

(
∪ |𝐷𝑖 |

𝑗=1 𝜎𝑣:ℓ𝑖 𝑗 (R)
)���

=
|DL |∑
𝑖=1

|𝐷𝑖 |∑
𝑗=1

���𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′

(
𝜎𝑣:ℓ𝑖 𝑗

(
R \∪𝑗−1

𝑘=1𝜎𝑣:ℓ𝑖𝑘 (R)
))���

(1)
≈
|DL |∑
𝑖=1

|𝐷𝑖 |∑
𝑗=1

���𝜎𝑣:ℓ𝑖 𝑗 (R \∪𝑗−1
𝑘=1𝜎𝑣:ℓ𝑖𝑘 (R)

)��� · deg
ℓ𝑖 𝑗

𝑇 ′
𝛼 ∗

=
|DL |∑
𝑖=1

|𝐷𝑖 |∑
𝑗=1
|R | · P(𝑣 :ℓ𝑖 𝑗 ∩∪𝑗−1

𝑘=1𝑣 :ℓ𝑖𝑘 ) · degℓ𝑖 𝑗 𝑇
′
𝛼 ∗

= |R | ·
|DL |∑
𝑖=1

|𝐷𝑖 |∑
𝑗=1

P(𝑣 :ℓ𝑖 𝑗 ∩∩𝑗−1
𝑘=1𝑣 :ℓ𝑖𝑘 ) · degℓ𝑖 𝑗 𝑇

′
𝛼 ∗

.

(4)

By treating 𝐷𝑖 as an ordered list, we ensure that each node is
considered exactly once, as identified by its representative label.
The ordering also enables us to keep track of the proportion of
nodes that have not yet been covered in each iteration.

Next, we estimate the fraction of mappings 𝜇 ∈ res(R)
where node 𝜇 (𝑣) has the label ℓ𝑖 𝑗 but none of the labels 𝐿 𝑗−1𝑖 :=
{ ℓ𝑖1, . . . , ℓ𝑖 ( 𝑗−1) }. For every label ℓ ∈ 𝐷𝑖 \ 𝐿 𝑗−1𝑖 it holds that

P(𝑣 :ℓ ∩∩
ℓ′∈𝐿 𝑗−1

𝑖
𝑣 :ℓ ′)

= P(𝑣 :ℓ | ∩
ℓ′∈𝐿 𝑗−1

𝑖
𝑣 :ℓ ′) · P(∩

ℓ′∈𝐿 𝑗−1
𝑖

𝑣 :ℓ ′)

=
(
1 − P(𝑣 :ℓ | ∩

ℓ′∈𝐿 𝑗−1
𝑖

𝑣 :ℓ ′)
)
· P(∩

ℓ′∈𝐿 𝑗−1
𝑖

𝑣 :ℓ ′)

=
©«1 −

P(∩
ℓ′∈𝐿 𝑗−1

𝑖 ∪{ℓ }
𝑣 :ℓ ′)

P(∩
ℓ′∈𝐿 𝑗−1

𝑖
𝑣 :ℓ ′)

ª®¬ · P(∩ℓ′∈𝐿 𝑗−1
𝑖

𝑣 :ℓ ′)

= P(∩
ℓ′∈𝐿 𝑗−1

𝑖
ℓ ′) − P(∩

ℓ′∈𝐿 𝑗−1
𝑖 ∪{ℓ }

𝑣 :ℓ ′)

(5)

For all labels ℓ ′ ∈ 𝐿 𝑗−1𝑖 that are sublabels of ℓ , the probability of
drawing a node that has neither ℓ nor ℓ ′ is P(𝑣 :ℓ ∩ 𝑣 :ℓ ′) = P(𝑣 :ℓ).

We can simplify the subexpression P(∩
ℓ′∈𝐿 𝑗−1

𝑖 ∪{ℓ }
𝑣 :ℓ ′) by

only considering labels ℓ ′ that do not have any superlabels in
𝐿
𝑗−1
𝑖 ∪ {ℓ}. For the resulting set 𝑆 𝑗𝑖 := 𝐿

𝑗−1
𝑖 \ {ℓ ′ ∈ 𝐿

𝑗−1
𝑖 | ∃ℓ ∈

𝐿
𝑗−1
𝑖 : ℓ ′ ≼ ℓ} we assume independence and obtain

P(
⋂
ℓ′∈𝑆 𝑗

𝑖

𝑣 :ℓ ′) ≈
∏
ℓ′∈𝑆 𝑗

𝑖

1 − P(𝑣 :ℓ ′) .

Hence, for Equation 5 we have

P(𝑣 :ℓ ∩
⋂

ℓ′∈𝐿 𝑗−1
𝑖

𝑣 :ℓ ′) =
©«

∏
ℓ′∈𝑆 𝑗−1

𝑖

1− P(𝑣 :ℓ ′)
ª®®¬−

©«
∏
ℓ′∈𝑆 𝑗

𝑖

1− P(𝑣 :ℓ ′)
ª®®¬ .

Similarly, the second summand of Equation 3 is estimated as���𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R \ ∪ℓ∈𝐿𝜎𝑣:ℓ (R))

��� (2)≈ ��R \∪ℓ∈𝐿𝜎𝑣:ℓ (R)
�� · deg

∗𝑇
′
𝛼 ∗

= |R | · P(∪ℓ∈𝐿𝑣 :ℓ) · deg∗𝑇 ′𝛼 ∗
= |R | ·

(
1 − P(∪ℓ∈𝐿𝑣 :ℓ)

)
· deg

∗𝑇
′
𝛼 ∗

.
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New label probabilities. For the newly introduced variable 𝑣 ′
and all labels ℓ ∈ 𝐿 we have:

P[𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R)] (𝑣 ′:ℓ) =

���𝜎𝑣′:ℓ (𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R))

������𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R)

���
The denominator is the result of Equation 3, while the numerator
can be estimated analogously, i.e.,���𝜎𝑣′:ℓ (𝜀

𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R)

)���
=
���𝜎𝑣′:ℓ (𝜀

𝑣
𝑟 :𝑇 ′
𝛼 𝑣′

(∪ℓ′∈𝐿𝜎𝑣:ℓ′ (R)
) )���

+
���𝜎𝑣′:ℓ (𝜀

𝑣
𝑟 :𝑇 ′
𝛼 𝑣′

(
R \∪ℓ′∈𝐿𝜎𝑣:ℓ′ (R)

) )���
(1)
≈ |R| ·

( |DL |∑
𝑖=1

|𝐷𝑖 |∑
𝑗=1

P(𝑣 :ℓ𝑖 𝑗 ∩∩𝑗−1
𝑘=1𝑣 :ℓ𝑖𝑘 ) · degℓ𝑖 𝑗 𝑇

′
𝛼 ℓ

+
(
1 − P(∪ℓ′∈𝐿𝑣 :ℓ ′)

)
· deg

∗𝑇
′
𝛼 ℓ

)
Finally, for node variable 𝑣 and all labels ℓ ∈ 𝐿 we have

P[𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R)] (𝑣 :ℓ) =

���𝜎𝑣:ℓ (𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R)

) ������𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R)

��� =

���𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′

(
𝜎𝑣:ℓ (R)

) ������𝜀
𝑣
𝑟 :𝑇 ′
𝛼 𝑣′
(R)

���
which can be computed in a similar fashion to Equation 4.

5.5 Estimation forMergeOn
To estimate 5𝑣=𝑣′ (R), i.e., howmanymatches of an inputR have
the same graph node bound to two distinct node variables 𝑣 and
𝑣 ′, we assign each labeled node bound to 𝑣 or 𝑣 ′ in the input to
a single most representative label to estimate its contribution to
the overall result cardinality only once.

Result cardinality. TheMergeOn operator can be interpreted
as a filter on the mappings of the input, retaining only those that
map the same node of the graph to both specified node variables.
The result cardinality can therefore never increase and the task
is to estimate the reduction factor. To this end, we first split la-
beled and unlabeled nodes into two separate summands.

|5𝑣=𝑣′ (R)| =
��{ 𝜇 | 𝜇 ∈ res(R) ∧ 𝜇 (𝑣) = 𝜇 (𝑣 ′) }

��
=

𝐶𝐿︷                                                      ︸︸                                                      ︷��{ 𝜇 | 𝜇 ∈ res(R) ∧ 𝜇 (𝑣)=𝜇 (𝑣 ′) ∧ 𝜆(𝜇 (𝑣))≠∅}
��

+
��{ 𝜇 | 𝜇 ∈ res(R) ∧ 𝜇 (𝑣)=𝜇 (𝑣 ′) ∧ 𝜆(𝜇 (𝑣))=∅}

��︸                                                      ︷︷                                                      ︸
𝐶𝐿

We begin with the first summand 𝐶𝐿 . To determine representa-
tive labels, all labels ℓ ∈ 𝐿 are ranked according to the formula
described in the estimation for Expand, but this time by comput-
ing the maximum of the probabilities from both node variables.
Accordingly, we rewrite 𝐶𝐿 as a sum over the clusters 𝐷𝑖 of DL.

𝐶𝐿 =
|DL |∑
𝑖=1

��{𝜇 |𝜇 ∈ res(R) ∧ 𝜇 (𝑣) = 𝜇 (𝑣 ′) ∧ 𝜆(𝜇 (𝑣)) ⊆ 𝐷𝑖 }
��

=
|DL |∑
𝑖=1

���∪ |𝐷𝑖 |
𝑖=𝑗 {𝜇 |𝜇 ∈ res(R) ∧ 𝜇 (𝑣) = 𝜇 (𝑣 ′) ∧ ℓ𝑖 𝑗 ∈ 𝜆(𝜇 (𝑣))}

���
Next the nodes in each𝐷𝑖 are partitioned by representative label.

=
|DL |∑
𝑖=1

|𝐷𝑖 |∑
𝑗=1
|{𝜇 |𝜇 ∈ res(R) ∧ 𝜇 (𝑣) = 𝜇 (𝑣 ′) ∧ ℓ𝑖 𝑗 ∈ 𝜆(𝜇 (𝑣))

∧ �𝑘 ∈ {1..., 𝑗 − 1} : ℓ𝑖𝑘 ∈ 𝜆(𝜇 (𝑣))}|

Let P[R](𝑎 ≡ 𝑏) denote the probability that 𝜇 (𝑣) = 𝜇 (𝑣 ′) for
any 𝜇 ∈ res(R). We can express the cardinality of the set in
terms of the cardinality ofR and the probability that its resulting
mappings satisfy the given conditions.

=
|DL |∑
𝑖=1

|𝐷𝑖 |∑
𝑗=1
|R | · P(𝑣 ≡ 𝑣 ′ ∩

𝑅𝑖 𝑗 (𝑣)︷                 ︸︸                 ︷
𝑣 :ℓ𝑖 𝑗 ∩∩ℓ∈𝐿 𝑗−1

𝑖
𝑣 :ℓ)

= |R |
|DL |∑
𝑖=1

|𝐷𝑖 |∑
𝑗=1

P(𝑣 ≡ 𝑣 ′ | 𝑅𝑖 𝑗 (𝑣)) · P(𝑅𝑖 𝑗 (𝑣))

P(𝑅𝑖 𝑗 (𝑣)) is the probability of the node bound to 𝑣 having repre-
sentative label ℓ𝑖 𝑗 and can be estimated directly using Equation 5.

It remains to estimate the conditional probability of how
likely it is for any node bound to 𝑣 that has representative la-
bel ℓ𝑖 𝑗 to match with some node bound to 𝑣 ′. If 𝑣 and 𝑣 ′ map to
the same node, 𝜇 (𝑣 ′) must also have most representative label
ℓ𝑖 𝑗 . Assuming statistical independence between mappings of 𝑣
and 𝑣 ′, we have

P(𝑣 ≡ 𝑣 ′ | 𝑅𝑖 𝑗 (𝑣)) = P(𝑣 ≡ 𝑣 ′ ∩ 𝑅𝑖 𝑗 (𝑣 ′) | 𝑅𝑖 𝑗 (𝑣))

=
P(𝑣 ≡ 𝑣 ′ ∩ 𝑅𝑖 𝑗 (𝑣) ∩ 𝑅𝑖 𝑗 (𝑣 ′))

P(𝑅𝑖 𝑗 (𝑣))

=
P(𝑣 ≡ 𝑣 ′ ∩ 𝑅𝑖 𝑗 (𝑣) ∩ 𝑅𝑖 𝑗 (𝑣 ′)) · P(𝑅𝑖 𝑗 (𝑣 ′))

P(𝑅𝑖 𝑗 (𝑣)) · P(𝑅𝑖 𝑗 (𝑣 ′))

≈
P(𝑣 ≡ 𝑣 ′ ∩ 𝑅𝑖 𝑗 (𝑣) ∩ 𝑅𝑖 𝑗 (𝑣 ′))

P(𝑅𝑖 𝑗 (𝑣) ∩ 𝑅𝑖 𝑗 (𝑣 ′))
· P(𝑅𝑖 𝑗 (𝑣 ′))

= P(𝑣 ≡ 𝑣 ′ | 𝑅𝑖 𝑗 (𝑣) ∩ 𝑅𝑖 𝑗 (𝑣 ′)) · P(𝑅𝑖 𝑗 (𝑣 ′))

≈ 1
NC (ℓ𝑖 𝑗 )

· P(𝑅𝑖 𝑗 (𝑣 ′))

As we do not have statistics on how many unlabelled nodes
exist in the database, we proceed similar to the Expand operator
above and estimate the second summand 𝐶𝐿 as follows.

𝐶𝐿 ≈
|R|

NC (∗) ·
(
1 − P

(∪ℓ∈𝐿 𝑣 :ℓ
) )
·
(
1 − P

(∪ℓ∈𝐿 𝑣 ′:ℓ
) )

New label probabilities. Since the result of 5𝑣=𝑣′ (R) does not
contain 𝑣 ′ any more, we only have to estimate new label proba-
bilities for the remaining node variable 𝑣 . We also know that for
every label ℓ ∈ 𝐿 the probability P[5𝑣=𝑣′ (R)] (𝑣 :ℓ) can only be
greater than zero if there are both nodes bound to 𝑣 and 𝑣 ′ in
R that have label ℓ , otherwise no matching pair of bound nodes
could be found. We therefore estimate the new label probabili-
ties as the minimum among the probabilities for both variables 𝑣
and 𝑣 ′ in the input, scaled by the inverse of the reduction factor.

P[5𝑣=𝑣′ (R)] (𝑣 :ℓ) ≈
min(P[R](𝑣 :ℓ), P[R](𝑣 ′:ℓ)) · |R|

|5𝑣=𝑣′ (R)|

6 EXPERIMENTAL EVALUATION
In our experimental evaluation, we first examine the individual
contributions of label probability propagation, label hierarchy
and label disjointness on the overall accuracy of our technique
to identify the best configuration (Section 6.1). Then, we study
the accuracy and efficiency of our proposed cardinality estima-
tion technique w.r.t. state-of-the-art approaches (Section 6.2). In
terms of accuracy, we report the q-error [22], while in terms of
efficiency, we measure the average runtime of each algorithm
and the memory requirements for the statistical information.
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Data Sets. We evaluate our technique on one synthetic data
set, i.e., the LDBC Social Network Benchmark 0.2.8 (SNB) with
a scale factor of 0.1, and two real-world data sets, i.e., the
Cineasts 2.1.6 movie data set [12], and DBpedia 3.6 [6] that con-
tains structured data extracted from Wikipedia. For SNB and
Cineasts, we constructed the optional statistical information 𝐻𝐿

and DL manually, This is easily accomplished as the number of
labels and, therefore, the number of queries to verify the infor-
mation is very small. For DBpedia we extracted this information
from the ontology provided together with the data set. DBpe-
dia’s label partition only contains one component since almost
all nodes have the common label Thing. Table 1 shows the char-
acteristics of our data sets.

State-of-the-Art Techniques. We compare our approach to
three state-of-the-art techniques that were included in a recent
study of cardinality estimation for subgraph matching [27]. The
authors of that study classify techniques into two broad cate-
gories based on whether they were developed for graph or re-
lational data. From the former category we include Characteris-
tic Sets (CSets) [24] and SumRDF [35] in our evaluation, which
were both proposed in the context of SPARQL query processing.
ForCSetswe use our own implementationwithout compressing
the collected statistics in order to maximize accuracy. For Sum-
RDF, we use the authors’ implementation [34] and we optimize
for performance by compressing with default parameters and
the smallest target size that results in a usable summary. From
the latter category, we adapted the implementation of Wander
Join (WJ) [19] provided by Park et al. [27], which can be config-
ured to trade off accuracy and efficiency by varying the number
of sampling attempts. WJ-1 and WJ-100 denote configurations
with 1 and 100 attempts, respectively, whereasWJ-R denotes the
configuration used by Park et al. [27]. We also compare our ap-
proach to the cardinality estimator of Neo4j.

Most of the state-of-the-art approaches comewith limitations.
CSets, WJ, and SumRDF do not support undirected or untyped
relationships.WJ also does not support patterns that have nodes
with more than one label or properties. Furthermore, while all
competing techniques except for Neo4j assume homomorphism
semantics, we use them under Cyphermorphism semantics.

Query Sets. To generate a variety of graph patterns of
different sizes without introducing subjective bias, we first
match undirected patterns generated from graphlets with 3–7
nodes [31] against the data set, anchored at randomly selected
nodes. The resulting subgraphs are then transformed into more
general patterns by randomly removing some of their informa-
tion, e.g., labels, properties or directedness of relationships. Fol-
lowing the work of Bonifati et al. [5] and Park et al. [27], we clas-
sify the resulting patterns into four main categories of shapes:
chains, stars, trees, and cyclic. The cyclic patterns are subdivided
into circles, petals, flowers, and other cyclic patterns. We then ap-
ply multiple rounds of stratified sampling to obtain a set of pat-
terns that is diverse w.r.t. shape, size and frequency of their com-
ponents (nodes, labels, properties etc.). We generate two query
sets per data set, one with patterns that contain up to three prop-
erties and one with no properties present. The first set was gen-
erated in such a way that all methods butWJ support all queries
(patterns containing nodeswithmultiple labels are included). Ta-
ble 2 gives the total number of generated query patterns.

Environment. All experiments were conducted on a server-
grade machine with a 12-core Intel Xeon E5-2650 v4 CPU and

Table 1: Data sets

SNB Cineasts DBpedia
nodes 327,588 72,542 2,362,452
relationships 1,477,965 106,651 7,046,160
properties 2,132,911 561,520 8,344,029
node labels 14 5 252
rel. types 15 4 584
prop. keys 23 27 601
𝐻𝐿 height 2 2 5
𝐷𝐿 components 7 2 1

Table 2: Number of patterns in the six query sets

Chain Star Tree Cyclic
Circle Petal Flower other

SNB 182 148 130 154 151 176 189
(w/o prop) 830 652 411 94 131 107 442
Cineasts 155 161 146 148 163 163 170
(w/ prop) 270 270 267 71 153 35 11
DBpedia 175 145 169 154 199 234 305
(w/o prop) 119 156 141 186 143 161 184

256 GiB 2666 MHz DDR4 memory, running Windows 10 Pro
20H2. Our source code is available under MIT license [41].

6.1 Detailed Evaluation of Our Technique
We first examine how the different types of statistical informa-
tion described in Section 4 affect the accuracy of our approach.
We label different configurations of our technique as follows.
First, we indicate whether Neo4j’s Simple or our more Advan-
ced statistics are used for relationship counts (Section 4.1). Then
we denote whether Label probability propagation (Section 5)
and information about Hierarchical or Disjoint labels is used
(Section 4.2). For example, A-LHD is the configuration that uses
label probability propagation together with both required and
all of the optional statistical information. All configurations use
property statistics except forA-LHD-10%which, similar tomany
real-world systems including Neo4j, follows the classical ap-
proach to assume 10% selectivity for all properties [33]. As a
point of reference, we include the results of the cardinality esti-
mator of Neo4j, which is our most direct competitor as it is the
only other technique specifically designed for property graphs
and supports all graph patterns in our query sets.

Figure 5 shows the accuracy (q-error) of six different con-
figurations of our technique and Neo4j for subgraph matching
queries with chain, tree, star, and cyclic graph patterns. For the
synthetic SNB data set (Figure 5a), all configurations of our tech-
nique consistently outperform Neo4j, even if they rely on the
same simple statistical information (S-L). Furthermore, we ob-
serve that the more advanced statistical information either im-
proves cardinality estimates or does not affect them at all. For
cyclic patterns our estimates are generally less accurate. Because
our technique applies the independence assumption more fre-
quently when MergeOn is involved, underestimation is more
pronounced, masking some of the effects that can be observed
in the other types of patterns. With regard to the optional sta-
tistical information, DL improves estimation accuracy, 𝐻𝐿 has
almost no effect, and the information on properties improves es-
timation accuracy only for star patterns.
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Figure 5: Accuracy of different configurations of our cardinality estimation technique in comparison with Neo4j

The results on the real-world data sets in Figures 5b and 5c
clearly show that all configurations of our technique outperform
Neo4j in all cases, apart from cyclic patterns where the accu-
racy is essentially the same. For Cineasts, estimation accuracy
for cyclic patterns is better than on SNB. This can be explained
by the more restricted structure of the Cineasts graph, which
contains very few triangles in comparison to SNB. Therefore,
the cardinality of cyclic pattern queries is low, bounding the q-
error. For DBpedia, we observe that S-L and A-LHD-10%, which
tend to overestimate cardinalities, demonstrate higher accuracy.
This behavior can be explained by the fact that the DBpedia data
set contains a large number of distinct concepts. As a result, the
use of the independence assumption introduces strong underes-
timation. With regard to optional information, we observe that
label disjointness information improves estimation accuracy in
Cineasts, while label hierarchy information seems to have no ef-
fect in either data set. Comparing A-LHD and A-LHD-10%, the
information about properties seems to benefit cardinality esti-
mation only for chain and star patterns in Cineasts, while in DB-
pedia the accuracy is getting worse.

Insights. The label probability propagation technique pro-
posed in this paper avoids the sometimes significant underesti-
mations made by Neo4j, even if it uses the same statistical infor-
mation. Also, collecting and using more advanced statistical in-
formation leads to more accurate cardinality estimates provided
that the structure of the underlying data is not overly complex.
The impact of statistics designed to capture the (implicit) schema
of the property graph, i.e., information about label hierarchies
(𝐻𝐿) and label disjointness (DL), highly depends on the structure
of the graph and the availability of such information. Between
these two types of optional information, DL can improve accu-
racy substantially, while the effect of𝐻𝐿 is generally moreminor.
With regard to the optional information about properties, we ob-
serve a large benefit in patterns in which our approach can ef-
fectively limit underestimations, e.g., chain and star patterns in
SNB and Cineasts data sets.

6.2 Comparison to the State of the Art
We now study how our approach compares to the selected state-
of-the-art approaches w.r.t. accuracy and efficiency.

Runtime and Memory Requirements. Figure 6 shows the run-
time of the cardinality estimation approaches. We present the
results only on the query set with properties, since all methods
but WJ support all queries. Also, due to lack of space, we only
present the results on the SNB dataset. We excluded Neo4j from
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Figure 6: Runtime for patterns with properties (SNB)

the evaluation as we could not isolate the runtime for the car-
dinality estimation. However, based on our measurements, we
expect Neo4j to be the fastest technique. Also, due to their very
large runtime, we set a timeout of 10 seconds for SumRDF and for
WJ-R. Our results in Figure 6 show that CSets is the fastest tech-
nique. OurA-LHD technique is slower thanCSets but still offers
comparable runtime performance. WJ-1 comes third, while all
other techniques, i.e., SumRDF, WJ-100, and WJ-R are at least
one order of magnitude slower than our technique.

Table 3 reports the (approximate) memory requirements of
all cardinality estimation techniques. Neo4j inflicts the smallest
memory overhead in all data sets. Our A-LHD approach (with
and without the optional statistical information on properties)
has slightly greater memory requirements thanNeo4j being sec-
ond in Cineasts and DBpedia, and third in SNB, behind CSets.
SumRDF has clearly the highest memory requirements whileWJ
does not require any stored information by definition. Note that
CSets and SumRDF can be configured to have different memory
requirements. However, no configuration of these approaches
dominates our A-LHD. On the one hand, CSets can be tuned to
require less memory, but then its accuracy will drop even further
increasing the gap from A-LHD. On the other hand, SumRDF is
more accurate with less compression, but then it will also be-
come even slower and consume more memory.

Pattern Size. Figure 7 shows the results of our experiments
studying the impact of pattern size, i.e., the sum of the number of
labels, relationships, and properties in the pattern, on the q-error.
Since queries with properties usually have much smaller result
cardinality than queries without properties, which is expected to
affect accuracy, we present the results for both query sets with
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Table 3: (Approximate) Sizes of summaries

CSets Neo4j A-LHD WJ SumRDF
basic +props

SNB 1.8 kB 1.2 kB 3.1 kB 13.3 kB n/a 192.1MB
Cineasts 7.9 kB 0.3 kB 0.8 kB 7.7 kB n/a 4.9MB
DBpedia 10.3MB 0.2MB 1.4MB 1.9MB n/a 291.3MB

and without properties (see Table 2). For the query sets with
properties, all methods support all queries, apart fromWJwhich
is excluded. For the query sets without properties, only our A-
LHD approach and Neo4j support all queries; CSets supports
48% of the queries on SNB, 23% of the queries on Cineasts, and
38% of the queries on DBpedia;WJ supports approximately 28%
of the queries on SNB, 17% of the queries on Cineasts, and 17%
of the queries on DBpedia; and SumRDF supports approximately
16% of the queries on SNB, 23% of the queries on Cineasts, and
37% of the queries on DBpedia.

Figure 7a presents the q-error of all approaches on the query
sets that contain patterns with properties. For the SNB and
Cineasts data sets, we observe a trend that the q-error increases
with the size of the query pattern for all techniques. In these two
datasets, our A-LHD approach clearly outperforms CSets and
Neo4j. For SNB in particular,A-LHD offers comparable accuracy
to SumRDF. For the DBpedia data set the pattern size does not
seem to affect the q-error at all. We also observe that all methods
offer comparable accuracy. This result can be explained by the
fact that due to the structure of the DBpedia data set all methods
tend to underestimate greatly.

In Figure 7b, we present the results of our experiments on the
query sets that contain patterns without properties. For the SNB
and Cineasts data sets, we observe a much clearer trend for all
approaches that the q-error increases with the pattern size than
on the query set with properties. In contrast, similar to the pre-
vious query set, for DBpedia we do not observe such a connec-
tion between pattern size and q-error. With regard to our tech-
nique, A-LHD outperforms CSets and Neo4j in all cases, and is
comparable to SumRDF for small pattern sizes. The results for
WJ show the expected behavior: increasing the sampling rate
increases accuracy. Our approach offers higher accuracy than
WJ-1 in all cases, except for very large patterns in DBpedia. In
comparison to WJ-R and WJ-100 in SNB, our approach demon-
strates slightly lower accuracy. Nevertheless, our technique out-
performs CSets, Neo4j, and WJ in almost all cases, while Sum-
RDF achieves clearly the best accuracy.

In Figure 7 we also observe that the presence of properties in
queries has a great effect on the accuracy of all methods. Since
the result cardinality of queries with properties is usually low,
drastically underestimating cardinalities leads to lower q-error.
Furthermore, the difference in accuracy between competitors is
less pronounced on queries with properties than without. As
the existence of properties in patterns affects the estimations
greatly and not all techniques support patterns with properties,
to gain additional insight on the performance of the cardinality
estimation methods, in what follows we focus on patterns with-
out properties.

Detailed Evaluation on Patterns without Properties. Figure 8a
shows the results of our experiments studying the impact of
pattern shape on the q-error. For SNB, we observe that our
technique (A-LHD) consistently outperforms CSets and Neo4j,

while it shows similar accuracy as SumRDF, albeit with more
pronounced outliers. For WJ we observe once again that the
sampling rate increases accuracy.We note that overall cyclic pat-
terns present the greatest challenge to cardinality estimation for
most approaches. For the smaller Cineasts data set, we observe
the same but less pronounced results. The results of WJ-1 and
WJ-100 are slightly better in this data set due to the fact that their
relative sampling rate increases as the size of the data set de-
creases. For DBpedia, SumRDF offers the highest accuracy. Our
A-LHD technique comes second behind SumRDF, outperform-
ing all remaining techniques.

Figure 8b reports on the effect that the label density 𝑑 =
#labels
#nodes has on cardinality estimation errors. We classify label
density into three categories: low (0 ≤ 𝑑 ≤ 0.3), medium
(0.3 < 𝑑 ≤ 0.6), and high (0.6 < 𝑑). The results for both data sets
confirm the observations made in the previous experiments: A-
LHD consistently outperforms CSets as well as Neo4j and, on
average, is comparable to SumRDF. Again, WJ performs as ex-
pected: accuracy is increasing with the number of samples. In
general, we observe that the label density has no clear effect on
the q-error.

Figure 8c gives the results of our study into the accuracy of
cardinality estimationw.r.t. true cardinality, i.e., the result size of
the corresponding query. We group results into buckets accord-
ing to orders of magnitude: 1–99, 100–9,999, 10,000–999,999, etc.
For all data sets, our A-LHD technique outperforms CSets and
Neo4j for all result sizes.While the accuracy of CSets andNeo4j
degrades with increasing result size, the accuracy of our tech-
nique and that of SumRDF seems to be unaffected. WJ exhibits
similar behavior to the previous experiments, with the exception
of SNB where WJ-100 and WJ-R show an increased q-error for
small patterns.

Homomorphism vs. Cyphermorphism Semantics. While in this
paper we focus on cyphermorphism semantics, some of the ap-
proaches we evaluate, i.e., CSets and SumRDF, have been de-
signed for SPARQL, which uses homomorphism semantics in-
stead. This means that any node or relationship in the subgraph
may be mapped to more than one node or relationship in the
pattern. In order to evaluate the effect that the difference in se-
mantics has on the quality of the estimations, we compared the
ground truth cardinalities for all queries in our query sets us-
ing both semantics. We observed that in all data sets, for most
queries the cardinality computed using homomorphism seman-
tics did not exceed the cardinality computed using cyphermor-
phism semantics by a factor larger than 1.5, with only very few
patterns demonstrating an increase by a factor larger than 10.
As the q-error is a ratio between true and estimated cardinal-
ity, the factor by which the true cardinality changes is an upper
bound for the change in the resulting q-error. Since the differ-
ences between the studied techniques exceed the observed factor
by which the cardinalities differ, we do not expect the semantics
to alter the ranking of the techniques.

Insights. The results presented in this section show that our
approach is considerably faster than techniques that are more
accurate, and considerably more accurate than techniques that
are faster. More specifically, our approach consistently outper-
forms CSets and Neo4j, i.e., the only two techniques proposed
for graph query optimization. Additionally, our approach is, on
average, comparable to SumRDF in terms of accuracy, while re-
quiring only a fraction of its runtime and memory. Furthermore,
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Figure 8: Accuracy for different pattern shapes

our approach provides a better trade-off between accuracy and
efficiency than WJ, being consistently faster and more accurate
than the fastest WJ configuration, i.e., WJ-1, and significantly
faster with comparable accuracy to the most accurate configu-
rations, i.e., WJ-100 and WJ-R. Finally, we note that our experi-
mental results are consistent with the findings of Park et al. [27]
w.r.t. the state-of-the-art techniques.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we have presented label probability propagation,
a novel cardinality estimation technique for subgraph matching
queries in property graphs. We have also studied how different
types of required and optional statistical information w.r.t. node
labels, relationship types and properties impact estimation er-
ror. Through a comprehensive experimental evaluation we have
shown that, to the best of our knowledge, no state-of-the-art
technique exists that dominates our technique in terms of the

trade-off between accuracy and efficiency. Our results also show
that our technique delivers the trade-off between accuracy and
efficiency required in the setting of query optimization. In the
future, we plan to study the effect of the operator sequence or-
der on estimation quality in depth. We also plan to investigate
whether more sophisticated graph statistics, e.g., triangle counts,
etc., would benefit the accuracy of our technique. Last but not
least, we plan to extend our approach to support more types of
graph query patterns such as patterns with optional subpatterns
and variable length paths.
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